4,375 research outputs found

    On Tarski's axiomatic foundations of the calculus of relations

    Get PDF
    It is shown that Tarski's set of ten axioms for the calculus of relations is independent in the sense that no axiom can be derived from the remaining axioms. It is also shown that by modifying one of Tarski's axioms slightly, and in fact by replacing the right-hand distributive law for relative multiplication with its left-hand version, we arrive at an equivalent set of axioms which is redundant in the sense that one of the axioms, namely the second involution law, is derivable from the other axioms. The set of remaining axioms is independent. Finally, it is shown that if both the left-hand and right-hand distributive laws for relative multiplication are included in the set of axioms, then two of Tarski's other axioms become redundant, namely the second involution law and the distributive law for converse. The set of remaining axioms is independent and equivalent to Tarski's axiom system

    A discussion on the origin of quantum probabilities

    Get PDF
    We study the origin of quantum probabilities as arising from non-boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorvian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case).Comment: Improved versio

    Effects and Propositions

    Full text link
    The quantum logical and quantum information-theoretic traditions have exerted an especially powerful influence on Bub's thinking about the conceptual foundations of quantum mechanics. This paper discusses both the quantum logical and information-theoretic traditions from the point of view of their representational frameworks. I argue that it is at this level, at the level of its framework, that the quantum logical tradition has retained its centrality to Bub's thought. It is further argued that there is implicit in the quantum information-theoretic tradition a set of ideas that mark a genuinely new alternative to the framework of quantum logic. These ideas are of considerable interest for the philosophy of quantum mechanics, a claim which I defend with an extended discussion of their application to our understanding of the philosophical significance of the no hidden variable theorem of Kochen and Specker.Comment: Presented to the 2007 conference, New Directions in the Foundations of Physic

    A Sound and Complete Axiomatization of Majority-n Logic

    Get PDF
    Manipulating logic functions via majority operators recently drew the attention of researchers in computer science. For example, circuit optimization based on majority operators enables superior results as compared to traditional logic systems. Also, the Boolean satisfiability problem finds new solving approaches when described in terms of majority decisions. To support computer logic applications based on majority a sound and complete set of axioms is required. Most of the recent advances in majority logic deal only with ternary majority (MAJ- 3) operators because the axiomatization with solely MAJ-3 and complementation operators is well understood. However, it is of interest extending such axiomatization to n-ary majority operators (MAJ-n) from both the theoretical and practical perspective. In this work, we address this issue by introducing a sound and complete axiomatization of MAJ-n logic. Our axiomatization naturally includes existing majority logic systems. Based on this general set of axioms, computer applications can now fully exploit the expressive power of majority logic.Comment: Accepted by the IEEE Transactions on Computer

    Information-theoretic principle entails orthomodularity of a lattice

    Full text link
    Quantum logical axiomatic systems for quantum theory usually include a postulate that a lattice under consideration is orthomodular. We propose a derivation of orthomodularity from an information-theoretic axiom. This provides conceptual clarity and removes a long-standing puzzle about the meaning of orthomodularity.Comment: Version prior to published, with slight modification

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201
    • 

    corecore