
1

A Sound and Complete Axiomatization of
Majority-n Logic

Luca Amarú, Student Member, IEEE, Pierre-Emmanuel Gaillardon, Member, IEEE,
Anupam Chattopadhyay, Senior Member, IEEE, Giovanni De Micheli, Fellow, IEEE

Abstract— Manipulating logic functions via majority operators
recently drew the attention of researchers in computer science.
For example, circuit optimization based on majority operators
enables superior results as compared to traditional synthesis
tools. Also, the Boolean satisfiability problem finds new solution
approaches when described in terms of majority decisions. To
support computer logic applications based on majority, a sound
and complete set of axioms is required. Most of the recent
advances in majority logic deal only with ternary majority (MAJ-
3) operators because the axiomatization with solely MAJ-3 and
complementation operators is well understood. However, it is of
interest extending such axiomatization to n-ary majority opera-
tors (MAJ-n) from both the theoretical and practical perspective.
In this work, we address this issue by introducing a sound and
complete axiomatization of MAJ-n logic. Our axiomatization
naturally includes existing MAJ-3 and MAJ-5 axiomatic systems.
Based on this general set of axioms, computer applications can
now fully exploit the expressive power of majority logic.

Index Terms— Majority Logic, Boolean Algebra, Axiomatiza-
tion, Soundness, Completeness.

I. INTRODUCTION

BOOLEAN logic and its axiomatization is fundamental
to the whole field of computer science. Traditionally,

Boolean logic is axiomatized in terms of conjunction (AND),
disjunction (OR) and complementation (INV) operators. Virtu-
ally, all of today’s digital computation is performed by using
these operators with their associated laws. Recently, it was
shown that more efficient logic computation is possible by
using a majority operator in place of conjunction and disjunc-
tion operators [1]–[4]. Moreover, the properties of majority
operators, such as stability, have been proved to be the best fit
for solving important problems in computer science [5]–[8].
Regarding emerging technologies, majority operators are the
natural logic primitives for several beyond-CMOS candidates
[9]–[23]. In order to exploit the unique opportunity led by
majority in computer applications, a sound and complete set
of manipulation rules is required. Most of the recent studies
on majority logic based computation consider ternary majority
(MAJ-3) operators because the axiomatization in this context
is well understood. To unlock the real expressive power of

Luca Amarú, Pierre-Emmanuel Gaillardon and Giovanni De Micheli are
with the Integrated Systems Laboratory, Swiss Federal Institute of Technology,
Lausanne, EPFL, 1015 Lausanne, Switzerland (e-mail: luca.amaru@epfl.ch;
pierre-emmanuel.gaillardon@epfl.ch; giovanni.demicheli@epfl.ch).

Anupam Chattopadhyay is with Nanyang Technological University, 639798,
Singapore (e-mail: anupam@ntu.edu.sg).

majority logic, it is of interest to extend such axiomatization
to n-ary (n odd) majority operators (MAJ-n).

We introduce in this paper a sound and complete axiom-
atization of MAJ-n logic. Our axiomatization is the natural
extension of existing majority logic systems with fixed number
of inputs. Based on the majority axioms introduced in this
work, computing systems can use at its best the expressive
power of majority logic.

The remainder of this paper is organized as follows. Section
II gives background and notations useful for the rest of
this paper. Section III introduces our sound and complete
axiomatization for MAJ-n logic. Section IV discusses relevant
applications of our majority logic system in logic optimization,
Boolean satisfiability, repetition codes and emerging technolo-
gies. Section V concludes the paper.

II. BACKGROUND AND NOTATIONS

We provide hereafter terms and notions useful in the rest of
the paper. We start by introducing basic notation and symbols
for logic operators and we continue by presenting special
properties of Boolean functions. We define a compact vector
notation for Boolean variables and discuss Boolean algebras
with a particular emphasis on MAJ-3/INV Boolean algebra.

A. Notations

In the binary Boolean domain, the symbol B indicates the
set of binary values {0, 1}; the symbols ∧ and ∨ represent
the conjunction (AND) and disjunction (OR) operators; the
symbol ¬ represents the complementation (INV) operator; and
0/1 represent the false/true logic values. Alternative symbols
for ∧, ∨ and ¬ are ·, +, and ′, respectively.

B. Self-Dual Function

A logic function f(x, y, .., z) is said to be self-dual if
f(x, y, .., z) = ¬f(¬x,¬y, ..,¬z) [7]. By complementa-
tion, an equivalent self-dual formulation is ¬f(x, y, .., z) =
f(¬x,¬y, ..,¬z).

C. Majority Function

An n-input (n being odd) majority function Mn is defined
on reaching a threshold dn/2e of true inputs [7]. For example,
the three input majority function M3(x, y, z) can be expressed
as ∧,∨ by (x∧y)∨(x∧z)∨(y∧z). Also (x∨y)∧(x∨z)∧(y∨z)

ar
X

iv
:1

50
2.

06
35

9v
3 

 [
cs

.L
O

] 
 2

5 
N

ov
 2

01
5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148017733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

is a valid representation for M3(x, y, z). The majority function
is self-dual [7]. Note that an Mn operator filled with bn/2c
0/1 collapses into a AND/OR operator [7].

D. Vector Notation for Boolean Variables

For the sake of compactness, we denote a container (vector)
of n−m+1 Boolean variables by xnm, where the notation starts
from index m and ends at index n. When the actual length
of the vector is not important, a simpler notation for xnm is
boldface x. The element at index i in vector xnm is denoted
by xi. The complementation of a vector xnm is denoted by
¬xnm which means ¬xi ∀i ∈ [m,m + 1, .., n − 1, n]. With
this notation, the aforementioned self-dual property becomes
¬f(xnm) = f(¬xnm). For the sake of clarity, we give an
example about the vector notation. Let (a, b, c, d, e) be 5
Boolean variables to be represented in vector notation. Here,
the start/end indeces are m = 1 / n = 5, respectively, and the
vector itself is x51. The elements of x51 are x1 = a, x2 = b,
x3 = c, x4 = d and x5 = e.

E. Boolean Algebra

The standard binary Boolean algebra (originally axioma-
tized by Huntington [24]) is a non-empty set (B,∧,∨,¬, 0, 1)
subject to identity, commutativity, distributivity, associativity,
and complement axioms over ∧,∨ and ¬ [7], [26]. For the
sake of completeness, we report these basic axioms in Eq. 1.

∆



Identity : ∆.I
x ∨ 0 = x
x ∧ 1 = x
Commutativity : ∆.C
x ∧ y = y ∧ x
x ∨ y = y ∨ x
Distributivity : ∆.D
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
Associativity : ∆.A
x ∧ (y ∧ z) = (x ∧ y) ∧ z
x ∨ (y ∨ z) = (x ∨ y) ∨ z
Complement : ∆.Co
x ∨ ¬x = 1
x ∧ ¬x = 0

(1)

This axiomatization for Boolean algebra is sound and com-
plete [25], [26]. Informally, it means that, logic arguments
or formulas, proved by axioms in ∆ are valid (soundness)
and all true logic arguments are provable (completeness).
More precisely, it means that, in the induced logic system,
all theorems are tautologies (soundness) and all tautologies
are theorems (completeness). We refer the reader to [25] for
a more formal discussion on mathematical logic. In computer
logic applications, only sound axiomatizations are of interest
[26]. Complete and sound axiomatizations are desirable [26].

Other Boolean algebras exist, with different operators and
axiomatizations, such as Robbins algebra, Freges algebra,

Nicods algebra, MAJ-3/INV algebra, etc. [25]. In the imme-
diate following, we give details on the MAJ-3/INV Boolean
algebra.

F. MAJ-3/INV Boolean Algebra

The MAJ-3/INV Boolean algebra introduced in [1] is de-
fined over the set (B,M3,¬, 0, 1), where M3 is the ternary
majority operator and ¬ is the unary complementation oper-
ator. The following set of five primitive transformation rules,
referred to as Ω3, is an axiomatic system for (B,M3,¬, 0, 1).
All variables belong to B.

Ω3



Commutativity : Ω3.C
M3(x, y, z) = M3(y, x, z) = M3(z, y, x)
Majority : Ω3.M{

if(x = y): M3(x, y, z) = x = y
if(x = ¬y): M3(x, y, z) = z

Associativity : Ω3.A
M3(x, u,M3(y, u, z)) = M3(z, u,M3(y, u, x))
Distributivity : Ω3.D
M3(x, y,M3(u, v, z)) =
M3(M3(x, y, u),M3(x, y, v), z)
Inverter Propagation : Ω3.I
¬M3(x, y, z) = M3(¬x,¬y,¬z)

(2)

It has been shown that this axiomatization is sound and
complete with respect to (B,M3,¬, 0, 1) [1]. The MAJ-3/INV
Boolean algebra finds application in circuit optimization and
has already showed some promising results [1].

Note that early attempts to majority logic have already been
reported in the 60’s [31]–[36] but they mostly focused on
three input majority operators. Also, derived logic manipu-
lation methods failed to gain momentum due to their inherent
complexity.

While traditional Boolean algebras can be naturally ex-
tended from 2 to n variables, it is currently unclear how such
a majority axiomatization extends to an arbitrary number of
variables n (odd). In the following, we address this question
by proposing a natural axiomatization of MAJ-n/INV logic.

III. AXIOMATIZATION OF MAJ-n LOGIC

In this section, we present the generic axiomatization of
MAJ-n logic. We first extend the set of five axioms presented
in [1] to n-variables, with n being an odd integer. Then,
we show their validity in the Boolean domain. Finally, we
demonstrate their completeness by inclusion of other complete
Boolean axiomatizations.

A. Generic MAJ-n/INV Axioms

The five axioms for MAJ-3/INV logic in [1] deal with com-
mutativity, majority, associativity, distributivity, and inverter
propagation laws. The following set of equations extends their
domain to an arbitrary odd number n of variables. Note that
all axioms, hold with n ≥ 3.



3

Ωn



Commutativity : Ωn.C

Mn(xi−11 , xi, x
j−1
i+1 , xj , x

n
j+1) =

Mn(xi−11 , xj , x
j−1
i+1 , xi, x

n
j+1)

Majority : Ωn.M
If(dn2 e elements of xn1 are equal to y):
Mn(xn1 ) = y

If(xi 6= xj):
Mn(xn1 ) = Mn−2(yn−21 )
where yn−21 = xn1 removing {xi, xj}

Associativity : Ωn.A
Mn(zn−21 , y,Mn(zn−21 , x, w)) =

Mn(zn−21 , x,Mn(zn−21 , y, w))
Distributivity : Ωn.D
Mn(xn−11 ,Mn(yn1 )) =

Mn(Mn(xn−11 , y1),Mn(xn−11 , y2), ...,
Mn(xn−11 , ydn2 e), yd

n
2 e+1, ..., yn) =

Mn(Mn(xn−11 , y1),Mn(xn−11 , y2), ...,
Mn(xn−11 , ydn2 e+1), ydn2 e+2, ..., yn) =

Mn(Mn(xn−11 , y1),Mn(xn−11 , y2), ...,
Mn(xn−11 , yn−1), yn)

Inverter Propagation : Ωn.I
¬Mn(xn1 ) = Mn(¬xn1 )

(3)

Commutativity means that changing the order of the vari-
ables in Mn does not change the result. Majority defines a
logic decision threshold (over n ≥ 3 variables) and a hier-
archical reduction of majority operators with complementary
variables. Note that M3(x, y,¬y) = x as boundary condition.
Associativity says that swapping pairs of variables between
cascaded Mn sharing n − 2 variables does not change the
result. In this context, it is important to recall that n − 2 is
an odd number if n is an odd number. Distributivity delimits
the re-arrangement freedom of variables over cascaded Mn

operators. Inverter propagation moves complementation freely
from the outputs to the inputs of a Mn operator, and viceversa.

For the sake of clarity, we give an example for each axiom
over a finite n-arity.

Commutativity with n = 5:
M5(a, b, c, d, e) = M5(b, a, c, d, e) = M5(a, b, c, e, d).

Majority with n = 7:
M7(a, b, c, d, e, g, g′) = M5(a, b, c, d, e).

Associativity with n = 5:
M5(a, b, c, d,M5(a, b, c, g, h)) =
M5(a, b, c, g,M5(a, b, c, d, h)).

Distributivity with n = 7:
M7(a, b, c, d, e, g,M7(x, y, z, w, k, t, v)) =
M7(M7(a, b, c, d, e, g, x),M7(a, b, c, d, e, g, y),
M7(a, b, c, d, e, g, z),M7(a, b, c, d, e, g, w), k, t, v).
Inverter propagation with n = 9:
¬M9(a, b, c, d, e, g, h, x, y) =
M9(¬a,¬b,¬c,¬d,¬e,¬g,¬h,¬x,¬y).

B. Soundness
To demonstrate the validity of these laws, and thus the va-

lidity of the MAJ-n axiomatization, we need to show that each

equation in Ωn is sound with respect to the original domain,
i.e., (B,Mn,¬, 0, 1) 1. The following theorem addresses this
requirement.

Theorem 3.1: Each axiom in Ωn is sound (valid) w.r.t.
(B,Mn,¬, 0, 1).

Proof:
Commutativity Ωn.C Since majority is defined on reach-

ing a threshold dn/2e of true inputs then it is independent of
the order of its inputs. This means that changing the order of
operands in Mn does not change the output value. Thus, this
axioms is valid in (B,Mn,¬, 0, 1).

Majority Ωn.M Majority first defines the output behavior
of Mn in the Boolean domain. Being a definition, it does
not need particular proof for soundness. Consider then the
second part of the majority axiom. The recursive inclusion of
Mn−2 derives from the mutual cancellation of complementary
variables. In a binary majority voting system of n electors, two
electors voting to opposite values annihilate themselves. The
final decision is then just depending on the votes from the
remaining n − 2 electors. Therefore, this axiom is valid in
(B,Mn,¬, 0, 1).

Associativity Ωn.A We split this proof in three parts that
cover the whole Boolean space. Thus, it is sufficient to prove
the validity of the associativity axiom for each of these parts.
(1) the vector zn−21 contains at least one logic 1 and one
logic 0. In this case, it is possible to apply Ωn.M and reduce
Mn to Mn−2. If we remain in case (1), we can keep applying
Ωn.M . At some point, we will end up in case (2) or (3). (2)
the vector zn−21 contains all logic 1. For n > 3, the final
voting decision is 1 for both equations, so the equality holds.
In case n = 3 and the the vector zn−21 contains all logic 1,
the majority operator collapses into a disjunction operator. For
example, M3(1, a,M3(1, c, d)) = ∨2(a,∨2(c, d)). Here, the
validity of the associativity axiom follows then from traditional
disjunction associativity. (3) the vector zn−21 contains all
logic 0. For n > 3, the final voting decision is 0 for both
equations, so the equality holds. In case n = 3 and the vector
zn−21 contains all logic 0, the majority operator collapses into
a conjunction operator. For example, M3(0, a,M3(0, c, d)) =
∧2(a,∧2(c, d)). Here, the validity of the associativity axiom
follows then from traditional conjunction associativity.

Distributivity Ωn.D We split this proof in three parts
that cover the whole Boolean space. Thus, it is sufficient to
prove the validity of the distributivity axiom for each of these
parts. Note that the distributivity axiom deals with a majority
operator Mn where one inner variable is actually another
independent majority operator Mn. Distributivity rearranges
the computation in Mn moving up the variables at the bottom
level and down the variables at the top level. In this part of the
proof we show that such rearrangement does not change the
functionality of Mn, i.e., the final voting decision in Ωn.D.
Recall that n is an odd integer greater than 1 so n − 1 must
be an even integer. (1) half of xn−11 values are logic 0
and the remaining half are logic 1. In this case, the final
voting decision in axiom Ωn.D only depends on yn1 . Indeed,

1By Mn, it is intended any Mi with i ≤ n. Indeed, any Mi operator
with i ≤ n can be emulated by a fully-fed Mn operator with pairs of
regular/complemented variables, e.g., M5(a, b, c, d,¬d) = M3(a, b, c).



4

all elements in xn−11 annihilate due to axiom Ωn.M . In the
two identities of Ωn.D, we see that when xn−11 annihilate
the equations simplify to Mn(yn1 ), according to the predicted
behavior. (2) at least dn/2e of xn−11 values are logic 0.
Owing to Ωn.M , the final voting decision in this case is logic
0. This is because more than half of the variables are logic 0
matching the prefixed voting threshold. In the two identities
of Ωn.D, we see that more than half of the inner Mn evaluate
to logic 0 by direct application of Ωn.M . In the subsequent
phase, also the outer Mn evaluates to logic 0, as more than
half of the variables are logic 0, according to the predicted
behavior. (3) at least dn/2e of xn−11 values are logic 1. This
case is symmetric to the previous one.

Inverter Propagation Ωn.I Inverter propagation moves
complementation from output to inputs, and viceversa. This
axiom is a special case of the self-duality property pre-
viously presented. It holds for all majority operators in
(B,Mn,¬, 0, 1).

The soundness of Ωn in (B,Mn,¬, 0, 1) guarantees that
repeatedly applying Ωn axioms to a Boolean formula we do
not corrupt its original functionality. This property is of interest
in logic manipulation systems where functional correctness is
an absolute requirement.

C. Completeness

While soundness speaks of the correctness of a logic sys-
tems, completeness speaks of its manipulation capabilities. For
an axiomatization to be complete, all possible manipulations of
a Boolean formula must be attainable by a sequence, possibly
long, of primitive axioms.

We study the completeness of Ωn axiomatization by com-
parison to other complete axiomatizations of Boolean logic.
The following theorem shows our main result.

Theorem 3.2: The set of five axioms in Ωn is complete
w.r.t. (B,Mn,¬, 0, 1).

Proof: We first consider Ω3 and we show that it is
complete w.r.t. (B,M3,¬, 0, 1). We need to prove that every
valid argument, i.e., (B,M3,¬, 0, 1)-formula, has a proof
in the system Ω3. By contradiction, suppose that a true
(B,M3,¬, 0, 1)-formula, say α, cannot be proven true us-
ing Ω3 rules. Such (B,M3,¬, 0, 1)-formula α can always
be reduced into a (B,∧,∨,¬, 0, 1)-formula. Indeed, recall
that M(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z). Using ∆,
all (B,∧,∨,¬, 0, 1)-formulas can be proven, including α.
However, every (B,∧,∨,¬, 0, 1)-formula is also contained by
(B,M3,¬, 0, 1), where ∧ and ∨ are emulated by majority
operators. Moreover, rules in Ω3 with one input fixed to 0 and
1 behaves as ∆ rules (Eq. 1). For example, Ω3.A with variable
u fixed to logic 1 (0) behaves as ∆.A for disjunction (con-
junction). The other axioms follow analogously. This means
that also Ω3 is capable to prove the reduced (B,M,¬, 0, 1)-
formula α, contradicting our assumption. Thus Ω3 is complete
w.r.t. (B,M3,¬, 0, 1).

We consider now Ωn. First note that (B,Mn,¬, 0, 1) nat-
urally includes (B,M3,¬, 0, 1). Similarly, Ωn axioms inher-
ently extend the ones in Ω3. Thus, the completeness property

is inherited provided that Ωn axioms are sound. However,
Ωn soundness is already proven in Theorem 3.1. Thus, Ωn

axiomatization is also complete.

Being sound and complete, the axiomatization Ωn defines
a consistent framework to operate on Boolean logic via n-ary
majority operators and inverters. In the following section, we
discuss some promising applications in computer science of
such majority logic system.

IV. DISCUSSION

In this section, we discuss relevant application of Ωn

axiomatization. We first present the potential of logic opti-
mization performed via MAJ-n operators and inverters. Then,
we show how Boolean satisfiability can be described in terms
of majority operators and solved using Ωn. Successively, we
demonstrate the manipulation of repetition codes via Ωn under
a majority logic decoding scheme. Finally, we discuss the
application of majority logic to several emerging technologies,
such as quantum-dot cellular automata, spin-wave devices,
threshold logic and others.

A. Logic Optimization
Logic optimization is the process of manipulating a logic

data structure, such as a logic circuit, in order to minimize
some target metric [27]. Usual optimization targets are size
(number of nodes/elements), depth (maximum number of lev-
els) and interconnections (number of edges/nets). More elabo-
rated targets use a combination of size/depth/interconnections
metrics, such as nodes×interconnections and others.

Theoretical results from computer science show that ma-
jority logic circuits are much more compact than traditional
ones based on conjunction and disjunction operators [6]. For
example, majority logic circuits of depth 2 and 3 possess the
expressive power to represent arithmetic functions, such as
powering, multiplication, division, addition etc., in polynomial
size [6]. On the other hand, the traditional AND/OR-based
counterparts are exponentially sized [6].

Given the existence of very compact majority logic
circuits, we need an efficient set of manipulation
laws to reach those circuits automatically. In this
context, the axiomatic system previously introduced
is the natural set of tools addressing this need. For
example, consider a logic circuit (or Boolean function)
f = M5(M3(a, b, c),M3(a, b, d),M3(a, b, e),M3(a, b, g), h).
In circuit optimization, a common problem is to minimize the
number of elements while keeping short some input-output
paths. Suppose we want to minimize the number of majority
operators while keeping the path h to f as short as possible,
i.e., one majority operator. The original circuit cost is 5
majority operators. To manipulate this formula, we first
equalize the n-arity of the majority operators using axiom
Ωn.M , i.e., by adding a fake annihilated variable x, as:
f = M5(M5(a, b, c, x,¬x),M5(a, b, d, x,¬x),

M5(a, b, e, x,¬x),M5(a, b, g, x,¬x), h)
At this point, we can apply Ωn.D and save one majority

operator as:
f = M5(M5(a, b, c, x,¬x),M5(a, b, d, x,¬x),

M5(a, b, e, x,¬x), g, h).



5

Finally, we can reduce the majority n-arity to its minimum
via Ωn.M as:
f = M5(M3(a, b, c),M3(a, b, d),M3(a, b, e), g, h).
The resulting circuit cost is 4 majority operators.
1) Optimization Script: As emerged from the previous

optimization example, an intuitive heuristic to optimize ma-
jority logic circuits consists of majority inflation rules (from
Ωn) followed by majority reduction rules (from Ωn). Alg. 1
depicts a simple optimization script and a brief description
follows. First, the n-arity of all majority operators in the

Algorithm 1 Majority Logic Optimization Heuristic
INPUT: Majority Logic Network.
OUTPUT: Optimized Majority Logic Network.

Majority Operator Increase n-arity(Ωn.M );
// increase n-arity of the majority operator
Majority Operator Simplifcation(Ωn.A,Ωn.D,Ωn.M );
// deleting redundant majority operators
Majority Operator Reduce n-arity(Ωn.M );
// decrease n-arity of the majority operator

logic circuit is temporarily increased by using Ωn.M rule
from right to left, for example M3(a, b, c) = M5(a, b, c,¬c, c).
This operation unlocks new simplification opportunities. Then,
redundant majority operators are identified and deleted through
Ωn.A,Ωn.D,Ωn.M rules. Finally, the n-arity of all majority
operators in the logic circuit is decreased to the minimum via
Ωn.M rule from left to right.

This approach naturally targets depth and size reductions in
the majority logic network. However, it can be extended to
target more elaborated metrics, such as

∑M
i=1 fanin(nodei)

or M × Ninv , where M is the total number of nodes and
Ninv is the number of inverters. The best metric depends on
the considered technology for final implementation.

2) Full-Adder Case Study: In order to prove the efficacy
of the majority optimization heuristic in Alg. 1, we con-
sider as case study the full-adder logic circuit. The full-
adder logic circuit is fundamental to most arithmetic circuits.
Consequently, the effective optimization of full-adders is of
paramount importance.

A full-adder represents a three-input and two-output
Boolean function:
sum = a⊕ b⊕ cin
cout = M3(a, b, c)

Using just majority operators with n-arity equal to three,
the best full-adder implementation counts 3 majority nodes,
inverters apart, as depicted by Fig. 1. However, a more com-
pact majority logic network is possible by exploiting higher
n-arity degrees and manipulating such majority logic circuit
via Ωn. In particular, the critical operation is sum because
cout is naturally represented by a single M3 operator. So, for
sum our optimization heuristic first expands the top majority
operator from an n-arity of three
sum = M3(a,¬M3(a, b, cin),M3(¬a, b, cin))

to an n-arity of 5 as
sum = M5(a,¬M3(a, b, cin),¬M3(a, b, cin),

M3(a, b, cin),M3(¬a, b, cin)).

M3#

M3# M3#a#

b# cin#

cout#

sum#

a#b# cin#a#

Fig. 1. Majority logic circuit for the full-adder with operator n-arity equal
to 3. Complementation is represented by bubbles on the edges.

After that, derived simplification rules from Ωn, called
relevance rules in [1], reduce the number of majority operators
to 2 as
sum = M5(a,¬M3(a, b, cin),¬M3(a, b, cin), b, cin).
In its graph representation, depicted by Fig. 2, this repre-

sentation of sum just consists of two majority operators as the
internal M3(a, b, cin), is shared. Moreover, M3(a, b, cin) is

M5#

M3#a#b#

cin#

cout#

sum#

a#

cin#

b#

Fig. 2. Majority logic circuit for the full-adder with unbounded operator
n-arity. Complementation is represented by bubbles on the edges.

also generating the cout function which can be further shared.
This means that the optimized logic circuit in Fig. 2, counting
just two majority operators, is a minimal implementation
for the full-adder in terms of majority logic. To provide a
reference, an optimized AND-inverter graph representation
for the full-adder is depicted by Fig. 3. It counts 8 nodes
and has been optimized using the state-of-the-art academic
ABC optimizer [39] which manipulates AND-inverter graphs.
We can see that the majority logic circuit produced by our
optimization heuristic is much more compact thanks to the
majority logic expressiveness and to the properties of our
axiomatic system, Ωn.

The minimality of the majority logic circuit in Fig. 2 is
formally proved in the following theorem.

Theorem 4.1: The majority logic circuit in Fig. 2 for the
full-adder has the minimum number of majority operators.

Proof: The full-adder consists of two distinct functions.
Being distinct, they require at least two separate majority
operators fed with different signals. The majority logic circuit



6

AND2%

cin%

sum%

AND2%

cin%b%

AND2%

AND2%

a%

AND2%

a%

AND2%

AND2%

a%

AND2%

cout%

Fig. 3. AND-inverter logic circuit for the full-adder optimized via ABC
academic tool. Complementation is represented by bubbles on the edges.

in Fig. 2 actually consists of two majority operators thus being
minimal.

On top of having the minimum number of operators, the
majority network in Fig. 2 has lower

∑M
i=1 fanin(nodei)

metric (equal to 8) as compared to the majority network in
Fig. 1 (equal to 9). The number of inverters is 2 in both cases.

We see that the axiomatic system Ωn can be used to
optimize majority logic circuits and produces excellent results.
As the Ωn rules are simple enough to be programmed on a
computer, MAJ-n logic optimization can be automated and
applied to large systems.

B. Boolean Satisfiability

Boolean satisfiability (SAT) is the first known NP-complete
problem [28]. Traditionally, SAT is formulated in Conjunctive
Normal Form (CNF) [29]. Recently, majority logic has been
considered as an alternative to CNF to speed-up SAT [4]. In
[4], a Majority Normal Form (MNF) has been introduced,
which is a majority of majorities, where majorities are fed
with literals, 0 or 1. The MNF-SAT problem is NP-complete
in its most general definition [4]. However, there are interesting
restrictions of MNF whose satisfiability can instead be decided
in polynomial time. For example, when there are no mixed
logic constants appearing in the MNF, the MNF-SAT problem
can be solved in polynomial time. This result is valid not just
for MNF but for majority logic circuits in general [4].

In order to solve the general problem of majority logic
satisfiability, and thus of MNF-SAT, a set of manipulation rules
is needed. Indeed, the core of most modern SAT solving tools
make extensive use of Boolean logic axioms. When dealing
with majority logic, our proposed axiomatic system Ωn is the
natural tool to operate on MNF forms, or alike, and prove their
satisfiability.

For the sake of clarity, we give an example of majority SAT
solving via Ωn laws. We consider not just an MNF, which is
a two level logic representation form, but a general formula
in (B,Mn,¬, 0, 1). Our example is the unSAT function f =
M5(M3(a, b, c),M5(M5(a, b, c, 0, 0),¬b, c, 0, 0),¬a,¬b, 0).
In oder to check the satisfiability of f , a majority SAT solver
first tries to enforce at least 3 over 5 logic 1 in the top M5

[4]. Otherwise, a conflict in the input assignment appears. If
all possible input assignments lead to a conflict the function
is declared unsatisfiable [4].

Let us first focus on the element
M5(M5(a, b, c, 0, 0),¬b, c, 0, 0). Here, even before looking
for possible assignments, our axiom Ωn.A re-arranges
the variables as M5(M5(¬b, b, c, 0, 0), a, c, 0, 0). In this
formula, our axiom Ωn.M directly annihilates b and ¬b
leading to M5(M3(c, 0, 0), a, c, 0, 0). Furthermore, Ωn.M
still applies twice corresponding to M5(0, a, c, 0, 0) and
then 0. We can substitute this to the original formula as
f = M5(M3(a, b, c), 0,¬a,¬b, 0) which symplifies the SAT
problem. Now, we need both ¬a and ¬b to be 1 in order
to do avoid an immediate conflict. This means a = 0 and
b = 0. However, this assigment evaluates always to 0 the
term M3(a, b, c) generating a conflict for all input patterns.
Thus, the original formula is declared unsatisfiable.

As we can see, our majority logic axiomatic system Ωn

is the ground for proving the satisfiability of formula in
(B,Mn,¬, 0, 1). Without Ωn, SAT tools would need to de-
compose all majority operators in AND/ORs because with
conjunctions and disjunctions the classic set of Boolean ma-
nipulation rules apply. However, such decomposition would
nullify the competitive advantage enabled by the majority logic
expressiveness. In this scenario, our Ωn rules fill the gap for
manipulating majority operators natively.

C. Decoding of Repetition Codes

Repetition codes are basic error-correcting codes. The main
rationale in using repetition codes is to transmit a message
several times over a noisy channel hoping that the channel
corrupts only a minority of the bits [30]. In this scenario,
decoding the received message via majority logic is the natural
way to correct transmission errors.

Consider safety-critical communication systems. It is com-
mon to have hierarchical levels of coding to decrease the
chance of error and thus resulting in system malfunction.
When applied on several levels, majority logic decoding is
nothing but a majority logic circuit. The maximum number
of cascaded majority operators determines the decoding per-
formance. We want to maximize the decoding performance
while keeping the error probability low. In this scenario, we
can use our axiomatic system Ωn to explore different trade-
offs in depth/size manipulation of the corresponding majority
decoding scheme.

For the sake of clarity, we give an example of the op-
timization for majority logic decoding via Ωn. Consider a
safety-critical communication system sending the same binary
message a over 5 different channels C1, C2, C3, C4 and C5.
Each channel is affected by different levels of noise requiring
just 1 repetition for C1, C2, C3, and C4 but 5 repetitions for



7

C5. Suppose also the communication over channel 5 is much
slower than in the other channels. The final decoded message
is the majority of the each decoded message per channel. If we
name xi the decoded message a for i-th channel and y the final
decoded message, the system can be represented in majority
logic as y = M5(x1, x2, x3, x4, x5). Note that for x1, x2, x3,
x4 the decoded message is actually identical to the received
message because only 1 repetition is sent over the channels.
The element x5 is the only one needing further majority
decoding, namely x5 = M5(z1, z2, z3, z4, z5) where zi are the
received a messages over channel C5. The final system is then
expressable as y = M5(x1, x2, x3, x4,M5(z1, z2, z3, z4, z5)).
To decode the final message y, the critical element for
perfomance is M5(z1, z2, z3, z4, z5), with z5 being the latest
arriving message to be processed. In this context, we can use
Ωn.D axiom to redistribute the decoding operations and obtain
an improvement in performance, which is not a trivial process.
The idea is to push to the top majority level zi variables, with
the highest possible i index. For this purpose, axioms Ωn.D
transforms y = M5(x1, x2, x3, x4,M5(z1, z2, z3, z4, z5)) into
y = M5(M5(x1, x2, x3, x4, z1),M5(x1, x2, x3, x4, z2),
M5(x1, x2, x3, x4, z3), z4, z5). In this latter model of majority
decoding, most of the computation is performed in advance
before the late messages z4 and z5 arrive. This means that,
when the late z5 arrives, there is need for just one level of
majority computation and not two as in the initial model.

D. Emerging Technologies

Majority gates with more than 3 inputs have been simulated
and implemented for a variety of non-CMOS technologies. A
further generalization of majority gates is threshold logic gate
[6], which performs weighted sum of multiple inputs and once
the sum is more than a pre-determined threshold, the output
is true. As such, a threshold logic gate can be configured to
function as a majority logic gate. In the following, we describe
a few published works that describes majority or threshold
gates with more than 3 inputs.

Majority logic gates were experimentally demonstrated with
Quantum-dot Cellular Automata (QCA) in [12] and [13]. For
facilitating QCA circuit design, a tool named QCADesigner is
developed [15]. Simulation of M5 gate using QCADesigner is
presented in several papers, including [14]. Fig. 4 depicts two
possible QCA implementations for a M5 gate. Applications of

Fig. 4. Two different implementations of a M5 gate in QCA technology
[14].

large majority gates towards efficient adder construction were
also discussed. For example, a M7 has also been proposed.

Fig. 5. Physical implementation of a M7 gate in QCA technology [14].

Fig. 5 depicts a possible QCA implementation for a M5 gate.

Note that a M5 gate, a M3 gate and an inverter gate are
sufficient to build a full-adder, as highlighted by the theoretical
case study in Section IV-A. In this scenario, the proposed Ωn

axiomatic system is key to unveil such efficient circuit imple-
mentations in QCA nanotechnology, where majority gates are
the logic primitives for computation.

Very recently, a majority logic circuit based on domain-wall
nanowires has been proposed in [17]. The circuit is used for
computing binary additions efficiently and can be shown to
scale for majority gates with arbitrary number of inputs.

All-spin logic gates are originally proposed in [11]. Majority
logic gates using all-spin logic is proposed in [10]. There,
layout of M3 gate using all-spin logic is shown and it is noted
that majority gates with larger number of inputs can also be
implemented. Indeed, a high fan-in majority gate is realizable
by a simple superposition of spin-waves with same amplitude
but different phases [20]. Fig. 6 depicts a sketch of a high
fan-in majority gate in spin-wave technology.

Fig. 6. Block diagram and schematic representation of a high fan-in majority
gate in spin-wave technology [20].

In [9], a Spin-Memeristor Threshold Logic (SMTL) gate
using memristive crossbar array is proposed. There, an array
of SMTL gates is designed and simulated with experimentally
validated device model characteristics. By varying the thresh-
old input count, different possible mappings are demonstrated
with good performance improvement over CMOS FPGA struc-
tures.



8

A programmable CMOS/memristor threshold logic is pro-
posed in [16]. A 4-input threshold logic gate is experimentally
demonstrated using Ag/a-Si/Pt memristive devices. They also
propose a threshold logic network similar to [9] with pro-
grammable fan-in.

It is to be noted that none of the aforementioned imple-
mentations employed any automated synthesis flow to exploit
majority gates with larger than 3 inputs. Thus, the potential
of compact realization of diverse applications, even if feasible
with these technologies, is hardly experimented due to the
lack of an efficient synthesis flow. Our proposed sound and
complete axiomatization aims at filling this gap.

Note that the aforementioned examples are just few of the
possible applications of n-ary majority logic and of its sound
and complete axiomatization. More opportunities exist in other
fields of computer science but their discussion is out of the
scope of this paper.

V. CONCLUSIONS

In this paper, we proposed a sound and complete axiom-
atization of majority logic. Stemming from previous work
on MAJ-3/INV logic, we extended fundamental axioms to
arbitrary n-ary majority operators. Based on this general set
of axioms, computer applications can now fully exploit the
expressive power of majority logic. We discussed the potential
impact in the fields of logic optimization, Boolean satisfi-
ability, repetition codes and emerging technologies. From a
general standpoint, the possibility of manipulating logic in
terms of majority operators paves the way for more efficient
computer applications where the core reasoning tasks are
performed in the Boolean domain. In particular, possible
directions for future work include the development of (i)
a complete majority satisfiability solver and (ii) a majority
synthesis tool targeting nanotechnologies.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Maciej Ciesielski for
valuable discussions. This research was supported by ERC-
2009-AdG-246810.

REFERENCES

[1] L. Amarú, P.-E. Gaillardon, G. De Micheli, Majority-Inverter Graph: A
Novel Data-Structure and Algorithms for Efficient Logic Optimization,
Proc. DAC’14.

[2] L. Amarú, P.-E. Gaillardon, G. De Micheli, Boolean Logic Optimization
in Majority-Inverter Graphs, Proc. DAC’15.

[3] L. Amarú, P.-E. Gaillardon, G. De Micheli, Majority-Inverter Graph: A
New Paradigm for Logic Optimization, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2015.

[4] L. Amarú, P.-E. Gaillardon, G. De Micheli, Majority Logic Representation
and Satisfiability, Proc. IWLS’14.

[5] E. Mossel, R. O’Donnell, K. Oleszkiewicz, Noise stability of functions
with low influences: invariance and optimality, IEEE Symposium on
Foundations of Computer Science, 2005.

[6] M. Krause, P. Pudlak, On the computational power of depth-2 circuits
with threshold and modulo gates, Theor. Comput. Sci., 174, pp. 137-156,
1997.

[7] T. Sasao, Switching Theory for Logic Synthesis, Springer, 1999.
[8] P. Wohl, J.A. Waicukauski, ATPG and compression by using ma-

jority gates, http://www.google.com/patents/US8549372, 2013, October,
Google Patents, US Patent 8,549,372.

[9] D. Fan, M. Sharad, K. Roy, Design and synthesis of ultralow energy spin-
memristor threshold logic IEEE Transactions on Nanotechnology,, 13(3),
574-583, 2014.

[10] C. Augustine, et al. Low-power functionality enhanced computation ar-
chitecture using spin-based devices, IEEE/ACM International Symposium
on Nanoscale Architectures (NANOARCH), 2011.

[11] B. Behin-Aein, et al. Proposal for an all-spin logic device with built-in
memory, Nature nanotechnology 5.4 (2010): 266-270.

[12] A. Imre, et al. Majority logic gate for magnetic quantum-dot cellular
automata, Science 311.5758 (2006): 205-208.

[13] G.L. Snider, et al. Quantum-dot cellular automata: Line and majority
logic gate, Japanese Journal of Applied Physics 38.12S (1999): 7227.

[14] R. Arman, et al. A symmetric quantum-dot cellular automata design for
5-input majority gate, Journal of Computational Electronics 13.3 (2014):
701-708.

[15] K. Walus, et al. QCADesigner: A rapid design and simulation tool for
quantum-dot cellular automata, IEEE Transactions on Nanotechnology,
3.1 (2004): 26-31.

[16] L. Gao, et al. Programmable CMOS/memristor threshold logic, IEEE
Transactions on Nanotechnology, 12.2 (2013): 115-119.

[17] Y. Hao, et al. Energy efficient in-memory machine learning for data
intensive image-processing by non-volatile domain-wall memory, IEEE
Asia and South Pacific Design Automation Conference (ASP-DAC),
2014.

[18] W. Li, Y. Yang, H. Yan and Y. Liu, “Three-Input Majority Logic Gate
and Multiple Input Logic Circuit Based on DNA Strand Displacement,”
in Nano Letters, vol. 13, no. 6, pp. 2980–2988, May 2013, doi:
10.1021/nl4016107.

[19] G. Yang, W. N.N. Hung, X. Song and M. Perkowski, “Majority-
based reversible logic gates,” in Elsevier Theoretical Computer Science,
vol. 334, no. 1–3, pp. 259–274, April 2005, doi:10.1016/j.tcs.2004.12.026.

[20] P. Shabadi, ”Towards Logic Functions as the Device using Spin Wave
Functions Nanofabric”, Masters Theses 1896 - February 2014. Paper 850.

[21] S. Srivastava, S. Bhanja. ”Hierarchical probabilistic macromodeling for
QCA circuits.” IEEE Transactions on Computers 56.2 (2007): 174-190.

[22] H. Cho, E. E. Swartzlander, ”Adder and multiplier design in quantum-
dot cellular automata.” IEEE Transactions on Computers 58.6 (2009):
721-727.

[23] R. Zhang, P. Gupta, N. K. Zhong, Jha, Threshold network synthesis and
optimization and its application to nanotechnologies. IEEE Transactions
on Computer-Aided De-sign of Integrated Circuits and Systems 24, 107-
118 (2005).

[24] E. V. Huntington, Sets of Independent Postulates for the Algebra of
Logic, Transactions of the American Mathematical Society, 5:3 (1904),
288-309.

[25] B. Jonsson, Bjarni, Boolean algebras with operators. Part I., American
journal of mathematics (1951): 891-939.

[26] F. M. Brown, Boolean reasoning: the logic of Boolean equations,
Courier Corporation, 2003.

[27] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, New York, 1994.

[28] M. R. Garey, D. S. Johnson, Computers and Intractability– A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[29] A. Biere, M. Heule, H. van Maaren, Handbook of satisfiability Vol. 185.
ios press, 2009.

[30] J. L. Massey, Threshold Decoding, M.I.T. Press, 1963.
[31] S. B. Akers, Jr., “On the Algebraic Manipulation of Majority Logic,” in

IRE Transactions on Electronic Computers, vol. EC-10, no. 4, pp. 779,
1961, doi=10.1109/TEC.1961.5219289.

[32] M. Cohn and R. Lindaman, “Axiomatic Majority-Decision Logic,” in
IRE Transactions on Electronic Computers, vol. EC-10, no. 1, pp. 17–
21, March 1961, doi: 10.1109/TEC.1961.5219147.

[33] R. Lindaman, “A Theorem for Deriving Majority-Logic Networks
Within an Augmented Boolean Algebra,” in IRE Transactions on
Electronic Computers, vol. EC-9, no. 3, pp. 338–342, Sept. 1960, doi:
10.1109/TEC.1960.5219856.

[34] H.S. Miller, R. O. Winder. Majority-logic synthesis by geometric meth-
ods IRE Transactions on Electronic Computers, (1962): 89-90.

[35] Y. Tohma, Decompositions of Logical Functions Using Majority Deci-
sion Elements, IEEE Trans. on Electronic Computers, pp. 698-705, 1964.

[36] F. Miyata, Realization of arbitrary logical functions using majority
elements, IEEE Transactions on Electronic Computers, (1963): 183-191.

[37] L. G. Valiant, “Short monotone formulae for the majority function,” in
Journal of Algorithms, vol. 5, no. 3, pp. 363–366, September 1984, doi:
10.1016/0196-6774(84)90016-6.

[38] I. Wegener, “The Complexity of Boolean functions,” in Wiley-Teubner
Series in Computer Science, ISBN: 3-519-02107-2, 1987.

[39] ABC synthesis tool - available online at
http://www.eecs.berkeley.edu/∼alanmi/abc/.

http://www.google.com/patents/US8549372
http://www.eecs.berkeley.edu/~alanmi/abc/

	I Introduction
	II Background and Notations
	II-A Notations
	II-B Self-Dual Function
	II-C Majority Function
	II-D Vector Notation for Boolean Variables
	II-E Boolean Algebra
	II-F MAJ-3/INV Boolean Algebra

	III Axiomatization of MAJ-n Logic
	III-A Generic MAJ-n/INV Axioms
	III-B Soundness
	III-C Completeness

	IV Discussion
	IV-A Logic Optimization
	IV-A1 Optimization Script
	IV-A2 Full-Adder Case Study

	IV-B Boolean Satisfiability
	IV-C Decoding of Repetition Codes
	IV-D Emerging Technologies

	V Conclusions
	References

