373 research outputs found

    Flow Shop Scheduling for Energy Efficient Manufacturing

    Get PDF
    A large number of new peaking power plants with their associated auxiliary equipment are installed to meet the growing peak demand every year. However, 10% utility capacity is used for only 1%~2% of the hours in a year. Thus, to meet the demand and supply balance through increasing the infrastructure investments only on the supply side is not economical. Alternatively, demand-side management might cut the cost of maintaining this balance via offering consumers incentives to manage their consumption in response to the price signals. Time-varying electricity rate is a demand-side management scheme. Under the time-varying electricity rate, the electricity price is high during the peak demand periods, while it is low during the off-peak times. Thus, consumers might get the cost benefits through shifting power usages from the high price periods to the low price periods, which leading to reduce the peak power of the grid. The current research works on the price-based demand-side management are primarily focusing on residential and commercial users through optimizing the “shiftable” appliance schedules. A few research works have been done focusing manufacturing facilities. However, residential, commercial and industrial sectors each occupies about one-third of the total electricity consumption. Thus, this thesis investigates the flow shop scheduling problems that reduce electricity costs under time-varying electricity rate. A time-indexed integer programming is proposed to identify the manufacturing schedules that minimize the electricity cost for a single factory with flow shops under time-of-use (TOU) rate. The result shows that a 6.9% of electricity cost reduction can be reached by shifting power usage from on-peak period to other periods. However, in the case when a group of factories served by one utility, each factory shifting power usage from on-peak period to off-peak hours independently, which might change the time of peak demand periods. Thus, a TOU pricing combined with inclining block rate (IBR) is proposed to avoid this issue. Two optimization problems are studied to demonstrate this approach. Each factory optimizes manufacturing schedule to minimize its electricity cost: (1) under TOU pricing, and (2) under TOU-IBR pricing. The results show that the electricity cost of each factory is minimized, but the total electricity cost at the 2nd hour is 6.25% beyond the threshold under TOU pricing. It also shows that factories collaborate with each other to minimize the electricity cost, and meanwhile, the power demand at each hour is not larger than the thresholds under TOU-IBR pricing. In contrast to TOU rate, the electricity price cannot be determined in ahead under real-time price (RTP), since it is dependent on the total energy consumption of the grid. Thus, the interactions between electricity market and the manufacturing schedules bring additional challenges. To address this issue, the time-indexed integer programming is developed to identify the manufacturing schedule that has the minimal electricity cost of a factory under the RTP. This approach is demonstrated using a manufacturing facility with flow shops operating during different time periods in a microgrid which also served residential and commercial buildings. The results show that electricity cost reduction can be achieved by 6.3%, 10.8%, and 24.8% for these three time periods, respectively. The total cost saving of manufacturing facility is 15.1% over this 24-hour period. The results also show that although residential and commercial users are under “business-as-usual” situation, their electricity costs can also be changed due to the power demand changing in the manufacturing facilities. Furthermore, multi-manufacturing factories served by one utility are investigated. The manufacturing schedules of a group of manufacturing facilities with flow shops subject to the RTP are optimized to minimize their electricity cost. This problem can be formulated as a centralized optimization problem. Alternatively, this optimization problem can be decomposed into several pieces. A heuristic approach is proposed to optimize the sub-optimization problems in parallel. The result shows that both the individual and total electricity cost of factories are minimized and meanwhile the computation time is reduced compared with the centralized algorithm

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Intelligent Decision Support System for Energy Management in Demand Response Programs and Residential and Industrial Sectors of the Smart Grid

    Get PDF
    This PhD thesis addresses the complexity of the energy efficiency control problem in residential and industrial customers of Smart electrical Grid, and examines the main factors that affect energy demand, and proposes an intelligent decision support system for applications of demand response. A multi criteria decision making algorithm is combined with a combinatorial optimization technique to assist energy managers to decide whether to participate in demand response programs or obtain energy from distributed energy resources

    Optimization models and algorithms for demand response in smart grid.

    Get PDF
    For demand response in smart grid, a utility company wants to minimize total electricity cost and end users want to maximize their own utility. The latter is considered to consist of two parts in this research: electricity cost and convenience/comfort. We first develop a system optimal (SO) model and a user equilibrium (UE) model for the utility company and end users, respectively and compare the difference of the two. We consider users\u27 possible preference on convenience over cost-saving under the real-time pricing in smart grid, and each user is assumed to have a preferred time window for using a particular appliance. As a result, each user in the proposed energy consumption game wishes to maximize a payoff or utility consisting of two parts: the negative of electricity cost and the convenience of using appliances during their preferred time windows. Numerical results show that users with less flexibility on their preferred usage times have larger impact on the system performance at equilibrium. Second, we found that instead of minimizing total cost, if utility company is regulated to maximize the social welfare, the user equilibrium model can achieve identical optimal solution as the system optimal model. We then design a demand response pricing frame work to accomplish this goal under alternative secondary objectives. We also investigate the non-uniqueness of the user equilibrium solution and prove that there exist alternative user equilibrium solutions. In this case, robust pricing is considered using multi-level optimization for the user equilibrium. Third, we study empirical data from a demand response pilot program in Kentucky in an attempt to understand consumer behavior under demand response and to characterize the thermo dynamics when set point for heat, ventilation and air conditioning (HVAC) is adjusted for demand response. Although sample size is limited, it helps to reveal the great variability in consumers\u27 response to demand response event. Using the real data collected, we consider to minimize the peak demand for a system consisting of smart thermostats, advanced hot water heaters and battery systems for storage. We propose a mixed integer program model as well as a heuristic algorithm for an optimal consumption schedule so that the system peak during a designated period is minimized. Therefore, we propose a consumption scheduling model to optimally control these loads and storage in maximizing efficiency without impacting thermal comfort. The model allows pre-cooling and pre-heating of homes to be performed for variable loads in low-demand times. We propose several future works. First, we introduce the concept of elastic demand to our SO model and UE model. The system problem maximizes net benefit to the energy consumers and the user problem is the usual one of finding equilibrium with elastic demand. The Karush-Kuhn-Tucker (KKT) conditions can be applied to solve the elastic demand problems. We also propose to develop algorithms for multi-level pricing models and further collect and analyze more field data in order to better understand energy users\u27 consumption behavior

    Microgrid design, control, and performance evaluation for sustainable energy management in manufacturing

    Get PDF
    This research studies the capacity sizing, control strategies, and performance evaluation of the microgrids with hybrid renewable sources for manufacturing end use customers towards a distributed sustainable energy system paradigm. Microgrid technology has been widely investigated and applied in commercial and residential sector, while for manufacturers, it has been less explored and utilized. To fill the gap, the dissertation first proposes a cost-effective sizing model to identify the capacities as well as control strategies of the components in microgrids considering a commonly used energy tariff, i.e., Time of Use (TOU). Then, the sizing model is extended by integrating control strategies for both microgrid components and manufacturing systems considering a typical demand response program, i.e., Critical Peak Pricing (CPP), where customer side load adjustment is highly encouraged. After that, the control strategy of the manufacturers in an overgeneration mitigation-oriented demand response program is further investigated based on the identified optimal size of onsite microgrid to minimize the energy cost. Later, the system is analyzed from its higher level of abstraction where a prosumer community is developed by aggregating such manufacturers with onsite microgrid system. To enhance the reliable energy operation in the community, the performance of the microgrid is investigated through the estimation of the lifetime of Battery Energy Storage System (BESS), a critical design parameter the architecture. Finally, conclusions are presented and future research on real-time joint control strategy for both microgrids and manufacturing systems and identification as well as optimal energy management of the controllable loads in manufacturing system are discussed --Abstract, page iii

    Incentive based Residential Demand Aggregation

    Get PDF
    From the beginning of the twenty-first century, the electrical power industry has moved from traditional power systems toward smart grids. However, with the increasing amount of renewable energy resources integrated into the grid, there is a significant challenge in power system operation due to the intermittency and variability of the renewables. Therefore, the utilization of flexible and controllable demand-side resources to maintain power system efficiency and stability has become a fundamental goal of smart grid initiatives. Meanwhile, due to the development of communication and sensing technologies, intelligent demand-side management with automatic controls enables residential loads to participate in demand response programs. Therefore, the aggregate control of residential appliances is anticipated to be feasible technique in the near future, which will bring considerable benefits to both residential consumers and load-serving entities. Hence, this dissertation proposes a comprehensive optimal framework for incentive based residential demand aggregation. The contents of this dissertation include: 1) a hardware design of smart home energy management system, 2) a new model to assess the responsive residential demand to financial incentives, and 3) an online algorithm for scheduling residential appliances. The proposed framework is expected to generate optimal control strategies over residential appliances enrolled in incentive based DR programs in real time. To residential consumers, this framework will 1) provide easy-to-use smart energy management solution, 2) distribute financial rewards by their quantified contribution in DR events, and 3) maintain residents’ comfort-level expectations based on their energy usage preferences. To LSEs, this framework can 1) aggregate residential demand to enhance system reliability, stability and efficiency, and 2) minimize the total reward costs for executing incentive based DR programs. Since this framework benefits both load serving entities and residents, it can stimulate the potential capability of residential appliances enrolled in incentive based DR programs. Eventually, with the growing number of DR participants, this framework has the potential to be one of the most vital parts in providing effective demand-side ancillary services for the entire power system

    An Investigation on Benefit-Cost Analysis of Greenhouse Structures in Antalya

    Get PDF
    Significant population increase across the world, loss of cultivable land and increasing demand for food put pressure on agriculture. To meet the demand, greenhouses are built, which are, light structures with transparent cladding material in order to provide controlled microclimatic environment proper for plant production. Conceptually, greenhouses are similar with manufacturing buildings where a controlled environment for manufacturing and production have been provided and proper spaces for standardized production processes have been enabled. Parallel with the trends in the world, particularly in southern regions, greenhouse structures have been increasingly constructed and operated in Turkey. A significant number of greenhouses are located at Antalya. The satellite images demonstrated that for over last three decades, there has been a continuous invasion of greenhouses on all cultivable land. There are various researches and attempts for the improvement of greenhouse design and for increasing food production by decreasing required energy consumption. However, the majority of greenhouses in Turkey are very rudimentary structures where capital required for investment is low, but maintenance requirements are high when compared with new generation greenhouse structures. In this research paper, life-long capital requirements for construction and operation of greenhouse buildings in Antalya has been investigated by using benefit-cost analysis study

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated
    • …
    corecore