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Abstract  

In the Smart Grid (SG), the consumption information is provided for end-users in order to help 

them to change their consumption behaviour. However, this goal will not be achieved if the 

consumers do not engage in the energy management process; in this case, they require a 

decision-making system that will assist them. This PhD thesis addresses the complexity of the 

energy efficiency control problem in the home of a residential customer of SG, and examines 

the main factors that affect energy demand, and proposes an intelligent Home Energy 

Management System (HEMS) for applications of demand response in the SG. Subsequently, 

the proposed methodology is deployed in the industrial sector to assist operations managers to 

decide whether to accept Demand Response Programs (DRPs) with or without obtaining 

energy from distributed energy resources or rejecting the DRPs.  The thesis comprises five 

main Chapters: 

 Chapters 1 and 2- These chapters presents a comprehensive introduction to the Smart Grid 

and review of the literature pertaining to HEMS components, SG regulations and 

standards, as well as demand response programs, energy scheduling and optimization. The 

main variables affecting energy consumption in the residential sector and comfort 

management are identified.  

 Chapter 3- The variables (identified in Chapter 2) are utilized to propose and model a 

novel intelligent decision support system (IDSS) for the users. The developed expert IDSS 

is intended to assist householders to manage DRPs. Three techniques –the analytic 

hierarchy process, elimination and choice expressing reality, and the technique for Order 

of preference by similarity to ideal solution- are proposed and implemented. 

 Chapter 4 - A versatile scheduling algorithm and methodology is proposed and 

implemented to schedule energy consumption in different DRPs. A combinatorial 

optimization technique based on knapsack is proposed and tested for scheduling energy 

according to the householder’s budget.  

 Chapter 5- The TOPSIS methodology is applied in order to assess the effects of engaging 

in a smart grid DRP on operational and production management in the industrial sector. 

The Delphi method was introduced to determine the criteria for assessing the effect of 

energy curtailment during DRP. A combinatorial optimization model is proposed to utilize 

those ranking values to optimize energy consumption that will satisfy the energy limit 

imposed by production demands and DRP. 

The contribution of this research can be significant for system designers, researchers and 

policy makers who want to develop the SG for residential and industrial customers. 
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Chapter 1  

Introduction  

1.1. Introduction   

According to the Energy Information Administration (EIA) report [1], it is estimated that 

the global demand for energy will rise by 56% by the year 2040. As shown in Figure 1, in order 

to meet that demand, renewable sources of energy are the fastest-growing source of world 

energy, with consumption increasing by 2.8% per year from 2010 to 2040; meanwhile, the rate 

is 2.5 % for nuclear power and natural gas. This shows that the dependence on resources to 

meet the energy demand is shifting from non-renewable to renewable sources to utilize green 

energy. Consequently, with such a shift, there has been an increase in the costs of upgrading 

the old electricity delivery system, pricing and service networks, as these systems have the 

traditional supply-side options and an inadequate central capacity plan to meet the growing 

demand and energy shift. The new system demands a framework in which people, systems, 

solutions, and business processes are dynamic and flexible in responding to changes in 

technology, customer needs, prices, standards, policies, and other requirements [2]. This is 

achieved through the Smart Grid. The Smart Grid is an electricity network that can intelligently 

integrate subsystems of generation, transmission, distribution and customer services and utilize 

distributed energy resources [3]. The actions of all subsystems are integrated in order to 

efficiently deliver sustainable, economic and secure electricity supplies [4]. 

 

 

Figure 1.1. World Net Electricity Generation by Fuel, 2010-2040 (Trillion kilowatthours) [1] 
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   In this system, the consumers who are equipped with different forms of distributed energy 

resources such as roof-top photovoltaic panels or wind turbine (call them “prosumer”) are able  

simultaneously consume the energy from different sources and produce and return it to the grid 

or use it during peak times when the price of energy is increased. The need for two-way 

communication between the utility and its customers lies at the heart of all Smart Grid 

initiatives. In this fashion, both parties work synergistically to manage the cost, delivery and 

environmental impact of power generation and energy services delivery. But to achieve energy 

efficiency, apart from having such architecture, mechanisms are needed that add intelligence 

to it at different levels. This additional intelligence varies according to the level at which it is 

being considered. For example, if considered from the generation side, one of the areas in which 

intelligence has to be added is dynamic pricing; whereas, from the consumer’s perspective, it 

may be in the efficient utilization of energy at home level based on the price. This is supported 

by Schneider Electric which states that energy management needs intelligence not only to 

reduce energy consumption, but also to reduce operational costs[5]. Once developed, the 

approaches will add intelligence at the end-user level and will encourage customers to change 

their energy consumption behaviour in order to achieve energy efficiency. It has been 

mentioned in the literature that consumers are ready to change when they are presented with 

the appropriate information, but they lack the data or tools to do so [6].  

   Therefore, an approach is required whereby I can investigate, identify and address the issues 

which arise for the consumers, and which adds intelligence for efficient and smart energy 

consumption in line with the real costs and environmental impact which will encourage 

consumers to utilize energy efficiently. Therefore, the aim of this thesis is to develop an 

intelligent energy management system at the smart home level in Smart Grid. Such a system 

takes into account the consumers’ preferences and life styles, and assists them to efficiently 

utilize energy in the Smart Grid. 

This Chapter is organized as follows. It begins with a definition of the smart grid and its 

architecture, and describes the system’s components. Then, I specify the section of this network 

that is the focus of this thesis by introducing demand-side management and its components. 

Certain infrastructures are required for the implementation of energy management techniques 

in a home, and these will be discussed subsequently. This will be followed by a discussion of 

the important parameters of energy demand in the residential sector and optimization and 

scheduling methodologies. Finally, the research objectives and its significance along with the 

overall structure are presented. 
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1.2. Smart Grid (SG) Goals 

Smart Grid is a novel initiative the aim of which is to deliver energy to the users and to achieve 

consumption efficiency by means of two-way communication. The Smart Grid architecture is 

a combination of various hardware devices, and management and reporting software tools that 

are combined within an ICT infrastructure. This infrastructure is needed to make the smart grid 

sustainable, creative and intelligent while the various components of this system have been 

developed independently by many suppliers and they must operate and work together in this 

domain. This interoperability of system components needs to be outlined and achieved with 

“architectural guidance”. Hence, according to the U.S. Energy Independence and Security Act 

of 2007-section 1305, the responsibility for coordinating the standards and protocols for an SG 

interoperability framework resides with the U.S National Institute of Standards and 

Technology (NIST)[7]. So in late 2009, NIST established the SG interoperability panel (SGIP) 

to develop support for the mission. Subsequently, an architectural framework was created in 

order to achieve a common understanding about smart grid elements, the relationship amongst 

stakeholders and a technical roadmap for integrating domains, companies, and businesses.  

According to this report, the fundamental goals of constructing the smart grid framework are 

as follows [7]: 

1. Options: The smart grid must have a wide range of standard options so that new 

technologies can be incorporated without incurring huge capital investment and 

customization.  

2. Interoperability: Interfacing of subsystems and interoperability of other products 

outside of the smart grid domain are the other specifications of the SG structure.  

3. Maintainability: Maintaining system safety, security, and reliability during the period 

of the SG’s life time is another fundamental goal of the SG. 

4. Upgradeability: It is important that the system remain operational when a part of the 

grid is being upgraded. 

5. Innovation: SG must have the capacity to sustain innovation in “regulations and 

policies; business processes and procedures; information processing; technical 

communications; and the integration of new and innovative energy systems”[7]. 

6. Scalability: A lifetime of five to thirty years must be considered for system elements 

when smart grid is under development and the elements must survive and operate in a 

secure way for the duration. 

7.  Flexibility: SG must have flexibility in type and order of implementation without 

facing the disadvantage of having to select an alternative implementation. 

8. Legacy integration and migration: In terms of compatibility of new innovations with 

existing and old technology, it is very important that the SG framework address the 
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legacy devices, systems, protocols, syntax, and semantics. These are the components 

of the framework which were designed and used in the past. Sometimes the 

compatibility and integration is possible by means of an adapter or by creating an 

“intervening layer” that must be examined case by case. 

9. Governance: This goal involves compliance with policies when designing and 

managing the smart grid system. 

10. Cybersecurity: Protecting the system against physical and cyber-attack is another goal 

of SG architecture. The computerized electrical grid must have strong protection for 

its power systems. Cyber security must reliably cover customer privacy and all 

communication and automation sectors. 

11. Affordability: This goal concerns the creation of a reliable energy market for multi-

vendors in which capital savings can occur in both national and international markets. 

    Furthermore, NIST divided the domains of smart grid according to customers, markets, 

service provider, operations, generations, transmission, and distribution as shown in Figure 

1.2. Each domain comprises groups with similar requirement characteristics; they can be 

organizations, individuals, systems and devices. The information network among these 

domains and groups is shown in Figure 1.2 and the groups in the customer domain have been 

shown in Figure 1.4. 

 

Figure 1.2. Interaction of Actors in Different Smart Grid Domains through Secure 

Communication [7] 
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    As will be shown in the literature review presented in Chapter 2, the term “smart” in smart 

grid terminology indicates “intelligence” in functionality, communication and integration of 

all network domains. The U.S. Department of Energy (DOE) [8] indicates that the smarter 

grid uses tools, techniques and technologies to add knowledge to power in order to make it 

more efficient. This knowledge is supposed to be provided by means of two-way digital 

information and communication technology, so a key feature of smart grid infrastructure is 

the modern automation technology for conveying data and computerizing information. In this 

fashion, the important section is the transformation of the information into knowledge in order 

to make efficient decisions that in this thesis will be addressed in terms of the residential 

sector.  

 

 

Figure 1.3. Conceptual Domains for Smart Grid Information Networks [9] 

 

    1.2.1. Smart Grid Characteristics   

According to section 1301 of the Energy Independence and Security Act of 2007,  issued by 

the U.S. DOE, future Smart Grids should have ten characteristics as follows [10]: 

1. Digital information and controls technology are employed to make the electric grid 

more reliable, secure, and efficient. 
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2. The optimization of operations and pervasive cyber security systems have been 

utilised dynamically across the grid. 

3. Distributed renewable and non-renewable resources are coupled together for 

electricity generation.  

4. In demand-side management, demand response programs are integrated with other 

energy-efficient resources. 

5.  “Deployment of `smart' technologies (real-time, automated, interactive technologies 

that optimize the physical operation of appliances and consumer devices) for 

metering, communications concerning grid operations and status, and distribution 

automation”[10]. 

6. “Integration of `smart' appliances and consumer devices”[10].  

7.  “ Provision to consumers of timely information and control options”[10]. 

8. The infrastructures and standards have to be prepared and enacted for interoperability 

of electrical devices and their communication with the grid network. 

9. Applying technologies to shift the demand from peak time to off-peak period (Peak 

shaving) for Plug-in electric vehicles (PEVs), air conditioners (AC) and using modern 

storage system. 

10. Recognition of unreasonable obstacles to the development of SG technologies and 

practices. 

        Characteristics five, six, and seven pertain to the consumers’ interaction with the utility 

and optimization of electrical devices, and these play a critical role in ensuring a robust future 

smart grid. In addition, by studying customer domain groups presented in Figure 1.4, the 

interconnection of buildings with smart grid has three key features. The first one is a renewable 

distributed and decentralized power generation strategy. Smart grid customers are able to 

generate electricity locally, preferably from renewable resources such as solar photo-voltaic 

(PV) panels or wind turbines, which can be stored in batteries or sent back to the grid. In this 

scenario, they are called “prosumers” (producers and consumer). The second feature is 

demand response programs and their associated hardware and software on the end-user side 

such as a smart meter and Energy Services Interface (ESI) for establishing communication 

and a data stream between service provider and customer. This interface is a gateway for 

measuring and recording consumption data and communication purposes such as remote 

control and outage management. In some cases, the ESI is embedded in the smart meter that 

will be discussed in the literature review in Chapter 2. 

 Finally, the third feature is the use of plug-in vehicles or hybrid automobiles which can be 

charged by connecting them to building outlets. 
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Figure 1.4.  Overview of Customer Domain in SG [9] 

Thus, the emergence of the smart grid has leveraged the building automation systems in order 

to achieve efficient energy targets in the customer domain (Figure 1.4). However, future 

building energy management systems will be more efficient if they are integrated with a smart 

grid communication system and conform to smart grid infrastructures, standards, and 

regulations.  The following section presents the energy management systems in the smart grid. 

 

1.3. Building Energy Management System (BEMS) and Demand Response (DR) 

Programs 

1.3.1. BEMS 

 

A building automation system (BAS) can be set up to automate a building to make work more 

efficient for occupants. A BEMS or home energy management system (HEMS) in the 

residential sector is a subset of BAS. Also, it focuses on automating the building to run as 

energy-efficiently as possible. BEMS is able to optimize indoor air quality, temperature 

control, and lighting. For example, optimization in lighting can provide the appropriate level 

of light by effective control through scheduling or by active energy efficiency measurement 

such as daylight harvesting. This process can be implemented by either utilizing a photo-

electric sensor to detect daylight level entering through windows and dim lights to ensure the 

space is not over-illuminated, or by using occupancy sensors or stand-alone sensors to turn off 

lights when the space is unoccupied. Lighting control will be explained in subsequent sections.  
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 The standardization of communication protocols and widespread adoption of the Building 

Automation and Control Network (BACnet) protocol has enabled the integration of products 

and connectivity among systems made by different manufacturers [8]. BACnet which 

achieved the ISO 1648-4 standard in 2003, is a communication protocol developed by the 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) for 

use in control networks and building automation [11]. The acceptance of Zigbee, as the only 

BACnet approved wireless mesh network standard for building systems for connecting 

appliances in residential buildings, is increasing at a rapid rate [12]. 

Buildings play a significant role in the context of smart grid as this sector is responsible for 

38% of the total energy consumption in the world [13]. This rate differs among countries. For 

example, in Europe it is 40% [14] and 39% in the UK (2004) [15]. Consequently, there is great 

potential for research and development of energy-saving approaches in demand-side 

management. The next section explains the association of demand response programs and 

HEMS in SG. 

 

1.3.2. DR Programs and HEMS 

 

Demand-side management (DSM) comprises those technologies, activities and strategies used 

by the utility in the demand side of the energy network in order to achieve goals including 

emission reduction, load management, improved energy efficiency and conservation, 

balancing of supply and demand, increasing consumer participation in energy management 

and generation, and reduction in operation costs for the total network. So demand response is 

one of the demand-side management mechanisms.  

 

The U.S. Federal Energy Regulatory Commission, FERC, defines DR as “changes in electric 

use by demand-side resources from their normal consumption patterns in response to changes 

in the price of electricity, or to incentive payments designed to induce lower electricity use at 

times of high wholesale market prices or when system reliability is jeopardized” [16]. 

 

It is widely agreed that the cost of energy is the most powerful incentive to encourage 

consumers to curtail their consumption. So in demand response programs, the aggregators or 

service providers use this incentive to achieve their aims in regard to load management. The 

most important objective of these programs is to make the demand curve flat by offering a 

high-priced energy unit during peak periods and lower prices during off-peak periods in order 

to stabilize the volatile energy demand so as to make it more predictable and controllable. 
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Albadi and El-Saadany [17] classified DR programs according to two categories: incentive-

based and price-based programs. The authors define DR as the changes in power consumption 

by end-users from their normal consumption patterns in response to changes in the price of 

electricity over time. These classifications are shown in Figure 1.5 and each program will be 

discussed in detail in Chapter 2. 

 

 

Figure 1.5. Demand Response Programs [17] 

 

The International Organization for Standardization (ISO) and International Electro-technical 

Commission (IEC) issued  ISO/IEC 15067-3 standard as the information technology necessary 

for the home electronic system (HES) application model, and in the third part, the standards 

present a model of a demand-response energy management system for HES[3]. A high-level 

energy management model presented in this document focusses on three primarily demand-

response methods: 1) direct, 2) local (time of use), and 3) distributed control (real-time 

pricing). 
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Figure 1.6. HES Energy Management Model Presented by  ISO/IEC 15067-3 [3] 

A Direct Load Control (DLC) program is essentially for the low energy consumers such as 

residential and small commercial users. In this program, the service provider has the authority 

to shut down, remotely, several appliances such as air-conditioners, pool pumps, and water 

heaters at short notice. In a Real-Time Pricing (RTP) program, changes in the wholesale 

energy market will be reflected and the energy unit price fluctuates hourly or a day ahead. 

RTP is one of the most efficient DRPs [11]. Another RTP approach is known as prices to 

devices whereby smart appliances will receive the energy price signals and they will adjust 

themselves accordingly. For example, a program may be embedded in the appliances by the 

manufacturer to adjust the load based on the price of energy. In air-conditioners, the operation 

and temperature set point may be modified by changes in energy price. In this case, the 

communication can be made directly between the utility’s wide area network and the home 

area network, or directly to smart appliances, or via a gateway like HES. 

The Australian standard, AS4755 [18], is an operational instruction for demand-response  

capabilities and supporting technologies for electrical products that can be remotely  

controlled. The third part of this document is concerned with demand-response-enabling for 

air conditioners, swimming pools, and electric water heaters.  

According to the Australian standard AS 5711-2013, smart appliances in SG are [19]:   

a) Those appliances which react with a demand response program combined with an 

inverter energy system and an appliance energy manager; or 
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b) An electrical appliance that has the function of changing the operation modes 

automatically in response to either instruction from sources other than the user, or, is 

programmed by the user to monitor and react to changes in grid conditions. 

The standard states “an appliance that is capable of being remotely interrogated or controlled 

by the user or that is able to modify its operation through monitoring its own pattern of use is 

not a smart appliance,  unless it also has the characteristics above.” [19] 

By referring to the functions explained by the standards and published articles for EMS, the 

sophisticated software algorithms for scheduling and optimization are at the core of EMS 

vision. As a result, a major focus of smart grid research has been the design of an intelligent 

scheduling algorithm and optimization techniques. Considering the outlined smart grid 

network, demand response and customer domain, home energy management is the area on 

which this thesis will focus.  

Hence, in this thesis, the research has been carried out to design a novel framework for 

proposing an energy management system compatible with demand response, smart grid 

infrastructure and standards.  

Furthermore, the proposed methodologies in [20-22] and the agent-based approach presented 

in [23] are enhancements that will be explained in more detail in Chapter 3. 

In the literature, the field of HEMS in SG can be categorised according to five main areas of 

research:  

1. comfort management, 

2. consumption behaviour and preferences, 

3. consumption optimization by load scheduling and control systems, 

4. demand response, and 

5. information and communication technology. 

As mentioned previously, ICT is inherent in SG. Hence, in the next section, the 

communication network between utility and home, comprising the advanced metering 

infrastructure in SG, will be described.   

 

1.4. Advanced Metering Infrastructure (AMI) and Home Area Network (HAN) 

One of the fundamental parts of the smart grid is the advanced or smart metering 

infrastructure. This is responsible for metering operations, communication systems, collecting 

data, managing business arrangements, and supporting the contractual arrangements. Smart 
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electricity meters are electronic devices which the utility installs on the customer’s premises 

for the purpose of recording flows of electric energy at intervals of 30 minutes or less. This 

device is capable of two-way communication, directly and/or remotely, of: 

(a) a range of data for monitoring  and billing; 

(b) information for energy management purposes; and 

(c) any change in the state of the smart meter (e.g. for the purposes of demand response 

actions) [19]. 

Synchronization, power management, information display, communication, control and 

calibration, and quantitative measurement are the expected functionalities of smart meters. 

Accordingly, the significant features of smart meters can be outlined as follows [24]: 

1. Time-based pricing. 

2. Providing consumption data for consumer and utility. 

3. Net metering. 

4. Failure and outage notification. 

5. Remote command operations. 

6. Load limiting for DR purposes. 

7.  Power quality monitoring including: phase, voltage and current, active and reactive 

power, power factor. 

8. Energy theft detection. 

9. Communication with other intelligent devices. 

10. Improvement of environmental conditions by reducing emissions through efficient 

power consumption. 

 

In AMI, the Home Area Network (HAN) [19] is a network on the premises of an energy 

consumer which enables electrical products (whether smart or not) to interact with the smart 

grid connection point (via the home energy gateway) and/or in-home displays.  

As demonstrated by [24] and shown in Figure 1.7,  utility networks comprise four levels:  

1. A core backbone which interconnects utility and aggregation point  

2. Access points or smart meters where information provided by a HAN passes through 

it to backhaul distribution. 

3. Backhaul distribution that passes information received from backhaul distribution and 

smart meters to core backbone and utility. 
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4.  A HAN which is connected to the appliances and in their immediate above layers to 

the smart meters.  

HANs connect smart meters, smart appliances, energy storage and generation, and plug-in 

electric vehicle (PEV). In this communication, the data flow is more instantaneous rather than 

continuous, and the data bandwidth of 10 to 100 Kbps for each device depends on the task. 

  

 

Figure 1.7. Utility Network Proposed by [24] 

 

This network at the domestic level has been delineated by Australian standard AS 5711-2013 

and is shown in Figure 1.8. CEM in this figure is the Consumer Energy Manager which is a 

device connected to the smart grid for the purpose of controlling the appliances. In the 

standard, the difference between HEM and CEM is just the connection point to the home 

energy gateway. It means that HEM will convert to CEM if it is directly connected to the 

gateway. The vertical line in Figure 1.8 indicates the SG connection point. 
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Figure 1.8.  Consumer Side Element of Smart Grid [19] 

 

The communication structure described above facilitates the flow of information so as to better 

monitor the householders’ consumption behaviour. Hence, householders are provided with 

information which may be used in their decision-making process pertaining to the ways in 

which they could change their life style to achieve a more efficient level of energy 

consumption, or which kind of DRP may less compromise their comfort level or benefit them 

financially. The next section presents a discussion of the role of BEMS in comfort 

management. 

 

1.5. Building Energy Management Systems (BEMS) and Comfort Management 

1.5.1. Budget and Energy Cost versus Comfort and Convenience 

  The developers of smart grid systems must give serious consideration to the issue of whether 

the customers’ comfort level and lifestyle will be compromised or disrupted by the utilization 

of automated control and scheduling techniques for energy management. The demand-

response program is a mechanism whereby customers are encouraged to modify their usual 

consumption behaviour in favour of saving money, or avoiding cost and penalty consequences 

in their bills. This is intended to encourage customers to relinquish some of their habits and 

conveniences, or pay the price for retaining the same consumption habits during the high 

pricing times.   

The user’s preferences and energy budget are two inputs to energy management system, so 

the question is: how do these two inputs affect each other since the adjustment of preferences 

may be interpreted as adjusting cost which is directly related to budget? Moreover, this 
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becomes more complicated when the dynamic-pricing is considered, demand-response 

program when the market-based energy price is variable. In this situation, controlling the 

budget and adjusting the preferences would be more complex as explained by the Standard 

[3]. 

Issues arise and arguments may occur between users or family members when making 

decisions regarding the kind of interface that is appropriate for them and includes their 

preferences. How can conflict of preferences be avoided? Which methodologies can be used 

to analyse and integrate all sorts of preferences?  If users decide to allocate their budget for a 

billing period in different forms of demand response, what kind of system and methodology 

can best accomplish this?  

1.5.2. Comfort Management by BEMS 

A great deal of research has been conducted into methodologies for measuring comfort and 

its effect on energy consumption in buildings [25-36]. Dounis et al. [35] undertook a 

comprehensive survey of control systems for comfort management in buildings and stated that 

three aspects of comfort  -thermal comfort, visual comfort and indoor air quality- indicate the 

comfort level or quality of life in a building. 

Huebner et al. [25] studied the effect of human factors on energy consumption. These factors 

included comfort, habit and behavioural intention, socio-demographic and psychological 

variables, building characteristics and external impact factors. The article demonstrates that 

different understandings of comfort affect consumption behaviour and it is difficult to break 

habits in order to modify patterns of energy consumption. Wang et al. [27, 29, 30, 36] propose 

a hierarchical multi-agent intelligent control system which considers comfort management in 

smart buildings. Their parameters for comfort management consist of illumination for light 

control, CO2 concentration for indoor air quality, and temperature for thermal control. Their 

model architecture is based on the smart grid framework. They utilised the particle swarm 

optimization technique; the optimizer was an agent and their model included a graphical user 

interface (GUI) for setting preferences. In their approach, they established a composite 

comfort index for maximizing it in their objective function as it is based on maximization. 

They claim that their intelligent system is capable of achieving the control goals. 

An approach proposed by [37] is intended to minimize energy cost via a multi-agent system 

that includes a fuzzy controller for comfort management in a home. Several heaters have 

communication with Zigbee technology and a central control unit (CCU) measures maximum 

power to reach a set temperature point for each room according to the comfort level required. 

They used a fuzzy controller to distribute power to heaters.  
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As will be shown in the literature review (Chapter 2), researchers use different variables when 

measuring comfort levels. For example, in the aforementioned article, the variable for 

measuring comfort is temperature. However, three aspects of comfort are evident in the 

various researches [35, 38]: thermal comfort, visual comfort and indoor air quality (IAQ). 

Therefore, this thesis studies comfort management in terms of these three aspects. 

 

1.5.3. Comfort Management: Thermal Comfort 

The best references for measuring thermal comfort is the standard of ISO 7730: 2005(or I.S. 

EN ISO 7730:2006) and ANSI/ASHRAE Standard 55-2013, “Thermal Environmental 

Conditions for Human Occupancy” issued by the American Society of Heating, Refrigerating 

and Air-conditioning Engineers (ASHRAE) [39, 40].  

According to ANSI/ASHRAE Standard 55-2013, there are six factors which may vary with 

time that address the conditions for acceptable thermal comfort. They comprise characteristics 

of occupant factors such as: 

1- Metabolic rate (met): “the rate of transformation of chemical energy into heat and 

mechanical work by metabolic activities of an individual, per unit of skin surface area 

(expressed in units of met) equal to 58.2 W/m2 (18.4 Btu/h·ft2), which is the energy produced 

per unit skin surface area of an average person seated at rest.” 

2- Clothing insulation (𝐼𝑐𝐼): its unit for measurement is “clo” and it is a unit used to express 

the thermal insulation provided by garments and clothing ensembles, where 1 clo = 0.155 

m2·°C/ W (0.88 ft2·h·°F/Btu).  

The thermal factors include: 

3- Air temperature 

4- Mean Radiant temperature 𝑡𝑟̅  : “ the temperature of a uniform, black enclosure that 

exchanges the same amount of heat by radiation with the occupant as the actual enclosure. It 

is a single value for the entire body expressed as a spatial average of the temperature of 

surfaces surrounding the occupant weighted by their view factors with respect to the 

occupant.” 

5- Air speed: “the rate of air movement at a point, without regard to direction.” 

6- Humidity: “a general reference to the moisture content of the air. It is expressed in terms of 

several thermodynamic variables, including vapour pressure, dew-point temperature, wetbulb 

temperature, humidity ratio, and relative humidity. It is spatially and temporally averaged in 
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the same manner as air temperature. Note: Any one of these humidity variables must be used 

in conjunction with dry-bulb temperature in order to describe a specific air condition.” 

[40] defines thermal comfort as a “condition of mind that expresses satisfaction with the 

thermal environment and is assessed by subjective evaluation.” This standard states that “Due 

to individual differences, it is impossible to specify a thermal environment that will satisfy 

everybody”. Therefore, three classes of thermal environment for a space such as A, B and C 

are presented. Each class prescribes different thermal states of the body and local discomfort 

parameters. These classes have been used for measuring the thermal comfort (room 

temperature set point) in the approach presented by [41]. This study evaluated the energy 

efficiency aspect of demand-side management and considered a single-dwelling family as a 

prosumer using structural thermal mass in a heat pump and simulating the building-envelop 

characteristic in the TOU demand response scheme. 

In the ISO 7730 standard, the effective factors that determine the body’s thermal sensation 

comprise physical activity and clothing, and environmental factors include air temperature, 

mean radiant temperature, air velocity and air humidity. By measuring them, the Predicted 

Mean Vote (PMV) index can be calculated. But for thermal discomfort or thermal 

dissatisfaction, the index is the predicted percentage dissatisfied (PPD). This factor can be 

calculated from the PMV. 

 The PMV index was utilized in research conducted by [42]. The authors divided appliances 

into two groups, thermal and non-thermal. By calculating building thermal mass 

thermodynamically and integrating this factor with customers’ comfort preferences, they 

produced an optimization model for scheduling appliances in peak and off-peak demand 

response periods of the smart grid. The authors used ISO 7730 to calculate the PMV comfort 

level. The objective function of their optimization model is to minimize energy cost by 

scheduling appliances according to a time-varying scheme DR and by taking into account the 

PMV constraint. 

Although the effect of thermal comfort in residential energy consumption is significant, the 

study of comfort management in the field of residential energy management and energy cost 

is not limited to this factor. Variables such as “visual comfort” and “indoor air quality” have 

been identified by many researchers as a comfort index [43, 44]. 
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1.6. User Activities, Consumption Behaviour and Preferences in EMS 

Recognition of user activities in favour of energy consumption monitoring and studying 

householders’ consumption behaviour and preferences have been a major focus of research. 

For example, research conducted by [45] considers human behaviours in an individual 

building as primary factors for predicting energy usage. The authors analysed patterns of 

energy consumption by monitoring activities as well as collecting energy consumption data 

from several smart environments. They analysed the energy patterns by identifying frequent 

sequences of energy consumption ranges and identifying outliers in the data. In this research, 

the role of behaviours in terms of energy consumption has been identified by utilizing machine 

learning methods to map activities performed in the environment with their corresponding 

energy consumption.  

The research conducted by [46] focuses on the impact of householders’ behaviour on building 

energy performance. Their model shown in Figure 1.9 demonstrates the relationship between 

the determinants of householders’ consumption behaviour and the building.   

 

Figure 1.9. The Impact of Householders’ Behaviour on Building Energy Performance [46] 

 

The Australian Housing and Urban Research Institute (AHURI) conducted a research study 

into the attitudes and behaviours of Australian households regarding consumption reduction 

of energy and resources usage (electricity and water). The researchers utilized a decision-

making model, theory of planned behaviour (TPB), to investigate the social and psychological 

determinants of behavioural intentions and actions. The research finding shows that 

householders have positive attitudes to practices and actions which minimise waste and 

conserve energy. Using efficient appliances, providing feedback about usage, and engaging 

in household sustainability practices in the community, all lead to an efficient level of energy 

consumption.  The variables used in this research are mainly the same variables as those used 

in the study undertaken by [47] and they comprise age, gender, household tenure 
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(owner/tenant), type of dwelling, annual household income, number of adults in house, 

number of children in house, highest level of education, and number of bedrooms in dwelling. 

Similarly, the research results in [48] reveal that providing information about household 

behavioural conservation actions is as significant as a home energy performance retrofit. 

As discussed in section 1.4, the AMI and HEMS are able to provide real-time and online 

information about consumption rate, energy price or other measurable factors. [44] conducted 

a survey into the effect of householders’ consumption behaviour in DR. The results show that 

consumers’ attitudes to the signals and willingness to modify their consumption behaviour 

greatly affect the load shift in DR, cost saving and emission reduction.  

Scrutinizing the factors that affect users’ behaviour is not the only means of achieving energy 

conservation and efficiency. Consumption optimization and energy scheduling are also 

significant factors. Productivity will be created when the outcome of that study utilizes 

optimization techniques. The next section provides a further explanation of energy efficient 

behaviour. 

1.7. Consumption Optimization and Load Scheduling for EMS in SG 

SG revolution and emerging new demand response programs have revealed new 

circumstances and factors that influence the methodologies which have been applied for 

energy optimization and scheduling. Some of these circumstances are as follows: 

1. Effects of the dynamic and real-time DR on householders’ consumption behaviour 

[49, 50]. 

2. Development of DERs which have enabled consumers to become prosumers [51-53]. 

3. Enhancing the data availability and visibility by real-time monitoring whereby the 

utility has the capability of making deals and trading with end-users [54]. 

4. Enabling mutual communication between end-users and the utility by means of smart 

meters [55, 56]. 

5.  Development in technologies which enable the system to better monitor and identify 

appliances [57, 58]. 

6.  Development in technologies and methodologies which enables the system to better 

predict the available resources and effective parameters in energy demand [59-63].  

7. Emerging smart appliances compatible with modern ICTs and home automation [64-

66]. 

Home energy scheduling in the SG can be defined as an offline, semi-online, or online process 

of allocating energy resources to supply the energy demand of various electrical devices in a 

time scale of short, medium and long term in order to: 
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a) satisfy the regulations of demand response programs,  

b) optimize the householder’s comfort level, and 

c) produce energy cost savings.  

The term ‘optimization’ refers to the process of searching for the best value that can be realized 

or attained [67]. In HEMS, optimization is the process of seeking and finding the minimum or 

maximum value of the cost or saving function associated with energy consumption or 

generation given the feasible constraints. The cost and saving are dependent on the objective 

function.  

According to the guidebook provided for ARRA1 [68], one of the thirteen functions of a  

modernized electricity delivery and the use of electricity in SG, is customer electricity 

consumption optimization that provides information enabling consumers to make educated 

decisions about their electricity use. Householders should have this ability to optimize in order 

to achieve multiple goals such as reduced cost, reliability, comfort, and decreased 

environmental impact. 

 Energy-efficient behaviour may be encouraged by making available to consumers adequate 

information about energy prices and the energy consumption of appliances. Energy-efficient 

behaviour [19] is defined as the operation of appliances by consumers in a way that optimizes 

energy efficiency while reducing energy wastage.  

Hence, in Chapters 2 and 4, the most significant methodologies proposed in the literature are 

presented for four categories: scheduling, optimization, appliance identification, and resource 

allocation. 

 

1.8. Distributed Energy Resources (DERs) in SG 

DERs are defined by [19] as “spatially dispersed power generation or storage units that are 

connected directly to the distribution network or connected to the network on the consumer 

side of the meter. These energy sources can include micro turbines, fuel cells, wind power, 

solar power, and both direct and indirect forms of energy storage”. 

According to this definition, electric power conversion, from DC (direct current) to AC 

(alternating current) may occur in DERs. So, power conditioning systems (PCSs) which are 

power electronics technologies designed to increase the penetration level of renewable 

resources will be utilized to increase the power quality and to compensate for the intermittency 

of renewable resources. The power quality in an electric power system depends on the 

                                                
1 American Recovery and Reinvestment Act 
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characteristics of the electric current, frequencies, voltage, and waveforms at a particular 

point, evaluated against a set of technical reference parameters. 

Renewable resources like the sun and wind are the cleanest means of generating energy; 

meanwhile, other distributed power plants utilize a combination of renewable (e.g. solar and 

wind), fossil-fuel-driven generators, and a diesel generator. These hybrid power systems use 

a fossil-fuel generator to reduce effect of intermittency of renewable resources. The various 

electricity storage systems include [69]:  

- Pumped hydro storage  

- Thermal energy storage  

- Compressed air energy storage  

- Small-scale compressed air energy storage   

- Energy storage coupled with natural gas storage  

- Energy storage using flow batteries  

- Fuel cells—Hydrogen energy storage  

- Chemical storage  

- Flywheel energy storage  

- Superconducting magnetic energy storage  

- Energy storage in super-capacitors.  

Renewable technologies used in the residential sector can be incorporated in new buildings 

during construction and some of them can be installed externally. These technologies include:  

- Passive solar heating and daylighting 

- Biofuels 

- Biomass energy heating  

- Wind energy 

- Geothermal heat pumps 

- Photovoltaic (solar cell) systems 

- Solar hot water systems 

- Geothermal direct use 

 

1.9. The scope of the thesis 

In the thesis, the focus is on proposing an energy management system for the residential sector 

of smart grid. The variables which affect household energy consumption and demand response 

will be investigated. I intend to address the fundamentals of a knowledge-based system 

whereby householders are able to make decisions regarding efficient energy consumption 
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using a variety of demand response programs. The focus will be on optimization and 

scheduling methods that take into account the users’ life style, preferences and desired comfort 

level. 

1.10. Research objectives 

The main objectives of this thesis are to research the home energy management system 

characteristics and functionality that are generally incorporated in demand response programs 

of the smart grid, and to develop a set of advanced solutions to address the following issues: 

1. The development of an intelligent decision support system to help users to manage 

their energy consumption according to their preferences and DR regulations. 

2. The development of a home energy management system by proposing methodologies 

in which intelligence is added to this system. 

3. The development of a mathematical optimization algorithm that takes into account 

users’ preferences and comfort level, besides utilizing the maximum amount of 

distributed energy resources. 

4. The development of scheduling methodologies to encourage users to shift their 

consumption from on-peak period to off peak periods in demand response programs. 

5. The deployment of the decision making methodology to industrial sector of smart grid 

in order to assist the operation manager to decide whether to participate in DRP or use 

distributed energy resources. 

1.11. Structure of the thesis 

The thesis has six Chapters. In this section, a brief outline of each Chapter is presented. 

Chapter 1 is an introduction to the subject of this thesis. In this Chapter, I explain the concept 

of smart grid, demand response programs, smart building management system and effective 

parameters. This introductory Chapter provides a necessary explanation of the main objectives 

of this dissertation.  

Chapter 2 discusses the recent and the most significant related researches in the field of 

building energy management systems in the context of the smart grid. The research review 

leads us to the issues which this thesis will address. 

Chapter 3 introduces the decision-making frameworks which can support the energy 

management strategies applied by energy managers or consumers. Here, various examples and 

scenarios are presented to illustrate the frameworks. 
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Chapter 4 of this thesis proposes the scheduling algorithm by which the users are able to save 

on their electricity costs when the price of electricity is dynamic. The proposed optimization 

is examined using different scenarios.  

In Chapter 5, a decision-making framework is proposed that can be used in the industrial sector 

of the smart grid; this a combination of the methodologies proposed in Chapter 3 and a linear 

programming optimization technique. This Chapter proposes a methodology which supports 

the decision-making of industrial energy managers, whether they have to participate in a 

demand response program or use the distributed energy generation.  

Chapter 6 concludes this thesis by recapitulating and explaining the potential future work 

raised by this doctoral dissertation. This Chapter also addresses the limitations of this research.         

1.12. Conclusions 

This research thesis focuses on the development of a novel and improved decision-making 

framework for a home energy management system that is compatible with the smart grid 

infrastructure. This research area and the general area of smart grid is in its infancy so a brief 

introduction to the concepts of smart grid, demand response, smart home and energy 

management systems was provided. 

This introduction provided the necessary background to the research motivations, its 

significance, and the objectives of the improved energy management system which is 

proposed. 

The following Chapter presents a literature review of research in the area of smart grid and 

evaluates existing building energy consumption control models and related technologies. 
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Chapter 2 

Literature Review For BEMS 

2.1. Introduction  

In this Chapter, I provide an overview of the literature surveyed and an evaluation of the state-

of-the-art elements of an energy management system in the micro grid of the smart grid. 

Substantial progress has been made in providing a practical basis for a number of problems 

that are associated with energy optimization and scheduling methodologies in residential 

sector.  

 

A number of energy efficiency tools and techniques have been documented in the literature. 

In the following sections, I discuss the works that have been previously undertaken to resolve 

some of the issues outlined in Chapter 1.  

 

The research literature pertaining to the smart grid could be reviewed from an interdisciplinary 

perspective because this is a complex domain that involves human, socioeconomic, hardware, 

and software factors. However, in this Chapter, the literature review is limited to the micro 

level of the smart grid since this is more relevant to the subject of this thesis. The research 

areas investigated by this dissertation can be classified into six categories: 

1. Demand-side management and demand response programs 

2. The role of smart meters in DR 

3. Building an energy management system 

a. Energy consumption scheduling and optimization methods 

b.  Prediction of building energy consumption 

c. Load demand identification 

4. The effect of consumers’ behaviour and their preferences on energy demand 

a. Energy consumption behaviour and activities related to energy demand 

b. The consumers’ consumption behaviour effect in optimization models 

5. Comfort management 

a. Comfort management: Thermal Comfort 

b. Comfort Management: Indoor Air Quality 

c. Comfort Management: Visual Comfort 

i. Visual comfort: Electric Lighting Control by Switching Method 
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ii. Visual Comfort: Electric Lighting Control by Dimming Method 

6. Decision-making approaches in energy management and smart grid 

 

 

2.2. Demand Side Management (DSM) and Demand Response Program 

2.2.1. Demand Side Management (DSM) 

Clark W. Gellings [70, 71] who originally coined the term “demand side management” in 

1984 introduces DSM as a first marketing strategy that focus on technology, customers’ and 

utility’s needs. The author defined DSM as “DSM activities are those which involve actions 

on the demand (i.e. customer) side of the electric metre, either directly or indirectly stimulated 

by the utility. These activities include those commonly called load management, strategic 

conservation, electrification, strategic growth or deliberately increased market share”[72]. 

 

Demand-side management (DSM) includes those technologies, activities and strategies that 

will be employed by the utility provider in the demand side of the energy network in order to 

achieve the following goals: 

 emission reduction, 

  load management, 

  improving energy efficiency and conservation, 

  balancing supply and demand, 

  increasing consumers participation in energy management and generation, and 

  reduction in operational costs for the entire network. 

 

The aim of DSM is to balance demand with available supply that it is in direct opposition to 

the traditional policy in which supply was matched with the existing demand [73].  

In addition, researchers have studied DSM in terms of different categories. For example, [74] 

places DSM into the four categories mentioned below according to the timing and the effect 

of the applied measures on the customer process as demonstrated by Fig 2.1, where energy 

efficiency is defined as those actions which bring permanent energy savings for consumers, 

such as adding insulation to a building shell to save energy. Moreover, the authors indicate 

that an energy information system is a prerequisite for analysing and improving energy 

efficiency in order to discover any potential and hidden wastage.  

 

a) Energy Efficiency (EE) 
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b) Time of Use (TOU) 

c) Demand Reponses (DR) 

d) Spinning Reserve (SR) 

 

 

Figure 2.1. Demand-side Management Categories [74] 

 

Moreover, the strategies, technologies and programs that are applied in order to achieve the 

aforementioned targets vary from country to country as demonstrated in [3-7]. 

 

The author of  [73] conducted a thorough literature survey on DSM policy, analysed UK DSM 

policy, and examined the influence of EU directives on UK DSM policy. The author 

investigated DSM in three broad sections comprising DSM categories, policies, and 

implementers as shown in Figure 2.2. In the proposed definition, the DSM policy objectives 

include: 

a) Carbon emissions reduction, 

b) Energy security, 

c) Demand response programs, 

d) Energy efficiency, and 

e) Energy storage. 
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Figure 2.2. Demand-side Management Elements [73] 

 

In addition, the major benefits and challenges of electricity demand-side management (DSM) 

in the context of the UK electricity system are discussed by Strbac [75]. The author identified 

a number of reasons for the difficulties and delays encountered in the UK during the 

implementation of DSM. These reasons are as follows:  

- lack of ICT infrastructure;  

- lack of understanding of the benefits of DSM solutions; 

-  DSM-based solutions are often not competitive when compared with traditional 

approaches; 

- DSM-based solutions tend to increase the complexity of the system operation when 

compared with traditional solutions; and 

- inappropriate market structure and lack of incentives. 

 In the following section, I review surveys conducted on demand response programs and their 

evolution in the context of the smart grid. 

 

2.2.2. Demand Response (DR) Programs 

As was discussed in the previous section, demand response is one of the DSM programs that 

will be described in detail in this section. However, before going into the DRP survey, I would 

like to present some preliminary information about DRPs. 

 

Demand response is one of the electricity market mechanisms by which the aggregators or 

utilities are able to manage power consumption. So demand response is a response to a demand 

made by utilities. Therefore, responsive demand is ascribed to the changes in a consumer’s 
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expected load pattern for improving efficiency in electricity demand and supply by receiving 

notifications provided by the consumer [76].  

 

The Federal Energy Regulatory Commission, FERC, defines DR as “changes in electric use 

by demand-side resources from their normal consumption patterns in response to changes in 

the price of electricity, or to incentive payments designed to induce lower electricity use at 

times of high wholesale market prices or when system reliability is jeopardized” [16]. 

 

It is widely agreed that the cost of energy is the most powerful incentive to encourage 

consumers to curtail their consumption. So in demand response programs, the aggregators or 

service providers use this policy to achieve their aims in regard to load management. The most 

important objective of these programs is to make the demand curve flat by offering a high-

priced energy unit during peak periods and lower prices during off-peak periods in order to 

stabilize the volatile energy demand so as to make it more predictable and controllable. 

 

 Many definitions of DR are presented in the literature. DR can be defined as actions 

voluntarily taken by a consumer to adjust the amount or timing of his/her energy consumption 

[21]. Demand response is a reduction in demand designed to reduce peak demand or avoid 

system emergencies. Hence, demand response can be a more cost-effective alternative than 

adding generation capabilities to meet the peak and or occasional demand spikes[77]. 

 

In Chapter 1, Figure 1.5, I  discussed Albadi and El-Saadany  [17]’s two classifications of DR 

programs: incentive-based and price-based.  

Price-based programs are based on a dynamic or variable pricing scheme in which electricity 

tariffs are not flat; the rates depend to the real-time price of the electricity market and it 

fluctuates accordingly. These rates take into account the Time of Use (TOU), Critical Peak 

Pricing (CPP), and Real Time Pricing (RTP).  

 

TOU is a simple type of DR which rates electricity price per unit of energy (kWh), and is 

substantially different during some periods. The rate in peak periods fundamentally is higher 

than the rate during off-peak periods. For example, the Ausgrid Company, the power provider 

for 1.6 million users in Sydney, has three different tariffs for three time periods as Peak from 

2:00p.m to 8:00 p.m., Shoulder as 7:00 a.m. to 2:00 p.m. and 8:00 p.m. to 10:00 p.m.  and off-

Peak period that is from 10:00 p.m. to 7:00 a.m. Consumers pay different amounts for 

electricity in each tariff. The company advises its users to save money by shifting their usage 

from peak periods to off-peak and shoulder periods when energy consumption is less 

expensive. 
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Figure 2.3. Ausgrid TOU Time Periods [4] 

 

Pipattanasomporn et al. [78] categorize DR programs according to two groups: incentive 

based and time-based programs. They present fourteen DR classifications eight of which are 

incentive-based and comprise 1- direct load control, 2- interruptible load, 3- load as capacity 

resource, 4- spinning reserve, 5- non-spinning reserve, 6- emergency demand response, 7 -

regulation service, and 8- demand bidding and buy back. 

 

 Incentive-based means reduction in demand by receiving load control signals that come from 

an incentive-based payments system or within a contractual agreement. Time-based DR 

programs are those that reduce demand by means of different types of time varying price 

signals. These types are classified as 1- critical peak pricing with direct load control, 2- time-

of-use pricing, 3- critical peak pricing, 4- real-time pricing, 5- peak-time rebate and 6- system 

peak response transmission tariff. 

 

FERC’s DRP survey in 2012 categorised time-based and incentive-based programs as listed 

in Table 2.1[16] : 

Table 2.1. Demand Response Programs 

Incentive-Based Programs Time-Based Programs 

1- Demand Bidding and Buyback  

2- Direct Load Control  

3- Emergency Demand Response  

4- Interruptible Load  

5- Load as Capacity Resource  

6- Non-Spinning Reserves  

7- Regulation Service  

8- Spinning Reserves  

1- Critical Peak Pricing with Control  

2- Critical Peak Pricing  

3- Peak Time Rebate  

4- Real-Time Pricing  

5- Time-of-Use Pricing  

6- System Peak Response Transmission  

Tariff  
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DRPs have been defined by FERC, North American Electric Reliability Corporation (NERC) 

and The U.S Green Building Council (USGBC) as follows: 

 Direct Load Control (DLC): This program is essentially proposed for the low 

consumers such as residential and small commercial users. In this program, the 

service provider has the authority to shut down remotely several appliances such as 

the air-conditioner, pool pump, and water heater at short notice. 

 Interruptible Load: This program is a contract between aggregator and consumers 

that has an established special tariff as a rate discount if consumers reduce and 

regulate load when the utility is facing a system contingency situation. When a 

system operator makes this demand, it is called “remote tripping”. 

 Critical Peak Pricing: This program is a kind of price structured tariff. During 

certain hours of the day, the energy unit price rate is high according to the energy 

wholesale market, or the aggregator foresees the system’s critical contingencies and 

accordingly during those times, the electricity rate would be encouraging strong 

encouragement for consumers to reduce their consumption.  

 Critical Peak Pricing (CPP) with Direct Load Control:  As its name suggests, this 

program is a combination of CPP and DLC. If a pre-specified high electricity rate 

during critical peak period does not lead to load curtailment, then the aggregator will 

switch the equipment off remotely. 

 Load as a Capacity Resource:  This demand response is a kind of demand-side 

resource and it is a pre-determined load reduction on the demand-side when the 

system encounters contingencies. 

 Spinning Reserves:  This is a synchronized demand side resource prepared to 

balance a demand and supply quickly when system encounters with contingency 

situation. 

 Non-Spinning Reserves: This has been considered as an ancillary service [76]. It is 

a demand-side resource that will not immediately fulfil the demand; but it may 

supply energy at ten-minute intervals for balancing. 

 Emergency Demand Response: This is a DRP whereby the aggregator will offer 

incentive payments to end-users to curtail the load when an emergency event 

demands response.  

 Regulation Service (up-regulation and down-regulation): This program was 

previously considered as an ancillary service. It is a type of Demand Response 

service whereby, in response to a real-time signal, an Automatic Generation Control 

(AGC) provider will continuously increase or decrease end-users’ load during a 

commitment period.  
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 Demand Bidding and Buy Back: In both the retail and wholesale markets, this DRP 

will offer a price for a specific amount of load reduction. 

 Peak Time Rebate: In a calendar year, there are some days and hours when 

customers can earn a rebate by consuming less energy than a baseline because of 

system reliability concerns or high supply prices.  

 System Peak Response Transmission Tariff:  This program is a means of reducing 

transmission charges and it includes all terms, conditions, and rates and/or prices for 

customers with interval meters who decrease load during peaks periods[16]. 

 Real-Time Pricing (RTP): In this DRP, changes in the wholesale energy market will 

be reflected and the energy unit price fluctuates hourly or a day ahead. RTP is one 

of the most efficient DRPs [76]. 

 Time-of-Use Pricing: This means that there are different electricity prices for 

different periods of time. This DRP reflects the average cost of power generation 

and delivery for each time interval. 

 

According to the NIST report [7], one of the eight priority areas whose functionality is critical 

to deployments of SG technologies and services is “Demand response and consumer energy 

efficiency”. In this regard, this report states that “Mechanisms and incentives for utilities, 

business, industrial, and residential customers to cut energy use during times of peak demand 

or when power reliability is at risk. Demand response is necessary for optimizing the balance 

of power supply and demand. With increased access to detailed energy consumption 

information, consumers can also save energy with efficiency behaviour and investments that 

achieve measurable results. In addition, they can learn where they may benefit with additional 

energy efficiency investments.” 

  

According to the authors of [38], there are technologies to further advance demand response. 

These technologies include: 

-  Interval meters with mutual communications capability which allow customer utility 

bills to reflect their actual usage pattern and provide consumers with continuous access to their 

energy consumption data. 

- Multiple, user-friendly, communication networks to make consumers aware of real-time 

pricing conditions, potential power shortages, as well as emergency load curtailment 

circumstances. 

- An energy information mechanism that enables real- or semi-real-time access to interval 

load data, analyses load curtailment performance relative to baseline usage, and provides 

diagnostics to facility operators of potential loads to target for curtailment. 



32 

 

 

 

- Demand reduction strategies that are optimized to meet differing high price or electric 

system emergency scenarios. 

- Load control automation and building of energy management systems in order to 

optimize demand response at the end-use level. 

-  On-site generation equipment used either for emergency backup or to meet the primary 

power needs of a facility. 

 

The benefit and cost of DRP have been investigated by [17, 76]. Aghaei and Alizadeh [76] 

assessed the DR advantages according to seven categories:  economic benefits, pricing, risk 

management and reliability, market efficiency impacts, lower cost electric system and service, 

customer services, and environmental. The authors state that economic benefits are one of the 

most important benefits of DR. Customers can receive a rebate on their electricity bill if they 

reduce the consumption rate or shift their demand from peak to off-peak periods. 

  

Similarly, Albadi and El-Saadany [17] identified the same demand response benefits for 

participants. However, the authors believe that the DRP produces benefits for five categories 

of participants, market-wide, reliability and market performance. In both researches conducted 

by [7, 11], the exponential effect of demand reduction on energy generation cost and the 

market has been highlighted. This phenomenon leads to a reduction in energy price volatility. 

 

 

Figure 2.4. Price Volatility Reduction by DRPs [76] 
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Figure 2.4 shows that when the demand during the peak period from A1 to B1 shifts to the 

off-peak period from A2 to B2, then the energy generation cost during peak period A1 to C1 

decreases to A2 to C2. This phenomenon has been reported during the California Power 

energy supply crisis during 2000-2001 [79] when five percent demand reduction led to a fifty 

percent reduction in the cost of electricity energy generation. Hence, the price volatility 

reduction of demand response demonstrates the significance of the role of participants and 

their demands in the electricity energy market. 

 

2.3. The Role of Smart Meters in DR 

At the micro level of the smart grid, in terms of a smart home, there are various sophisticated 

and ubiquitous electronic devices with the ability to communicate with each other and with a 

smart meter.  

 

Smart meters are microprocessor-based devices providing two-way communication 

capability, and will help home owners to manage their electricity usage. Through a website, 

for example, or a customer portal, parameters could be set that control when loads in the home 

turn on and off, based on the price of electricity. The dishwasher, for instance, could be loaded 

and set to stand-by until the price of energy is below a certain level – typically off peak – when 

it would start automatically. The aim of a smart meter is to act as a central point connecting 

all such internal devices with the outside world. The smart meters integrate data collected from 

the meters into billing, customer service, field services and energy-demand management. This 

gives a real-time view of a greater volume of data at a more granular level, leading to faster 

analysis and better decision-making regarding capacity demand, and the carrying out of other 

business processes.  

 

The recent researches on smart meters can be classified according to the three groups below: 

1. Smart meter, communication network and security [80-83] 

2. Smart meter and privacy [84-89]  

3. Smart meter and Load scheduling and control [62, 83, 90-102] 

According to [103], there are technologies to further advance demand response. These 

technologies include: 

 Interval meters with mutual communications capability which makes it 

possible for customer utility bills to reflect their actual usage pattern and 

provide consumers with continuous access to their energy consumption data. 
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 Multiple, user-friendly, communication networks to make consumers aware of 

real-time pricing conditions, potential power shortages, as well as emergency 

load curtailment circumstances. 

 Energy information mechanism that enables real or semi-real time access to 

interval load data, analyse load curtailment performance relative to baseline 

usage, and provide diagnostics to facility operators on potential loads to target 

for curtailment. 

 Demand reduction strategies that are optimized to meet differing high price or 

electric system emergency scenarios. 

 Load control automation and building energy management systems in order to 

demand response optimization and at the end-use level. 

 On-site generation equipment used either for emergency backup or to meet 

primary power needs of a facility. 

   

2.4. Building Energy Management System 

2.4.1. Energy Consumption Scheduling and Optimization Methods 

In the existing literature, energy optimization and load scheduling for consumers in demand-

side management can be classified as: first, those researches which focus on the end-user 

sector and aim to optimize energy consumption for a single house or building; and second, 

those researches which are concerned with demand response and concentrate on the micro 

grid where a trade-off occurs between the utility provider (independent service provider) and 

a group of users.  

 

Smart grid has many characteristics that have been comprehensively discussed in the 

introductory Chapter. However, there are three particular and unique specifications in this 

computerized grid which require complex algorithms and robust techniques in order to 

optimize energy consumption efficiently. These specifications are discussed in the following: 

 

1. Demand response programs which are more dependent on the decision-making of the 

householder make the consumption behaviour factors more significant in optimization 

constraints and functions. These optimization and scheduling approaches include 

variables which are mainly about end-users’ preferences for operating the electrical 

devices and comfort terms for the householder’s activities and lifestyle. The 

researches that can be considered in this category are [20, 22, 27, 35, 50, 104-121]. 
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2. As mentioned in the introduction and the previous section, modern ICTs have made 

the electrical grid more flexible, responsive, smart and intelligent. On the other hand, 

the development in “internet of things” and ubiquitous smart devices such as the 

mobile handset has facilitated the flow of information in communication systems with 

end-users. As a result, the real-time measuring, monitoring, and computing of the 

effective parameters on energy consumption required new robust techniques and 

algorithms which are respectively online and stochastic. Some of these approaches 

can be pointed as [49, 50, 122-130]. 

 

3. Changing the end-users’ role in the electrical grid from consumer to prosumer and 

developing the distributed energy generation have caused more parameters to be 

added to the optimization models where the end-users are able to trade off with the 

utility provider in energy market. So, optimization techniques are required in order to 

take into account the parameters such as game theory that affect a group of consumers. 

The researches in this category include [51, 85, 131-142]. 

 

In my literature survey, the technical papers are concerned with the issues and problems which 

have emerged as a result of the aforementioned characteristics being added to the grid. Some 

of these issues related to the building energy management systems before the invention of the 

smart grid. For example, the householder’s activities have a direct effect on energy demand 

(without considering the demand response context) and therefore, many researchers have 

focused on this means of predicting the building energy demand, recognising that by imposing 

the demand response programs, these activities will be compromised. Hence, the researchers 

are examining the ways in which DRP affects users’ activities, energy demand and the 

balancing of demand and supply [38]. As a result, the variety of optimization problems for 

smart homes and demand response in the context of energy management can be classified 

under four main categories with total twelve subcategories as follows.  

A. Problems on the householders’ side:  

1. Compromising the comfort [27, 120]  

2. Consumers’ consumption behaviour, activity recognition, 

occupancy, and users’ preferences [38, 121, 143] 

B. Problems in scheduling:  

3. Establishing energy demand prediction [14, 144-146] 

4.  Shifting load from on-peak to off-peak  periods 

5. Load identification and prediction [57, 62, 91, 95, 99, 147-149] 
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6. Diversity of electrical devices employed by users for different 

purposes with different functions. Each research has focused on 

a specific domain of appliances.  

C. Problems of distributed energy generation: 

7.  Availability of renewable energy sources (wind and solar) [137, 

150] 

8. Deregulated energy market (trade-off with ISP) [151] 

9. Distribution network congestion during peak hours by energy 

storage systems (e.g. vehicles to the grid) [104, 137, 152] 

D. Problems in DRP: 

10.  Predicting energy price in a dynamic pricing scheme [153] 

11. Autonomous DRP and customers’ participation [85, 142] 

12. The variety of DRPs: the proposed solutions cannot provide a 

universal remedy and be applicable to all DRPs. 

  In the literature, because it is not feasible to conduct a study that addresses all of the 

aforementioned issues, scholars have generally attempted to address one or a combination of 

some of the above problems. However, it is inevitable to assume that the data from the other 

domain is available. For instance, in a research conducted by [125], a multi-stage stochastic 

optimization is employed for considering the power procurement by a HEM in a community 

of users for a dynamic pricing demand response program. The optimization objective of this 

paper is to minimize the electricity cost based on operator expectation and the customer’s 

degree of comfort which determines a maximum delay for each appliance in different states 

of a stochastic model. The purpose of the research is to coordinate HEM units in order to 

balance the demand and supply. The appliances include washing machine, dishwasher, tumble 

dryer and PHEV, all assumed to have a single operation mode and a single power profile. 

Because of the diversity of optimization approaches, in this section I focus on optimization 

and scheduling approaches for building energy management and demand response programs. 

In the following, I explore in detail the most significant and related approaches and explain 

the problem definitions, objective functions, constraints and the optimization methods of this 

group of researches. I present our literature survey on load identification and prediction in 

subsequent sections. A summary of my survey on optimization approaches is presented in 

Table 2.2. 

In the literature, several papers focus on the scheduling of appliances and devices such as 

HVAC and PHEV while taking into consideration the service constraints. This kind of 

research, such as [130, 137, 153-157], generally focuses on load management. There are many 

and various parameter-related appliance operation conditions which have been considered in 
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scheduling approaches. The time horizon planning approach is mainly discrete and divided 

into a specific number of timeslots. The optimization techniques allocate the number of 

timeslots to the operations and specify in which one of these timeslots an operation shall start 

and finish. For some appliances, such as a washing machine, different tasks must be 

undertaken in order to complete a job. So the other parameters are the number of shiftable 

timeslots or the sequential order of these tasks. For this reason, load commitment which is the 

operating status of the appliances in an allocated timeslot, has been considered as a significant 

parameter in scheduling approaches such as those of [50, 156, 157]. 

[158] is an extended research of [157] where a home outage (home load interruption) has 

occurred in TOU DRP and the payment and interruption costs must be minimized. The value 

of lost energy (load) for each appliance is an index for measuring the cost of interruption and 

the authors claim that in order to maximize customer comfort, these costs must be minimized. 

The authors in [130] employed Earliest Deadline First, a real-time scheduling algorithm from 

the computer science domain, uniprocessors, to propose a method to coordinate the 

activation/deactivation of the load set to control the peak load of power usage. The proposed 

model is as follows:  

 

 

Figure 2.5.  HEM based on real-time control techniques [130] 

Loads in [130] are divided into two groups: time-triggered and event-triggered. The appliances 

in time-triggered loads are classified as either cooling or heating appliances. The authors 

defined the state variables for modelling the power profile of such appliances. For example, 
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temperature is the state variable of a refrigerator and HVAC. They modelled the convection 

heat transfer of refrigerator and HVAC units according to thermodynamics laws for achieving 

the temperature and power profile. They used the same techniques for a dishwasher and 

washing machine. The user characterization in this research is demonstrated by designing a 

table with the value of usage probability of an event-triggered load in timeslots equal to two 

hours on the time planning horizon. This paper has not considered the impact of load and 

associated energy cost in the scheduling or presenting a method to calculate the usage 

probability. The management of energy in smart homes according to energy prices is a 

research conducted by [120]. This research analysed a BEMS in the context of a dynamic 

pricing demand response program. For this purpose, a reference virtual dwelling model was 

developed in the Matlab Simulink, “SIMulator for building and devices” (SIMBAD) for 

modelling local control system. The Global Model Based Anticipative Building Energy 

Management System (GMBA-BEMS) has been analysed for configuration of thermal comfort 

and cost criteria by comparing four different models. The paper presents a case study and its 

objective is to analyse the strategy of the BEMS and compare it with the choice of the occupant 

and examine whether they benefit from dynamic pricing DRP. The paper studied two cases. 

The first is when consumers accept a decrease in their comfort level in order to decrease the 

energy cost and energy cost is as an optimization constraint.  In the second case, only the 

comfort criterion is considered as a constraint. The best solutions based on the consumer 

preferences should be selected by BEMS. This research does not present mathematically an 

optimization algorithm or new approach; it only analyses an existing BEMS in a DRP. 

 

 

Figure 2.6. BEMS Information System Model Presented by [120] 
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 Similarly, a strategy-based approach for managing the flow of energy by a BEMS in a day-

ahead DRP is proposed by [159]. The paper proposed the BEMS framework shown below, 

and built a photovoltaic and wind prediction with a load and price-forecasting mechanism.  

 

 

Figure 2.7. The Proposed Framework of BEMS by [159] 

In the above model, 𝑋 and 𝑌  are the amount of energy from and to the grid. 𝐶, 𝑆, 𝐿 and R are 

grid energy pricing, sales pricing to the grid, total load, and the amount of energy from 

renewables. 𝐵𝑠and 𝐵𝑢 are the amount of energy to and from energy storage system and 𝐿𝑐𝑡𝑟𝑙  

is controllable load. This paper does not present a scheduling method for appliances, but 

focused mainly on energy flow control. 

Similarly, in [107] it is focused on developing a control strategy in RTP DRP for the HVACs 

in order to achieve peak load reduction. A proposed dynamic demand response controller 

(DDRC) changes the consumer-adjusted set-point temperature according to the electricity 

retail price at 15-minute time intervals in order to control the HVAC loads and shift the loads 

from on to off peaks.  

HVAC controller calculates the associated energy consumption for adjusting the set-point 

indoor temperature. For this, outdoor temperature, ground temperature, indoor activities, 

internal load (number of occupants, lighting and electrical equipment energy), and building 

size are considered in EnergyPlus and OpenStudio tools simulation. Figure 2.8 shows a 

dynamic demand response controller implemented in MATLAB/ SIMULINK and connected 

to EnergyPlus by a building controls virtual test bed (BCVTB).  
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Figure 2.8. Framework of Dynamic Demand Response Controller [107] 

Energy box (eBox) is a scheduler device proposed by [55] and its architecture is shown in the 

figure below. The paper used a novel decision model based on Mixed Integer Linear 

Programming and a heuristic allocation algorithm for energy household management in terms 

of cost, minimization, maximization of scheduling preferences and maximization of climatic 

comfort. The research divided loads into two groups of manageable and non-manageable 

loads, the former being divided into shiftable, interruptible and thermal loads.  

 

Figure 2.9. eBox Architecture Proposed by [55] 

One of the uncertainties in demand-side management is the unavailability of householders or 

their lack of knowledge to appropriately respond to grid signals. Autonomous appliance 

scheduling by a smart scheduler for a prosumer is a solution addressed by [160] for this issue.  

The smart scheduler is an intelligent monitoring device for aggregating demand with a pre-

defined limit of the household’s energy consumption. In DRP, the scheduler is able to predict 

appliances’ corresponding probability for each hour based on calculating and monitoring the 
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information such as the day of the week, weather conditions, degree of penetration of the 

appliances and the level of occupancy of the house. The probability of time of use of each 

appliance in each time cluster is calculated and scheduling is based on clusters where this 

value is high. The optimization function minimizes the energy cost and maximizes the energy 

exchange between user and grid under feed in a tariff plan. So, appliances are grouped based 

on their preferred time of use and ranked in that cluster.  

In comparison, the uncertainty in scheduling has been considered in a research conducted by 

[49]. The paper assumes a consumer with a solar panel and battery storage system and aims 

to minimize the costs incurred by the customer by optimally scheduling the operation and 

energy consumption of each appliance while taking into consideration the uncertainties related 

to real-time pricing DRP. In this paper, distributed renewable generations, energy storage, and 

the customer-defined target trip rate are considered. A stochastic scheduling algorithm has 

incorporated an energy adaptation variable in order to handle uncertainty. The paper compares 

the result of scheduling in two modes: offline and online. Firstly, linear programming is used 

to minimize the costs of grid electricity, solar operation and maintenance, the battery, and the 

one-time installation of the solar panel. Secondly, an offline stochastic methodology recalled 

from [161] is used for measuring the desired adaption variable for the trip rate. By trip rate, 

the author aimed to control customer comfort when the home power network trips out by 

exceeding the given load limit of the household. Finally, the optimality in offline scheduling 

is tackled by considering the uncertainty of the energy consumed by the appliances and the 

energy generated by solar panels. This has been done by adding an offset to the variation of 

these two parameters in the model. To simulate this uncertainty, the Monte Carlo technique is 

used to generate the appliance operation samples and evaluate the trip rate of samples by Latin 

hypercube sampling (LHS) [162] , a developed Monte Carlo method. The energy consumption 

scheduling algorithm in [49] is depicted in Figure2.10.  

Our survey of the literature pertaining to energy consumption optimization and appliances 

scheduling in the residential sector of the smart grid indicates that the goal of these researches 

is mainly to minimize the energy cost incurred by residents in order to balance the demand 

with supply based on available resources. However, several researches such as [114, 118, 137, 

163] focus on the users’ comfort, preference, satisfaction, and convenience by employing the 

utility function in optimization modelling. 
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Figure 2.10. Energy Consumption Scheduling Algorithm in [49] 

In particular, [164]  is a research in which the users’ preferences have been modelled in an 

optimization function in a smart home. The paper proposes a convex programming 

optimization framework for the automatic load management in demand response.  The 

objective function is intended to minimize the total cost of energy consumed by appliances, 

and the users’ dissatisfaction.  The appliances have been categorized as schedulable and 

interruptible, schedulable and uninterruptible, battery-assisted, and model-based appliances. 

The latest ones are those appliances which have direct load control. Each class of appliances, 

particularly in terms of battery storage, renewable (solar, wind) resources, and air-conditioner 

has been mathematically modelled by using the auxiliary binary decision variables. In order 

to avoid the computational complexity and difficulty of the N-P problem in mixed integer 

nonlinear programming, the paper used the L1 regularization technique. By means of this 

method, the convexity of the optimization function has been maintained. In this paper, the 

authors do not present a method whereby users’ preferences are taken into account regarding 

the operation of appliances and the preferred time of operation. For example, for scheduling 

the appliances with schedulable and uninterruptible load, the preferred time period is indicated 

by a binary decision variable by which if the value is equal to 1 then the schedule is selected; 

otherwise, the appliance is off. The DRP optimization model in a smart home proposed by 

[164] has been shown in Figure2.1. 
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Figure 2.11. DRP Optimization Model in a Smart Home [164] 

As mentioned previously, several researches such as [114, 118, 163] [114], have considered 

the effect of users’ preferences as a utility function in their optimization models and have 

formulated the optimization models based on minimum energy which is provided in response 

to a demand by an energy provider in a power system. Afterwards, each resident is considered 

as a subscriber which can behave independently based on energy price, climate change and 

time horizon. So, the different responses by different subscribers are considered as their utility 

function. Hence, the authors aim to maximize the utility function and minimize the quadratic 

cost functions in their proposed optimization models. However, that paper does not focus on 

scheduling of a single home in smart grid and it focuses mainly on utility provider. Similarly, 

[163] is a research which focuses on utility maximization by means of a storage system and 

have PHEV. The objective function in this model is utility maximization (or social well-being 

maximization) and cost minimization. The paper considered appliances under four types, each 

of which has a specific utility function: 

1) Appliances such as air conditioners and refrigerators which control the temperature of a 

customer’s environment.  

2)  Deadline-based appliances such as PHEV, dishwasher, washing machine that require 

scheduling a task so that it is done before a certain time.  

3) Appliances such as lighting that must be on for a specific period of time.  

4) Entertainment appliances such as TVs and computers. 

Despite researches [163] and [114] which have focused on the utility function of a group of 

customers, the research in [118] focused on consumers in terms of an hourly electricity price 

of DRP. In this paper, the energy supplier provides the energy according to an RTP scheme 

and the consumer provides his/her demand one hour in advance. This can occur via a mutual 
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communication system between them.   The objective function is to minimize the energy cost 

and maximize the consumer’s utility. The utility of customers has been defined in terms of the 

minimum level of energy required at certain times each day. The authors used a robust 

optimization for improving the price uncertainty in RTP.  

Distributed energy generation and the effect of the end-users’ decision in an energy 

management system is investigated by [137]. A decision support tool has been proposed in 

order to maximize the net benefits to consumers. The net benefit refers to the benefit derived 

from the total energy services minus the cost of energy consumption. An optimization problem 

is modelled for finding the DER operation schedules by employing canonical particle swarm 

optimization (divide-and-conquer approach) to determine the value added to the consumer’s 

net benefit by the coordination among the DER . This has enabled consumers to identify two 

types of scenarios in which DER should work together or can be independently scheduled. 

The paper determined the value of coordination in terms of the tariffs such as a combination 

of TOU and CPP and 16 scenarios. The proposed approach is a heuristic approach that 

provides a near-optimal solution. 

 

As discussed, the distributed renewable resources are a significant contribution to smart grid 

energy management. Research such as that of [59] and [165] proposes that appliance priority 

scheduling be based on the prediction of these resources. [165] proposes the intelligent cloud 

home energy management system comprised of an intelligent cloud management server, 

intelligent power monitoring device (iPMD) and intelligent environmental device. The paper 

classified the appliances and prioritized them according to their classifications. The first 

category of appliances is closely related to the resident’s behaviour. Hence, by predicting the 

behaviour, it is expected that the related appliances can be predicted.  The second type of 

appliances, such as cooling systems, is related to the environmental factor; the third type is 

the appliances whose operation depends on the state of the embedded battery; for example, a 

laptop belongs to this category. Afterwards by prioritizing this classification, the appliances 

can be scheduled under the two categories of stand-alone and server-based architectures.  The 

latest group algorithm is shown in Figure2.12. 
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Figure 2.12. Server Based Type of Priority-based Scheduling Algorithm [165] 

The optimization method for a building energy management controller based on “model 

predictive control” is that proposed by [42]. In this paper, the customers’ thermal comfort and 

building thermodynamics model are integrated into the optimization model. For modelling the 

thermal flexibility of the customer, the authors employed the predictive mean vote index 

(PMV) which can be calculated using [39]’s approach. This factor is explained in more detail 

in Chapter 3. [42] categorized appliances according to three groups as shown in Figure2.14 

and the objective function is formulated for each type individually. The first group includes 

“delay flexible appliances” such as washing machines; the second group is “delay and power 

consumption flexible appliances” such as a PHEV battery and the third group are 

“thermostatically controlled appliances” such as air conditioners.  [42] categorized appliances 

according to three groups as shown in Figure2.14 and the objective function is formulated for 

each type individually. The first group includes “delay flexible appliances” such as washing 

machines; the second group is “delay and power consumption flexible appliances” such as a 

PHEV battery and the third group are “thermostatically controlled appliances” such as air 

conditioners.   
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Figure 2.13. PMV Index During Time Planning Horizon Proposed by [39] 

  

 

Figure 2.14. Residential Building Energy Management System [42] 

 

2.4.2. Load classification in Scheduling and Optimization 

In scheduling, each research has its own load classification but generally they have been 

categorised as schedulable or non-schedulable. For example, [160] divide loads into two 

groups of “preemptive and non-preemptive” or [157] called the groups ”responsive or non-

responsive” or [50, 55, 164] divide loads into “interruptible and non-interruptible”. The 

purpose of this classification is to distinguish loads which are schedulable with non-

schedulable ones. Therefore, they classified the appliances according to this classification. 

However, in some researches such as [164] and [163], the appliance classification is not 

merely based on load but goes beyond load classification in the scheduling model. 
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Table 2.2. A Summary of Optimization and Scheduling Approaches in Residential 

Customers 

Ref. Optimization 

Objective 

Optimization 

Method 

Appliances DRP 

[55] - Cost minimization 

- Maximization of 

scheduling 

preferences 

- Maximization of 

climatic comfort 

- Mixed Integer 

Linear 

Programming 

- heuristic 

allocation 

algorithm 

Randomly-generated 

loads 

TOU 

[39] Energy cost 

minimization  

Linear 

Programming  

PHEV,  consumer 

thermal comfort, 

thermal dynamics of 

building room, dish 

washer, cloth dryer and 

washing machine 

Real-time 

pricing 

[49] - minimize the 

monetary 

expense of the 

customer 

 

-  Linear 

Programming 

- Offline and 

Online 

stochastic 

scheduling 

Solar rooftop, battery 

storage system 

day-ahead 

pricing 

[50] Minimizing the 

electricity bill in 

different time slots. 

- Scenario-based 

Stochastic 

optimization 

- Mixed integer 

linear 

programming 

PHEV, water heater, air 

conditioner, 

dishwasher, oven , cloth 

dryer 

real-time 

pricing 

[114] Utility maximization 

and cost minimization 

Linear 

programming 

N/A Real-time 

pricing 

[118] Minimizing energy 

cost and maximizing 

the consumer utility 

Linear 

Programming 

N/A Real-time 

pricing 

[120] N/A N/A  washing machine, 

dishwasher, heater 

time 

varying 

price 

[130] Peak load shaving - Combinatorial 

Optimization 

(First fit 

decreasing 

height) 

- Earliest deadline 

first 

scheduling 

algorithm 

washing machine, 

dishwasher, electric 

oven, 

refrigerator  

N/A 
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Table 2.2.Continue. A Summary of Optimization and Scheduling Approaches in 

Residential Customers 

Ref. Optimization Objective Optimization Method Appliances DRP 

[137] Determine the 

distributed energy 

resources operation 

schedules (maximize the 

end-users’ net benefits) 

Particle Swarm 

Optimization 

PHEV, space 

heater, storage 

water heater, pool 

pump, solar 

rooftop 

TOU and CPP 

[156] Minimizing the energy 

cost 

Linear sequential 

Optimization 

water heater 

 

real-time 

pricing 

(day-ahead) 

[157] Minimizing the payment 

and inconvenience 

functions 

Linear programming PHEV, storage 

system, washing 

machine, cloth 

dryer, 

dishwasher, other 

appliances  

time- varying 

price 

[158] Minimizing the payment 

and interruption cost at 

the time of outage 

occurrence 

Mixed integer 

programming 

PHEV, washing 

machine, dryer, 

dishwasher, other 

appliances 

time of use 

[159] Minimizing energy to the 

grid and maximizing the 

energy to grid 

Linear programming N/A day-ahead 

pricing   

[160] - Cost minimization 

- Maximizing the 

financial gain for 

selling energy to 

grid  

Linear programming Other appliances dynamic 

pricing 

scheme 

[163] Utility maximization (or 

welfare maximization) 

and cost minimization 

Linear programming A/C , PHEV, 

washing machine, 

lighting, 

entertainment 

appliance, battery 

storage 

real-time 

pricing 

[164] Minimizing the total cost 

of energy and the users’ 

dissatisfaction 

Convex programming 

with 𝐿1 regularization 

- Solar rooftop 

- Small wind 

turbine  

- Air 

conditioner 

- other 

appliances 

 

real-time 

pricing 
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2.4.3. Prediction in Building Energy Management 

The prediction or forecasting of the energy consumption in a (residential) building has been 

considered as a significant function in the domain of energy management of buildings for the 

reasons below:  

1- In energy resource allocation, it is essential to forecast the future amount of demand 

in order to supply energy because insufficient or superfluous energy both impose a 

cost on the utility provider. 

2- In the smart grid and energy market, the demanded energy must be supplied by 

generation from main resources or distributed resources [153]. Consequently, the 

prediction of energy demand is essential for improving the energy performance 

throughout network and achieving an appropriate compromise between energy 

supplier and customers. 

 

Figure 2.15. Wholesale Electricity Market [153] 

3- Precise scheduling and the efficient reduction of the cost of energy in a smart grid 

smart home are highly dependent on the prediction of appliance energy [166]. 

4- Taking into consideration the destructive environmental effects of energy 

consumption such as global warming, CO2 emissions, and mitigating these effects, the 

energy consumption prediction can help to achieve efficiency and sustainability in 

energy management.   

A review of methodologies used to predict building energy consumption has been conducted 

by [14]. This study grouped the relevant methods under three categories:  engineering 

(elaborative and simplified), statistical and artificial intelligence which the latest one includes 

artificial neural networks (ANN), and support vector machine (SVM) methods. The 

advantages and disadvantages of ANN and a comparison between forecasting methods have 

been presented  by [167] and are shown in Table 2.3 below.  
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Table 2.3. Comparison between Forecasting Methods Proposed by [14, 167] 

Forecasting 

Methods 

Model 

complexity 

Easy 

to use 

Running 

speed 

Inputs 

needed Accuracy 

Elaborate 

engineering Fairly high No Low Detailed Fairly high 

Simplified 

engineering High Yes High Simple High 

Statistical Fair Yes 

Fairly 

high 

Historical 

data Fair 

ANNs High No High 

Historical 

data High 

SVMs Fairly high No Low 

Historical 

data Fairly high 

 

The prediction of building energy consumption in the reviewed researches by [14, 167] 

includes a broad field of applications, from prediction of environmental parameters to demand 

for lighting or cooling operations. However, a few papers dealt with appliance usage 

prediction. A learning algorithm for predicting appliance usage for the next 24 hours has been 

proposed by [61]. The study used the data about the amount of energy and the operating time 

of appliances. The paper firstly created a knowledge-based system by an Oracle data 

management system and using data from a project called IRISE collected by  Residential 

Monitoring to Decrease Energy Use and Carbon Emissions in Europe (REMODECE); and 

secondly, it proposes three methodologies for designing predictors called “classifiers” in order 

to extract the knowledge from this database; thirdly, these proposed techniques are intended 

to predict the appliance consumption usage; and fourthly, it examines the accuracy of 

prediction models by simulating three different types of appliances which have different 

functions. The techniques which are proposed for classifiers are decision tree, decision table, 

and Bayes net.  ConsH in Figure 2.16 means the consumption at time H.  

 

Figure 2.16. Prediction Architecture Presented by [61] 



51 

 

 

 

The prediction of the energy consumption of a single appliance is more difficult than the 

prediction of total energy consumption [61], [166] proposes a methodology for forecasting the 

energy usage of different appliances in the smart homes in smart grid. This study used a 

predictor to ascertain the probability of the appliances being operated on an hourly basis. The 

paper utilises the clustering technique to tackle the precision of the proposed method. In the 

context of prediction of energy uses, there are many researches which have focused on load 

forecasting in terms of short, medium and long term. For example, [168-172] employed a 

support vector machine (SVM) to predict short-term load of industrial and residential 

consumers in an electrical energy network. It is worth mentioning that the prediction load is 

different from load identification. The identification is essential for consumption monitoring 

during energy scheduling. In the next section, I present my survey of literature on this subject. 

 

2.4.4. Load Identification 

Load identification is a major function in an energy management system in the SG; hence, the 

relevant literature comprises studies which aim to identify the appliances individually. It is 

worth remembering that I cannot control a parameter without measuring it; so the load 

identification when scheduling and managing building energy is essential in energy 

monitoring and control systems; thanks to the smart meter, an appropriate communication 

infrastructure is provided for developing the data-driven methodologies in this field. A 

research which used the data provided by the meter for monitoring the residential loads by 

using load signatures is [173]. These data comprise  

− The effective current value (𝐼 = √1/𝑇 ∫ 𝑖2 𝑑𝑡)  

− The effective voltage value (𝑉 = √1/𝑇 ∫ 𝑣2 𝑑𝑡) 

−  Active power (𝑝 = √1/𝑇 ∫ 𝑣𝑖 𝑑𝑡) 

 The electrical appliance energy signature can be recognizable by different parameters such as 

the following: 

1. the duration and shape of the current transient, 

2. the appliance’s current harmonics, and 

3. the appliance’s power. 

In a more comprehensive study presented by [174], an appliance signature has been defined 

as “a measurable parameter of the total load that gives information about the nature or 

operating state of an individual appliance in the load”.   

The study proposes the signature taxonomy as shown in Figure 2.17. 
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Figure 2.17. Signature Taxonomy Proposed by [174] 

 

This study categorized the household appliances based on the load signatures in six groups 

such as resistive, pump-operated, fluorescent lighting, motor-driven, electronically-fed, and 

electronic power control appliances. In literature, load monitoring (LM) methods can be 

implemented through the direct monitoring of appliances by means of wires or signal 

processing [38] that it is more dependent on the hardware mechanisms because the 

identification mechanism like sensors must be connected to the power flow of appliances that 

cause an intrusion into the consumers’ devices [174]. Conversely, the other method utilizes 

non-intrusive load monitoring (NILM) which is more dependent on software mechanisms 

whereby appliances are able to be identified from the total consumption load profile and less 

consideration is given to individual appliance behaviour. This method is called “load 

disaggregation or separation” [175, 176]. In the literature, several studies such as [177, 178] 

have reviewed to some extent the state-of-the art load identification approaches. 

 

2.5. The Effect of Consumer Behaviours and Preferences on Energy Demand  

       2.5.1 Energy Consumption Behaviour and Activities Related to Energy 

                 Demand 

 

The role and effect of consumer behaviour in demand response programs have been 

investigated by many researchers. Due to the unstable, unpredictable, and unexpected 

behaviour of  customers, [179] constructed a reliability model of DR that takes into 
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consideration the customers’ behaviour based on the aggregated demand resources from the 

historical Demand response data. In this research, the two and a multi-state model of demand 

resources have been considered. Moreover, the customer behaviour effect is where the 

customer in the energy market responds to the programs. Furthermore, authors aim to 

mathematically formulate the transition rate of the states in demand reduction such as success, 

failure, and derated. The authors present the integrated power energy market structure shown 

in Figure 2.18. In this model, generation companies (Gencos) with several generators and 

customer service providers (CSP) constitute the energy market, while each has its own 

available and unavailable capacities. Generally, the aggregation of individual generation units 

in Genco is represented by an equivalent multi-state generation provider (EMGP) and for 

demand resources is called ‘equivalent multi-state demand response provider’ (EMDRP); the 

available capacity probability table (ACPT) is provided to demonstrate the availability of 

resources. So the research into the uncertainty of customer behaviour indicates the uncertainty 

of responses by customers during demand response events. 

[180] examines the effects of occupant characteristics on residential electricity consumption 

patterns by analysing data from a smart metering survey of approximately 4200 domestic Irish 

dwellings. Four parameters have been analysed by a multiple linear regression model: total 

electricity consumption, maximum demand, load factor and TOU of maximum electricity 

demand for a number of different dwellings and socioeconomic occupant variables. These 

variables include: dwelling type, number of bedrooms, head of household (HoH) age, 

household composition, social class, water heating and cooking type, all had a significant 

influence on the total consumption of domestic electricity. By this methodology the research 

concludes a relationship exists between these variables and the amount of energy 

consumption. For example, consumers of the greatest amount of energy are those families 

whose HoH ages range from 36to 55, since tumble dryers and dishwashers consume the most 

energy.  
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Figure 2.18. The Integrated Power Energy Market Structure Proposed by [179] 

 

   The authors of [38] conducted a significant survey which investigated the approaches and 

methodologies in the field of occupant behaviour’s impacts on HVAC, energy consumption 

of lighting, and appliances. This literature survey has summarized the researches in which 

occupants’ activities are studied by measuring occupancy, occupants’ preferences and number 

of detailed activities as shown in Table 2.4. As It can be seen from this table and as 

demonstrated in research conducted by [181], occupancy is one of the significant independent 

parameters which affects energy demand in a dwelling.  In some research such as that of [182], 

the occupancy is modelled in three states: unoccupied, occupied but the residents are awake, 

or all are asleep. 

 

Table 2.4  Effect of Activities for Energy Demand for Lighting, HVAC and Plug Loads 

Presented by [38] 

Application Occupancy Occupants ‘preferences No. of more detailed 

activities 

Real-time Pattern 

prediction 

Single 

user 

Multi Users 

Lighting [183, 

184] 

[185, 186] [183, 186] [187]  

HVAC [188, 

189] 

[183, 185, 

186] 

[189, 190] [187]  

Plug Loads [191] [185] [181] [192] [193] 
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2.5.2. The Consumers’ Consumption Behaviour Effect in Optimization Models 

 

     The consumers’ consumption behaviour effect in optimization has been modelled in the 

comfort term or preferences. Some researchers such as [114, 152] have employed the utility 

theory when examining the consumers’ willingness to participate in DRP ; meanwhile, other 

researches such as [125] considered preferences in terms of comfort where the customer’s 

degree of comfort is defined as the maximum delay time for shifting each appliance when 

scheduling in different states of a stochastic model. The same term has been defined by [55] 

where maximization of scheduling preferences is defined as specifying the preferred timeslot 

for shifting (load) an appliance; similarly in [194], the user time preference is considered as 

the preferred set-up time in scheduling. In [42], the human comfort level is defined as the 

thermal flexibility of the consumers and it is demonstrated by a PMV index which is 

considered as a constraint in the optimization model. In some research, the willingness of 

consumers has been considered as an important factor and it has been projected in scheduling 

models such as those in [142, 195]. In [50] the preferences of consumers have been indicated 

where consumers specify the predefined temperatures for air conditioner and temperature and 

hot water volume limitations in optimization. The comfort factor is an operational constraint 

in [156] where it has been defined as the preferable temperature range for adjusting the water 

heater. The household consumer preferences in [157] are interpreted as inconveniences 

imposed on users during participation in direct load control DRP and it is equal to the amount 

of shed load for the number of appliances to be switched off during the program. As can be 

seen from the literature review, every approach has defined comfort based on its proposed 

problem definition. So, terms ‘comfort’ and ‘preferences’ are different in each research. In 

[130] it is stated that “it is necessary to characterize the users’ behaviour” and for this reason, 

the value of usage probability of appliances in different timeslots for the purpose of load 

scheduling is presented by the authors.  

     In [160], the effect of customer preferences has been considered as the average hourly 

probability of using an electrical appliance during a timeslot, and users are able to group 

appliances according to their preferred time of use in the proposed scheduling model. In [49], 

the customers’ level of comfort is correlated with an index as a “trip rate” as it is the number 

of times that, at certain time intervals, the load demand of appliances exceeds the maximum 

power level. The trip rate is determined by consumers and it is a constraint in the optimization 

model.  
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2.6. Comfort Management 

    Comfort management, and the part it plays in energy consumption in buildings, has attracted 

many researchers during last decade [25-36]. As discussed in the introductory Chapter, 

comfort management in buildings can be classified according to thermal, visual (illuminance) 

and indoor air quality. Occupants’ comfort variables are inherent of building energy 

management.  

The human factors that affect energy consumption include comfort, habit and behavioural 

intention, socio-demographic and psychological variables, building characteristics and 

external impact factors [25]. The different understandings of comfort affect consumption 

behaviour and it is difficult to break habits in order to modify patterns of energy consumption.  

As stated in the Introduction and the literature review Chapter, several multi-agent approaches 

have been taken for comfort management based on the smart grid framework. For example, a 

hierarchical multi-agent intelligent control system proposed by [27, 29, 30, 36] considers 

several parameters for comfort management including illumination for light control, CO2 

concentration for indoor air quality, and temperature for thermal control. An optimizer that 

uses the particle swarm optimization technique is an agent which uses a graphical user 

interface (GUI) to set preferences. The approach proposed by [37] is intended to minimize 

energy cost via a multi-agent system that includes a fuzzy controller for comfort management 

in a home. Several heaters communicate with Zigbee technology, and a central control unit 

(CCU) measures maximum power in order to reach a set temperature point for each room 

according to the comfort level required. As a result, the information and communication 

technologies are inherent to comfort management. 

As has been shown in the literature review (Chapter 2), researchers use different approaches 

when measuring comfort levels. However, three categories of comfort are evident in the 

various researches [35, 38]: Thermal comfort, Visual comfort and Indoor Air Quality (IAQ). 

Therefore, this thesis studies comfort management in terms of these three categories. 

 

2.6.1. Comfort management: Thermal Comfort Measurement  

The American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) 

[16] defines thermal comfort as “condition of mind that expresses satisfaction with the thermal 

environment and is assessed by subjective evaluation.” This standard states that “Due to 
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individual differences, it is impossible to specify a thermal environment that will satisfy 

everybody”. 

In general, comfort occurs when body temperatures are maintained within a narrow range, 

skin moisture is low, and the physiological effort of regulation is minimized. Comfort also 

depends on behavioural actions such as altering clothing, altering activity, changing posture 

or location, changing the thermostat setting, opening a window, complaining, or leaving a 

space. 

Thermal comfort is an indispensable part of comfort management. The two standards used for 

measuring thermal comfort are: 

1- ISO 7730: 2005(or I.S. EN ISO 7730:2006),” Ergonomics of the thermal environment - 

Analytical determination and interpretation of thermal comfort using calculation of the PMV 

and PPD indices and local thermal comfort criteria” [39]. 

2- ANSI/ASHRAE Standard 55-2013[40], “Thermal Environmental Conditions for Human 

Occupancy” issued by the American Society of Heating, Refrigerating and Air-conditioning 

Engineers (ASHRAE) [40]. 

There are six effective factors that determine the body’s thermal sensation [39, 40, 196]: 

a) Factors relating to the characteristics of the occupant: 

1. Physical activity or metabolic rate 

2. Clothing insulation 

b) Environmental factors: 

3.  Air temperature 

4. Radiant temperature 

5. Air velocity (speed) 

6. Air humidity 

In this Chapter, the standard reference for thermal environmental conditions is 

ANSI/ASHRAE Standard 55-2013. The methods used to determine thermal environmental 

conditions stipulated by this Standard are listed as follows: 

 Method for determining occupant characteristics: metabolic rate for each 

representative occupant, rate determination, time-weighted averaging; high metabolic 

rates, clothing insulation for each representative occupant, insulation determination, 

limits of applicability 

 General method for determining acceptable thermal conditions in occupied spaces: 

 graphic comfort zone method applicability and methodology; analytical comfort zone 

method, elevated air speed limits to average air (va) speed with/without occupant 
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control; local thermal discomfort applicability, radiant temperature asymmetry, draft,  

vertical air temperature difference, floor surface temperature; temperature variations 

with time applicability, cyclic variations, drifts or ramps 

 Determining acceptable thermal conditions in occupant-controlled naturally 

conditioned spaces: applicability and  methodology 

In the literature, there are two types of approaches that address the issue of thermal comfort: 

heat-balance approaches which are based mainly on Fanger’s study [197, 198], and adaptive 

approaches which rely heavily on occupants’ behaviour, characteristics, sensations and 

backgrounds. 

Generally, metabolism, or the process of ingesting food and converting it to energy in the 

human body, generates heat continuously. The energy produced will create heat, and therefore 

body temperature varies from that of internal organs (37º C) to that of the skin’s surface which 

is 35º C.  

This metabolic rate can be slow or fast depending on a person’s age, gender, health and 

wellbeing, body mass, and type of activity in which the person is engaged. Consequently, this 

amount of heat differs from person to person. According to the second law of thermodynamics, 

generated heat has to spread out from body; hence, the body’s efficiency (Ƞ ) can be calculated 

by the formula below [199] : 

Ƞ = 1 − 𝑇𝑎
𝑇𝑏

                                                                                                                       (2.1)         

where 𝑇𝑎  is the ambient  and 𝑇𝑏 is the body temperature (º C). Principally, thermal discomfort 

occurs when the ambient temperature (𝑇𝑎) is higher than the body temperature (𝑇𝑏). In order 

to prevent this thermal disturbance and maintain the body temperature at 37ºC, the human 

thermoregulatory system shown in Figure 2.19 takes one or more autonomic control actions 

such as adjusting [200, 201]: 

 heat production by shivering;  

 internal thermal resistance by vasomotion: i.e. control of skin blood flow; 

 external thermal resistance by control of respiratory dry heat loss; and 

 water secretion and evaporation by sweating and respiratory evaporative heat loss. 

 

The thermal heat exchange between the body and its environment can be mathematically 

formulated in terms of of conductive, convective, radiative, moisture, clothing and metabolic 

effects [202] 
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Figure 2.19. Diagram of autonomic and behavioural human temperature regulation [201] 

The Predicted Mean Vote (PMV) index can be calculated by measuring the above factors. But 

for thermal discomfort or thermal dissatisfaction, the index of the predicted percentage 

dissatisfied (PPD) can be calculated from the PMV. 

 2.6.1.1. Predicted Mean Vote (PMV) Index 

A human being's thermal sensation is related mainly to the thermal balance of his or her body 

as a whole. This balance is influenced by physical activity and clothing, as well as 

environmental parameters such as:  

a) air temperature; 

b) mean  radiant  temperature; 

c) air velocity; and 

d) air humidity. 

 

When these factors have been estimated or measured, the thermal sensation for the body as a 

whole can be predicted by calculating the predicted mean vote (PMV).  

The PMV is an index based on the heat balance of the human body that predicts the mean 

value of the votes of a large group of persons on the seven-point thermal sensation scale shown 

in Table 2.5. Thermal balance is obtained when the internal heat production in the body is 

equal to the loss of heat to the environment. In a moderate environment, the human 
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thermoregulatory system will automatically attempt to modify skin temperature and sweat 

secretion to maintain heat balance. 

Table 2.5. Seven-Point Thermal Sensation Scale 

+ 3 Hot 

+ 2 Warm 

+ 1 Slightly warm 

0 Neutral 

- 1 Slightly cool 

- 2 Cool 

- 3 Cold 

 

The PMV is calculated by using the following equations: 

𝑃𝑀𝑉 = (0.303 ×  𝑒(−0.036×𝑀) + 0.028)𝐿 = 𝛼𝐿                                                        (2.2) 

𝐿 = {(𝑀 − 𝑊) − 3.05 × 10−3 × (5733 − 6.99 × (𝑀 − 𝑉) − 𝑝𝑎) − 0.42 × ((𝑀 − 𝑉) −

58.15) − 1.7 × 10−5 × 𝑀 × (5867 − 𝑝𝑎) − 0.0014 × 𝑀 × (34 − 𝑡𝑎) − 3.96 × 10−8 ×

𝑓𝑐𝑙 × ((𝑡𝑐𝑙 + 273)4 − (𝑡𝑟̅ + 273)4) − (𝑓𝑐𝑙 ×  ℎ𝑐 × (𝑡𝑐𝑙 − 𝑡𝑎))}                                 (2.3) 

𝑡𝑐𝑙 = 35.7 − 0.028 × (𝑀 − 𝑉) − 𝐼𝑐𝑙 × {3.96 × 10−8 × 𝑓𝑐𝑙 × ((𝑡𝑐𝑙 + 273)4 − (𝑡𝑟̅ +

273)4) + (𝑓𝑐𝑙 ×  ℎ𝑐 × (𝑡𝑐𝑙 − 𝑡𝑎))}                                                                               (2.4)                                                                                                       

ℎ𝑐 = {
2.38 × |𝑡𝑐𝑙 + 𝑡𝑎|0.25 𝑓𝑜𝑟 2.38 × |𝑡𝑐𝑙 + 𝑡𝑎|0.25 > 12.1 × √𝑣𝑎𝑟

12.1 × √𝑣𝑎𝑟 𝑓𝑜𝑟  2.38 × |𝑡𝑐𝑙 + 𝑡𝑎|0.25 < 12.1 × √𝑣𝑎𝑟

                       (2.5)                       

𝑓𝑐𝑙 = {
1.00 + 1.290 ×  𝐼𝑐𝑙     𝑓𝑜𝑟 𝐼𝑐𝑙  ≤ 0.078    𝑚2. 𝐾/𝑊 

1.05 + 0.645 ×  𝐼𝑐𝑙     𝑓𝑜𝑟 𝐼𝑐𝑙  > 0.078    𝑚2. 𝐾/𝑊
                                         (2.6)                  

where 𝐿 is the thermal load on the body defined as the difference between internal heat 

production and heat loss to the environment for a person hypothetically kept at comfort values 

of temperature of the skin layer and evaporative heat loss of regulatory sweating at the activity 

level, and  

  𝛼 is the sensitivity coefficient; 

𝑀 is the metabolic rate, in watts per square metre (𝑊/𝑚2); 

𝑊 is the effective mechanical power, in watts per square metre (𝑊/𝑚2); 

𝑡𝑎 is the air temperature, in degrees Celsius (°C); 
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𝑡𝑟̅  is the mean radiant temperature, in degrees Celsius (°C); 

𝑡𝑐𝑙 is the clothing surface temperature, in degrees Celsius (°C); 

𝑓𝑐𝑙  is the clothing surface area factor; 

𝐼𝑐𝑙  is the clothing insulation, in square metres kelvin per watt (
𝑚2.𝐾

𝑊
); 

ℎ𝑐 is the convective heat transfer coefficient, in watts per square metre kelvin (
𝑊

𝑚2.𝑘
) ; 

𝑣𝑎𝑟  is the relative air velocity, in metres per second (m/s); 

𝑝𝑎  is the water vapour partial pressure, in Pascals (Pa). 

And each unit’s correlation is as follows: 

1 metabolic unit = 1 met = 58.2 𝑊/𝑚2  

1 clothing unit = 1 clo = 0.155 
𝑚2×°C

𝑊
 

PMV may be calculated for different combinations of metabolic rate, clothing insulation, air 

temperature, mean radiant temperature, air velocity and air humidity [203]. 

The detailed information for calculating PMV is presented in Appendix 01. 

2.6.1.2. Predicted Percentage Dissatisfied (PPD) Index 

The PPD predicts the percentage of people who feel more than slightly warm or slightly cold. 

The PMV predicts the mean value of the thermal votes of a large group of people exposed to 

the same environment. But individual votes are scattered around this mean value and it is 

useful to be able to predict the number of people likely to feel uncomfortably warm or cool. 

The PPD is an index that establishes a quantitative prediction of the percentage of thermally 

dissatisfied people who feel too cool or too warm. With the PMV value determined by Eqs.2.2-

6, the PPD will be calculated by using Equation 

𝑃𝑃𝐷 = 100 − 95 × 𝑒(−0.03353×𝑃𝑀𝑉4−0.2179 × 𝑃𝑀𝑉2)                                                 (2.7)                                    

The details for calculating PPD are presented in Appendix 01. 

 

2.6.2. Comfort Management: Indoor Air Quality  

The measurement of IAQ is an ongoing process of the HVAC system in a building for 

managing comfort level. The carbon dioxide (CO2) concentration is an index used for 
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monitoring this comfort factor. This index is affected by the presence of occupants and air 

pollutant sources such as total volatile organic compounds (TVOCs) , 𝑁𝑂𝑥 (mono nitrogen 

oxides (NO) and nitrogen dioxide(NO2)) [35].   

The ventilation function of the HVAC system supplies fresh air from outdoors and removes 

polluted indoor air and odours in order to maintain the standard IAQ level. However, this 

process counteracts the cooling or thermal control functions, so the ventilation rates must be 

decreased in order to achieve an efficient energy load. On the other hand, the effect of weak 

ventilation may cause ‘sick building’ syndrome that occurs as a result of poor IAQ. Hence, 

achieving an appropriate level of ventilation with efficient level of heating and cooling is a 

major and significant challenge facing building designers. Demand-controlled ventilation 

(DCV) is an energy-efficient method that monitors and controls CO2 concentration by CO2 or 

infrared or wireless occupancy sensors [204, 205]. The Standard, ISO 16814:2008(E) [206] 

for building environment design and IAQ introduces three methods for determining the quality 

of indoor air for human occupancy which are based on health, perceived air quality, and the 

ventilation rate. In the Standard [206], the target concentration for target indoor air quality 

comfort is based on CO2. for which an acceptable value has been determined by the EN 13779 

standard and these levels from most to least acceptable levels are as follows: 

a) < 400𝜇⃓/⃓ 

b) 400𝜇⃓/⃓ to  600𝜇⃓/⃓ 

c) 600𝜇⃓/⃓ to  1,000𝜇⃓/⃓ 

d) > 1,000𝜇⃓/⃓ 

“The units ‘ 𝜇⃓/⃓’are equivalent to volume parts per million(ppm), a deprecated unit” [206]. 

 

2.6.3. Comfort Management: Visual Comfort 

According to an Australia pilot project report known as the Residential Energy Monitoring 

Program (REMP) issued in 2012, “residential lighting in Australia consumes more than 700 

kWh pa per household” [207]. 

The AS/NZS 1680.1: 2006 standard [208] for interior and workplace lighting has established 

general principles and a framework for performance and comfort when installing interior 

lighting.  

Various factors affect the good quality of lighting for comfortable visual conditions. Some of 

these factors must be considered when designing an interior feature such as shade for 
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windows. However, a study of these is not within scope of this thesis.  An energy-efficient 

lighting approach can be associated with a lighting system by considering the following 

parameters:  

1. General measures for energy saving include: 

1.1. Daylight and energy conservation: Effect of an energy-efficient fenestration system 

on energy consumption and visual comfort and increasing air conditioning energy 

consumption by increasing daylight. 

1.2. Integration of lighting and air conditioning: Three forms of heat dissipation of the 

lighting are convection, conduction and radiation, all of which affect the air 

conditioning’s energy consumption. 

1.3. Maintenance: Glazing and surface reflections are important factors in daylighting 

systems. Also, an energy-efficient globe can reduce energy cost. 

2. Energy Saving from reduction in electrical load 

2.1. Lamps and control gear: In order for a lighting system to achieve the highest efficacy,  

several lamp properties should be taken into consideration including: colour 

appearance, colour rendering, luminance; luminous flux; lamp lumen depreciation; 

life; size; available luminaire type; starting and running up characteristics; and 

dimming possibilities. 

2.2. Luminaires: Luminaires should be selected according to their applications. 

2.3. Arrangement of luminaires: At a given place, luminaires can be arranged in a fixed 

location or on a flexible mounting system. 

2.4. Room surface reflectance: High reflectance finishes on walls, ceilings, floors and 

furniture use light more efficiently. 

Energy saving by reducing usage time: Control of the electric lighting according to the 

required level at a given time and at a given place. The interior, the nature of the task, and the 

available daylight are important factors to consider in this approach. 

Additionally, other factors may be considered when evaluating efficient lighting energy 

consumption such as the parameters used by Energy Efficiency Strategies (EES) [207] 

(suggested by the Department of Climate Change) to model lighting energy consumption in 

2008. They comprised: 

• technology efficacy; 

• lighting levels (lux); 

• resulting power density for each lighting type; 

• technology share by floor area for living and non-living areas; 

• average floor area per house (from building stock model); and 
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• usage. 

However, the control system is a fundamental part of an electric lighting system. Lighting 

control means using appropriate lighting as required. Therefore, it is expected that the control 

mechanism adjusts the output light by switching off or dimming the lamp. However, it must 

be considered that the enforced switching off of lights may meet with resistance from 

occupants and therefore a range of choices must be provided for the control of lights. 

According to [209], switching off and dimming are two forms of control systems for electric 

lighting. These methods can be combined in order to achieve an efficient level of control. 

2.6.3.1. Visual Comfort: Electric Lighting Control by Switching Method  

Controlling light by means of switches has two noticeable principles. The first is the 

immediate availability of a certain amount of light after switching on, and the second is the 

appropriate interval between switching on and off which depends on the globe type. Various 

methods of switching include manual switching, remote switching, time switch, daylight-

based switch and occupancy-based switch [210-212].  

For daylight-based switches, photocells are used to measure the daylight level, whereas 

occupancy-based switches rely on sensors to sense the noise level or reflected radiation of 

human presence such as in PIR motion detectors [213-215].  

2.6.3.2. Visual Comfort: Electric Lighting Control by Dimming Method  

The control which allows the dimming of light is a method whereby the illumination can be 

decreased until it reaches a desirable level. Tungsten filament globes and some types of 

discharge lamps can be dimmed. According to the time of day or amount of daylight, dimmers 

can be controlled either manually or automatically [214]. 

Many researchers have focused on modelling the comfort parameters related to home energy 

management. Their research studies can be classified into three groups: those that have studied 

the notion of comfort in terms of visual, thermal and air quality comfort, those that have used 

the comfort parameter as a thermal comfort factor in their modelling, and finally, those 

researches who have focused on just one dimension such as the visual comfort.  

 

In recent years, an agent-based approach has been applied that models energy management 

systems that take into consideration the comfort management factors. [27] proposes a 

hierarchical multiagent control system with partial swarm optimization (PSO) to balance the 

energy for an integrated building and micro grid as shown in Figure 2.20 below.  
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Figure 2.20. Agent-based Building Control System Proposed by [27] 

 

The authors defined the overall comfort index for measuring the overall comfort that consists 

of thermal, visual and indoor air quality as follows. 

 

Comfort= 𝜇1 [1 − (
𝑒𝑇

𝑇𝑠𝑒𝑡
)

2
] + 𝜇2 [1 − (

𝑒𝐿

𝐿𝑠𝑒𝑡
)

2
] + 𝜇3 [1 − (

𝑒𝐴

𝐴𝑠𝑒𝑡
)

2
]                             (2.8) 

In the formula above, the overall comfort index value is within the range of [0,1] where: 

-  𝜇1, 𝜇2 and 𝜇3 are the user-defined weight factors that can be set by consumers. 

- 𝑒𝑇 = 𝑇𝑠𝑒𝑡 − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  , is the error between the set point of the temperature and the 

measured value. 

- 𝑒𝐿 = 𝐿𝑠𝑒𝑡 − 𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  , is the error between the set point of the illumination and the 

measured value. 

- 𝑒𝐴 = 𝐴𝑠𝑒𝑡 − 𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  , is the error between the set point of the indoor air quality and 

the measured value. 

As can be seen, this index is based directly on the weighting input data which have been set 

by users. The same authors proposed a similar approach in [29]. 

 

 

 

2.7. Decision-making Approaches in Energy Management and Smart Grid 

The application of decision-making methods has been widely considered by researchers for 

solving and addressing energy management issues such as demand response, building 

performance assessment, storage system, and renewable energy sources. These methods can 
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be investigated in the domain of multi-criteria decision making (MCDM) that comprises two 

main categories of multiple attributes and objectives decision-making methods (MADM and 

MODM). In the next chapter, a comprehensive explanation of the application of these 

techniques is presented in the field of energy management systems in the smart grid. MADM 

methods include techniques such as:  

− The analytic hierarchy process (AHP)[216, 217], 

−  The analytic network process (ANP)[218],  

− the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [219], 

−  Elimination and Choice Expressing Reality or ELECTRE (Elimination et Choix 

Traduisant la Réalité) [220]  

− VIKOR[221, 222], and a 

−  Preference ranking organization method for enrichment evaluation (PROMETHEE) 

[223, 224]  

Multi-Criteria Decision Making (MCDM) techniques have been increasingly employed for 

decisions relating to energy planning. These methods can be classified into three main groups: 

a) value measurement models, b) goal and reference models, and c) outranking models [225]. 

The application of MCDM methods to sustainable energy planning has been reviewed by 

[226]. Additionally, [225] described the application of these techniques in the field of energy 

planning problems. 

My literature survey has identified researchers who have used MCDM methods in demand 

response programs for various purposes.  Alami et al. [14] used the analytic hierarchy process 

(AHP) for choosing the most effective DRP in power market; Kim et al.[227] employed the 

same technique for designing of the emergency DRP which took into account the degree of 

importance of load reduction criteria. Shengnan et al. [228] determined a resource allocation 

model for assigning load to the users in a multi-layer DRP by applying AHP. Shimomura et 

al. [229] used the AHP method to determine the importance of the comfort model in their 

research on the design of a customer-oriented DR aggregation service. Chen and Gu [230] 

built a fuzzy analytic network process (ANP) model for integrating the opportunities and risk 

prioritization in the smart grid. In research conducted by [231], TOPSIS is employed for 

selecting the best solution of the multi-objective generation scheduling model where 

incentive-based DR programs are considered as a reserve resource in wind power forecasting 

in SG. These objective functions include minimizing emissions and the cost of power 

generation. 

On the other hand, the application of MCDM in the field of building energy performance and 

assessment is addressed by [232-236]. 
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Xu et al. [232] employed an ANP and energy performance contracting mechanism in order to 

examine the interrelationships of sustainable building energy efficiency retrofit in a hotel 

building. Chen et al. [233] propose the TOPSIS methodology for benchmarking whole-

building energy performance with consideration given to the seven efficiency criteria: energy 

use intensity, cooling degree day efficiency, heating degree day efficiency, total degree day 

efficiency, bathroom-oriented efficiency, and occupants-oriented efficiency. In the other 

research, [236] used a  total of 25 criteria under six categories when assessing the energy 

efficiency of residential buildings in China: space heating and cooling load,  efficiency of 

building facilities, use and reuse of construction material, operation and management,  use of 

renewable energy, and indoor comfort and health. 

The intelligent building assessment presented by [234, 235] employed fuzzy AHP and 

TOPSIS, the criteria of which are represented by five main categories as shown in Table 2.6. 

The evaluation of storage systems in SG by decision-making problem approaches has been 

conducted by [237, 238]. Daim et al. [237] employed Fuzzy Delphi and AHP methods to 

evaluate multiple energy storage technologies in order to choose the best alternative for the 

application to intermittency of renewable energy in the Northwest US region. 

  In terms of the sustainability aspect of SG and the use of renewable sources, MADM are 

widely used for the selection of suitable technologies and locations for the installation of solar 

or wind power plants. Aragones-Beltran et al. [239] employed both AHP and ANP techniques 

when selecting solar-thermal power plant investment projects. 

 T. Kaya and C. Kahraman [240] propose VIKOR and AHP for selecting the most appropriate 

renewable energy technology option in Turkey. Similarly, Sengul et al.[241] employed fuzzy 

TOPSIS in order to rank renewable energy supply systems in Turkey. [242] apply the 

ELECTRE method when selecting a suitable wind farm site. Also, Beccali et al. [243, 244] 

employed the ELECTRE III method to select the most appropriate technologies for a 

renewable energy diffusion plan and compared it with the fuzzy sets logic method. 

In all of the approaches mentioned earlier, the decision makers have to select different 

alternatives by considering a finite set of evaluation criteria in order to achieve the objective. 

These methodologies help the decision maker, chronologically, to observe how his/her 

preferences impact on the final decision regarding a problem.   
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Table 2.6. Intelligent Building Assessment Criteria Proposed by [234, 235] 

Main Criteria Sub-criteria 

1. Engineering 

1. Functionality 

2. Safety and structure 

3. Working efficiency 

4. Responsiveness 

5. Office automation 

6. Power supply 

7. System integration 

2. Environmental 

1. Energy consumption 

2. Water and water conservation 

3. Materials used, durability and waste 

4. Land use and site selection 

5. Greenhouse gas emissions 

6. Indoor environmental quality 

3. Economical 

1. Economic performance and affordability 

2. Initial costs, operating and maintenance costs 

3. Life cycle costing 

4. Socio-Cultural 

1. Functionality, usability and aesthetic aspects 

2. Human comfort 

3. Health and sanitation 

4. Architectural considerations 

5. Technological 

1. Work efficiency 

2. Use of high-tech system 

3. Use of advanced artificial intelligence 

4. Telecom and data system (Connect-alibility) 

5. Security monitoring and access control system 

6. Addressable fire detection and alarm system 

7. Digital addressable lighting control system 

 

2.8. Research Issues  

As mentioned earlier, there is no such technique in the literature that aims to 

intelligently achieve demand response at the consumer level by actively involving 

end-users during this process. This is different from the other areas of smart grid that 

use efficient techniques to achieve demand response. So the main issues identified 

in the literature and that will be addressed in this research are: 

a. No approach has been proposed that measures consumers’ 

preferences and consumption profiles in order to efficiently utilize energy. 
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b. Much research has been done to achieve efficiency in demand 

response and price. However, none has studied the effectiveness of such 

systems when customers are not well-trained, unwilling or passive in 

responding to price signals. To overcome this, an intelligent decision 

support system for energy management is required to assist customers to 

make decisions according to their criteria for demand response. 

c. As shown in optimization and scheduling literatures, the study of 

the preferences of consumers has been limited to the preferred set-up time 

for the scheduling of appliance operations or air or water temperatures, so 

there are no any approaches in the literature that assist the end-user to 

aggregate the total preferences regarding all effective parameters in energy 

consumption, and employ them in optimization models that demonstrate 

the effect of these preference changes on the optimization of energy 

consumption. 

d. In the reviewed literature, no approach has been proposed that uses 

an algorithm to facilitate the decision-making process for end-users when 

they have decided to participate in DRP and wanted to reduce energy 

consumption. 

The next Chapter discusses the decision-making process and techniques applicable 

to end-users, and presents a solution for consumers’ decision-making in DRP and 

their energy management. 

 

2.9. Conclusions 

In this Chapter, I addressed the most significant elements of electrical energy management 

systems in terms of the end-users of the smart grid, and I examined those studies most relevant 

to the topic of this thesis. The creation of an energy management system in the context of the 

smart grid needs new approaches as the smart grid has added many new parameters in control 

methodologies and shifted the traditional paradigm to new and modern concepts associated 

with management. Hence, the authors examined the recent challenges in this field. Their 

survey showed that the literature to date has not considered all these aspects because the 

effective parameters in energy management systems belong to different domains of science 

such as science and engineering or even sociology and economics.  

In this thesis which pertains to energy management, methodologies are more dependent on 

users’ decisions or are more customer-oriented. This is an important consideration since the 

smart electrical network essentially has been created to benefit the end-users and they are the 

main customers of this provided service; so if customers are to contribute to this service 
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management, they have to possess the facilities, technologies and methodologies enabling 

them to monitor the effects of the decisions they make regarding energy consumption; In the 

next Chapter, the decision-making models which can be supportive and applicable in this 

regard are presented. 
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Chapter 3 

Decision-Making Framework to Support 

End-users’ Energy Management in DRP 

 

 

3.1. Introduction 

An effective approach for successful demand response programs requires techniques at the 

consumption level. This can be done by creating an intelligent decision-making framework at 

the end-users’ side. For example, at the home level, energy price signal as an input is taken 

from the grid and, depending on various underlying factors, the decision-making framework 

assists the end-users to achieve demand response. The importance of such work has been 

discussed by Hopper et al. [245] who state that there is a role for targeted technical assistance 

programs to help customers to develop more sophisticated price response strategies. So, 

participating in DRP and having efficient energy consumption behaviour is a dilemma for end-

users as these programs are complicated. Specifically, a dynamic pricing demand response 

program is one in which the market-based energy price signal varies over time, making it very 

difficult for end-users to save on the cost of energy during billing periods. I have depicted this 

dilemma in Figure 3.1. This figure shows that there is a utility provider which sends price 

signals to end-users and receives the consumption information by means of a smart meter and 

wireless communication of the sensors (smart appliances). The consumer mutually receives 

some information from the utility provider about consumption profile and price signals from 

various portals. It can be expected that the consumers change their consumption behaviour by 

receiving consumption information in order to mitigate cost and save on their power bills.  
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Figure 3.1. Aggregating an IDSS to HEM in SG 

However, in a dynamic pricing system, the consumers have no way of knowing whether or 

not their decision to modify their energy consumption is effective and efficient. This is 

overcome by adding intelligence to each home level energy management system that is 

expected to assist householders or energy managers to make decisions about the choice of the 

best policy, consumption behaviour, or even equipment during participation in DRP. In this 

Chapter, I will develop decision-making models by which such intelligence is added at each 

home level on a continuous basis by which demand response is achieved. I will propose our 

model in the following sections by firstly presenting a primary introduction to the decision-

making process and methodologies. Secondly, the appropriate criteria and decision making 

methodologies for decision-making in the residential sector will be discussed and, thirdly, 

application of those methodologies are discussed by presenting different scenarios and, 

fourthly, an intelligent decision-support system in the context of smart grid and smart home 

will be proposed.  

3.2. Decision Making Process and Methodologies 

Decision-making processes comprise a series of steps as follows [246]: 

1. Problem Identification;  

2. Preferences Construction; 

3. Alternatives Evaluation;  

4. The best alternatives Determination. 
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Considering the above stepwise, our problem identification in the context of energy 

management in demand response participation in the residential sector can be explained in 

terms of the ambiguity, complexity and conflict that end-users face when managing their 

consumption since such programs involve many regulations and expectations for the 

curtailment of energy. As stated by O. Svenson [247] “the perceptual, emotional, and cognitive 

process which ultimately lead to the choice of a decision alternative must also be studied if I 

want to gain an adequate understanding of human decision making.” Principally, there are 

three types of formal analysis employed for solving decision-making problems  [248-250]: 

1. Descriptive analysis is concerned with the problems that decision-makers (DMs) 

actually solve and it is especially addressed in the fields of behaviour decision 

research such as  psychology, marketing, and consumer research [251]. 

2. Prescriptive analysis considers the methods that DMs ought to use to improve their 

decisions. 

3. Normative analysis focuses on the problems that DMs should ideally address. 

 

In this thesis, I limit our studies to normative and prescriptive analysis which focuses on the 

fields of decision science, economics, and operations research (OR). Decision-making is very 

simple when there is just one criterion; in this case, the alternative with the highest preference 

rating would be chosen. However, when decision-making is based on evaluating alternatives 

with multiple criteria, many difficulties will arise that require more sophisticated methods and 

approaches in order to overcome these difficulties in the evaluation of criteria. Problem 

identification, constructing the preferences and selecting the appropriate decision-making 

tools are the three main steps in the decision-making process [250]. 

Multi Criteria Decision Making (MCDM) can be classified into two main categories [252]: 

1. Multiple objective decision making (MODM) 

2. Multiple attribute decision making (MADM)  

 

On the other hand, some of the MCDM problems are regarded as problems of subjective 

uncertainty and vague information and involve fuzzy numbers and variables when dealing 

with more extensive problems in MCDM [253, 254]. So, MCDM problems based on the 

concepts of MODM and MADM in an uncertain and fuzzy environment can be classified into 

two categories, respectively: 

1. Fuzzy multiple objective decision making (FMODM)  

2. Fuzzy multiple attribute decision making (FMADM) 
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MODM or vector programming is a mathematical decision-making model in which decision- 

makers tackle the optimal design problems with high complexity and several objectives that 

are mainly incorporated into the optimization process. Basically, the problem consists of 

several conflicting objective functions in maximization and/or minimization forms with a 

given set of well-defined linear and nonlinear constraints. MADM is defined as making 

preference decisions such as evaluation, prioritization, selection) over the multiple and 

conflicting attributes. There are the common characteristics for all MADM problems[252]: 

1. Alternatives: The number of alternatives is finite, from several to thousands which 

must be considered and selected. 

2. Multiple Attributes: Depending on the nature of the problem, many relevant multiple 

attributes must be set by the decision-maker. 

3. Incommensurable Units: Each attribute has different units of measurement. 

4. Attribute Weights: Almost all MADM methods require information regarding the 

relative importance of each attribute, which is usually supplied by an ordinal or 

cardinal scale. 

5. Decision Matrix: A MADM problem can be concisely expressed in a matrix format, 

where the columns indicate attributes considered in a given problem and the rows list 

the competing alternatives. 

 

The application of MCDM methods to sustainable energy planning  has been reviewed by 

[226]. Additionally, Loken [225] described the application of these techniques in the field of 

energy planning problems. The decision-making process shown in Figure 3.2 shows that this 

process takes place after indicating the appropriate criteria and specifying the alternatives. 

Moreover, there are several considerations when choosing these techniques for solving the 

problems. These are as follows [225]: 

1- Provided that a methodology of a technique is expected to measure what it is supposed 

to determine, so different methodologies give different results. Therefore, a method 

should be chosen which reflects the true values of users in the best feasible and 

possible way. 

2- The method must be able to provide all the information required for decision-makers 

and be compatible with available data. 

3- The method should be straightforward and easy to understand by users; otherwise, 

they will not trust the results of decision-making and any recommendations. 
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Figure 3.2. Decision-making Process 

The MADM problems have been thoroughly resolved and developed by various techniques 

and methodologies, the most significant of which are briefly explained in the following section 

and summarized in the table below. The main purpose of reviewing these techniques is to 

determine which technique is the most appropriate for energy managers of buildings or 

householders in a decision-making framework (model) in order to manage the flow and 

amount of energy on their premises (residential, commercial and industrial) during different 

demand response programs of the smart grid. As a result, I aim in this Chapter to:  

 Firstly explain the most effective MADM methods applicable in energy 

management; 

 Secondly, explore the appropriate criteria for decision-making in the residential 

sector of the smart grid by studying the standards and reviewed literatures; 

 Thirdly, present an intelligent decision-making support system in the smart grid 

structure; 

 Fourthly, propose an intelligent decision-making model for energy management 

that takes into account the established parameters at the smart home level. 
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3.3. Multi Attribute Decision Making 

    3.3.1. Analytic Hierarchy Process (AHP) 

AHP is a descriptive decision analysis and weighted sum method proposed by Thomas L. 

Saaty [216, 217].  In this method, the criteria and alternatives are evaluated by the pairwise 

comparison method. This analytic hierarchy process has an objective at the top and decision 

alternatives at the bottom while in the middle levels there are criteria and sub-criteria as shown 

in Figure 3.3. The steps for implementing this methodology are described below: 

Step 1) Set up a target: This step is about the purpose of decision-making and is usually about 

selecting something among many for a reason based on criteria. 

Step 2) Select appropriate criteria for achieving the target and structuring the hierarchy. 

Step 3): Use pairwise comparison of alternatives based on each criterion by using a scale for 

qualitative indexes or the real value for quantitative indexes.  

Table 3.1. Pairwise Comparison Scale for Qualitative parameters 

Scale 

( 𝒂𝒋𝒊) 

Description 

1 Equal importance 

3 Moderate Importance 

5 Strong Importance 

7 Very Strong Importance 

9 Extreme importance 

 

The comparison matrices [ 𝑎𝑖𝑗] is formed for each criteria which have reciprocal properties. It 

means that for each matrix member 𝑎𝑖𝑗, the  𝑎𝑗𝑖 is equal to 
1

𝑎𝑖𝑗
 . For example, if the criterion 𝑖 

has moderate importance over criterion  𝑎𝑖𝑗 = 3, then the result of comparison of criterion 𝑗 

to criterion 𝑖 is  𝑎𝑗𝑖 =
1

3
 . 

Step 4) Compare and sort the alternatives according to the criteria.  
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Figure 3.3. AHP Hierarchy Diagram 

 

For each alternative, the consistency ratio, CR, is measured by the ratio of Consistency Index 

(CI) to Random Index (RI).  

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
                                                                                                               (3.1) 

where CI is calculated by measuring, ʎ𝑚𝑎𝑥  ,the maximum eigenvector of each comparison 

matrix  with "𝑛" alternatives, as follows  

𝐶𝐼 =  
ʎ𝑚𝑎𝑥−𝑛

𝑛−1
                         (3.2) 

RI is an index obtained from a randomly generated pairwise comparison matrix proposed by 

Saaty [255] as shown in the table below: 

 

Table 3.2. RI Index proposed by Saaty [255] for Calculating Consistency Index 

N 1 2 3 4 5 6 7 8 9 10 

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

 

 

𝐶𝑅 ≤ 0.1 implies a satisfactory degree of consistency in the pairwise comparison matrix; 

otherwise, serious inconsistencies might exist. 
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3.3.2. Analytic Network Process (ANP) 

The Analytic Network Process (ANP)  proposed by Saaty [217, 218] is an extension of AHP 

for studying the dependency and interdependency among criteria in different forms of 

structure (network) such as hierarchy, holarchy, suparchy,and intarchy [250]. ANP has four 

main steps as follows: 

Step 1:  Model construction and problem decomposition by forming clusters and nodes 

Step 2: Pairwise comparisons for decision elements in each cluster and among clusters. In this 

step, a decision maker is asked to evaluate the importance of a criterion or a cluster compared 

to another criterion or cluster with respect to his/her preferences. For this, the ration scale is 

employed to compare from 1 to 9 where 1 is equal and 9 is extreme importance. 

Step 3: Super matrix formation: The network or structure of the problem consists of the 

clusters and each cluster consists of the elements. The rows and columns of this matrix 

comprise comparison vectors, each of which compares the elements of each cluster .The 

general form of this supermatrix is:  
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                                      (3.3) 

𝐶𝑚 = [𝑒𝑚1, … , 𝑒𝑚𝑛𝑚]       (3.4) 

 

Where 𝑤 is a supermatrix with 𝑚 × 𝑚  dimension, and 𝑤𝑖𝑗  is the principal eigenvector that 

denotes the pairwise comparison result of elements in the jth cluster to the ith cluster. 𝐶𝑚 

denotes the mth cluster with elements from [𝑒𝑚1, … , 𝑒𝑚𝑛𝑚
] where 𝑒𝑚𝑛𝑚

 is nth element of 

cluster 𝑚. Assuming that the network structure below has three clusters, the supermatrix 𝑤 

can be expressed as 
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where arcs represent the interaction of the elements in a cluster. 
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Cluster 2 Cluster 3

 

Figure 3.4. ANP Cluster Interactions Diagram 

 

 After forming the supermatrix, all columns add up to form the weighted supermatrix and 

afterwards the weighted supermatrix will be raised to limiting powers to achieve the global 

priority vectors as shown with the following equation: 

lim
𝑘→∞

𝑊𝑘                       (3.5) 

Step 4: Selecting the best alternatives or weighting attributes when the convergence occurs in 

limiting supermatrix. 

3.3.3.  TOPSIS: Technique for Order Preference by Similarity to Ideal Solution 

Of the numerous criteria decision-making (MCDM) methods, TOPSIS is a practical and useful 

technique for ranking and selecting a number of possible alternatives by measuring Euclidean 

distances. TOPSIS, developed by Hwang and Yoon [219], is a simple ranking method in 

conception and application.  

 

The TOPSIS method [256] based on information entropy is proposed as a decision support 

tool for an energy manager to determine the effects of DRP on productivity and energy 

efficiency. In this section, ‘alternative’ refers to all the equipment and ‘criteria’ indexes 

determined in the previous section. There are two types of criteria. Positive criteria are those 
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that should be increased and negative ones are those which need to be decreased in order to 

mitigate risk. 

 

The purpose of this methodology is to first arrive at an ideal solution and a negative ideal 

solution, and then find a scenario which is nearest to the ideal solution and farthest from the 

negative ideal solution. This methodology can be implemented by taking the following steps: 

 

Step 1: Specify alternatives and criteria for the equipment to which the energy must be 

allocated. This step is explained in the previous section. Assume that there are 𝑚 possible 

alternatives called 𝐴 = { 𝐴1, … , 𝐴𝑚} which are to be evaluated against "𝑐"  criteria 

𝐶 = {𝐶1 , … , 𝐶𝑐}. 

Step 2: Assign ratings to criteria and alternatives using matrix 𝑋 presented in (3.6) where 𝑥𝑖𝑗 

indicates the value of alternative 𝐴𝑖  for criterion 𝐶𝑔: 

                    𝐶1       𝐶2      𝐶𝑔      𝐶𝑐

𝑋𝑚×𝑐 =

𝐴1

𝐴𝑖

⋮
𝐴𝑚

[

𝑥11 𝑥12

. .

… 𝑥1𝑐

𝑥𝑖𝑔 .

⋮ ⋮
𝑥𝑚1 𝑥𝑚2

… ⋮
… 𝑥𝑚𝑐

]
.                                    (3.6) 

Step 3: Calculate weight of criteria by entropy technique to normalize the decision matrix 

(3.6) using formula (3.7): 

  𝑞𝑖𝑔 =
𝑥𝑖𝑔

(𝑥1𝑔+⋯+𝑥𝑚𝑔)
 ;           ∀𝑔 ∈ {1, . . , 𝑐}.                               (3.7) 

The information entropy of criterion 𝑔 is given by definition of information entropy presented 

in (3.8): 

𝛥𝑔 = −𝑘 ∑ 𝑞𝑖𝑔 . ln 𝑞𝑖𝑔  ; ∀𝑔 ∈ {1, . . , 𝑐}      𝑚
𝑖=1                            (3.8) 

where 0 ≤ 𝛥𝑔≤ 1 can be ensured with the coefficient 𝑘, through 𝑘 = 1/𝑙𝑛(𝑚).  

The Entropy technique for measuring the weights of criteria is an objective weight method 

which is determined by data statistical properties. This method is introduced and explained 

comprehensively by Shannon [257]. Generally, the index with bigger information entropy 𝛥𝑔 

has greater variation. Therefore, the weight through deviation degree  𝑑𝑔  can be computed by 

(3.9): 

𝑑𝑔 = 1 −  𝛥𝑔  ,                     (𝑔 = 1, … , 𝑐).                                               (3.9) 

Finally, the weight for criteria by the entropy technique can be calculated as follows: 

𝑤𝑔 =
𝑑𝑔

(𝑑1+⋯+𝑑𝑐)
                                                                        (3.10) 
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Eqs. (3.10) and (3.11) are used to aggregate the energy manager’s weight vector 𝜆𝑔 and obtain 

the aggregated weight 𝑤𝑔
′ : 

𝑤′
𝑔 =  

𝜆𝑔 .𝑤𝑔

(𝜆1.𝑤1+⋯+ 𝜆𝑐.𝑤𝑐)
                                                                                                  (3.11) 

 𝑤′ = {𝑤1
′ , 𝑤2

′ , … , 𝑤𝑐
′}                                                                  (3.12) 

Step 4: Construct a normalized decision matrix using the vector normalization method, 

calculate normalized value 𝑟𝑖𝑔 by (3.13) and construct matrix 𝑁𝑚×𝑐 presented by (3.14):    

 𝑟𝑖𝑔 =  
𝑥𝑖𝑔

√(𝑥1𝑔
2 +⋯+ 𝑥𝑚𝑔

2 )
                                                                              (3.13) 

𝑁𝑚×𝑐 = [𝑟𝑖𝑔]𝑚×𝑐  ,       (𝑖 = 1, … , 𝑚 ; 𝑔 = 1, … , 𝑐).                    (3.14) 

Step 5: Construct the weighted normalized decision matrix by building the diagonal matrix 

𝑤′𝑐×𝑐 with element 𝑤𝑔
′   in 3.11 to reach the 𝑉 matrix: 

𝑉 = 𝑁𝑚×𝑐 . 𝑤′𝑐×𝑐 = (𝑣𝑖𝑔)𝑚×𝑐                                                       (3.15) 

(𝑖 = 1, … , 𝑚 ;  𝑔 = 1, … , 𝑐).     

Step 6: Compute the positive ideal solution (PIS) 𝐴+ and the negative ideal solution (NIS) 𝐴− 

of the alternatives: 

𝐴+ = {(max 𝑣𝑖𝑔 |𝑔 ∈ 𝐺) ; (min 𝑣𝑖𝑔| 𝑔 ∈ 𝐺′)} = (𝑣1
+, 𝑣2

+, … , 𝑣𝑐
+)                            (3.16)                                                  

𝐴− = {(min 𝑣𝑖𝑔 |𝑔 ∈ 𝐺) ; (max 𝑣𝑖𝑔| 𝑔 ∈ 𝐺′)} = (𝑣1
−, 𝑣2

−, … , 𝑣𝑐
−).                       (3.17)  

where 𝐺 and 𝐺′ are the subsets of positive and negative criteria, respectively. 

 Step 7: Compute the distance of each alternative from PIS (𝑑𝑖
+

 ) and NIS (𝑑𝑖
−

):                                                  

𝑑𝑖
+ =  √∑ (𝑣𝑖𝑔 − 𝑣𝑔

+)
2𝑐

𝑔=1                                                                      (3.18) 

 𝑑𝑖
− =  √∑ (𝑣𝑖𝑔 − 𝑣𝑔

−)
2𝑐

𝑔=1                                                                                              (3.19)                                                                                 

Step 8:  Compute the closeness coefficient of each alternative: 

 𝐶𝐶𝑖
+ =

𝑑𝑖
−

(𝑑𝑖
−+𝑑𝑖

+)
     ;     𝑖 = 1, 2, … , 𝑚                                                                            (3.20) 

Step 9: Rank the alternatives: 

 𝑣 = {𝑣𝑖| max
1≤𝑖≤𝑚

(𝐶𝐶𝑖
+)}                                                                                                   (3.21) 
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Table 3.3. Matlab Programming Function Code for TOPSIS Method 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

function [ cc ] = topsis(decisionMakingMatrix,landaWeight,criteriaSign ) 

 %-Technique for Order of Preference by Similarity to Ideal Solution 

 % -Author: Omid Ameri Sianaki 

 %-This function implements TOPSIS method with Information entropy 

 % weighting Method 

% - criteriaSign is a vector specifying whether a criterion has to be maximized 

% or minimized . +1 is for positive criterion and -1 for negative criterion 

%%%%%%%%%%%%%%%%%%%%%%% 

sumDmm=sum(decisionMakingMatrix()) 

sumDmmMatrix=repmat(sumDmm,size(decisionMakingMatrix,1),1) 

pij=decisionMakingMatrix./sumDmmMatrix  

lnm= -1 / log(size(decisionMakingMatrix,1));  

lnNormDmm = log(pij) 

E=lnm .* sum(pij .* lnNormDmm)  

dj=ones(1,size(E,2))-E  

weightEntropy=dj ./sum(dj)  

wt=landaWeight .*weightEntropy ./sum(landaWeight .*weightEntropy)  

sqrtxij=sqrt(sum(decisionMakingMatrix().^2)) ;           

N=decisionMakingMatrix./repmat(sqrtxij,[size(decisionMakingMatrix,1) 1]);                                            

Wj=eye(size(wt,2)) .* repmat(wt.*criteriaSign,size(wt,2),1) 

V=N*Wj;                  

Apositive=max(V);  

Anegative= min(V); 

ApositivMtrix=repmat(Apositive,size(V,1),1);  

AnegativeMtrix=repmat(Anegative,size(V,1),1); 

s1=(V-ApositivMtrix).^2 

s2=(V-AnegativeMtrix).^2; 

for (j=1:1:size(s1,1)) 

sumAPositive(j)=sum(s1(j,:)); 

end 

for (j=1:1:size(s2,1)) 

sumANegative(j)=sum(s2(j,:))  

 



83 

 

 

 

Table 3.3. Continue. Matlab Programming Function Code for TOPSIS Method 

33 

34 

35 

36 

37 

end 

dpositive=sqrt(sumAPositive); 

dnegative=sqrt(sumANegative); 

sumD=dnegative+dpositive; 

cc=dnegative./sumD        

 

The final step takes us to the ranking of alternatives. This ranking indicates that the alternative 

with the higher value has greater importance and priority.  

The above formulas and steps have been programmed in Matlab software as shown in Table 

3.3. 

3.3.4. Fuzzy TOPSIS Method 

The working principle of fuzzy TOPSIS is based on the fact that the selected alternative should 

have the shortest distance from the fuzzy positive ideal solution (FPIS) and the farthest from 

the fuzzy negative ideal solution (FNIS) for solving MCDM problems. As a result, the ideal 

solution comprises all the best criteria, whereas the negative ideal solution is made up of all 

the worst criteria [258]. 

 

The stepwise procedure for implementing fuzzy TOPSIS is presented in Fig 3.5. By forming 

an initial decision matrix, the normalizing procedure of the decision matrix will be started. 

This is followed by building the weighted normalized decision matrix in Step 5, compute the 

fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) in Step 6, and 

calculating the separation measures for each alternative in Step 7. 

 

The procedure ends with the computation of the relative closeness coefficient in Step 8. The 

set of alternatives can be ranked according to the descending order of the closeness coefficient 

in Step 9.   The steps of the fuzzy TOPSIS algorithm are as follows: 

 

Step 1: Assign ratings to the criteria and the alternatives. 

 

Let us assume that there are 𝑚 possible home areas called 𝐴 = {𝐴1, 𝐴2, . . 𝐴𝑚} which are to 

evaluated against 𝑐  criteria, 𝐶 = {𝐶1 , 𝐶2 , … , , 𝐶𝑐}. The criteria weights are denoted by 

𝑤𝑔   (𝑔 = 1, 2, … , 𝑐). The ratings of each decision-maker 𝐷𝑘 = (𝑘 = 1, 2, … , 𝑘) for each 
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alternative 𝐴𝑘𝑖 = (𝑖 = 1, 2, … , 𝑚) with respect to criteria 𝐶𝑔  (𝑔 = 1, 2, … , 𝑐) are denoted by 

𝑅̃𝑘 = 𝑥̃𝑖𝑔𝑘  with membership function µ𝑅̃𝑘
(𝑥). 

 

Step 1: Assignment of ratings to the criteria and the  alternatives.

Step 2: Compute aggregate fuzzy ratings for the criteria and the alternatives.

Step 3: Compute the fuzzy decision matrix.

Step 4: Normalize the fuzzy decision matrix.

Step 5: Compute the weighted normalized matrix.

Step 6: Compute the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS)

Step 7: Compute the distance of each alternative from FPIS and FNIS.

Step 8: Compute the closeness coefficient  of each alternative.

Step 9: Rank the alternatives.

 

Figure 3.5. The Steps of the Fuzzy TOPSIS Algorithm 

 

Step 2: Compute aggregate fuzzy ratings for the criteria and the alternatives. 

If the fuzzy rating of all consumers or family members is represented as a triangular fuzzy 

number 

 𝑅̃𝑘 = (𝑎𝑘 , 𝑏𝑘 , 𝑐𝑘), 𝑘 = 1, 2, … , 𝐾                                                                            (3.22) 

then the aggregated fuzzy rating is given by 𝑅̃ = (𝑎, 𝑏, 𝑐), 𝑘 = 1, 2, … , 𝐾 where 

𝑎 = 𝑚𝑖𝑛𝑘{𝑎𝑘}     𝑏 =
1

𝑘
 ∑ 𝑏𝑘 𝑘

𝑘=1      𝑐 = 𝑚𝑎𝑥𝑘 {𝑐𝑘}                                               (3.23) 

If the fuzzy rating and importance weight of the 𝑘th decision maker are 

 𝑥̃𝑖𝑔𝑘 = (𝑎𝑖𝑔𝑘 , 𝑏𝑖𝑔𝑘 , 𝑐𝑖𝑔𝑘 )                      (3.24) 

and 

 𝑤̃𝑖𝑔𝑘 = (𝑤𝑔𝑘1 , 𝑤𝑔𝑘2 , 𝑤𝑔𝑘3 ),       i =  1, 2, … , m   , g =  1, 2, … , n       (3.25) 
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respectively, then the aggregated fuzzy ratings 𝑥̃𝑖𝑗𝑘 of alternative with respect to each 

criterion are given by 

 𝑥̃𝑖𝑗 = (𝑎𝑖𝑔 , 𝑏𝑖𝑔 , 𝑐𝑖𝑔 ) ;                                                                                               (3.26)  

where, 

𝑎𝑖𝑔 = 𝑚𝑖𝑛𝑘{𝑎𝑖𝑔𝑘}                                                                                                      (3.27) 

𝑏𝑖𝑔 =
1

𝑘
 ∑ 𝑏𝑖𝑔𝑘

𝑘
𝑘=1                                                                                            (3.28) 

𝑐𝑖𝑔 = 𝑚𝑎𝑥𝑘 {𝑐𝑖𝑔𝑘}                                                                                                      (3.29) 

The aggregated fuzzy weights (𝑤̃𝑖𝑗) of each criterion are calculated as 𝑤̃𝑖𝑔 =

(𝑤𝑔1 , 𝑤𝑔2 , 𝑤𝑔3 )                                                                                                        (3.30) 

 

where 

𝑤𝑔1 = 𝑚𝑖𝑛𝑘{𝑤𝑔𝑘1} ; 𝑤𝑔2 =
1

𝑘
 ∑ 𝑤𝑗𝑘2  𝑘

𝑘=1  ;  𝑤𝑔3 = 𝑚𝑎𝑥𝑘 {𝑤𝑗𝑘3}                            (3.31) 

 

Step 3: Compute the fuzzy decision matrix. 

The fuzzy decision matrix for the alternatives (𝐷̃) and the criteria (𝑊̃) is constructed as 

follows: 

𝐷̃ =
𝐴1

𝐴..

𝐴𝑚

 [
𝑥̃11 ⋯ 𝑥̃1𝑐

⋮ ⋱ ⋮
𝑥̃𝑚1 ⋯ 𝑥̃𝑚𝑐

]                                                                                          (3.32) 

 

𝑊̃ = (𝑤̃1, 𝑤̃2 , … , 𝑤̃𝑐  )            (3.33) 

  

Step 4: Normalize the fuzzy decision matrix. 

     The raw data are normalized to bring the various criteria scales into a comparable scale. 

The normalized fuzzy decision matrix is 𝑅̃ given by: 

 

𝑅̃ =  [𝑟̃𝑖𝑔]
𝑚×𝑐

, 𝑖 = 1, 2, … , 𝑚;  𝑔 = 1, 2, … , 𝑐                                                            (3.34)  

Where for benefit criterion  

𝑟̃𝑖𝑔 =  (
𝑎𝑖𝑔,

𝑐𝑔
+ ,

𝑏

𝑐𝑔
+ ,

𝑐𝑖𝑔,

𝑐𝑔
+ )                                                                                                     (3.35) 

 and 

 𝑐𝑔
+ =  𝑚𝑎𝑥𝑖  𝑐𝑖𝑔  (Benefit criterion)                                                                            (3.36)           

and for cost criterion: 
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𝑟̃𝑖𝑔 = (
𝑎𝑔

−

𝑐𝑖𝑔
,

𝑎𝑔
−

𝑏𝑖𝑔
,

𝑎𝑔
−

𝑎𝑖𝑔
)                                                                           (3.37) 

and 

 𝑎𝑔
− =  𝑚𝑎𝑥𝑚𝑖𝑛𝑖  𝑎𝑖𝑔  (Cost criterion)                                                                          (3.38) 

 

Step 5: Compute the weighted normalized matrix. 

The weighted normalized matrix 𝑉̃for criteria is computed by multiplying the weights (𝑤̃𝑗) 

of the evaluation criteria with the normalized fuzzy decision matrix normalization of the 

decision matrix 𝑟̃𝑖𝑗 

𝑉̃ =  [𝑣̃𝑖𝑗]
𝑚×𝑐

 𝑖 = 1, 2, … , 𝑐; 𝑗 = 1, 2, … , 𝑚                                                                 (3.39) 

 

where  𝑣̃𝑖𝑗 =  𝑟̃𝑖𝑗 ×   𝑤̃𝑖𝑗                                                                                                 (3.40) 

 

Step 6: Compute the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution 

(FNIS) 

The FPIS and FNIS of the alternatives are computed as follows: 

𝐴+=( 𝑣̃1
+, 𝑣̃2

+ , … , 𝑣̃𝑚
+)                                                                             (3.41) 

 

Where 

𝑣̃𝑖
+ = 𝑚𝑎𝑥𝑖  {𝑣𝑖𝑔3},      g =  1, 2, … , c   , i =  1, 2, … , m                                              (3.42) 

and 

  𝐴−=( 𝑣̃1
+, 𝑣̃2

+ , … , 𝑣̃𝑚
+)                                     (3.43) 

Where  

𝑣̃𝑖
− = 𝑚𝑖𝑛𝑖  {𝑣𝑖𝑔1}, g =  1, 2, … , c   , i =  1, 2, … , m                                     (3.44) 

 

Step 7: Compute the distance of each alternative from FPIS and FNIS. 

    The distance(𝑑𝑖
+,𝑑𝑖

−) of each weighted alternative 𝑖 = 1, 2, … , 𝑚 from the FPIS and the 

FNIS is computed as follows: 

 

𝑑𝑖
+ = ∑ 𝑑𝑣

𝑚
𝑖=1 (𝑣̃𝑖𝑔, 𝑣̃𝑖𝑔

+ ), 𝑖 = 1, 2, … , 𝑚 ; g =  1, 2, … , c                                     (3.45) 

 

𝑑𝑖
− = ∑ 𝑑𝑣

𝑚
𝑖=1 (𝑣̃𝑖𝑗, 𝑣̃𝑖𝑔

− ), 𝑖 = 1, 2, … , 𝑚 ; g =  1, 2, … , c                                     (3.46) 
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Where 𝑑𝑣  (𝑎̃, 𝑏̃) is the distance measurement between two fuzzy numbers 𝑎̃  and 𝑏̃ . 

 

Step 8: Compute the closeness coefficient (𝐶𝐶𝑖) of each alternative. 

The closeness coefficient 𝐶𝐶𝑖  represents the distances to the fuzzy positive ideal solution 

(𝐴+) and the fuzzy negative ideal solution(𝐴−) simultaneously. The closeness coefficient of 

each alternative is calculated by: 

(𝐶𝐶𝑖) =  
𝑑𝑖

−

𝑑𝑖
−+𝑑𝑖

+  i =  1, 2, … , m                          (3.47) 

Step 9: Rank the alternatives. 

In Step 9, the different alternatives are ranked according to the closeness coefficient (𝐶𝐶𝑖) in 

decreasing order. The best alternative is closest to the FPIS and farthest from the FNIS. 

 

3.3.5. ELECTRE Method 

The acronym ELECTRE stands for “ELimination Et Choix Traduisant la REalité” that in 

English translates to “Elimination and Choice Expressing the Reality”. This method is 

included in the concordance subgroup, one of the multi-criteria decision-making 

compensatory types and is considered as an outranking method.  

The methodology developed by [259] uses binary outranking relations, “S”, for modelling the 

preferences as it has been described by [260] .”S” means “at least as good as” and for 

outranking two alternatives such as “𝑎1” and “𝑎2”, four situations may occur: 

1. 𝑎1S𝑎2 & -( 𝑎2S𝑎1) : this relationship can be stated as “𝑎1” is at least as good as “𝑎2” and   

“𝑎2” is not at least as good as “𝑎1” or,  “𝑎1” is strictly preferred to “𝑎2” that it can be 

shown by ‘𝑎1P𝑎2’. 

2. 𝑎2S𝑎1 & -𝑎1S𝑎2:  “𝑎2” is strictly preferred to “𝑎1” or 𝑎2P𝑎1. 

3. 𝑎1S𝑎2 & 𝑎2S𝑎1: “𝑎1” is indifferent to “𝑎2”: 𝑎1I𝑎2 

4. -(𝑎1S𝑎2) & -(𝑎2S𝑎1): “𝑎1” is incomparable to “𝑎2” : 𝑎1R𝑎2 

 

By this comparison, a major concept is concordance for asserting  𝑎1S𝑎2 which means that 

this outranking relation is valid when the majority of the criteria support this assertion [260]. 

So in this approach when a decision maker accepts 𝑎1S𝑎2, it means the DM is accepted the 

risk of 𝑎1 in which it dominates 𝑎2.Moreover, the concordance criterion is defined by Roy 

[220] as “ the j th criterion is in concordance with the assertion 𝑎1S𝑎2 if and only if 𝑎1𝑆𝑗𝑎2”, 

and similarly the discordance criterion or index is defined as “the jth criterion is in discordance 
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with the assertion 𝑎1𝑆𝑗𝑎2 if and only if 𝑎1𝑃𝑗𝑎2.” So constructing the subsets of concordance 

and discordance of all criteria (called coalition) by a systematic comparison of alternatives to 

each criterion is inherent to this methodology. 

 The objective of the ELECTRE method is to assist DMs to choose a subset of alternatives, as 

limited as possible, by means of which a single alternative may finally be selected [260]. The 

ELECTRE methodology is similar to steps 1 to 5 in the TOPSIS methodology in which the 

weighted normalized decision matrix 𝑉 is built. The other steps are as follows: 

Call the TOPSIS method, 𝐴 = { 𝐴1, … 𝐴𝑚} is a set of alternatives which are to be evaluated 

against 𝑐 criteria  𝐶 = {𝐶1 , … , 𝐶𝑐}. "𝑔" is a subset for criteria and "𝑖" is a subset to include 

alternatives. By implementing steps 1 to 5 of the TOPSIS method, the V matrix is calculated 

using: 

 

𝑉 = 𝑁𝑚×𝑐 . 𝑤′𝑐×𝑐 = (𝑣𝑖𝑔)𝑚×𝑐                                             

(𝑖 = 1, … , 𝑚 ;  𝑔 = 1, … , 𝑐).    

Step 6: Forming the concordance and discordance subsets 

I define the subscripts "𝑙", "𝑘" for showing the alternatives which are being outranked 

with regard to criterion "𝑗" in matrix "𝑉". So "𝑙" and "𝑘" cannot be equal and the 

concordance subset of alternatives "𝑙" and "𝑘" can be shown 

𝑆(𝑙, 𝑘) =  {𝐶, 𝑉𝑙𝑗 ≥ 𝑉𝑘𝑗} ; 𝑗 ∈ 𝑔                                                                              (3.48) 

The above relation indicates a set of criteria (in matrix"𝑉") in which the value of 

alternative "𝑙" is preferred to alternative "𝑘". The complement of the concordance set 

is the discordance set which is a set of criteria where the alternative "𝑘" is preferred to 

alternative "𝑙". 

𝐷(𝑙, 𝑘) =  {𝐶, 𝑉𝑙𝑗 < 𝑉𝑘𝑗}                                                                                         (3.49) 

Step 7: Forming the Concordance Index and Matrix 

𝐼𝑙𝑘 =  ∑ 𝑤𝑗𝑗∈ 𝑆(𝑙,𝑘)  ,   0 ≤ 𝐼𝑙𝑘 ≤ 1                                                                            (3.50) 

𝐼 =  [𝐼𝑙𝑘]𝑚×𝑚                                                                                                     (3.51)  

Step 8: Forming the Discordance Index and Matrix 
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𝑁𝐼𝑙𝑘 =  
𝑚𝑎𝑥𝑗∈𝐷(𝑙,𝑘)|𝑉𝑙𝑗−𝑉𝑘𝑗|

𝑚𝑎𝑥𝑗∈𝑔|𝑉𝑙𝑗−𝑉𝑘𝑗|
                                          (3.52) 

𝑁𝐼 =  [𝑁𝐼𝑙𝑘]𝑚×𝑚                                                                                 (3.53) 

Step 9: Determining the threshold concordance and discordance Matrices 

In this step, the threshold concordance and discordance values by forming the matrices 𝐼 ̅and 

𝑁𝐼̅̅̅̅  are determined for evaluation of outranking the alternatives. Afterwards, the result of this 

evaluation can be summarized in the Boolean matrices 𝐹 and 𝐺. 

𝐼 ̅ = ∑ ∑
𝐼𝑙,𝑘

𝑚(𝑚 − 1)⁄𝑚
𝑙=1

𝑚
𝑘=1                                         (3.54) 

𝑁𝐼̅̅̅̅ = ∑ ∑
𝑁𝐼𝑙,𝑘

𝑚(𝑚 − 1)⁄𝑚
𝑙=1

𝑚
𝑘=1                (3.55) 

The binary relation of concordance values by forming Boolean matrix 𝐹 is as follows: 

𝑓𝑙𝑘 = {
1 →  𝐼𝑙𝑘 ≥ 𝐼̅

0 →  𝐼𝑙𝑘 < 𝐼̅
                              (3.56) 

𝐹 =  [𝑓𝑙𝑘]𝑚×𝑚                                                   (3.57) 

The binary relation of concordance values by forming Boolean matrix 𝐺 is as follows: 

𝑔𝑙𝑘 = {
1 →  𝑁𝐼𝑙𝑘 ≥ 𝑁𝐼̅̅̅̅

0 →  𝑁𝐼𝑙𝑘 < 𝑁𝐼̅̅̅̅
                                                   (3.58) 

𝐺 =  [𝑔𝑙𝑘]𝑚×𝑚                                                       (3.59) 

Step 10: Determining the total outranking relation matrix 

Matrix H is formed to achieve the final outranking of the alternatives by comparing the 

Boolean matrices F and G. 

ℎ𝑙𝑘 =  𝑓𝑙𝑘 ×  𝑔𝑙𝑘                                                    (3.60) 

𝐻 =  [ℎ𝑙𝑘]𝑚×𝑚                                                                                 (3.61) 

I have programmed the aforementioned formulas and steps in Matlab software as shown in 

Table 3.4. 
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Table 3.4. Matlab Programming Function Code for ELECTRE Method 

1 

2 

3 

4 

5 

6 

7 

 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

function[h]=electreEntropy(decisionMakingMatrix,lambdaWeight,criteriaSign) 

% Author: Omid Ameri Sianaki 

%This function implements ELECTRE I method with Information Entropy 

 % weighting Method 

%%%%%%%%%%%%%%%%%%%%%%% 

sumDecisionMaking = sum(decisionMakingMatrix()) 

sumDecisionMakingMatrix=repmat(sumDecisionMaking,size(decisionMakingMa

trix,1),1) 

decisionMakingMatrixsumNorm=decisionMakingMatrix./sumDecisionMakingMa

trix 

lnm=-1/log(size(decisionMakingMatrix,1)) 

lnDecisionMakingMatrixsumNorm = log(decisionMakingMatrixsumNorm); 

E=lnm.*sum(decisionMakingMatrixsumNorm.*lnDecisionMakingMatrixsumNor

m); 

d=ones(1,size(E,2))-E; 

weightEntropy=d ./sum(d); 

wt=lambdaWeight .*weightEntropy ./sum(lambdaWeight .*weightEntropy); 

clsm=sqrt(sum(decisionMakingMatrix().^2)); 

nDecisionMakingMatrix=decisionMakingMatrix./repmat(clsm,size(decisionMaki

ngMatrix,1),1);  

wtmat=eye(size(wt,2)) .* repmat(wt.*criteriaSign,size(wt,2),1);  

v=nDecisionMakingMatrix*wtmat;                       

concordance=zeros(size(decisionMakingMatrix,1))    ;    

for(i=1:1:size(decisionMakingMatrix,1)) 

  for(j=1:1:size(decisionMakingMatrix,1)) 

  concordance(i,j)=sum(double(v(i,:)>=v(j,:)).*wt); 

 end 

end 

discordance=zeros(size(decisionMakingMatrix,1)) ;     

for(i=1:1:size(decisionMakingMatrix,1)) 

 for(j=1:1:size(decisionMakingMatrix,1)) 

  discordance(i,j)=max(abs(double(v(i,:)<v(j,:)).*( v(i,:)- v(j,:))))/max(abs( v(i,:)-

v(j,:))); 

   end 
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Table 3.4. Continue. Matlab Programming Function Code for ELECTRE Method 

32 

33 

34 

35 

37 

38 

39 

40 

41 

42 

43 

44 

45 

end 

concordance(isnan(concordance)) = 0 ;  

concordance=concordance.*(eye(size(decisionMakingMatrix,1))-1) .*-1;  

discordance(isnan(discordance)) = 0  ;  

discordance=discordance.*(eye(size(decisionMakingMatrix,1))-1) .*-1;  

alpha=sum(sum(concordance ./(size(decisionMakingMatrix,1)* 

(size(decisionMakingMatrix,1)-1)))); 

beta=sum(sum(discordance ./(size(decisionMakingMatrix,1)* 

(size(decisionMakingMatrix,1)-1)))); 

f=concordance>=alpha; 

g=discordance<=beta; 

h=(f.*g ).*(eye(size(decisionMakingMatrix,1))-1) .*-1 

xlswrite('excelFile.xlsx',h, 'sheetName', 'cellAddress') 

end 

 

3.4. Criteria for Decision Making on Energy Management 

As discussed, and shown in Fig 3.2, the selection of criteria is the first step in the decision-

making process. In this approach, the selection of appropriate criteria can be done by referring 

to the literature review presented in Chapter 2. Table 3.5 shows a list of criteria can be applied 

to the decision-making process regarding energy consumption in the residential sector. In the 

following, I show how these criteria may be utilized by users in different approaches. 

Table 3.5. The List of Criteria for Assessing Energy Consumption in a Residence 

 Criterion Definition 

𝐜𝟏 Energy Cost Energy consumption cost of all electrical devices in area Ai in 

time slot t1 

𝐜𝟐 Budget The amount of budget that users are prepared to expend on 

utilizing the appliances in area Ai 

𝐜𝟑 Urgency Energy demand necessity for each area  in time slot t1 

𝐜𝟒 Thermal Comfort  The level of thermal comfort for each area in time slot t1 

𝐜𝟓 Visual Comfort  The level of visual comfort for each area in time slot t1 
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Table 3.5. Continue. The List of Criteria for Assessing Energy Consumption in a Residence 

 Criterion Definition 

𝐜𝟔 IAQ Comfort The level of indoor air quality for each area in 

time slot t1 

𝐜𝟕 GHG emission Greenhouse gas emissions produced by 

consumption in areas 

𝐜𝟖 Energy efficiency 

score 

Energy efficiency rate provided for users that can 

be compared with data for neighbors and other 

households (in social network or in a region) 

𝐜𝟗 Carbon tax The amount of carbon tax allocated to areas by 

consumed energy 

𝐜𝟏𝟎 Occupancy level Amount of time that a dwelling is occupied. 

𝐜𝟏𝟏 Power (watt) Amount of power required for an appliance to 

operate a task 

𝐜𝟏𝟐 Operation time  The time of doing a task by using an appliance 

𝐜𝟏𝟑 Enjoyment The amount of amusement and/or happiness 

achieved by using an appliance 

𝐜𝟏𝟒 Welfare The well-being condition attained by using an 

appliance 

𝐜𝟏𝟓 Energy (kw.h) The amount of energy required for an appliance to 

execute a task 

 

 For criteria that are qualitative, I use a rating scale as shown in Table. 3.6. 

Table 3.6. Rating Scale for Qualitative Criteria 

 Much less Less Average More Much More 

Value 0 1 2 3 4 5 7 8 9 10 

 

In the following section, I present various scenarios in which the above methodologies and 

criteria are used to help consumers to have an overview of their energy consumption. 
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3.5. Application of Decision Making Methods in Energy Management in Demand 

Response of Smart Grid 

     3.5.1. AHP Application 

Structuring any decision problem hierarchically is an efficient way of dealing with 

complexity and identifying the major components of the problem [261]. As earlier discussed, 

the Analytic Hierarchy Process (AHP) is a common theory of measurement. It is used to derive 

ratio scales from both discrete and continuous paired comparisons. These comparisons may 

be taken from actual measurements or from a fundamental scale which reflects the relative 

strength of preferences and feeling [262].  

 

In this approach, I present a scenario that provides a good example of AHP application for 

ranking the consumers’ preferences regarding the use of some typical appliances during peak 

hours when the price of electricity has increased. I have assumed that there is an end-user who 

judges seven appliances. These appliances, as shown in Table 3.7, are Dishwasher (DW), 

Home computer (HC), Hair dryer (HD), Iron (IR), Spa Bath (SB), Television (TV), and 

Vacuum Cleaner (VC). Our goal in this scenario is to rank the appliances according to several 

criteria that will be used by the consumer to ascertain their level of importance to him. I asked 

the consumer to compare his use of electrical devices based on priority in a pairwise 

comparison, according to criteria during peak hours when the price increased from $0.15 kW.h 

to $0.2 kW.h at peak period. The criteria are: Urgency, welfare and enjoyment derived from 

using appliances, and the cost of electricity as shown by a hierarchy model in Figure 3.6. The 

consumers use appliances for their essential requirements, welfare or enjoyment needs. For 

example, from a student’s perspective, using a computer during peak hours can be considered 

as an urgent and imperative need, whereas it may be an enjoyment for a mature adult. In the 

next sections, I will expand on our methodology. 

 After creating a hierarchical model, the priorities are established among the elements of 

the hierarchy by making judgments based on the pairwise comparisons. For example, by 

comparing the appliances, the consumer might say he prefers to have imperative use of 

appliances during peak hours even if the price increases, or he might prefer to enjoy using 

appliances regardless of the cost, or conversely, he might prefer to save money and not to use 

the appliances that bring him enjoyment during peak hours.  

Then, in order to arrive at a set of overall priorities for the hierarchy of all appliances, the 

judgments will be synthesized for each criterion. For example, the consumer will judge the 



94 

 

 

 

level of emergent use of his seven appliances according to the most emergent to less emergent 

one according to his preference. I used the Expert Choice software, EC11.5 [263] to arrive at 

the consumer judgment about each element and also to process and to measure the hierarchy. 

The results of the numerical priority of criteria and alternatives are presented at Figure 3.10. 

The inconsistency value of judgment in this scenario for all measurements was less than 

0.0002, meaning that the user has an acceptable level of consistency in his judgment.    

 

Table 3.7. Appliance Specifications 

 

Appliance 
Power -

kW 

Hour of 

usage 

Off-peak 

time  cost- $ 

On-peak 

time cost- $ 

1 Iron 0.933 0.5 0.07 0.093 

2 Television 0.200 1.0 0.03 0.40 

3 Spa bath with 5 kW 
heater 

4.933 0.5 0.373 0.493 

4 Vacuum cleaner 0.933 0.5 0.07 0.093 

5 Dishwasher 1.867 1.0 0.28 0.373 

6 Hair dryer 1.467 0.3 0.066 0.088 

7 Home computer 0.067 1.0 0.01 0.013 

The cost of electricity for one-hour use 0.896 1.195 

 

As a result, it is specified that according to four criteria of emergency usage of appliances, 

welfare and enjoyment derived from them and the electrical cost of usage, when the electrical 

price increases from 0.15$/kW.h to 0.2 $/ kW.h or 0.33 percent during peak hours, the 

consumer prefers to use the Spa Bath with highest priority and the Iron with lowest priority. 

The final preference ranking is presented in Table 3.8. 

In this scenario, the user is able to input the preferences in order to compare the appliances 

based on a criterion by adjusting a graphical control scrollbar (horizontal slider) as shown in 

Figure 3.7. As can be seen, in each step the user has to input data for pairwise comparison. 

However, in demand response programs, it is difficult and overwhelming for consumers to 

input data continuously. Moreover, the number of appliances is not limited to five or six as 

presented in the scenario; it can be an unlimited number. So, I offer decision-making methods 

that can be applied by users who wish to have control over consumption, and which are less 
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dependent on decision-maker interaction. Hence, in the next section, by means of various 

scenarios, I explain how the ELECTRE and TOPSIS methods may assist users.  

 

 

Figure 3.6.  AHP Hierarchy in the Given Scenario 

 

 

 

 

Figure 3.7. Inputting Data by User for Appliances Pairwise Comparison based on Electrical 

Cost in Expert Choice Software 

 

Emergency Electrical Cost (kW.h) Enjoyment Welfare 

Which appliances do you like to use during peak 

hours if price increases 33 percent? 

Goal: 

Criteria: 

Alternatives: 

SB HC DW TV VC IR HD 
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Figure 3.8. Result of Appliances Ranking Based on Each Criterion 
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Figure 3.9. Final Result of Criteria Ranking in Proposed Scenario 

 

Figure 3.10. Final Appliances Ranking by AHP Method 

 

Table 3.8. Summary of Final Decision-making 

 

 

Goal: Which electrical devices do you prefer to use during peak hours when the 

price of electricity increases by 33 percent? 

Appliance ranking Numerical  priority 

1- Spa Bath 

 

0.237 

 

2- Dishwasher 0.235 

3- Home Computer 0.183 

4- Vacuum Cleaner 0.120 

5- TV 

 

0.112 

 

6- Hair Dryer 

 

0.065 

 

7- Iron 0.049 
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 3.5.2. Fuzzy TOPSIS Methodology for Home Energy Management System 

  In Chapter 2, I stated that householders have different characteristics in terms of cultural 

background, gender, income, level of education and social status. Moreover, they may have 

to deal with different energy policies, subsidies and energy supply, all of which mean that they 

may use appliances differently.  

This difference may be due to the different criteria that are shown in Tables 3.5. Criteria such 

as cost and budget are based on householders’ income [264]; and energy demand urgency and 

comfort level are associated with the consumers’ lifestyle [20, 47, 115]. 

 

In Chapter 1, I explained that the smart grid concept is intended to support “green” sources 

[21], and  the emission trading scheme and carbon tax policy are designed to impact on the 

energy demand [265]. Moreover, several criteria have been identified by consumer’s attitudes 

and behavior towards the green electricity market [266, 267] such as green gas emission, 

carbon tax and energy efficiency score. Two types of criteria are presented in Table 3.9.  The 

criteria with higher values produce profit (positive) or adversely produce more cost (negative). 

Therefore, I try to decrease cost and increase profit when making decisions.    

In section 3.3.4, a scenario is presented to demonstrate the application of fuzzy TOPSIS 

methodology in facilitating energy management in the smart grid. In this scenario, the 

conversion scale is applied to transform the linguistic terms for determining the rating of 

alternatives and criteria into fuzzy numbers as shown by the fuzzy triangular membership 

function in Fig 3.11. 

In this scenario, there are two users in a house with different incomes and cultural 

backgrounds. I refer to the comfort management section in Chapter 2, section 2.6. to measure 

the comfort parameters for these users. The primary data about users and environment are 

presented in Tables 3.10-17. 

 

Figure 3.11. Fuzzy Triangular Membership 
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Table 3.9. Criteria Applicable for Decision-making by Fuzzy TOPSIS Methodology 

 Criterion Definition Type 

c1 Energy Cost Energy consumption cost of all electrical 

devices in area Ai in time slot t1 

- 

c2 Budget The amount of budget that users are prepared to 

expend on utilizing the appliances in area Ai 

- 

c3 Urgency Energy demand urgency for each area  in time 

slot t1 

- 

c4 Thermal 

Comfort level 

The level of thermal comfort level for each area 

in time slot t1 

+ 

c5 Visual 

Comfort level 

The level of visual comfort for each area in 

time slot t1 

+ 

c6 IAQ Comfort 

level 

The level of indoor air quality for each area in 

time slot t1 

+ 

c7 GHG 

emission 

Greenhouse gas emissions that are produced by 

consumption in areas 

- 

c8 Energy 

efficiency 

score 

Energy efficiency rate provided for users that 

can be compared with data for neighbors and 

other households (in social network or in a 

region) 

+ 

c9 Carbon tax The amount of carbon tax allocated to areas by 

consumed energy 

- 

c10 Occupancy 

level 

Amount of time that a dwelling is occupied. + 

 

 User 1 does not care about cost and wants a high level of comfort by utilizing 

energy. This user is engaged in an activity that requires more light.   

 User 2 is concerned about environmental issues and is a green consumer.  
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Table 3.10. User 1’s Characteristics for Calculating PMV 

Parameter Value 

M=Metabolic energy production ((𝑊/𝑚2) 180 

W= Rate of mechanical work (𝑊/𝑚2) 0 

𝐼𝑐𝑙 = Basic clothing insulation (clo) 1 

 

Table 3.11. User 2’s Characteristics for Calculating PMV 

Parameter Value 

M=Metabolic energy production ((𝑊/𝑚2) 80 

W= Rate of mechanical work (𝑊/𝑚2) 0 

𝐼𝑐𝑙 = Basic clothing insulation (clo) 2 

 

 Formulas 2.1-4 are used for calculating the PMV index by using the users’ characteristics 

shown in Tables 3.10,11 and the environmental parameters for each zone is shown in 

Table 3.12. After PMV calculation, a seven-point ASHRE thermal sensation scale is used 

and as shown in Table 3.13, these scales have been converted to fuzzy numbers, 

respectively. Moreover, values in Tables 3.14 and 15 were used for converting the visual 

and indoor air quality criteria to fuzzy numbers. So, by measuring the value of these 

parameters presented in Tables 3.16 and 17, I reached the final linguistic assessment 

shown in Table 3.19.  

Table 3.12. Environmental Parameters in each Home Area for Calculating the PMV 

 
𝑨𝟏 = 

Kitchen 

𝑨𝟐= 

Bedrooms 

𝑨𝟑= 

Living 

room 

𝑨𝟒= 

Laundry 

𝒕𝒂 =Ambient air temperature (°C) 
28 

29 22 28 

𝒕̅𝒓 = Mean radiant temperature 

(°C) 

27 
28 21 26 

𝒗𝒂𝒓 = Relative air velocity (𝒎/𝒔) 
0.2 

0.3 0.4 0.1 

Relative humidity [rh (%)] 
30 

55 10 70 
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Table 3.13. Converting Thermal Comfort Criteria (PMV) to Linguistic Terms 

Linguistic terms for 

thermal comfort criteria 

rating 

PMV Seven-point ASHRE Thermal Sensation 

Scale 

 

very low=(1,1,3) -3 Cold 

Low=(1,3,5) -2 Cool 

Medium=(3,5,7) -1 Slightly cool 

High=(5,7,9) -0.5 Slightly cool 

Very high=(7,9,9) 0 Neutral 

High=(5,7,9) 0.5 Slightly warm 

Medium=(3,5,7) 1 Slightly warm 

Low=(1,3,5) 2 Warm 

very low=(1,1,3) 3 Hot 

Table 3.14. Converting Visual Comfort Criteria to Linguistic Terms 

Linguistic terms for visual 

comfort criteria rating  

from User 1 

Linguistic terms for visual 

comfort criteria rating  

from User 2 

 

Illuminance( Lux) 

Very Low=(1,1,3) Very Low=(1,1,3) I>20,000 

Low=(1,3,5) Very Low=(1,1,3) 3001<I<10,000 

Medium=(3,5,7) Low=(1,3,5) 2001<I<3,000 

High=(5,7,9) Medium=(3,5,7) 601<I<2000 

Very High= (7,9,9) High=(5,7,9) 501<I<600 

High=(5,7,9) Very High= (7,9,9) 401<I<500 

Medium=(3,5,7) Medium=(3,5,7) 201<I<400 

Low=(1,3,5) Low=(1,3,5) 51<I<200 

Very Low=(1,1,3) Very Low=(1,1,3) I<50 
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Table 3.15. Converting IAQ Comfort Criteria to Linguistic Terms 

Linguistic terms for indoor 
air quality comfort criteria 

rating for User 1 

Linguistic terms for indoor 
air quality comfort criteria 

rating for User 2 

𝐶𝑜2 Concentration 
(PPMV: parts per million 

by volume) 

 

Very Low=(1,1,3) Very Low=(1,1,3) 3001<𝐶𝑜2<5000 

Low=(1,3,5) Low=(1,3,5) 1501<𝐶𝑜2<3000 

Medium=(3,5,7) Low=(1,3,5) 1201<𝐶𝑜2<1500 

High=(5,7,9) Medium=(3,5,7) 1001<𝐶𝑜2<1200 

High=(5,7,9) High=(5,7,9) 501<𝐶𝑜2<1000 

Very High=(7,9,9) Very High=(7,9,9) 𝐶𝑜2<500 

 

Table 3.16. Illuminance and 𝑪𝒐𝟐 Concentration Measured in Each Zone 

 Illuminance 

(Lux) 
𝐶𝑜2 Concentration (PPMV: parts per million by 

volume) 

𝐴1 =Kitchen 1400 500 

𝐴2=Bedrooms 300 650 

𝐴3 =Living 

room 

500 700 

𝐴4 =Laundry 800 1200 
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Table 3.17. Calculated PMV and PPT for Thermal Comfort 

 

U
se

r 
1
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𝐴1 =Kitchen 
94.6 2.56 

L 57.9 1.63 M 

𝐴2=Bedrooms 
98.4 2.87 

VL 74.7 1.96 L 

𝐴3 =Living 

room 

56.6 1.6 
M 15.2 0.7 H 

𝐴4 =Laundry 
97.6 2.7 

VL 71.5 1.89 L 

 

The information about the cost of energy, carbon tax and GHG emission in the home areas 

of  𝐴1 = Kitchen, 𝐴2 = Bedrooms, 𝐴3 =  Living room and 𝐴4 = Laundry is used to 

compare the efficiency of their consumption with that of their neighbors, and is provided 

for users as shown in Table 3.18. 

 So, a decision on energy allocation should be made when the unit price of electrical 

energy increases from the slot time of 𝑡 𝑖 to  𝑡 𝑖+1 . The users use linguistic assessment to 

rate the criteria (Table 3.18). For example, user 1 believes that the importance of energy 

cost is high, but user 2 believes that it is very high; or the importance of carbon tax for 

user 1 is at medium, but it is high for user 2 and so forth.   
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Table 3.18.   Linguistic assessment for criteria 

Criteria Users Aggregated 

fuzzy 

weight 

 

User 1 User 2 

c1 Energy Cost H VH (5,8,9) 

c2 Budget M H (3,6,9) 

c3 Urgency H M (3,6,9) 

c4 Thermal Comfort level VH M (3,7,9) 

c5 Visual Comfort level VH M (3,7,9) 

c6 IAQ Comfort level H M (3,6,9) 

c7 GHG emission VL VH (1,5,9) 

c8 Energy efficiency score L VH (1,6,9) 

𝑐9 Carbon tax M H (3,6,9) 

𝑐10 Occupancy level H H (5,7,9) 

 

To construct the fuzzy TOPSIS model, the first step is the linguistic assessment of criteria and 

alternatives and the computation of the aggregated fuzzy value using Eq. 3.25 the results of 

which are presented in Tables 3.18, 3.19 and 3.20. For example, in Table 3.18 for criterion 𝑐2, 

“budget”, user 1 is satisfied to allocate a medium amount of budget (M) for energy for fuzzy 

triangular number that is (3, 5, 7), but user 2 prefers to spend a great deal (H) on energy 

according to the fuzzy triangular number of (5, 7, 9), so the aggregated fuzzy weight IS given 

by 𝑤̃2 = (𝑤21 , 𝑤22 , 𝑤23 ) where:  W21 = MIN2(3,5) = 3 ;  W22 =
1

2
 (5 + 7) =  6 ; 𝑤23 =

𝑚𝑎𝑥2 (7,9) =  9 ;      𝑤̃2 = ( 3, 6, 9)  . 
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Table 3.19. Linguistic Assessment for Alternatives 

Criteria 

Home Areas 

A1 A2 A3 A4 

U1 U2 U1 U2 U1 U2 U1 U2 

𝑐1 H M M H M VH L H 

𝑐2 L VH M L H L H L 

𝑐3 M H M L M L VH M 

𝑐4 L M VL L M H VL L 

𝑐5 H M M M L VH H M 

𝑐6 VH VH H H H H H M 

𝑐7 L H M H L VH VL VH 

𝑐8 L M H H L VH VL H 

𝑐9 M M M VH L VL M H 

𝑐10 VH M L VL VL M L M 

 

 

 

Table 3.20. Aggregate Fuzzy Decision Matrix 

Criteria 
A1 A2 A3 A4 

c1 (3,6,9) (3,6,9) (3,7,9) (1,5,9) 

c2 (1,6,9) (1,4,7) (1,4,7) (1,4,7) 

c3 (3,6,9) (1,4,7) (1,4,7) (3,7,9) 

c4 (1,4,7) (1,2,5) (3,6,9) (1,2,5) 
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Table 3.20. Continue. Aggregate Fuzzy Decision Matrix 

Criteria 
A1 A2 A3 A4 

c5 (3,6,9) (3,5,7) (1,6,9) (3,6,9) 

c6 (7,9,9) (5,7,9) (5,7,9) (3,6,9) 

c7 (1,5,9) (3,6,9) (1,6,9) (1,5,9) 

c8 (1,4,7) (7,9,9) (1,6,9) (1,4,9) 

𝐶9 (3,5,7) (3,7,9) (1,2,5) (3,6,9) 

𝐶10 (3,7,9) (1,2,5) (1,3,7) (1,4,7) 

 

In Step 4, I normalize the fuzzy decision matrix of alternative using Eq.3.39 and the result is 

shown in Table 3.21. The weighted decision matrix in step 5 is obtained by Eq. 3.38 .The 

result is shown in Table 3.22 below. 

Table 3.21. Normalized Fuzzy Decision Matrix for Alternatives 

Criteria A1 A2 A3 A4 

c1 (0.11,0.17,033) (0.11,0.17,033) (0.11,0.14,0.33) (0.11,0.2,1.00) 

c2 (0.11,0.17,1.00) (0.14,0.25,1.00) (0.14,0.25,1.00) (0.14,0.25,1.00) 

c3 (0.11,0.17,033) (0.14,0.25,1.00) (0.14,0.25,1.00) (0.11,0.14,0.33) 

c4 (0.11,0.44,0.78) (0.11,0.22,0.56) (0.33,0.67,1.00) (0.11,0.22,0.56) 

c5 (0.33,0.67,1.00) (0.33,0.56,0.78) (0.11,0.67,1.00) (0.33,0.67,1.00) 

c6 (0.78,1.00,1.00) (0.56,0.78,1.00) (0.56,0.78,1.00) (0.33,0.67,1.00) 

c7 (0.11,0.20,1.00) (0.11,0.17,033) (0.11,0.17,1.00) (0.11,0.20,1.00) 

c8 (0.11,0.44,0.78) (0.78,1.00,1.00) (0.11,0.67,1.00) (0.11,0.44,0.100) 

𝐶9 (0.14,0.20,0.33) (0.11,0.14,0.33) (0.20,0.50,1.00) (0.11,0.17,033) 

𝐶10 (0.33,0.78,1.00) (0.11,0.22,0.56) (0.11,0.33,0.78) (0.11,0.44,0.78) 
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The fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solution (FNIS) are obtained 

by Eq. 3.41 and 3.43 and then the distance of each alternative from FPIS and FNIS are obtained 

by using Eq. 3.45 and 3.46 as shown in Table 3.23.  

 

Table 3.22. Weighted Normalized Fuzzy Decision Matrix 

C 
A1 A2 A3 A4 

c1 (0.56,1.33,3) (0.56,1.33,3) (0.56,1.14,3) (0.56,1.6,9) 

c2 (0.33,1.00,9.00) (0.43,1.5,9.00) (0.43,0.15,9.0) (0.43,1.6,9) 

c3 (0.33,1.00,3.00) (0.43,1.5,9.00) (0.43,0.15,9.00) (0.33,0.86,3) 

c4 (0.33,3.11,7.00) (0.33,1.56,5.00) (1.,4.67,9.00) (0.33,1.56,5) 

c5 (1,4.67,9.00) (1,3.89,7.00) (0.33,4.67,9.00) (1,4.67,9) 

c6 (2.33,6.00,9.00) (1.67,4.67,9.00) (1.67,4.67,9.00) (1,4.00,9) 

c7 (0.11,1.00,9.00) (0.11,0.83,3.00) (0.11,0.83,9.00) (0.11,1.00,9) 

c8 (0.11,2.67,7.00) (0.78,6.00,9.00) (0.11,4.00,9.00) (0.11,2.67,9) 

𝑐9 (0.43,1.20,3.00) (0.33,0.86,3.00) (0.60,3.00,9.00) (0.33,1.00,3) 

𝑐10 (1.67,5.44,9.00) (0.56,1.56,5.00) (0.56,2.33,7.00) (0.56,3.11,7) 

 

The closeness coefficient of each alternative is calculated by Eq. 3.47 and is represented in 

Table 3.24. The alternative that has a higher value is preferred. Hence, the ranking of 

alternatives is 1- Laundry, 2-Bedrooms, 3- Kitchen, 4- Living room. This ranking shows the 

users’ preferences for energy distribution flow to the home areas or group of appliances in 

accordance with the increase in energy unit price. The main purpose of presenting this scenario 

is to propose a methodology to cater for the preferences of householders in order to prioritize 

the utilization of the groups of appliances when the function of users’ utility is significant in 

load curtailment in demand response programs. Economic, social, cultural and environmental 

factors influence users’ consumption behavior [268, 269] and users with different 

backgrounds choose different linguistic terms to evaluate and to judge about their 

consumption. Hence, a proposed fuzzy TOPSIS methodology is a tool that can assist a group 

of household members to assess their consumption and to make decisions about the energy 

flow distribution.  
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Table 3.23. Distance of Each Alternative from FPIS and FNIS 

C 𝑑𝑖
− 𝑑𝑖

+ 

A1 A2 A3 A4 A1 A2 A3 A4 

𝑐1 1.48 1.48 1.45 4.91 7.44 7.44 7.50 6.48 

𝑐2 5.01 5.04 5.04 5.04 6.81 6.57 6.57 6.57 

𝑐3 1.58 5.04 5.04 1.56 7.64 6.57 6.57 7.69 

𝑐4 4.17 2.94 5.60 2.78 6.15 6.98 5.25 6.98 

𝑐5 5.60 4.5 5.59 5.60 5.25 5.60 5.59 5.25 

𝑐6 5.5 5.64 5.09 4.93 4.22 4.91 4.91 5.44 

𝑐7 5.15 1.71 5.14 5.15 6.90 7.78 6.96 6.90 

𝑐8 4.24 5.98 5.60 5.34 6.40 5.05 5.88 6.30 

𝑐9 1.62 1.42 5.23 1.58 7.53 7.69 5.96 7.64 

𝑐10 5.67 3.04 3.86 4.00 4.70 6.89 6.31 6.05 

𝛴 30.59 29.92 37.21 30.40 52.49 53.07 50.85 54.64 

 

 

Table 3.24.    Ranking According to the Closeness Coefficient 

 A1 

Kitchen 

A2 

Bedrooms 

A3 

Living 

room 

 

A4 

Laundry 

𝐂𝐂𝐢 0.3523 0.3546 0.3491 0.3627 

Ranking 3 2 4 1 
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3.5.2.1. A Multi-agent Intelligent Decision Making Support System for Home 

Energy Management in Smart Grid by a Fuzzy TOPSIS Method 

 

From some of the literature reviewed in Chapter 2, I identified that householders’ decision-

making in regards to energy consumption is dependent on factors that influence the end-user’s 

energy consumption behavior; hence, several surveys have been conducted to investigate these 

factors [47, 264, 270, 271]. For instance, Stern [272] demonstrated that the contextual domain 

of this behavior comprises: attributes that an individual has at birth, the immediate situation, 

public policy and economic variables. Kowsari et al. [264] presented a conceptual framework 

as a basis for formulating a household consumption behavior strategy and they proposed an 

integrated approach to determine the economic characteristics of a household. On the other 

hand, in many load scheduling and planning approaches such as those of [114, 115, 273], the 

researchers included the consumers’ preferences and utility function in their optimization 

models. For instance, in the approaches suggested by Lampropoulos et al. [270] and Wang 

[115], the importance of including the behavior of householders in power system planning is 

demonstrated but there is no methodology for obtaining and ranking these preferences. 

The measurement and inclusion of these factors would be more complex when there is a 

conflict of preferences among several consumers in a home. This issue is demonstrated by 

[274] when there is “analysis talk” among  household members to identify how energy savings 

might be made. Therefore, in the proposed approach, the aggregated fuzzy rating of criteria 

for more than one consumer was computed. 

 

Following a survey of the literature [115, 264, 270, 272, 275-279], I identified that the 

householders with different cultural backgrounds, gender, income, education and social  status 

who are located in different geographic locations with different climates and dealing with 

different energy policies, subsidies and energy supply, will utilize appliances in accordance 

with the various criteria that were presented in Tables 3.5. 

A multi-agent system is a combination of several agents working in collaboration to perform 

assigned tasks to achieve the overall goal of the system [280]. There are many publications 

which demonstrate the utilization of agents to produce solutions for specific smart grid 

applications. Researchers are currently developing agent-based methods to address demand 

response in a dynamic pricing scheme [281]. 
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Reference [282] argued that a multi-agent system is not synonymous with an EMS. Rather, it 

is only one possible control method that can be applied to an EMS. Furthermore, the authors 

discussed that the individual characteristics of inhabitants in a smart grid can be adapted by 

agent-based systems and thus have the potential to raise subjective comfort. Thus, this may 

create a positive evaluation of the technology. That is, the systems' adaptability to occupants’ 

needs and changes in preferences or behaviour over time may be crucial for the success of the 

systems and their related technologies. In order to respond to the householder’s requirements 

while integrating new sources of energy, reference [281] proposed an agent-based approach 

for optimizing energy consumption. In their approaches, these agents are the generators, 

prosumer agents and consumer agents, while the goal of each agent is to maximize its profits 

in terms of energy unit price paid per day. Three levels of agents including grid agent, control 

agent and residential agent are proposed by [280]. These agents communicate with each other 

in order to make decisions about shifting loads to off-peak hours based on the dynamic price 

of electricity. In their approach, the residential agent makes the decision to change scenarios.  

The application of multi-agent systems for studying comfort management of householder 

behaviour in the context of home energy management is proposed by [110]. This approach 

proposed a new distributed comfort evaluation that, when compared with the traditional 

method of Predicted Mean Vote (PMV) index [198], reveals the need for a more robust 

comfort standard that allows for the input of actual occupant preferences when available.  

According to the above discussion, the architecture of a multi-agent intelligent decision-

making support system for a smart home is proposed in Figure 3.12. In this proposal, HEMS 

is a multi-agent system that consists of agents dedicated to measuring the decision-making 

criteria. The intelligent decision support agent will receive dynamic price signals from the 

utility provider by means of smart meters and it will act according to the proposed fuzzy 

TOPSIS method for including the occupants’ preferences during load energy management 

under a demand response program. In this proposed model, the comfort level controller agent 

may use Eq. 2.6 presented in Chapter 2. 

 In a research review of the modelling and complexity of home energy management systems 

by Beaudin et al. [283], the proposed multi-agent intelligent decision-making support system 

has been reviewed and considered as a unique research with objectives that pertain to the cost, 

well-being, emissions, and consumption. Furthermore, the fuzzy TOPSIS methodology 

proposed and applied in the above scenario has been reviewed and included as one of the 

techniques used for addressing multi-objective optimization problems in HEMS. 
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3.5.3. A Scenario for Application of TOPSIS and ELECTRE Methods for HEMS 

The proposed scenario in this section demonstrates an application of the TOPSIS and 

ELECTRE methods in a day-ahead demand response program presented in Fig 3.13 by 

mapping consumer preferences during a 24-hour time frame. 

3.5.3.1. Application of TOPSIS in Scenario 

In this scenario, a consumer (householder or energy manager) wants to decide which 

appliances to use during the day, taking his preferences into consideration. The preference for 

using a particular electrical appliance is not constant and it changes over time. For example, 

the use of a computer depends on the purpose and it is variable during the course of a day. 

There may be times during the day when the user needs the computer to check the business 

email, so the need to use the computer is more urgent than when the user wants to use the 

computer to watch a movie on YouTube for entertainment. Hence, the user is asked to map 

his preference by considering each criterion for utilising each appliance during a time planning 

horizon that has been divided into 24 timeslots, each of which is equal to one hour. 

The criteria selected in this scenario are similar to those in the first scenario presented in this 

Chapter. They include 

 𝑐1 = Energy cost, Negative criterion 

 𝑐2 = Urgency (the degree of importance or emergent of use), Positive criterion 

 𝑐3 = Enjoyment (entertainment), Positive criterion 

 𝑐4 = Comfort and welfare, Positive criterion 

In terms of the above criteria, the preferences of consumers when using nine appliances are 

shown in Figures 3.17, 3.18, 3.20, 3.21. The energy cost presented in Figure 3.17 has been 

calculated by considering the operating time, power, and demanded energy of each appliance, 

and energy unit price imposed by DRP. The appliances used in this scenario are shown in 

Table 3.25. 

The objective of this decision-making is: if during demand response, the user decides to curtail 

the consumption (energy), which appliances are most important for him?  

The number of decision-making matrices is equal to the time slot numbers; in this scenario, 

there are 24 decision-making matrices. For example, Table 3.25 shows the decision matrix 

constructed for timeslot 20. In this matrix, I allocate a very small number (0.001) to criteria 

that are equal to zero because of validity of calculation.  
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The Euclidean distance (formulae 3.18 and 3.19) of each alternative (appliance) from PIS and 

NIS, and the closeness coefficient of each appliance are shown in Tables 3.27 and 3.28. The 

result of our simulation for this scenario is presented in Table 3.29. The average elapsed time 

of TOPSIS performance in a computer with processor Intel Core i7 CPU@3.10GHz with 16B 

RAM is 4.01 seconds for each run. Table 3.28 shows the classification of each appliance. The 

first class of appliances are those which during demand response must run and never be 

switched off, so the appliances with higher class are in more demand compared with the 

appliances with lower class.  As a result, if during DRP an appliance which belongs to the first 

class is curtailed, then the lifestyle of the user is compromised.   

Table 3.25. Appliances Used in a Scenario for TOPSIS Method 

 Appliance 
A1 Iron (0.93 kw) 

A2 Television (0.2 kw) 

A3 Spa bath with 5 kW heater 

A4 Vacuum cleaner (0.93 kw) 

A5 Dishwasher (1.87 kw) 

A6 Hair dryer (1.47 kw) 

A7 Home computer (0.1 kw) 

A8 Washing Machine (0.6 kw) 

A9 Air Conditioner (3.5 kw) 

 

 

Figure 3.13. Operating Time of Nine Appliances during a Day 
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Figure 3.14. Power Consumption by Nine Appliances during a Day 

 

 

 

 

 

Figure 3.15. Energy Demanded by Nine Appliances during a Day 

 

 

 

 

Figure 3.16. A Day-ahead Demand Response Program 
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Figure 3.17. Electricity Cost of Nine Appliances during a Day (𝑪𝟏) 

 

 

 

 

Figure 3.18. Urgency usage of Nine Appliances during a Day (𝑪𝟐) 

 

 

 

 

Figure 3.19. Urgency usage of Nine Appliances during a Day (𝑪𝟐) 
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Figure 3.20. Enjoyment Preferences of Nine Appliances during a Day (𝑪𝟑) 

 

Figure 3.21. Comfort Preference of Nine Appliances during a Day (𝑪𝟒) 

Table 3.26. Decision-Making Matrix Constructed for Decision Making at Timeslot 20m 

 C1 C2 C3 C4 

A1 0.001 0.001 0.001 0.001 

A2 0.07 5 10 10 

A3 0.7 8 8 5 

A4 0.001 0.001 0.001 0.001 

A5 0.65 3 2 8 

A6 0.001 0.001 0.001 0.001 

A7 0.035 6 8 8 

A8 0.001 0.001 0.001 0.001 

A9 0.525 3 5 5 
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Table 3.27. Distance of Each Appliance from PIS and NIS 

    A1 A2 A3 A4 A5 A6 A7 A8 A9 

t6 d+ 0.437012 0.437012 0.437012 0.437012 0.437012 0.437012 0.437012 0.437012 0.242509 

  d- 0.242509 0.242509 0.242509 0.242509 0.242509 0.242509 0.242509 0.242509 0.437012 

t7 d+ 0.437572 0.437572 0.437572 0.437572 0.437572 0.437572 0.437572 0.437572 0.241475 

  d- 0.241475 0.241475 0.241475 0.241475 0.241475 0.241475 0.241475 0.241475 0.437572 

t8 d+ 0.292124 0.140976 0.341115 0.341115 0.341115 0.280218 0.341115 0.341115 0.337397 

  d- 0.285175 0.398706 0.283539 0.283539 0.283539 0.325299 0.283539 0.283539 0.176422 

t9 d+ 0.463766 0.192954 0.463766 0.463766 0.463766 0.463766 0.463766 0.463766 0.463766 

  d- 0.192954 0.463766 0.192954 0.192954 0.192954 0.192954 0.192954 0.192954 0.192954 

t10 d+ 0.435504 0.245686 0.435504 0.369112 0.435504 0.435504 0.435504 0.435504 0.435504 

  d- 0.200975 0.3758 0.200975 0.306003 0.200975 0.200975 0.200975 0.200975 0.200975 

t11 d+ 0.363926 0.194737 0.363926 0.363926 0.363926 0.363926 0.363926 0.248182 0.335157 

  d- 0.270085 0.370772 0.270085 0.270085 0.270085 0.270085 0.270085 0.350824 0.177878 

t12 d+ 0.347795 0.395408 0.395408 0.395408 0.395408 0.395408 0.395408 0.334684 0.325734 

  d- 0.307292 0.298271 0.298271 0.298271 0.298271 0.298271 0.298271 0.364828 0.347725 

t13 d+ 0.436565 0.436565 0.436565 0.436565 0.436565 0.436565 0.436565 0.436565 0.243372 

  d- 0.243372 0.243372 0.243372 0.243372 0.243372 0.243372 0.243372 0.243372 0.436565 

t14 d+ 0.436565 0.436565 0.436565 0.436565 0.436565 0.436565 0.436565 0.436565 0.243372 

  d- 0.243372 0.243372 0.243372 0.243372 0.243372 0.243372 0.243372 0.243372 0.436565 

t15 d+ 0.435815 0.435815 0.435815 0.435815 0.435815 0.435815 0.435815 0.435815 0.24474 

  d- 0.24474 0.24474 0.24474 0.24474 0.24474 0.24474 0.24474 0.24474 0.435815 

t16 d+ 0.356961 0.027395 0.356961 0.356961 0.356961 0.356961 0.356961 0.356961 0.320393 

  d- 0.278986 0.436713 0.278986 0.278986 0.278986 0.278986 0.278986 0.278986 0.211959 

t17 d+ 0.360536 0.027755 0.360536 0.360536 0.360536 0.360536 0.360536 0.360536 0.325025 

  d- 0.281175 0.44069 0.281175 0.281175 0.281175 0.281175 0.281175 0.281175 0.203398 

t18 d+ 0.2336 0.018317 0.293235 0.2336 0.2336 0.2336 0.009026 0.2336 0.215345 

  d- 0.278479 0.349647 0.149091 0.278479 0.278479 0.278479 0.356614 0.278479 0.156067 

t19 d+ 0.23802 0.01681 0.275719 0.23802 0.23802 0.23802 0.008283 0.23802 0.243936 

  d- 0.255564 0.33713 0.143462 0.255564 0.255564 0.255564 0.343222 0.255564 0.126405 

t20 d+ 0.250164 0.060629 0.213465 0.250164 0.243916 0.250164 0.055898 0.250164 0.204124 

  d- 0.201143 0.285006 0.204646 0.201143 0.122992 0.201143 0.273606 0.201143 0.125005 

t21 d+ 0.254672 0.060812 0.300759 0.254672 0.169438 0.254672 0.117404 0.254672 0.223441 

  d- 0.29148 0.351005 0.206296 0.29148 0.262726 0.29148 0.31806 0.29148 0.165445 

t22 d+ 0.27296 0.071301 0.103315 0.27296 0.169689 0.27296 0.27296 0.27296 0.373392 

  d- 0.341478 0.390242 0.353459 0.341478 0.366836 0.341478 0.341478 0.341478 0.124752 

t23 d+ 0.389943 0.018021 0.389943 0.389943 0.389943 0.389943 0.389943 0.389943 0.39044 

  d- 0.275461 0.467259 0.275461 0.275461 0.275461 0.275461 0.275461 0.275461 0.155206 

t24 d+ 0.475609 0.17125 0.475609 0.475609 0.475609 0.475609 0.475609 0.475609 0.475609 

  d- 0.17125 0.475609 0.17125 0.17125 0.17125 0.17125 0.17125 0.17125 0.17125 
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Table 3.28. Closeness Coefficient (cc) of Each Appliance during 24 Timeslot 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 

cc_t6 0.356882 0.356882 0.356882 0.356882 0.356882 0.356882 0.356882 0.356882 0.643118 

cc_t7 0.355609 0.355609 0.355609 0.355609 0.355609 0.355609 0.355609 0.355609 0.644391 

cc_t8 0.493981 0.73878 0.453914 0.453914 0.453914 0.537225 0.453914 0.453914 0.343355 

cc_t9 0.293815 0.706185 0.293815 0.293815 0.293815 0.293815 0.293815 0.293815 0.293815 

cct_10 0.315761 0.604679 0.315761 0.45326 0.315761 0.315761 0.315761 0.315761 0.315761 

cc_t11 0.425994 0.655643 0.425994 0.425994 0.425994 0.425994 0.425994 0.585676 0.346716 

cc_t12 0.469086 0.429984 0.429984 0.429984 0.429984 0.429984 0.429984 0.521547 0.516327 

cc_t13 0.357933 0.357933 0.357933 0.357933 0.357933 0.357933 0.357933 0.357933 0.642067 

cc_t14 0.357933 0.357933 0.357933 0.357933 0.357933 0.357933 0.357933 0.357933 0.642067 

cc_t15 0.359618 0.359618 0.359618 0.359618 0.359618 0.359618 0.359618 0.359618 0.640382 

cc_t16 0.438694 0.940972 0.438694 0.438694 0.438694 0.438694 0.438694 0.438694 0.398156 

cc_t17 0.438165 0.94075 0.438165 0.438165 0.438165 0.438165 0.438165 0.438165 0.384915 

cc_t18 0.54382 0.950219 0.33706 0.54382 0.54382 0.54382 0.975315 0.54382 0.420199 

cc_t19 0.517772 0.952506 0.342244 0.517772 0.517772 0.517772 0.976435 0.517772 0.34132 

cc_t20 0.44569 0.824586 0.489454 0.44569 0.335213 0.44569 0.830357 0.44569 0.379805 

cc_t21 0.533698 0.852333 0.406851 0.533698 0.607931 0.533698 0.730392 0.533698 0.425433 

cc_t22 0.555756 0.845515 0.773817 0.555756 0.683725 0.555756 0.555756 0.555756 0.250434 

cc_t23 0.413976 0.962865 0.413976 0.413976 0.413976 0.413976 0.413976 0.413976 0.284444 

cc_t24 0.26474 0.73526 0.26474 0.26474 0.26474 0.26474 0.26474 0.26474 0.26474 

                               

Table 3.29. Classification of Appliances 

 Rank 

Timeslot 

 

1 2 3 4 5 6 

T6 A9 A1- A8     

T7 A9 A1- A8     

T8 A2 A6 A1,A3-A5,A7-A9    

T9 A2 A1,A3-A9     

T10 A2 A4 A1,A3, A5-A9    

T11 A2 A8 A1,A3-A7, A9 A9   

T12 A8 A9 A1 A2-A7   

T13- T15 A9 A1-A8     

T16 A2 A1,A3-A8 A9    

T17 A2 A1,A3-A8 A9    

T18 A7 A2 A1,A4-A6,A8 A9 A3  

T19 A7 A2 A1,A4-A8 A3 A9  

T20 A7 A2 A3 A1,A4,A6,A8 A9 A5 

T21 A2 A7 A5 A1,A4,A6,A8 A9 A3 

T22 A2 A3 A5 A1,A4,A6,A7,A8 A9  

T23 A2 A1,A3-A8 A9    

T24 A2 A1,A3-A9     
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3.5.3.2. Application of ELECTRE Method in Scenario 

In the previous scenario, I demonstrated the application of the TOPSIS method to assist 

consumers to map their preferences regarding appliance usage when they have decided to 

participate in a day-ahead DRP. In this section, I simulate the same scenario but apply the 

ELECTRE method, and I will demonstrate how a user is able to outrank the appliances during 

DRP. 

By executing the ELECTRE program in MATLAB verR2014b presented in Table 3.4, the 

total outranking relation matrix 𝐻 = [ℎ𝑙𝑘]9×9 for each timeslot is measurable. To avoid 

complexity, the intermediate calculations and steps are not presented and I have calculated the 

outranking relation matrix just for timeslots T18 to T22 in order to compare them with the 

TOPSIS method. The results of these simulation are presented in Tables 3.30 – 34.  

Table 3.30 shows the outranking of each appliance. For example, A1 in the first row is zero 

for A2, A3 and A7 which means that A1 is not outranked by A2, A3 and A7 but by looking 

at A3 in first column it is understood that A3 is not outranked to A1; also, it shows that there 

is no meaningful relationship between A1 and A3. The result of ELECTRE in timeslots 18 to 

22 is compatible with the TOPSIS simulation result presented in Table 3.29.  

The total outranking relation matrix provides us with a more meaningful and in-depth view of 

appliance utilization during DRP. Referring to the four possible outranking configurations 

explained in the ELECTRE method section in this Chapter, Table 3.30 can be explained as 

follows: 

Outranking relations configuration in timeslot T18: 

- ( 𝐴2S𝐴1) &- (𝐴1S𝐴2): Appliance 𝐴2 is strictly preferred to appliance 𝐴1: 𝐴2P𝐴1 

-  ( 𝐴1S𝐴4) & (𝐴4S𝐴1): ” 𝐴1” with respect to the four criteria is indifferent to “𝐴4”: 

- 𝐴7S𝐴1,2,3,4,5,6,8,9 &-(𝐴1,2,3,4,5,6,8,9S 𝐴7): 𝐴7P𝐴1,2,3,4,5,6,8,9 (Appliance 𝐴7 with respect to 

the four criteria is strictly preferred to other appliances). 

- (𝐴2S𝐴1,3,4,5,6,8,9) & -(𝐴1,3,4,5,6,8,9S𝐴2): 𝐴2P𝐴1,3,4,5,6,8,9 , it shows that appliance 𝐴2 has 

dominant position in relation to other appliances except 𝐴7 that is consistent with the 

TOPSIS result. 

- -(𝐴3S𝐴8) &- (𝐴8S𝐴3): Appliance 𝐴3  with respect to the four criteria is incomparable 

to appliance 𝐴8. 

- It is clear from 𝐴3 that this appliance is not preferred to any other appliance as its value 

is zero; so I can conclude that this appliance is ranked last as has been shown (Table 

3.28).when using the TOPSIS method  
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   As can be seen, using the ELECTRE method, I are able to investigate comprehensively the 

outranking relations among appliances. For example, by looking at timeslot T22 in Table 3.29, 

in the TOPSIS methodology I found that the A2 is ranked the highest, A3 is ranked second 

and A5 is ranked third. However, the ELECTRE method result presented in Table 3.34 shows 

that appliance A2 has an incomparable relation with A3; however, appliance A2 is in a more 

dominant position as it is strictly preferred to other appliances. But, A3 is not preferred to A5 

as these relationships are confirmed by the TOPSIS method result but the TOPSIS will not 

show us this relation. Similarly, the same relation exists between the A3 and A5. The TOPSIS 

method in the previous section specified that the A3 rank is higher than A5 but does not show 

any outranking relations between them. In Table 3.34, the value in A9 raw is zero for all fields 

which means that A9 is not outranked to any other appliances. However, when I look at values 

in the A9 field (column), I see that this value is 1 for A2, A3 and A5, indicating that these 

appliances are strictly preferred to A9 that is consistent with the TOPSIS result.  

 

 

Table 3.30. Total Outranking Relation Matrix for Timeslot T18 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 

A1 0 0 0 1 1 1 0 1 0 

A2 1 0 1 1 1 1 0 1 1 

A3 0 0 0 0 0 0 0 0 0 

A4 1 0 0 0 1 1 0 1 0 

A5 1 0 0 1 0 1 0 1 0 

A6 1 0 0 1 1 0 0 1 0 

A7 1 1 1 1 1 1 0 1 1 

A8 1 0 0 1 1 1 0 0 0 

A9 0 0 0 0 0 0 0 0 0 

 

Table 3.31. Total Outranking Relation Matrix for Timeslot T19 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 

A1 0 0 0 1 1 1 0 1 0 

A2 1 0 1 1 1 1 0 1 1 

A3 0 0 0 0 0 0 0 0 0 

A4 1 0 0 0 1 1 0 1 0 

A5 1 0 0 1 0 1 0 1 0 

A6 1 0 0 1 1 0 0 1 0 

A7 1 1 1 1 1 1 0 1 1 

A8 1 0 0 1 1 1 0 0 0 

A9 0 0 0 0 0 0 0 0 0 
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Table 3.32. Total Outranking Relation Matrix for Timeslot T20 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 

A1 0 0 0 1 0 1 0 1 0 

A2 1 0 1 1 1 1 0 1 1 

A3 0 0 0 0 0 0 0 0 1 

A4 1 0 0 0 0 1 0 1 0 

A5 0 0 0 0 0 0 0 0 0 

A6 1 0 0 1 0 0 0 1 0 

A7 1 0 1 1 1 1 0 1 1 

A8 1 0 0 1 0 1 0 0 0 

A9 0 0 0 0 0 0 0 0 0 

 

 

 

 

Table 3.33. Total Outranking Relation Matrix for Timeslot T21 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 

A1 0 0 0 1 0 1 0 1 0 

A2 1 0 1 1 1 1 1 1 1 

A3 0 0 0 0 0 0 0 0 0 

A4 1 0 0 0 0 1 0 1 0 

A5 0 0 0 0 0 0 0 0 1 

A6 1 0 0 1 0 0 0 1 0 

A7 1 0 0 1 0 1 0 1 1 

A8 1 0 0 1 0 1 0 0 0 

A9 0 0 0 0 0 0 0 0 0 

 

 

 

Table 3.34. Total Outranking Relation Matrix for Timeslot T22 

 A1 A2 A3 A4 A5 A6 A7 A8 A9 

A1 0 0 0 1 0 1 1 1 0 

A2 1 0 0 1 1 1 1 1 1 

A3 1 0 0 1 0 1 1 1 1 

A4 1 0 0 0 0 1 1 1 0 

A5 1 0 0 1 0 1 1 1 1 

A6 1 0 0 1 0 0 1 1 0 

A7 1 0 0 1 0 1 0 1 0 

A8 1 0 0 1 0 1 1 0 0 

A9 0 0 0 0 0 0 0 0 0 
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3.6. Proposing an Intelligent Decision Support System Model for Energy 

Management System in Smart Grid 

  In the sections above, I proposed several decision-making methods to support consumers 

involved in demand response programs when they want to make decisions about energy 

curtailment. In reality and practice, there is a possibility that the consumers will not be 

involved efficiently and consistently, so a system is required to monitor this decision-making, 

elicit consumer preferences, and decisions autonomously on behalf of the consumers. In this 

section, I propose this system and the specifications that must be met in the SG environment. 

 

Figure 3.22.  Architecture of Intelligent Decision Support System for Residential Energy 

Management 
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    To achieve more effective demand response on the end-user side, I utilize the dynamic 

notion of price, and develop an intelligent decision support system model that will assist 

demand response as shown in the figure below. 

This model is achievable by utilizing four steps as depicted in Figure 3.24. The first step is 

to determine the effective variables and parameters required for achieving the objectives of the 

next steps. As previously discussed, a wide range of data is applicable to energy management 

systems in a building. These data can be classified in nine categories that are shown in Figure 

3.23 and listed in Table 3.35. In this classification, there are various significant parameters for 

the management of energy in a building. For example, there are 13 building envelope 

parameters which are recognised in the literature and depicted in Table 3.36. In this case 

because of observing the parsimonious characteristic of the model and avoiding overfitting, 

the effective variable identification and analyse is very significant.  

 

 

 

Figure 3.23. Categories of Inhabitant-oriented Parameters 

 

By analyzing the variables, the variety of variables (qualitative, quantitative, dependent, 

independent, exogenous, endogenous) will be specified and then the relationships and effects 

of the variables on each other should be clarified. For example, when consumers prepare to use 

the A/C, variables such as the inside and outside temperatures or the level of humidity will 

influence their preferred A/C settings; another factor to consider is that there may be several 

occupants in a house whose preferences may be different. Residents are able to alert the system 

of their existence in a different way, such as using smart cards. In the second step, a user 
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interface will capture the consumers’ inputs on the identified variables and preferences in 

different scenarios that will provide an input to the learning phase and also inform the 

consumers about the result of the computed decision and let them modify the parameters 

according to their preferences.  

 

 

Table 3.35. Categories of Inhabitant-oriented Parameters 

Inhabitants Oriented Parameters 

Parameter Category ‘s name 

A Building envelope 

B Air Conditioner 

C Window and Window blind 

D Lighting 

E Occupants’ activities 

F Occupants’ clothes 

G 
Occupants’ characteristics (age, income, 

sex, job, health) 

H Indoor environment 

I Outdoor environment 

 

 

     Step 3 has a two-fold purpose. The first is to capture the outside variables like price signal 

from the grid, environmental conditions, and available renewable sources. Once that is done, 

the second is to utilize that information and develop a fuzzy rule based on the Fuzzy Multi 

Criteria Decision Making (MCDM) model that will assist the consumer to achieve demand 

response. MCDM methods include two techniques. One is a Multi Objective Decision Making 

(MODM) technique which will apply when the system objectives are different. 
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Figure 3.24. Four Steps for Model Utilization 

In this case, when the objective is cost reduction, the system behavior is different, whereas 

the system objective is to maintain lifestyle. The second is a Multi Attribute Decision Making 

(MADM) technique that will apply when there are many decision-makers in the system and 

their decision should be considered in the decision-making process, or where there is an energy 

manager who wants to make a decision on energy curtailment. According to the nature of 

variables such as temperature, price, comfort and economical consumption etc. and also 

considering the core meaning of variables and accurate communication between users and 

system, the Fuzzy techniques will develop terms most appropriate for this model. In this step, 

feedback (shown as number 2 in the model) is included in terms of addressing any changes in 

user behavior or preferences. Moreover, any event will be recognized by the model and will 

create a learning model that can adapt to such events and changes.  
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Table 3.36. Building Envelope’s Parameters that Affect on Energy Management 

Building Envelope’s Parameters 

 Parameter Ref # 

1 Radiant ceiling and panel system [284] 

2 Window opening behaviour [285] 

3 Building orientation [286] 

4 General layout and siting [287] 

5 
The thermos-physical properties of the building materials 

(thermal penetration coefficient) 
[287] 

6 Location of windows and their sizes [287] 

7 Shading of windows and envelope [287] 

8 Insulation [287] 

9 Surface treatment of the enclosing envelope [287] 

10 Mass and surface area of partitions [287] 

11 Building thermal mass [288, 289] 

12 
Building design characteristics (room size, height, wall 

thickness) 
[288, 289] 

13 Phase change material (PCMs) [288, 289] 

 

In Step 4, where a neural network model can be developed, I expect to learn about the fuzzy 

rule-based and consumption pattern based on the preliminary data obtained in Step 2 and the 

fuzzy MCDM in step three. This model will be responsible for acting autonomously on behalf 

of the user and in turn facilitates the decision-making process. Such a model will evolve 

continually when the users modify their preferences according to different scenarios. In order 

to develop a model that captures various terms of cost function for different classified 

consumption patterns, neural network techniques will be utilized to derive meaning from 

complicated or imprecise data; moreover, they can be used to capture consumption patterns and 

detect trends that are too complex to be recognized by computers. In neural networks, the 
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learning scheme is divided into supervised learning and unsupervised learning [290]. At first, 

when the system is going to recognize patterns or features in data sets, which include the correct 

output for each input, supervised learning will apply and then after capturing the data, an 

unsupervised learning technique is applied so that the system can act on its own in a kind of 

self-reflection. For this purpose, a feedback (shown as number 1 in the model) is considered 

for identifying and capturing new emerging variables in terms of any consumer behavior 

modification. 

The model presented in Figure 3.22 has attracted and been referenced by several researchers. 

For instance, research was conducted by Shahgoshtasbi et al. [291-293]  in which a fuzzy 

system and intelligent lookup table were designed for training the system in different scenarios 

and conditions in order to cater for the consumers’ preferences. 

3.7. Conclusions  

In Chapter 1, it is stated that one of the functions of a modernized electricity delivery and the 

use of electricity in SG, is customer electricity consumption optimization that provides 

information enabling consumers to make educated decisions about their electricity use. 

Householders should have this ability to optimize in order to achieve multiple goals such as 

reduced cost, reliability, comfort, and decreased environmental impact. 

 Energy-efficient behaviour may be encouraged by making available to consumers adequate 

information about energy prices and the energy consumption of appliances. I explained that 

energy-efficient behaviour is defined as the operation of appliances by consumers in a way 

that optimizes energy efficiency while reducing energy wastage. On the other hand, in a 

dynamic pricing demand response program in which the market-based energy price signal 

varies over time, it is very difficult for end-users to save on their utility budget during billing 

periods. I depicted this dilemma in Figure 3.1. In the smart grid, it is expected that, by 

receiving consumption information, consumers will change their consumption behaviour in 

order to mitigate cost and save on their power bill. However, this goal will not be achievable 

if the consumers do not engage wholeheartedly in the energy management process; in this 

situation, they require a decision-making system that will assist them.  For this reason, this 

Chapter studied the multi-attribute decision-making methods in order to assist consumers to 

make better decisions regarding their energy consumption. 
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Figure 3.25. Intelligent Energy Management System Proposed by [291] 

 

The methods which were introduced had different functions. Some methods such as AHP and 

ANP are based on pairwise comparison and are dependent on the decision makers’ opinion 

and ideas, while other methods such as TOPSIS are based on measuring the alternatives to the 

criteria value by using Euclidean distances. In this Chapter, the ELECTRE methods were 

proposed in order to cater for the preferences of end-users and as tools to assist consumers to 

for outranking their appliances over a time horizon during demand response program 

engagement. Using different scenarios, I demonstrated the application of MCDM methods, 

and concluded that: 

- Pairwise comparison techniques such as AHP and ANP require the intense and 

committed involvement of end-users during the decision-making process, and it is 

difficult to involve them whenever the value of the criteria changes over a time horizon. 

- The Fuzzy TOPSIS technique can be an effective method for situations where end-users 

want to allocate the energy to different building zones and when users have conflicting 

attitudes towards energy consumption.  

- The TOPSIS technique requires the minimum amount of decision-maker involvement 

by catering for the consumer’s preferences according to specific criteria within a time 

scale. The importance and ranking of appliances are measurable in a dynamic pricing 

scheme such as a day-ahead DRP. By presenting the example of a scenario, I explained 

how comfort criteria can be calculated and included in decision-making. 
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- In this Chapter, I compared the TOPSIS method with the ELECTRE method for one 

scenario. I showed how the results obtained by performing these methods are in 

accordance with each other. I showed that the ELECTRE method is more suitable when 

the home energy management system is required to compare the outranking of 

appliances one-by-one in order to achieve a comprehensive and rigorous comparison 

when the decision-making objective is to curtail the consumption of energy with 

minimum interference with preferred lifestyle and consumption behaviour. 

In the next chapter, I investigate the proposed decision-making methods and optimality. The 

proposed decision-making models are not intended to assist consumers to manage their 

utility budget, but to balance power consumption with their lifestyle. I introduce an 

appropriate optimization technique which will help consumers to save on power costs when 

the energy unit price is variable by utilizing the proposed decision-making methods 

presented in this Chapter. 
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Chapter 4 

 

Energy Scheduling and Optimization for 

Home Energy Management in Smart Grid 

 

 

4.1. Introduction 

The future home energy management system (HEMS) in the smart grid will need to include 

contractual grid regulations imposed by the utility while also taking into consideration the 

domestic users’ comfort, preferences,  budget, and security. The emerging autonomous 

demand response (ADR) programs have initiated steps to utilize sophisticated software 

algorithms for the scheduling and optimization of HEMS. The aim of this Chapter is to 

propose a system of systems approach as a versatile energy scheduling system that takes into 

account the components, characteristics and methodologies required for achieving an efficient 

level of energy consumption in the residential sector of the smart grid. 

The recent achievements and outstanding developments in information and communications 

technologies (ICTs) have turned the page for energy management in the smart grid (SG) and 

paved the way for emerging advanced metering infrastructures (AMIs) particularly for the 

monitoring of real-time electricity usage. As a result, the utility service providers are able to 

have bidirectional communications with end-users and measure the details of real-time 

consumption data and encourage customers to modify their consumption habit by regulating 

different demand response programs (DRPs)[23]. For example, an ADR program is one where 

there are minimal controls over load management and scheduling. In this program, each user 

is equipped with an energy consumption scheduling device for automatically controlling 

his/her load in order to reduce the energy cost. 

 

HEMSs as a subset of the Building Automation System (BAS), can be integrated with the SG 

which needs a sophisticated system in order to interact with different DRPs. Furthermore, 
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there are various parameters associated with householders’ consumption behaviours including 

appliances, home environment, building envelope characteristics and service utility provider. 

These parameters need to be measured accurately and thoroughly, and monitored intelligently 

in order to have a robust and reliable SG [20]. Consequently, the creation of this intelligent 

system has greatly attracted many researchers interested in addressing different aspects of 

energy efficiency in the SG. On the other hand, the ICTs developments in wired networks, 

wireless sensor networks (WSNs) and home area networks (HANs) have made HEMS capable 

of consolidating information associated with those parameters to improve energy management 

processing. For example, the Zigbee smart energy profile 2 known as the IP-based 

communication standard for energy management in HANs, and similarly IEEE standard 

802.15.4, are two enhancements that have improved the monitoring of networks to facilitate 

the  interoperability of communications [21]. 

 Although ICTs have integrated the communications into the SG components and enriched the 

quality of services, householders’ unpredictable demands can still impinge on electricity 

supply. Hence, system developers are still facing the challenge of trying to balance demand 

and supply. This cannot be achieved unless all the parameters that affect demand under 

different conditions are taken into consideration. Thus, it needs ubiquitous computing 

apparatuses and infrastructures that not only take all the underlying factors into account, but 

that also require minimal configuration by the end-users in bidirectional communication to 

avoid undue complexity in demand response programs [21]. Hence, this Chapter presents a 

versatile energy management system together with its sub-systems to assist customers with 

their DRPs.  

The remainder of this Chapter is organized as follows. The second section presents the new 

characteristics of HEMS compatible with SG network components described in standard [3]. 

In section 4.2, the energy cost and the management of the users’ utility budget have been 

mathematically formulated. In section 4.2.1, a versatile energy scheduling system that 

comprises specifications will be presented. In 4.3, the characteristics of electrical appliances 

are presented, and an optimization technique with different scenarios is presented in section 

4.4. A decision-making algorithm intended to assist householders with their budget 

management is proposed in section 4.5; and finally, section 4.6 concludes this Chapter. 

4.2. Characteristics of HEMs in Smart Grid 

The ISO/IEC 15067-3 [3] standard presents a high level energy management model which 

focuses on three primarily demand-response methods: direct load control (DLC), time of use 

(TOU) and real-time pricing (RTP). In Chapters 1 and 2 I mentioned that a DLC program is 

essentially proposed for the low energy consumers such as residential and small commercial 
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users. In this program, the service provider has the authority to remotely shut down appliances 

such as air-conditioners, pool pumps, and water heaters at short notice. In the RTP program, 

changes in the wholesale energy market will be reflected, and the energy price fluctuates 

hourly or a day ahead. RTP is one of the most efficient DRPs that has a prices-to-devices 

scheme whereby smart appliances will receive the energy price signals to adjust themselves 

accordingly. For example, a program may be embedded in the appliances by the manufacturer 

to adjust the load based on the price of energy. In air-conditioners, the operation and 

temperature set point may be modified by changes in energy pricing. In Chapter 1, I explained 

that in this case, the communication can be directly done by a wide utility area network to 

HAN, or directly to smart appliances, or through a gateway such as HES. This can be 

compatible with IEC/PAS 62746-10-1 Ed. 1.0 [294] which is an OpenADR 2.0b profile 

specification, a systems interface between customer energy management system and the 

power management system [294].  

Figure 4.1 depicts the Energy Management Agent (EMA) the function of which is defined by 

standard [3] as: “The EMA performs specialised computing functions by receiving the 

electricity rate data from the residential gateway and applying sophisticated software 

algorithms to determine which appliances and distributed energy resources (DERs) to operate 

and when”. The characteristics of this agent as shown in Figure 4.1 are as follows: 

1. It can determine how and when appliances must operate.  

2. It considers the cost of the energy.  

3. The consumer inputs and the amount of distributed energy resources have to be considered 

in EMA operation. 

4. The EMA is a controller which causes appliances to increase or decrease power 

consumption, or turning off or on. 

5. The EMA must be capable of receiving pricing data hour-by-hour or a day in advance. 

6. The EMA can be overridden by consumers. 

7. Consumers might input in the control system their monthly energy budget and their 

preferences.  

8. Consumers have the opportunity to override the EMA scheduling at any time.  

9. The EMA will send signals to appliances via a home network.  

10. The EMA receives the energy signal from the utility or aggregator and sends the usage 

data to the utility.  

11. To avoid data interception and ensure consumer security and privacy, the data stream from 

consumer to utility must be encrypted but the data stream that is publicly published by the 

utility does not need encrypting. 
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12. Data encryption is required in the gateway rather than on the appliance side.  

13. EMA software is complex for balancing budget and comfort level ([3], P.27). 

14. For more effective operation, artificial intelligence may be required. 

15. For a decision-making problem, the consumers are not involved in a complicated decision-

making procedure, but they may make simple decisions.  

16. The EMA must be capable of deferring the appliance operation for scheduling purposes. 

17. The EMA utilises switching control of many circuits for smart demand control of 

appliances such as refrigerator and air-conditioners.  

18. The appliances must have an indicator such as an LED for control purposes to signal to 

the consumer that energy for an appliance has been deferred and the appliance cannot be 

operated.  

19. A display in the home or on appliances must be provided to alert users of the cost that will 

be incurred if consumption is overridden.  

 

 

 

Figure 4.1.  Distributed Load Control System and the EMA Proposed by ISO/IEC 15067-3 

[5] 
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A sophisticated software algorithm for scheduling and optimization should be at the core of 

EMA and ADR and should take into account the above-mentioned 19 characteristics. In 

particular, the future HEMSs will be complex adaptive systems with self-organization, 

versatility, self-healing, interoperability, affordability, and cybersecurity characteristics. As a 

result, the design of intelligent scheduling algorithms with optimization techniques has been 

a major focus of research on HEMS in the SG; hence, I reviewed the most significant ones in 

Chapter 2. In the next sections, firstly the correlation between energy and cost in a building 

will be explained using an example; and secondly, I demonstrate a versatile energy scheduler 

system for SG-based HEMS which is compatible with ADR. 

 

4.3. The Energy Cost and Users’ Utility Budget Management 

 

The cost of electric energy for residential customers is dependent to three variables: 

 U:   The price of Energy ($/(kw. h))  

 P:  The appliances ‘power (kW) consumed and 

  t:  Length of the operation time (h) 

The power rate over operation time is called energy "E" (kW. h). 

 In order for households to save on the cost of energy, two of these variables, power and time, 

can be managed by the user, while the price of the energy is imposed by the utility.  

As discussed in the literature review in Chapter 2, researchers have used a discrete time 

framework for the scheduling of energy by dividing the planning horizon into many timeslots. 

For example, in the dynamic real-time pricing scheme of a DRP, energy price fluctuates over 

timeslots.  

Assume that E𝑖
𝑡  denotes the energy demanded by appliance "i" in timeslot "t" when the energy 

price value is equal to U𝑡  at that timeslot. This relationship is shown mathematically by 

Eq.4.1. a. Eq.4.1. b shows the total energy cost when the scheduling horizon is divided into 

“n” timeslots for “m” appliances. 

EC𝑖
𝑡 =  U𝑡 × 𝑃𝑖  × t = U𝑡 ×  E𝑖

𝑡                                                                                  (4.1.a) 

EC𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑈𝑡  (∑ E𝑖
𝑡𝑖=𝑚

𝑖=1
𝑡=𝑛
𝑡=1 )                                                                                     (4.1.b) 

In terms of user budget management, users allocate budget (BD) for their utility cost. This 

budget is easy to manage when the price of energy is constant. But when the energy price is 
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dynamic over time, it is difficult to control the budget and balance it with the consumption 

cost. 

Highlighted in the second characteristic of the EMA in the smart grid, users are equipped with 

mechanisms for utilizing the distributed energy resources (DER) such as solar rooftop panels 

with a storage system; this stored energy can be either used or sold back to the grid for a profit. 

This supplementary source of energy reduces the cost of energy for users and decreases the 

load demand for utility power. The buying DER price (𝑈𝑠𝑒𝑙𝑙
𝑡 ) is not essentially equal to the 

selling energy price (𝑈𝑡).  

After a period of consumption, the utility budget can be underestimated by less or more 

consumption. In this situation, the deviation from the planned budget (BD) can be positive or 

negative that it is favourable if the value 𝐵𝐷  is either zero or greater (𝐵 ≥ 0) in Eq. 4.2.a. 

𝐵𝐷𝑡($) = [𝐵𝑡  ($) + 𝐺𝑆
𝑡($)] − 𝐸𝐶𝑡                                                                         (4.2.a)  

𝐵𝐷𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐵𝑡𝑡=𝑛
𝑡=1 + ∑ 𝑈𝑠𝑒𝑙𝑙

𝑡𝑡=𝑛
𝑡=1 𝐸𝑆

𝑡   − ∑ 𝑈𝑡  (∑ E𝑖
𝑡𝑖=𝑚

𝑖=1
𝑡=𝑛
𝑡=1 )                                    (4.2. b) 

where 𝐵𝐷𝑡is the quantity of deviation from the planned budget in timeslot "𝑡", 𝐵𝑡is the amount 

of budget allocated to timeslot  "𝑡" , and 𝐺𝑆
𝑡  is the profit made by selling stored energy 𝐸𝑆

𝑡  or 

equivalently used in timeslot "𝑡". The total available funds for energy consumption are equal 

to the sum of the value of stored energy and the allocated budget. The above formula has been 

demonstrated by the example shown in Figure 4.2.a-b. Figures show the deviation from 

planned budget for timeslots 11, 13, 14, 22 and 23. 

 

Figure 4.2.a. Aggregated Funds for Energy Consumption 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

G 0 0 0 0 0 0 0 0 1 1 1 2 2 2 1 1 1 1 0 0 0 0 0 0

B 1 1 1 1 1 1 1 3 3 2 2 3 3 3 2 1 1 3 3 3 4 3 1 1
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Figure 4.2.b. Deviation from the Planned Budget 

 

4.3.1. Energy Cost based on Building Subdivisions  

In Chapter 3, I explained how the fuzzy TOPSIS methodology can be applied to indicate the 

flow of energy to building subdivisions based on various criteria and users’ preferences. In 

order to determine the energy cost in a building based on subdivided, I divide a building into 

 "k" zones and time planning horizon into equal timeslots in which the energy price is constant. 

Consequently, the minimum number of timeslots is equal to the number of times that the 

energy price changes or fluctuates. 

 The total amount of energy consumed within a building during "n" timeslots Etotal
n  and 

associated cost Ctotal
n  is calculated by Eq.4.3-5. 

Etotal
n = ∑ ∑ E𝑧

ts z=k
z=1

ts=n
ts=1  = ∑ ∑ (PAz

ts × tAz

ts )z=k
z=1

ts=n
ts=1                                                (4.3) 

Ctotal
n = ∑ ∑  Uts × EAz

ts  z=k
z=1

ts=n
ts=1  = ∑ ∑ Uts × (PAz

ts × tAz

ts )z=k
z=1

ts=n
ts=1                         (4.4.a) 

Ctotal
ts = U1 × [ (PA1

1 × tA1

1 ) + ⋯ + (PA𝑘

1 × tAk

1 )] + ⋯ + Un × [ (PA1

n × tA1

n ) + ⋯ + (PAk

n ×

tA𝑘

n )]                                                                                                                        (4.4.b) 

z = 1,2, 3, . . , k     

ts = 1,2,3, . . , n 

ts, z ≥ 1                                                                                                                    (4.5) 

where EAz

ts  is the amount of energy consumed by appliance "Az" in zone "z" in timeslot "ts". 

"PAz

ts " is the amount of power used by appliance "Az" in zone "z" for duration of  "tAz

ts " in 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B+G 1 1 1 1 1 1 1 3 4 3 3 5 5 5 3 2 2 4 4 4 4 3 1 1

EC 1 1 1 1 1 1 1 2 2 3 3 3 5 5 3 1 1 4 4 3 4 4 2 1

BD 0 0 0 0 0 0 0 1 1 0 -0 2 -0 -0 0 1 1 0 0 0 0 -1 -1 0

-$2
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timeslot "ts". Also,  "Uts" is the price of energy in timeslot "ts". I present an example to give 

a better understanding of the above relationship. It is assumed the price of energy in a day-

ahead DRP is provided as shown in Figure 4.2.  

The building is divided into four zones (shown by different colour), m = 4, and the planning 

horizon is divided into 24 timeslots, n = 4.  

 

Figure 4.3. Energy Price in a Day-ahead Pricing Scheme 

 

The equations 4.2, 3, and 4 depicted visually in Figures 4.4.1 - 4. In this example, for the sake 

of simplicity, the information about the amount of operation time of appliances in each zone 

has not been shown. Figure 4.2 shows the peak periods between 6:00 a.m. to 8:00 a.m., 10:00 

a.m. to 12:00 a.m., and 16:00 to 20:00. 

4.4. A Versatile Energy Scheduler System for Building Energy Management 

System 

4.4.1. A System of Systems (SoS) 

As discussed earlier, the proposed energy management agent shown in Figure 4.1 needs to 

provide a control mechanism for appliance usage based on users’ budget and preferences.  

Different policies and strategies may be chosen for scheduling in order to save cost and energy 

on the end-user side such as  

 adjusting power and/or time, 

 switching appliances on/off , or 

 shifting an operation to the time when the energy price is lower (off-peak) 

But, issues arise and arguments may occur concerning which one of the policies, or 

combination of policies, must be chosen that neither compromise the comfort and 

householders’ lifestyle nor violate demand response. I tackled this issue in the previous 
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chapter by proposing decision-making methods to assist end-users to decide which appliances 

to use based on their preferences. However, the proposed decision-making methods are not an 

appropriate mechanism as they do not guarantee that the users will save on their energy bill 

or allocated budget. 

 

Figure 4.4.1. Power Consumed in Each Zone 

 

Figure 4.4.2. Energy Consumed in Each Zone 

 

 

Figure 4.4.3. Cost of Energy in Each Zone 
 

Figure 4.4.4. Total Energy Cost of Building in 

Each Timeslot 

 

Figure 4.4. Building Energy and Cost Calculation 

 

In Chapter 2, most of the significant optimization algorithms were reviewed and as Table 2.2 

showed, the minimization of cost is the main objective of those optimizations. However, the 

aim of this Chapter is to propose a decision-making algorithm in order to control and manage 

the consumption of energy by appliances, taking into account the householders’ budget and 

preferences, and the distributed energy resources and demand response. 
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Before proposing this algorithm, I revisit the literature which was reviewed in Chapter 2 and 

examine the various methodologies pertaining to this subject. In the Conclusions section of 

Chapter 2, I demonstrate that because the building energy management in a dynamic pricing 

demand response program is a complex and challenging problem, a comprehensive albeit 

complex system is required to resolve the issues. Moreover, by studying the literature, I 

discover that a combination and integration of different systems are essential for achieving a 

desired overall efficient, robust and reliable management and control of energy consumption.  

 

The system of systems (SoS) is an effective approach when designing a complex system. SOS 

is defined as “a collection of individual, possibly heterogeneous, but functional systems 

integrated together to enhance the overall robustness, lower the cost of operation, and increase 

the reliability of the overall complex SoS system” [295]. There are many different 

definitions of SoS in different science fields, six of which have been enumerated by 

[296]. However, several of the most significant SoS characteristics can be summarized as 

follows: 

 

 Integration: ability of  communication among systems 

 In general, SoS comprises three components including people, processes and 

products. The people in SoS have behaviour and attitude. The process can be 

considered as the collaboration among systems and the products as a component 

means the software and hardware of systems. 

 SoS capabilities and behaviour can be effected and limited by constraints of adjoining 

systems. 

 In the SoS environment, architectural constraints imposed by existing systems have a 

major effect on the system capabilities, requirements, and behaviour. 

 The systems in SoS have a common goal such as increasing the performance.  

  There is no difference between architecting a complex system and designing a simple 

system [296].  

 

As can be seen, the SoS definition and its characteristics are similar to the characteristics of 

SG explained in Chapter one where many SG domains have been defined. This view to Sg is 

investigated by [297]. Due to the complexity of the problem and the objective of increasing 

the interoperability and performance, a system of systems modelling approach [298] is 

presented in this Chapter that comprise the following four sub-systems  as shown in Figure 

4.2.: 
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 Predictor system (PS). 

 Monitor and allocator system (MAS). 

 Identifier system (IS). 

 Optimizer system (OS). 

 

In the energy scheduler system shown in Figure 4.5, each sub-system has its own control and 

mathematical model with different or partially similar inputs and outputs [35].  The arrows in 

Figure 4.5 indicate the flow of information. Before analysing and explaining each sub-system, 

I define home energy scheduling in SG as: 

an offline, semi-online, or online process of allocating energy resources to supply the energy 

demand of various electrical devices in a time scale of short, medium and long term in order 

to satisfy the regulations of demand response programs’ and to optimize the householder’s 

comfort level and energy cost savings. 

 

 However, the main issue and problem is the complexity of scheduling and optimization which 

depends on the size of input and the average running time of an algorithm. The methodology 

chosen for solving the problem can be classified from easy (polynomial-time algorithm) to 

strongly NP- complete (polynomially reducible)  problem [299]. However, a detailed account 

of these algorithms is beyond the scope of this thesis. A great deal of research has been done 

to develop these sub-systems which are explained in Chapter 2. Some of these approaches are 

demonstrated in Table 4.1. The function of each sub-system is explained in the following. 

 

 

Figure 4.5. A Versatile Energy Scheduler System 

 

 

4. Optimizer System 
 2. Monitor and 

Allocator System 

3. Identifier System 

1. Predictor System 
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A. The Predictor System (PS) 

 

PS is the first sub-system that evaluates the effective variables for the forecasting of   

a) the demand for energy (time and power),  

b) energy price,  

c) amount of available distributed renewable resources,  

d) power and load constraints imposed by demand response program, and  

e) energy cost associated with each task or demand.  

 

Depending on the applied methodology, the prediction can be implemented monthly, daily, 

hourly, in minutes or seconds. To achieve these goals, the system needs to scrutinize the 

parameters reviewed in Chapter 2 such as householders’ energy behaviours (income, age, 

employment status, etc.) [47, 300], occupancy profile, users’ activities and preferences, 

comfort parameters (indoor air quality, thermal and visual comfort factors), environmental 

factors, and building envelop characteristics. According to [14], forecasting methods can be 

classified as “elaborate engineering”, “simplified engineering”, “statistical”, “artificial neural 

networks”, and “support vector machine”. Note that each model may have different 

complexity, ease of use, running speed, inputs, and accuracy.  The predicted factors will be 

utilized by a second sub-system, the Monitor and Allocator System. 

 

 

 

 

B. The Monitor and Allocator System (MAS) 

 

MAS is the second sub-system which is a knowledge-based and learning system that uses the 

information provided by the predictor system and the optimizer system (fourth sub-system). 

It will evaluate the cumulative energy cost and the demand response program regulation, as 

well as the household’s consumed and remaining budget. This system has two interfaces, one 

for communicating with the utility and another for meeting inhabitants’ preferences. This 

system will balance the occupant’s budget and via its interface reports in detail their energy 

consumption trend to end-users.  

This system has seven main functions:  

a) monitoring system errors and correcting the prediction system by providing appropriate 

feedback;  

b) balancing cost and household budget considering optimization objective function;  

c) managing the DRP scheme;  
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d) allocating slack received from optimization phase to other time slots; e) switching on/off; 

f) indicating optimization objective function; and  

g) shifting a task if it is shiftable. Other duties of the MAS are mid-term and long-term 

scheduling. 

 MAS and IS subsystems are equipped with ubiquitous ICT and utilize the internet for their 

operation. 

 

C. The Identifier System (IS) 

 

The third sub-system, IS, measures the real-time and online variables. This sub-system 

identifies which device, and from which zone, has been connected by whom to the power line. 

It will also identify how much energy a device or piece of equipment requires in order to 

operate and how much time needs to complete its task. IS has an interface with electrical 

devices. These data are input for sub-system four and MAS. A non-intrusive load monitoring 

system may also be utilized by this system [57, 95, 278]. 

 

D. The Optimizer System (OS) 

 

OS is the fourth subsystem in the core of the main system that executes the short-term 

scheduling. The primary optimization variables, objective function and constraints for time 

slot 𝑡𝑖 will be provided for OS by MAS. The optimization system model may be deterministic 

with a convex function or stochastic with a Marko decision process [129]. OS will receive the 

real-time (online) data by IS and will perform the optimization for 𝑡𝑖. In this phase, OS 

indicates which electrical devices with what level of power will operate and for how long. The 

command of on/off switching or adjusting the power level will be performed by MAS. 

However, in real-time conditions, some intervening variables may be identified by IS which 

may affect the optimization process and would be considered as a prediction error. This system 

error will be calculated by MAS according to what has been predicated and what has been 

measured online. So the feedback is provided by MAS to IS for this purpose. The functional 

goal of OS is to minimize energy consumption cost or electric load dynamically and in real- 

time; or it can maximize the comfort level while taking into consideration the three constraints 

of load, operating time and energy cost. In other words, this sub-system is a decision-maker 

[21] for:  

a) adjusting the duration and required power for fulfilling a task, and 

b) allocating tasks on the time horizon.   

Depending on the objective function, constraint and optimization methodology, the inputs will 

be provided by the MAS and IS systems. 
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Figure 4.6. Proposed Example for Demonstrating the SoS Functions 

I present an example to provide a better understanding of the interaction of sub-systems. 

Assume that a demand response program indicates (or will be predicted by PS) that the energy 

price will be 𝑥 
$

𝑘𝑊.ℎ
  in timeslot 𝑡𝑖. The PS has predicted all variables associated with energy 

demand and forecasted which appliances will run during 𝑡𝑖 . Furthermore, the time and power 

individually required by each electrical device to finish the task have been also predicted. This 

information will be sent to MAS which accordingly allocates 𝑝 (𝑘𝑊) power to timeslot 𝑡𝑖; so, 

the load constraint dictated for that timeslot is  𝑝  in which the associated allocated budget "𝐵" 

for that load would be equal to 𝐵($) = 𝑝(𝑘𝑊) × 𝑡(ℎ) × 𝑥 (
$

𝑘𝑊.ℎ
) where 𝑡 is the total time 

estimated for all tasks or power demand during 𝑡𝑖. In this phase, an optimization formula is 

established. In a real-time situation, the IS will determine the demand power individually for 

each device and accordingly the optimization will be implemented. Hence, there may be two 

scenarios. The first scenario is when the idle resources remain after optimization as the slack. 

For instance 𝑝 − 𝑠 (𝑘𝑊) will be used so there is 𝑠 (𝑘𝑊) slack that the MAS system will 

allocate it to those timeslots that bring more efficiency that it has been shown in Figure 4.4 in 

timeslot 𝑡𝑖+10. Afterwards, the PS needs to re-organize the prediction algorithm for future 

periods so feedback can be sent to the PS.  

The second scenario can occur when there is no optimal solution for that timeslot ( it may 

occur in some NP- hard algorithm [299]). One reason for this is that the load demand has been 

underestimated. In our example, a preceding task with 𝑗 (𝑘𝑊) power demand has been 

Time 

𝑝 + 𝑗 

𝑝 − 𝑠 

Scenario 1  

Scenario 2 

Power 

 
 

𝑡𝑖 𝑡𝑖+4 𝑡𝑖+10 

𝑝 
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predicted to run in  𝑡𝑖+4 but starts instead at timeslot 𝑡𝑖. So the MAS that is operating long-

term scheduling monitors the condition and allocates load  𝑗 (𝑘𝑊) from 𝑡𝑖+4 resources to 𝑡𝑖   

or supplies it from a storage system, thereby increasing the load capacity to  𝑝 + 𝑗 (𝑘𝑊).  

Table 4.1. Proposed Methodologies for Subsystems in Literature 

Subsystems Methodology References 

1. Predictor System (PS) a) ANFIS, ANN; b) ARIMA a)[14], [144];   

b)[159],[118] 

2. Monitor and Allocator 

System (MAS) 

a) Water-filling;  b) Game theory;  

c) Nonintrusive method 

a)[195];            

b)[301];   c)[302] 

3. Identifier System (IS) a) Nonintrusive method a)[57] 

4. Optimizer System (OS) a) Mixed integer linear 

programming;  b)Heuristic 

a)[303];            

b)[304] 

 

In order to design a system with this level of intelligence, a combination of different 

methodologies with complex algorithms needs to be utilized. Hence, some of the 

methodologies reported in the literature for each stage of the system function have been 

summarized. However, because the characteristics of electrical devices are inherent in the 

scheduling process, in the next section, their details are presented.  

4.5. Electrical Equipment Characteristics 

    To design the versatile energy scheduling system, the electrical equipment has been 

classified into two groups. The first group consists of equipment which has to be connected to 

an outlet in order to receive power. So a building can be divided into different zones for 

monitoring the energy flow demand by this group. Following our comprehensive research and 

review of the literature, 26 characteristics of this type of equipment in Table 2 have been set 

out and proposed. These parameters can be used in designing a scheduling algorithm and 

methodology. However, there are many parameters associated specifically with the efficiency 

of appliances which are not within the scope of this thesis. The second group of equipment 

includes those devices which are embedded in buildings in a hardwired manner. This group 

of equipment comprises lighting (hardwired lamps), heating, ventilation, and air conditioning 

(HVAC) system, and hot water heaters. In the proposed example in Table 2, a washing 

machine has the task of washing clothes. This task is performed by five operation sequences: 

S1- filling, S2- agitating, S3- pump out, S4- rinsing, and S5- spin mode. 
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The specification of each operation is dependent on machine adjustment.  In Table 4.2, an 

interruptible or non-interruptible task is one where the task has various sequences of operation 

which can be interrupted and, in this case, it can be deferrable or non-deferrable which refers 

to whether the task can be shifted to another time. Some of these functions are embedded in 

smart appliances such as General Electric H2G appliances [305].  In this example, from the 

end of “filling operation” to the start of “agitating operation”, there can be a delay of 10 

minutes, but after agitating ends, the pump-out operation will start immediately. The washing 

machine is not a mobile device and always extracts power from one specific outlet. An 

interdependency parameter is applied for appliances which need other appliances in order to 

accomplish their task. For example, a vacuum cleaner needs light or a dryer that runs after 

washing machine. The programmability parameter is for smart appliances such as an oven or 

microwave which are adjustable. 

Table 4.2. Electrical Equipment Characteristics 

Attributes Parameters Example: Washing 

Machine (LG, 54 kg) 

1 

T
im

e 
B

a
se

d
 P

a
ra

m
et

er
s 

Day  Sunday 

2 Start time of use  10:20a.m 

3 Start time of each operation 

sequence 

S1)10:20 S2)10:30 

S3)10:37 S4)10:41 

S5)10:47 

4 Finish time of each operation 

sequence 

S1)10:25 S2)10:35 

S3)10:40 S4)10:45 

S5)10:52 

5 Finish time of use 10:52 a.m. 

6 Length of total operation time  22 min 

7 Deferrable or non-deferrable task Deferrable  

8 Interruptible or non-interruptible 

task 

interruptible 

9 Time deadline after interruption to 

finish an operating sequence 

S1-S2=10 min, S2 –S3=0  

S4-S5= 10 min 

10 Operation time of each sequence S1)5 min   S2)5 min  S3)3 

min   S4)4 min   S5)5 min 

11 Usage frequency  12 times in a month 
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Table 4.2. Continue. Electrical Equipment Characteristics 

Attributes Parameters Example: Washing 

Machine (LG, 54 kg) 

12 

O
p
er

a
ti

o
n

 B
a

se
d
 P

a
ra

m
et

er
s 

Minimum power to finish task i (W) 36 

13 Maximum power to finish task i (W) 440 

14 Standby power (W) 0.75 

15 Number of  operation sequences to 

fulfil task i 

S1-Filling S2-Agitating 

S3- Pump out, S4- Rising, 

S5- Spin mode 

16 Power requirement in each operation 

sequence (W) 

S1)22        S2)160       

S3)60        S4) 54        

S5)440 

17 Energy of each operation sequence 

(kW.h) 

S1) 0.0018 S2) 0.0133  

S3)0.0030    S4)0.0036  

S5)0.0366 

18 Total Energy (kWh) of task i 0.0584 

19 programmability ( adjustable power 

for operation) 

Programmable 

20 interdependency to other equipment 

(preceding, concurrence and 

succeeding operations) 

No interdependency 

21  Cost($) of each operation sequence 

 

(if E=0.2 $/kW.h) S1) 

0.0004  S2)0.0026  

S3)0.0006  S4)0.0007 

S5)0.0073 

22  Total cost of task i ($) 0.011 $ 

23  Location , zone or outlet that 

equipment connected to network 

Laundry  

24  ownership Family 

25  Fixed in location or mobile Fixed equipment 

26  Alternative  Without alternative  
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4.6. Optimization and Scheduling Algorithms for HEMs 

Based on the reviewed characteristics of an energy management system and the proposed SoS, 

the aim of this section is to propose a decision making algorithm to optimizer the system 

function in a dynamic pricing demand response program in order to achieve objectives such 

as: 

 Maximize the consumers’ satisfaction while he has been forced to curtail the 

consumption in order to minimize the effect of DRP on his lifestyle; 

 Save the consumers’ utility budget in variable energy price scheme; 

 Utilizing the distributed energy resources. 

Therefore, as explained earlier in section 4.4.1, assume that the optimizer system is in 

interactive and integrated with the other three sub-systems in the proposed SoS. In this fashion, 

the information (data) provided for this system in a planning time horizon are: 

 Input1: predicted energy price  

 Input 2: budget allocated to each timeslot   

 Input 3: amount of available distributed energy resources  

 Input 4: characteristics of appliances (deferrable/ non-deferrable, interruptible/non-

interruptible)  

 Input 5: the amount of power demanded by appliances 

 Input 6: the amount of time required for fulfilling the task operated by an appliance 

 Input 7: the amount of time that a deferrable appliance can be shifted 

Accordingly, it is expected that the OS will optimize the energy by accepting or rejecting the 

demand requested from an appliance. The inputs and outputs of this system are shown in 

Figure 4.6.  

 

Figure 4.7. The inputs and outputs of Optimizer System 
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In Chapter 2, section 2.4.1, I classified optimization problems for smart homes and demand 

response in the context of energy management in four main categories with a total of twelve 

subcategories. Our proposed optimization method for this system is focused on problems 1, 

2, 4, and 11. Moreover, according to the methodologies that were classified in Table 2.2, the 

proposed methodology in this Chapter can be categorised as shown in Table 4.3. 

Table 4.3. The Proposed Optimization Classification Compared with Methods Reviewed in 

Literature 

 

Optimization 

Objective 

Optimization 

Method 

Appliances DRP 

Maximizing the 

energy consumption 

based on the value 

specified by 

consumers in a 

restricted allocated 

cost 

Combinatorial 

optimization (linear 

integer 

programming) 

 

PHEV, water 

heater, air 

conditioner, 

dishwasher, oven 

, cloth dryer 

Real time pricing 

(a day-ahead or an 

hour-ahead) 

 

4.6.1. Combinatorial Optimization Methodology: Knapsack Problem (KP) 

The knapsack problem is a very simple non-trivial integer programming model with binary 

variables and is a classic form of a maximization problem which has been studied for 

centuries. Although this method has only one single constraint and positive coefficient, this 

simple program is considered difficult problem. This problem has borrowed its name by 

considering a mountaineer who has decided to pack his knapsack (rucksack) to climb a 

mountain. The capacity of his knapsack is limited, so he needs to select items carefully 

according to their values and weight. I can use the analogy of a burglary to explain this 

problem. A burglar has decided to steal valuable items and fill his knapsack. In this case, the 

capacity of knapsack is limited and he needs to decide which items to take in order to fill the 

knapsack and maximize the total value of the objects. In our case, there is a consumer who 

has a restricted amount of energy that s/he can use during a specific period of time (T). S/he 

has many devices to use that provide different amounts of comfort and convenience. These 

devices require different amounts of power (Kw) when operated. The user must select a set of 

appliances that afford the greatest benefit and satisfaction but in such a way that the total 

energy consumption does not exceed the energy constraint. In other words, the user has a 

limited amount of budget ($) to allocate to the use of appliances during a period of time (T) 
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and now s/he has to buy (pay for) the energy (Kw.h) to run appliances based on his limited 

budget; so s/ he tries to choose a set of appliances which are more convenient.  

The binary KP can be formulated as linear integer programming as follows: 

Maximize ∑ 𝑝𝑖𝑥𝑖
𝑚
𝑖=1                                                                                                   (4.6) 

Subject to  ∑ 𝑤𝑖𝑥𝑖
𝑚
𝑖=1 ≤ 𝑐                                                                                          (4.7) 

   𝑥𝑖 ∊ {0,1}, 𝑖 = 1, … , 𝑚                                                                                           (4.8) 

[306] is one of the best and most valid references for studying the KP algorithm, methodology 

and solutions. There are various forms of KPs such as binary, the bounded, unbounded, 

multiple, multiple-choice, quadratic, multi-objective, precedence constraint, nonlinear, 

fractional, on-line, and semi online knapsack problems. Furthermore, there are various 

methodologies for solving KP such as the greedy algorithm, linear programming relaxation, 

dynamic programming, branch and bound, and approximation algorithms. A close 

examination of KP and its related algorithm is not within the scope of this thesis. I employed 

the dynamic programming algorithm presented in [306] and accordingly programmed the 

methodology in MATLAB as shown in Figure 4.13 for binary KP solution. 

In the following, I aim to evaluate how MCDM methods discussed in the previous chapter can 

provide the profit associated with KP optimization. Using this method, I can show how the 

effect of decision making on energy consumption can affect the optimization.  

 

4.6.2. Knapsack Problem and MCDM for Energy Optimization 

By quantifying the consumer’s preference using the AHP method described in Chapter 3 

section 3.5.1, the priority level of using the appliances was achieved (Table 3.8). If the 

consumer would like to maintain a certain lifestyle during peak hours and not change 

consumption behaviour, then s/he should pay for it. But if s/he decides to not exceed budget, 

then s/he should alter energy consumption and turn off some appliances and shift the 

consumption to off-peak hours. In our scenario, the energy cost for one hour during the off-

peak period was $0.896 and it was increased to $1.195 at peak time. The decision-making in 

the proposed scenario concerned the appliances that the user likes to use during the peak period 

if the energy price increases by 33%. Now the question is: which appliances should be turned 

off during peak hours in order to not exceed the total cost?  
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By considering the hierarchy of preferences shown in Table 3.8 when Iron, Hair dryer, 

Television and Vacuum cleaner are turned off, then the total cost during peak time would be 

$0.88 and the consumer would be able to use Spa Bath, Dishwasher and Home computer 

which have the highest ranking according to his preferences. It is significant that this particular 

decision is the preferred solution. In order to achieve the optimal choice, I will apply the 

knapsack problem. The scenario described in the previous section is programed in Lingo 

software shown in Figure 4.8.  

 

 

Figure 4.8. Lingo Software Binary Knapsack Programming Code  

 

   This problem is solved by LINGO software [307] version12.0 (Figure 4.7). This is a 

powerful optimization software, and the results shown in Figure 4.7 reveals that if the 

consumer turns the Dishwasher off, then s/he saves the same amount of money during the on-

peak period as he does during off-peak hours.  

The optimal solution shows that the total value of preferences is 0.765; meanwhile, according 

to consumer’s preferences achieved by AHP method, the total value was 0.655. This means 

that through this optimization the user is able to use more appliances.  As indicated in Table 

3.8, the Dishwasher was the second priority in the ranking of appliances that the consumer 

decided to use during peak hours, and turning it off is not in accord with this preference; but 

on the other hand, the total value is maximized. This consumption pattern is efficient because 

the demand and amount of energy is decreased. In this case, a report can be sent to the user to 

make the final decision. In section 3.7 of the previous chapter, I discussed the disadvantages 

of the AHP methodology. Pairwise comparison techniques such as AHP and ANP require the 

intense and committed involvement of end-users during the decision-making process that may 

discourage householders from engaging in energy management, or they find this method 

tedious. 
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SETS: 
ITEMS / SB, DW, HC,VC, TV, HD, IR/: 
INCLUDE, WEIGHT, RATING; 
ENDSETS 

DATA: 
WEIGHT RATING = 
0.493 0.237 
0.373 0.235 
0.013 0.183 
0.093 0.12 
0.04 0.112 
0.088 0.065 

0.093 0.049; 
KNAPSACK_CAPACITY = 0.896; 
ENDDATA 
MAX = @SUM( ITEMS: RATING * INCLUDE); 
@SUM( ITEMS: WEIGHT * INCLUDE) <= 
KNAPSACK_CAPACITY; 
@FOR( ITEMS: @BIN( INCLUDE)); 

Figure 4.9. The Lingo Code for AHP and Knapsack Problem Scenario 

 

Figure 4.10. The result of Solving Knapsack Problem by Lingo Software 
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TOPSIS is a technique which requires a minimal amount of decision-maker involvement by 

catering for the consumer’s preferences according to specific criteria within a time scale. In 

Chapter 3, I showed how by using TOPSIS, the importance and ranking of appliances are 

measurable in a dynamic pricing scheme such as a day-ahead DRP. TOPSIS is based on 

measuring the alternatives to the criteria value by using Euclidean metrics to compute the 

distance of each alternative from PIS (di
+

 ) and NIS (di
−

) as shown by Eq. 3.17 and 3.18 and 

in Figure 4.6. Consequently, by considering the closeness coefficient of each 

alternative, 𝐶𝐶𝑖
+

as “the profit value” in knapsack problem objective function Eq.4.6 can 

reflect the user’s degree of preference for each appliance.  

 

 

Figure 4.11. Using Euclidean Metrics Flor Computing the Distance of Each Alternative from 

PIS (𝐝𝐢
+

 ) and NIS (𝐝𝐢
−

) 

 

Considering the above discussion and the energy and cost relationship I can re-formulate the 

Eqs.4.6-8 as follows: 

Maximize ∑ 𝑣𝑖𝑥𝑖
𝑚
𝑖=1                                                                                                         (4.9) 

Subject to  

 ∑ 𝐸𝑖𝑥𝑖
𝑚
𝑖=1 ≤ 𝐸𝐷𝑅𝑃

𝑡                                                                                                         (4.10.a) 

Or      ∑ 𝑃𝑖 . 𝑡𝑖 . 𝑥𝑖
𝑚
𝑖=1 ≤ 𝐸𝐷𝑅𝑃

𝑡                                                                                           (4.10.b) 

Or       
1

𝑈𝑡
∑ 𝑐𝑖𝑥𝑖

𝑚
𝑖=1 ≤

1

𝑈𝑡 𝐶𝐷𝑅𝑃
𝑡  ≡  ∑ 𝑐𝑖𝑥𝑖

𝑚
𝑖=1 ≤ 𝐶𝐷𝑅𝑃

𝑡                                                    (4.10.c) 

  𝑥𝑖 ∊ {0,1}, 𝑖 = 1, … , 𝑚                                                                                                    (4.11) 

𝑑𝑖
+

 

𝑑𝑖
+ =  √∑ (𝑣𝑖𝑔 − 𝑣𝑔

+)
2𝑐

𝑔=1      (3.18) 

                                                                 

 𝑑𝑖
− =  √∑ (𝑣𝑖𝑔 − 𝑣𝑔

−)
2𝑐

𝑔=1       (3.19) 

 

 𝐶𝐶𝑖
+ =

𝑑𝑖
−

(𝑑𝑖
−+𝑑𝑖

+)
                      (3.20) 

 

𝑑𝑖
−

 

𝑣𝑔
− 

𝑣𝑔
+ 

𝑣𝑖𝑔 
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Where 𝐸𝐷𝑅𝑃
𝑡   and 𝐶𝐷𝑅𝑃

𝑡  are the energy limit and its associated cost imposed by DRP; and 𝑣𝑖  is 

the value rank of the alternative achieved by the TOPSIS methodology. It is worth mentioning 

that calculating 𝑣𝑖  by TOPSIS is proposed when there are many criteria associated with 

assessing the energy consumption, but when there is just one criterion for specifying the profit 

of using appliances, it can be directly reflected to the objective function. This can be done by 

demonstrating to the user a scale like the one depicted in Figure 4.12 with which they can 

indicate their preferences for particular appliances. I designed a scale (shown below) which 

allows the user to show the extent to which certain appliances are needed. For example, when 

the user chooses “up to the system” it means s/he has given the value of “0.5” as profit, or 

when s/he urgently needs an appliance, then the profit value, according to the KP 

methodology, is considered as 0.9.   

In our proposed methodology, there are items which must remain in knapsack, because their functions 

is a prerequisite for other appliances functions or because the consumer insist to use them even if the 

system has selected them for turning-off. In this situation a big-number, M, equal to 1000 will be 

allocated as the value (profit) to those items. I will show this methodology in section 4.6.4 of this 

chapter. 

 

Figure 4.12. A scale for Elicitation of Consumer’s Preference for Using an Appliance 

The methodology proposed above has attracted many researchers [105, 308-312]. For 

example, [308, 312] used our methodology for implementing a power allocation on a smart 

outlet shown in Figure 4.11. In their paper, [308] raise an important issue that they propose to 
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tackle in future work  how KP is capable of distinguishing the interdependencies of appliances. 

I attempt to address this issue by proposing a decision making algorithm in the following 

section. 

 

Figure 4.13. Knapsack Problem Application Implemented on a Smart Outlet by [308, 312] 

4.6.3. Feasibility of Knapsack Problem Optimization by Presenting Eight 

Scenarios 

The feasibility of Knapsack Problem Optimization can be investigated by applying this 

method in different scenarios. For this purpose, I have designed and created a database with 

900 entries for the operations of different electrical devices I called tasks. These data are 

presented in Figure 4.12. These data are gathered from resources such as government websites 

[313, 314] and appliance manufacturers’ catalogues.  

 

 

 

Figure 4.14.  The Data of 900 Appliance Operation Tasks Used For Scenarios Simulation 
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I implemented the knapsack method in eight scenarios. To calculate the profit value, it is 

assumed that there is one criterion in decision-making and that criterion is the degree of 

importance that the householder gives to each appliance.  

 

 

function [best item]= knapsack(weights, values, W) 

    if ~all(positive_integer(weights)) || ...   

       ~positive_integer(W) 

        error('Weights must be positive integers'); 

    end 

    [M N] = size(weights); 
    weights = weights(:); 

    values = values(:); 

    if numel(weights) ~= numel(values) 

        error('The size of weights must match the size of values'); 

    end 

    if numel(W) > 1 

        error('Only one constraint allowed'); 

    end   

        A = zeros(length(weights)+1,W+1); 

    for i = 1:length(weights) 

        for K = 1:W 
            if weights(i) > K 

                A(i+1,K+1) = A(i,K+1); 

            else 

                A(i+1,K+1) = ... 

                    max( A(i,K+1), values(i) + A(i,K-weights(i)+1)); 

            end 

        end 

    end 

    best = A(end,end); 

      item= zeros(length(weights),1); 

   a = best; 
   i = length(weights);  

   K = W; 

   while a > 0 

       while A(i+1,K+1) == a 

           i = i - 1; 

       end 

       i = i + 1;  

       amount(i) = 1; 

       K = K - weights(i); 

       i = i - 1; 

       a = A(i+1,K+1); 
   end 
    amount = reshape(amount,M,N); 

end 

 function yn = positive_integer(X) 

    yn = X>0 & floor(X)==X; 

end 

 

Figure 4.15. Knapsack Programming MATLAB Function Code 
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It is assumed that in a timeslot, the amount of energy has been scheduled (allocated); then by 

randomly selecting appliances, a level of demanded energy will be specified. If the amount of 

demanded energy (DE) is higher than the scheduled energy (SE) level, the KP optimization 

will be performed so that I reach a new level of energy as the optimized level of energy (OE). 

In Tables 4.4 -14, these scenario inputs to optimization algorithm has been demonstrated that 

they can be discussed as follows: 

 

1. The value index is obtained by dividing the total values in the timeslot by the total 

number of items. So after optimization, I can study the trend of this value index and 

see how KP is dealing with the total value in each simulation. 

2. After KP optimization the removed items in Tables 4.4- 14 are shown with orange 

colour. 

 

3. Scenarios 4 and 5 are similar with together and the only difference is the amount of 

scheduled energy. In scenario 5, this amount is 40 watts higher because in this case 

this amount has been added by battery-stored energy. So by comparing Tables 4.10 

and 11, I can see the effect of distributed energy resources in optimization. 

 

4. In scenario 8, the demanded energy is 2,426 watts while the scheduled energy is 2,200 

watts. On the other hand, there is a clothes dryer with 2,100 watt power with profit 

value equal to “1” that means this device must not ever be switched off.  The result of 

optimization shows this item has been removed in order to reach an optimal solution. 

There are seven other appliances with a total energy consumption of 325.7 watts with 

a value adding up to 4.3; in this case, if all of them are removed from the knapsack, 

then the total value index will drop dramatically. This scenario shows how KP works 

to maximize the profits. In this case, the user must sacrifice his need for a clothes 

dryer, but keeps the electric blanket and light with value one. I will show in our 

proposed decision-making algorithm that the system can notify the user about this 

kind of situation.  

 

5. The three levels of energy, demanded energy, restricted energy by DRP as scheduled 

energy, and the energy level after optimization have been shown in Figure 4.17 and 

18. 
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Table 4.4. Scenario #1 Energy Demand Profile 
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 c
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e 
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w
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t)
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n
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y
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t.
h
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u
r)

 

V
al

u
e 

1 tsk1 

air-

conditioner 30 1640 820.00 1 

2 tsk60 lighting 10 20 3.00 1 

3 tsk69 lighting 35 75 44.00 1 

4 tsk57 computer 45 270 203.00 0.5 

5 tsk50 cooking1 30 600 300.00 1 

6 tsk51 cooking2 15 1400 350.00 0.4 

7 tsk83 

 cell phone 

charger 60 10 10.00 0.7 

8 tsk32 refrigerator 60 750 750.00 1 

9 tsk33 coffee maker 5 1200 100.00 0.2 

10 tsk79 pool pump 20 1100 367.00 0.3 

 

Table 4.5. Scenario #2 Energy Demand Profile 

 

# 
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 c
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u
r)

 

V
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u
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1 tsk59 computer 35 270 158.00 0.7 

2 tsk60 lighting 10 20 3.00 1 

3 tsk76 lighting 60 7 7.00 1 

4 tsk770 hair dryer 5 

150

0 125.00 0.2 

5 tsk80 iPad charge 50 20 17.00 0.8 

6 tsk81 printer (laser) 5 500 42.00 0.3 

7 tsk70 air-conditioner 60 

183

0 1830.00 0.9 

8 tsk8 clothes dryer 60 

220

0 2200.00 1 
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Table 4.5. Continue. Scenario #2 Energy Demand Profile 
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 c
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V
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u
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9 tsk210 watching TV 60 400 400.00 1 

10 tsk6 cooling 45 

210

0 1575.00 0.4 

11 tsk83 

cell phone 

charger 60 10 10.00 1 

12 tsk70 lighting 25 63 26.00 1 

13 tsk40 vacuum cleaner 30 

150

0 750.00 0.2 

14 tsk65 lighting 20 52 17.00 1 

15 tsk66 lighting 60 42 42.00 1 

16 tsk29 cooking 25 

140

0 583.00 0.6 

 

Table 4.6. Scenario #3 Energy Demand Profile 

 

# 
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 c
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u
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1 tsk59 computer 35 270 158.00 0.2 

2 tsk16 bath water heater 20 1300 433.00 0.4 

3 tsk17 TV 45 400 300.00 0.8 

4 tsk63 lighting 5 26 2.00 1 

5 tsk64 lighting 15 24 6.00 1 

6 tsk65 lighting 20 52 17.00 1 

7 tsk66 lighting 120 42 84.00 0.9 

8 tsk67 lighting 5 35 3.00 0.8 

9 tsk68 lighting 40 20 13.00 1 

10 tsk79 pool pump 20 1100 367.00 0.5 

11 tsk49 cooking 25 1600 667.00 0.8 

12 tsk44 cloth washing 15 150 38.00 1 

13 tsk45 cloth washing 40 2400 1600.00 1 

14 tsk46 cloth washing 5 300 25.00 1 
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Table 4.7. Scenario #4 Energy Demand Profile 

 

# 
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 c
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V
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u
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1 tsk59 computer 35 270 158.00 0.6 

2 tsk16 bath water heater 20 1300 433.00 1 

3 tsk17 TV 45 400 300.00 0.8 

4 tsk63 lighting 5 26 2.00 1 

5 tsk66 lighting 60 42 42.00 0.5 

6 tsk67 lighting 5 35 3.00 0.4 

7 tsk68 lighting 40 20 13.00 0.3 

8 tsk79 pool pump 20 1100 367.00 1 

9 tsk53 cooking 40 1950 1300.00 0.8 

10 tsk46 cloth washing 25 300 125.00 1 

11 tsk47 cloth washing 20 30 10.00 1 

12 tsk48 cloth washing 5 1400 117.00 1 

 

 

 

Table 4.8. Scenario #5 Energy Demand Profile 
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 c
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V
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u
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1 tsk59 computer 35 270 158.00 0.6 

2 tsk16 bath water heater 20 1300 433.00 1 

3 tsk17 TV 45 400 300.00 0.8 

4 tsk63 lighting 5 26 2.00 1 

5 tsk66 lighting 60 42 42.00 0.5 

6 tsk67 lighting 5 35 3.00 0.4 

7 tsk68 lighting 40 20 13.00 0.3 

8 tsk79 pool pump 20 1100 367.00 1 

9 tsk53 cooking 40 1950 1300.00 0.8 

10 tsk46 cloth washing 25 300 125.00 1 

11 tsk47 cloth washing 20 30 10.00 1 

12 tsk48 cloth washing 5 1400 117.00 1 
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Table 4.9. Scenario #6 Energy Demand Profile 

 

# 
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 c
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o
u
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V
al

u
e 

1 tsk693 lighting 5 26 2.00 0.5 

2 tsk614 lighting 15 24 6.00 0.5 

3 tsk765 lighting 20 52 17.00 1 

4 tsk66 lighting 60 42 42.00 1 

5 tsk67 lighting 5 35 3.00 0.4 

6 tsk33 coffee maker 5 1200 100.00 0.4 

7 tsk32 refrigerator 60 750 750.00 1 

8 tsk226 TV 60 400 400.00 1 

9 tsk687 video game player 60 200 200.00 1 

 

Table 4.10. Scenario #7 Energy Demand Profile 
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 c
o

d
e 

ta
sk

 n
am

e 

o
p

er
at

io
n

 
ti

m
e 

(m
in

u
te

) 

p
o

w
er

 (
w

at
t)

 

E
n

er
g

y
 (

w
at

t.
 H

o
u

r)
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u
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1 tsk3 lighting 5 26 2.00 0.5 

2 tsk164 lighting 15 24 6.00 0.5 

3 tsk65 lighting 20 52 17.00 0.9 

4 tsk466 lighting 60 42 42.00 1 

5 tsk67 lighting 5 35 3.00 1 

6 tsk2 air-conditioner 20 1680 560.00 0.4 

7 tsk32 refrigerator 60 750 750.00 1 

8 tsk26 playing TV 60 400 400.00 0.8 

9 tsk187 video game player 60 200 200.00 0.8 

10 tsk34 
cooking 

(microwave) 
5 1400 117.00 1 

11 tsk241 vacuum cleaner  25 1500 625.00 0.8 
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Table 4.11. Scenario #8 Energy Demand Profile 
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 c
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V
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u
e 

1 tsk64 lighting 15 24 6.00 0.5 

2 tsk65 lighting 20 52 17.00 0.5 

3 tsk66 lighting 60 42 42.00 0.9 

4 tsk67 lighting 5 35 3.00 1 

5 tsk85 electric blanket 60 100 100.00 1 

6 tsk59 computer 35 270 158.00 0.4 

7 tsk8 clothes dryer 60 2100 2100.00 1 

 

 

 

Table 4.12. Scenario #9 Energy Demand Profile 
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V
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u
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1 tsk63 lighting 5 26 2.00 0.5 

2 tsk64 lighting 15 24 6.00 1 

3 tsk49 cooking 25 1600 667.00 0.9 

4 tsk5 
cooling (air-

conditioner) 
15 170 43.00 0.7 

5 tsk32 refrigerator 60 750 750.00 1 

6 tsk84 blender 10 300 50.00 1 

7 tsk30 cooking 5 1400 117.00 1 
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Table 4.13. Scenario #10 Energy Demand Profile 

 

# 
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 c
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V
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u
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1 tsk63 lighting 5 26 2.00 0.5 

2 tsk64 lighting 15 24 6.00 1 

3 tsk50 cooking (stove) 30 600 300.00 0.2 

4 tsk5 cooling 15 170 43.00 0.7 

5 tsk32 refrigerator 60 750 750.00 1 

6 tsk84 blender 10 300 50.00 0.8 

7 tsk30 cooking (microwave) 5 1400 117.00 0.8 

8 tsk65 lighting 20 52 17.00 0.8 

 

Table 4.14. Summary of Eight Scenarios 
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DE  SE OE  
DE-
SE 

SE-
OE 

DE-
OE 

T
im

e 
E

la
p
se

d
 (

E
-0

6
) 

sce-01 10 9 7.1 6.9 0.71 0.77 2947 2900 2847 47 53 100 2.81 

sce-02 16 14 12.1 11.5 0.76 0.82 7785 6200 5460 1585 740 2325 1.49 

sce-03 14 13 11.40 11.00 0.81 0.85 3713 3400 3280 313 120 433 1.31 

sce-04 12 11 9.40 8.80 0.78 0.80 2870 2800 2712 70 88 158 1.68 

sce-05 12 11 9.40 8.90 0.78 0.81 2870 2840 2828 30 12 42 1.49 

sce-06 9 8 6.80 6.40 0.76 0.80 1520 1500 1420 20 80 100 1.31 

sce-07 11 10 8.70 8.30 0.79 0.83 2722 2500 2162 222 338 560 1.31 

sce-08 7 6 5.30 4.30 0.76 0.72 2426 2200 326 316 1874 2100 1.31 

sce-09 7 6 6.10 5.40 0.87 0.90 1635 1600 1592 35 8 43 1.31 

sce-10 8 6 5.8 4.8 0.73 0.8 1285 900 868 385 32 417 1.31 

DE: demanded energy (watt. Hour), SE: scheduled energy (watts. Hour), OE: optimized energy 

(watts. Hour), TV: Total value, VI= Value index 
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Figure 4.16. The Energy Levels Before and After Optimization (3D) 

 

 

Figure 4.17. The Energy Levels Before and After Optimization (2D) 
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4.6.4. Decision-making Algorithm for Optimal Energy Consumption  

In SoS, the proposed optimizer system interacts with the other three systems and the user. In 

this case, a decision-making framework is required for establishing an intelligent level of 

interaction. The proposed decision-making algorithm is shown in Figure 4.19. 

This algorithm can be explained as follows: 

1. The scheduling time horizon is divided into “n” equal timeslots. 

2.  The algorithm runs from the first timeslot n=1. 

3.  The energy demand and input data 1 to 7 explained in the section above are provided 

by IS, PS, and MAS systems. 

4. The knapsack weight and value in steps 3 and 4 are provided for executing the KP 

optimization in step 5. 

5. By implementing the KP optimization, the algorithm asks whether or not the optimal 

solution exists. If there is an optimal solution, the removed item must be investigated 

in step 8a and 8b but prior to this, the algorithm checks whether the removed item has 

a high value. 

6. In step 8, the algorithm checks three attributes of the removed items. If the removed 

items (rejected appliances) are pre-requisites for other tasks (attributes 20 in Table 

4.2, dependency on other equipment) which are already in the knapsack, then they 

must revert to it. Furthermore, it is very important that the removed items be 

interruptible or shiftable. If an item is not, then a high value, “M” which is equal to 

1000 will be allocated to the item and again the KP optimization will executed. 

7. After repeating the optimization, in step 7, the algorithm checks whether the item with 

a high value has been removed; and in this case the algorithm asks the user to override 

the system by allocating more budget in order to increase the knapsack capacity. 

8. In step 8, if none of the situations arises, then the algorithm becomes ready for the 

next timeslot. 

9. If the OS cannot find the optimal solution, two decisions will be taken: the system 

checks whether the optimization has been executed after adding the available stored 

energy; otherwise, if there are available resources, then the system reverts to step 4 

and specifies the new size for the knapsack. However, if there are not enough 

resources, then the user is required to allocate more funds to meet the demand and 

optimization. 

10. In step 12, when the user allocates more budget to meet his demand, then a new 

knapsack size will be specified in step 4 and the system will perform a new 

optimization10- In step 12 when the user allocate more budget for his demand, then a 
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new size of knapsack will be specified in step 4 and system will perform a new 

optimization. 

 

Figure 4.18. Optimizer System Decision Making Framework 

I explain the function of proposed algorithm for aforementioned scenario 8 as follows: 

In scenario 8, Table 4.14, there are 7 appliances that in total have a demand for 2426 watts. 

Hour energy for the demand response limit on this timeslot is 2200 watt-hours. After 

optimization, the clothes dryer with 2100 watt-hours energy will be removed. Its value is equal 

to 1 which means that the consumer preferred to have this appliance in that timeslot; so, in 

step 9 of the algorithm, a value equal to 1000 is allocated to it, and the second round of 

optimization is executed. 

In the second round of optimization, appliances such as the electric blanket and computer with 

values of 1 and 0.4 respectively have been removed. However, the electric blanket is preferred, 

so again a value of 1000 is allocated to it and a third round of optimization executed. 
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In third round of optimization, electric blanket and cloth dryer with high value remained in 

the Knapsack and other appliances have been removed that among them a “light” with value 

(profit) equal to one is included. The budget deviation in this round is zero. So a value of big 

number “M” allocates to the light and fourth round of optimization executed. In this KP 

optimization, I have three items which their values (profit) are equal to the big number, M, 

that execution of this round will be exactly the same as the first round of the optimization in 

which those appliances had the value equal to “1”. In this situation, the system must override 

by user to allocate budget or change the value of preferences (step 12). In this situation, the 

user allocates 100 watt.hour energy, so the level of energy increases from 2200 watt.hour to 

2300 watt.hour. With this budget allocation, the “computer” appliance with a value of 0.4 

removed from the knapsack and the energy surplus comes to +32 watt.hour.  

 

Table 4.18. Implementing the Decision–making Algorithm for Scenario 8 

 

Optimization removed appliances 

(Watt.hour, Value) 

Energy level 

after 

Optimization 

1st round Cloth dryer(2100,1) 326 

2nd round Elec Blanket(100,1), 

Computer(158,0.4) 

2168 

3rd round Computer(158,0.4),light(6,0.5), 

light(17.33,0.5),light(42,0.9),  

2200 

4th round computer(158, 0.4) 2268 

 

4.7. Conclusions 

The ISO/IEC 15067-3 standard [5] and the OpenADR 2.0b profile specification [6] which are 

used to enhance the functionality of HEMS compatible with SG regulations, inspired us to 

propose a system of systems approach for the design of a versatile home energy scheduler. 

The residential aspect of the SG is a complex adaptive system that needs to utilize convoluted 

algorithms to achieve an efficient level of energy consumption. In this Chapter, I have 

explained the functions of the proposed HEMS scheduler model that inherent includes event 

detection, resource allocation, task monitoring, and optimization.  

The methodologies in the sub-system level are set out briefly in Table 4.1 As was 

demonstrated in sections 4.2.1 and 4.3, understanding the nature of the operation’s task, the 

degree of concurrency, running time of scheduling algorithm execution, and satisfying 
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residents’ preferences are obstacles facing system designers in this field. The interaction of an 

optimizer system needs a decision-making algorithm in order to achieve an optimal level of 

optimization. I proposed knapsack problem optimization as a powerful combinatorial 

optimization to achieve an optimal level of energy when the energy level in each timeslot is 

limited and restricted by a DRP.  

In the next Chapter, a developed methodology is presented for the industrial sector of the smart 

grid where an energy manager needs to make a decision about whether to participate in a DRP 

or use energy provided by a DER. 
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Chapter 5 

 

A Decision-Making Framework for 

Assessing Demand Response Engagement 

in Industrial Sectors of Smart Grid 

5.1. Introduction 

In Previous Chapters, I developed a decision-making methodology for achieving the end-

user’s preferences and proposed an optimization technique for energy management based on 

those preferences in order to increase the DRP willingness for participation. Our 

methodologies in previous Chapters 3 and 4 focused on residential sector in SG. However, 

this method is deployable in industrial sector where energy manager must make decision 

whether to participate in DRP or accept the high peak period energy cost.     

Demand response programs (DRPs) in the smart grid (SG) industrial sector should take 

production and operation management into consideration. Since any loss of energy will 

directly affect all aspects of an organization, any decision about load curtailment requires a 

comprehensive risk and defect assessment. In this Chapter, Delphi method is proposed for 

identifying the criteria required for evaluating the effects of DRP engagement on operational 

and production management factors. The TOPSIS technique with information entropy 

proposed in third Chapter is employed to compute the significant values of equipment during 

energy planning according to the criteria. Then the computed values are used by a linear 

programming (LP) model to evaluate DRPs and plan the energy required for equipment during 

production, taking into account all the constraints imposed by DRP and production resources. 

The methodology presented in this Chapter assists operation and energy managers to make 

better decisions regarding DRPs and to plan energy efficiently. 

As discussed in Chapter 1 and  2, in smart grid (SG), demand-side management (DSM) 

comprises those technologies, activities and strategies used by the utility provider on the 

demand side of the energy network to manage load, improve energy efficiency, reduce 
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emissions, and increase consumer participation in energy management [73]. The main aim of 

DSM is to balance demand with available supply instead of the conventional policy where 

energy is supplied to meet demand. 

SG’s consumers are residential, commercial, municipal, or industrial, the last being the focus 

of this Chapter since it has the largest share of the total energy consumption[74]. For example,  

in 2011-12, Australia’s manufacturing sector was the largest user of electricity with 43.6% (or 

67,400 GWh) of electricity consumption and 27.3% (or $5.5b) of total electricity expenditure 

[315]. The demand response program (DRP) is a DSM method by which electricity 

aggregators or utilities can manage power consumption via price-based or incentive-based 

regulations, benefitting participants who curtail their energy demand during peak periods or 

shift their demands to off-peak periods [74, 316].  

In Chapter 1, I discussed that DRPs are categorized into two main groups of incentive-based 

and time-based programs (IBP, TBP) [16, 17, 76]. It is mentioned that in IBPs, participants 

are rewarded based on their consumption behaviour performance in critical conditions by 

receiving discount rates or credits on their bill.  In TBPs, electricity tariffs are designed based 

on dynamic pricing rates that fluctuate according to the real time cost of electricity market 

[17]. The methodology proposed in this Chapter is based on real TOU, a type of real time 

pricing (RTP), which is the most efficient and direct program in competitive energy market 

[17, 76] . In such programs, participant will be informed about the energy prices which are 

reflected by the real cost of energy in wholesale market on a day-ahead or an hour-ahead basis 

[17].  

In industrial sector of smart grid, offering commercial incentives to industrial consumers or 

shifting the demand to off-peak periods can cause a dilemma since a DRP may disrupt the 

production process and the organization may incur losses if its energy load is decreased. 

However, principally in electricity demand economics, the more electricity is consumed, the 

more products are produced. In production functions, the production output such as sales 

income, profit, and value-added are positively correlated with electricity consumption as an 

input [317]. However, most industrial consumers are equipped with on-site energy generators 

for emergency back-up or auxiliary power for DR[74]. Hence, industries could consider one 

of the following options:  

a) Rejecting DRP, sustaining production during on-peak periods, and accepting high energy 

prices and penalties; 

b) Engaging in DRP and compensating for lost production by receiving discounts on energy 

price rate or accepting a commercial incentive; 

c) Using back-up on-site energy generators during peak-hours and/or a storage system;  

d) Curtailing energy consumption during peak hours by shifting loads to off-peak periods and 

employing an economically and technically viable energy plan.   
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Apart from choosing the strategy most appropriate for production, there should be adequate 

information and communication technologies (ICT) and advanced metering infrastructure 

(AMI) to provide precise and real-time information for energy-efficient decision-making [24, 

318, 319]. Although many researches have proposed solutions for decision making and energy 

optimization in the residential sector of smart grid [23, 320], energy-efficient manufacturing 

is more complicated and not limited to a cost and benefit analysis since efficacy and efficiency 

are priorities in all layers of operational management [321-323]. Industrial participants in DRP 

need to assess the risks associated with DRP in terms of financial gain and loss.  

This Chapter proposes a decision support model and a methodology to assist energy experts 

in industrial sectors to assess the risks posed by DRP in production environments. By utilizing 

real-time energy consumption information, an energy optimization method is employed to 

schedule and allocate energy during DRP to identify any potential loss of production. Energy 

managers may be able to make decisions about whether or not to implement a DRP program 

after considering the DRP’s energy constraints and the potential loss of production whilst 

achieving the optimized level of energy. 

The remainder of this Chapter is organized as follows. Section 5.2 presents related works and 

identified problems. Section 5.3 addresses decision making for evaluating equipment 

operation and energy management. Energy, power and cost correlations have been delineated 

in section 5.4; in section 5.5 DRP engagement evaluation is studied and section 5.6 an 

algorithm is introduced for energy optimization and a DRP engagement evaluation. Section 

5.7 presents a case study simulating the proposed methodologies. Section 5.8 presents the 

sensitivity analysis of the proposed algorithm, and section 5.9 concludes this Chapter. 

 

5.2. Related Studies and Identified Problems 

With the emergence of SG, DRPs in the industrial sector have attracted intense research. The 

significances of prioritizing loads and products are presented in [321] by dividing the products 

into three categories A, B, and C from highest value to the lowest value to prioritize workshops 

for load curtailment in DRP. Daily production and inventory constraints, maintenance 

schedules, crew management, and characteristics of the workstations have been considered in 

the conceptual model designed to assess the processes for load curtailment or temporary shut-

down. However, after ranking the workstation, authors did not present a methodology to 

determine the electricity cost-saving potential or a method to evaluate whether or not the 

financial benefits of DRP are attractive for incentives.  

A load scheduling strategy aimed at minimizing electricity costs to the industrial users in real-

time pricing DRP is presented by [322]. This research utilizes a linear programming 

optimization algorithm to minimize the electricity cost by harmonizing the hourly marginal 
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rate duration curve with maximum and minimum power demand levels. Electricity cost for 

the end-user with and without load scheduling operation while considering the total spare 

energy consumption capacity and optimum load scheduling have been modelled. However, 

potential electricity cost savings and the cost of unserved energy for evaluating the economic 

value of RTP have not been considered.  

The effect of unreliable and finite information on the efficiency of the operations plans in RTP 

scheme of DRP has been investigated by [324]and the LP mathematic model has been utilized 

for minimizing the average hourly operating cost under RTP scheme. Authors of [325-329] 

have focused on the throughput of sustainable manufacturing systems in different DRP 

schemes such as critical peak pricing, RTP and TOU. They mostly employed mixed integer 

nonlinear programming methods to achieve near-optimal solutions for minimizing the energy 

cost by concentrating on reservation and buffer inventory management build-up during off-

peak periods to overcome the load curtailment. However, these methodologies give rise to 

problems when there are high verities of product in the system and the production flexibility 

is not responsive enough to build a buffer. Furthermore, the production and lean 

manufacturing paradigm such as just-in-time and pull production are in contrast with these 

proposed methodologies. In addition, these methods are not suitable for perishable products 

such as food.  

On the other hand, one of the aims of SG is the development of distributed energy resources. 

The research of [330] focuses on this aspect of SG; it analyses the cost of purchasing and 

generating electricity against the revenue generated by selling electricity to the grid. The 

authors have established a LP model to minimize the total energy cost in hourly day-ahead 

DRP. Furthermore, the tasks are divided into schedulable and non-schedulable groups, making 

the research methodology more feasible to implement. This research deals with the flow of 

electricity together with other resources including flow of material, real-time processes, and 

the serious financial and technical problems posed by a reduction in electricity. 

The attention of the aforementioned research projects are mainly focused on energy 

management by minimizing energy costs while considering production constraints, machine 

operations and maintenance, and inventory management for making throughputs as efficient 

as possible by utilizing linear and non-linear programming methods. But to the best of the 

authors’ knowledge, no research has yet focused on evaluating the feasibility of DRP in terms 

of supporting operations managers to make a decision about DRP adoption. The existing 

research can be useful when manufacturers have decided to participate in DR; however, prior 

to making this decision, they need to investigate the potential gains and losses associated with 

a DRP. Furthermore, the associated risk of energy loss is not limited to production 

management; it is an energy efficiency and productivity matter. As mentioning [321]  , ICT 

can help to manage and reduce energy consumption and emissions in manufacturing 
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processes. ICT in manufacturing industries comprises different systems such as enterprise 

resource planning (ERP), customer relationship management (CRM), manufacturing 

execution system (MES), material resource planning (MRP), and product lifecycle 

management (LCM) [14]. For example, development in internet of things (IOT) in industrial 

sectors can facilitate the real-time intelligent collection of energy consumption of a product 

during its entire life [331] and assist numerous types of decision-making at different levels of 

enterprise systems[318, 319].  

Figure 5.1 shows an Energy Management System (EMS) combined with ERP system to form 

an industrial DR information model in which our proposed methodology is embedded in EMS 

for evaluating the effects of DRP on operations and production management. The energy 

information such as price signal will be sent through wide area network (WAN) to enterprise 

while the energy consumption information received by EMS with local area network (LAN) 

will be sent back to the utility by smart meter. The next sections I explain the decision making 

algorithm for this expert system. 
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Figure 5.1. Industrial DR Information Model 
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5.3. Decision Making For Evaluating Equipment Operation and Energy 

Management 

5.3.1. Multi-Criteria Decision Making for Energy Planning 

As discussed in Chapter 2, Multi-Criteria Decision Making (MCDM) techniques have been 

increasingly employed for energy planning decisions. These methods can be classified into 

three main groups of a) value measurement models, b) goal and reference model, and c) 

outranking model [225]. Among numerous MCDM methods, as earlier pointed out, the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), originally presented 

by [219], has received interest from researchers as an effective tool for evaluating and 

selecting the energy system performance [256].  

TOPSIS is a practical method for ranking and selecting a number of possible alternatives by 

measuring Euclidean distances. The first step in all decision-making methods is determining 

the criteria. The principles and methods for selecting the appropriate criteria in decision-

making for energy planning are presented in[332]. For selecting the criteria, the energy expert 

should obey systemic, consistency, independency, measurability, and comparability 

principles. Furthermore, there are three main methods for selecting criteria including 

 Delphi 

 Least mean square (LMS)  

 Min-max deviation 

 I have employed the Delphi method in our proposed methodology. 

The TOPSIS method [219] based on information entropy is proposed as a decision support 

tool for an energy manager to determine the effects of DRP on productivity and energy 

efficiency. In this section, ‘alternative’ refers to all the equipment and ‘criteria’ indexes 

determined in the previous section. There are two types of criteria. Positive criteria are those 

that should be increased and negative ones are those which need to be decreased in order to 

mitigate risk. 

The purpose of this methodology is to first arrive at an ideal solution and a negative ideal 

solution, and then find a scenario which is nearest to the ideal solution and farthest from the 

negative ideal solution. This methodology has been presented in Chapter 3 and it can be 

implemented by taking the steps summarized in Table 5.1. 

The final step of TOPSIS methodology presented in below table, takes us to the ranking of 

equipment. This ranking indicates that the production of equipment with higher value should 

be maintained during DRP and any load curtailment for this equipment will constitute a high 
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risk to the enterprise. Therefore, it is preferable to curtail the energy provided to equipment 

with lower ranking. I utilize these values in our optimization methodology proposed in the 

next section. 

 

Table 5.1. Summarized TOPSIS Methodology Presented and Explained in Chapter 3. 

TOPSIS Steps Formulas 
Equation 

number 

Step 1: Specify 

alternatives and criteria 

 

Equipment : 𝐴 = { 𝐴1, … , 𝐴𝑚} 
 

 

Criteria:  𝐶 = {𝐶1, … , 𝐶𝑐}. 
 

Step 2: Assign ratings to 

criteria and alternatives 

                    𝐶1       𝐶2      𝐶𝑔      𝐶𝑐

𝑋𝑚×𝑐 =

𝐴1

𝐴𝑖

⋮
𝐴𝑚

[

𝑥11 𝑥12

. .

… 𝑥1𝑐

𝑥𝑖𝑔 .

⋮ ⋮
𝑥𝑚1 𝑥𝑚2

… ⋮
… 𝑥𝑚𝑐

]
. 3.6 

Step 3: Calculate weight 

of criteria by entropy 

technique 

 

𝑞𝑖𝑔 =
𝑥𝑖𝑔

(𝑥1𝑔 + ⋯ + 𝑥𝑚𝑔)
 ;          ∀𝑔

∈ {1, . . , 𝑐}. 

3.7 

𝛥𝑔 = −𝑘 ∑ 𝑞𝑖𝑔 . ln 𝑞𝑖𝑔  ; ∀𝑔 ∈ {1, . . , 𝑐}      

𝑚

𝑖=1

 3.8 

𝑤′
𝑔 =  

𝜆𝑔 .𝑤𝑔

(𝜆1.𝑤1+⋯+ 𝜆𝑐.𝑤𝑐)
     ; 

𝑤′ = {𝑤1
′ , 𝑤2

′ , … , 𝑤𝑐
′} 

3.11 

3.12 

Step 4: Construct a 

normalized decision 

Matrix 

 

𝑟𝑖𝑔 =  
𝑥𝑖𝑔

√(𝑥1𝑔
2 + ⋯ +  𝑥𝑚𝑔

2 )

 3.13 

 

𝑁𝑚×𝑐 = [𝑟𝑖𝑔]
𝑚×𝑐

 ,     

  (𝑖 = 1, … , 𝑚 ; 𝑔 = 1, … , 𝑐). 

3.14 

Step 5: Construct the 

weighted normalized 

decision matrix 

 

𝑉 = 𝑁𝑚×𝑐 . 𝑤′𝑐×𝑐 = (𝑣𝑖𝑔)𝑚×𝑐                                           

(𝑖 = 1, … , 𝑚 ;  𝑔 = 1, … , 𝑐) 

 

3.15 
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Table 5.1. Continue. Summarized TOPSIS Methodology Presented in Chapter 3. 

TOPSIS Steps Formulas 
Equation 

number 

Step 6: Compute (PIS) 

𝐴+ and (NIS) 𝐴− 

 

𝐴+ = {(max 𝑣𝑖𝑔 |𝑔 ∈ 𝐺) ; (min 𝑣𝑖𝑔| 𝑔 ∈ 𝐺′)}

= 

(𝑣1
+, 𝑣2

+, … , 𝑣𝑐
+) 

3.16 

 

𝐴− = {(min 𝑣𝑖𝑔 |𝑔 ∈ 𝐺) ; (max 𝑣𝑖𝑔| 𝑔 ∈ 𝐺′)}

= 

(𝑣1
−, 𝑣2

−, … , 𝑣𝑐
−). 

3.17 

Step 7: Compute the 

distance of each 

alternative from PIS 

(𝑑𝑖
+

 ) and NIS (𝑑𝑖
−

) 

𝑑𝑖
+ =  √∑(𝑣𝑖𝑔 − 𝑣𝑔

+)
2

𝑐

𝑔=1

 3.18 

 

𝑑𝑖
− =  √∑(𝑣𝑖𝑔 − 𝑣𝑔

−)
2

𝑐

𝑔=1

 
3.19 

Step 8:  Compute the 

closeness coefficient of 

each alternative 

 

𝐶𝐶𝑖
+ =

𝑑𝑖
−

(𝑑𝑖
− + 𝑑𝑖

+)
     ;     𝑖 = 1, 2, … , 𝑚 

3.20 

Step 9: Rank the 

alternatives 

 

𝑣 = {𝑣𝑖| max
1≤𝑖≤𝑚

(𝐶𝐶𝑖
+)} 

3.21 

 

 

5.3.2. Selecting Decision-Making Criteria for Energy Planning:  The Delphi 

Method  

The Delphi technique is a systematic procedure to be used with a panel of experts for 

discovering a consensus of opinions about the future events or decision making on different 

disciplines [332, 333]. There is a variety of applications for Delphi method that details of the 

Delphi evaluative studies can be found in [333]. For instance, Galo et al. [334] employed this 
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method for selecting the criteria among many variables to evaluate electrical systems in smart 

grid. In our approach, ten factors have been initially identified by a survey on operations 

management and lean manufacturing [335]. Delphi method is employed for selecting the 

appropriate criteria necessary for evaluating the effects of DRP participation on these factors 

and energy planning. A panel of experts will be constituted from different organizational 

departments with different expertise to forecast how the factors presented in Figure 5.2 will 

be affected by implementing DRP. The appropriate criteria for measuring these effects can be 

determined by designing a questionnaire to ask the experts’ opinion about the risks associated 

with DRP and achieving complete consensus among panellists.  

 

Demand Response Program 

Participation 

F6= Machine

F5

= Supply Chain 

Mgmt and 

Agility

F1= Material F2= Methods
F3

=Management
F4= Marketing

F7= 

Measurements 

F8=Human 

Resource Mgmt

F9= Financial 

Mgmt

F10= 

Environment

  

Figure 5.2. The Effected Factors by DRP Participation 

 

The flowchart depicted in Figure 5.3 is proposed for implementing Delphi method considering 

the following details [333]: 

a) Four key features of Delphi procedure comprise anonymity (step 1), iteration (steps 

2, 3 and 4), controlled feedback (steps 4 to 2), and statistical aggregation of group 

responses (step 5). 

b) The Delphi panel size is modest and a group of 10 to 18 members is recommended. 

c) The experts may belong to the production, quality, engineering, logistics, financial, 

and sales departments. 

d) The first round of Delphi procedure is unstructured and the number of criteria may 

decrease in further rounds. 

e) Experts may use their own internal documents, expertise, and knowledge for assessing 

the effect of DRP on their operations. 
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f) Greater consensus amongst panellists can be determined by reduction of variance in 

responses. 

 

No

Step1.1: Preparing a questionnaire 

(form) to ask about the effects of DRP 

on presented factors in Fig. 2.

 Step1.2: Forming a group of experts 

from different departments 

Step 2: Submitting forms to the 

experts and gather together all the 

forms.

Step 3: Has the consensus been 

achieved over the criteria?

Step 4: Updating the form with new 

idea and re-distribute them among 

the experts.

Step 5: Issuing the final report

Yes

 

Figure 5.3. Delphi Procedure for Selecting Criteria 

By achieving general consensus for decision-making criteria, TOPSIS method will be 

employed for prioritizing the importance of the equipment for energy planning during DRP. 

Afterwards I use these values in an optimization model to allocate energy to the equipment 

accordingly. By this methodology I have aggregated the experts’ knowledge in accordance 

with risk mitigation in organization for participating in DRP. The summary of our proposed 

methodology is presented in Figure 5.4.  
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Method: TOPSIS

Method: Delphi Method

Method: Linear Programming

Step2: Decision 

Making 

Purpose: Obtaining the 

consensus among  experts 

about selecting the criteria 

for assessing the effects of 

DRP on operations 

management.

Purpose: Prioritizing the 

importance of equipment for 

energy planning during DRP 

based on achieved criteria

Purpose: Optimizing the 

energy planning based on 

DRP and the importance 

value of each equipment.

Step1: Selecting The 

Criteria for Decision 

Making

Step3: Energy 

Planning 

Optimization  

  

Figure 5.4. Proposed Methodology Stepwise 

 

5.4. Energy, Cost and Power Correlations 

 

For energy and its associated cost formulation, it is assumed that 𝐸𝑖𝑗
1  denotes the energy 

demanded by equipment 𝑖 in timeslot 𝑗 with energy price 𝑈𝑗
1 where the associated energy cost 

𝐶𝑖𝑗
1  can be calculated as [322], 𝐶𝑖𝑗

1 =  𝑈𝑗
1 ×  𝐸𝑖𝑗

1 .  Therefore, if the consumer allocates the same 

budget to timeslot 𝑗 in which 𝐸𝐶𝑗
2 =  𝐸𝐶𝑗

1 then the change in energy level is in contrast to the 

same proportion in which the energy price has been increased as shown by Eq.5.1. 

Assume  𝐶𝑖𝑗
1 =  𝑈𝑗

1 ×  𝐸𝑖𝑗
1  and 𝐶𝑖𝑗

2 =  𝑈𝑗
2 ×  𝐸𝑖𝑗

2   

if 𝐶𝑖𝑗
2 =  𝐶𝑖𝑗

1   

then (𝑈𝑗
2 ×  𝐸𝑖𝑗

2 ) = (𝑈𝑗
1 ×  𝐸𝑖𝑗

1 )  

or  
𝐸𝑖𝑗

2

𝐸𝑖𝑗
1 =  

𝑈𝑗
1

𝑈𝑗
2                                                                                                                   (5.1) 

Here, I divide the DRP duration by "𝑛", the number of timeslots, to reach the unit of time for 

energy planning as follows: 
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𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑅𝑃

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠𝑙𝑜𝑡𝑠 (𝑛)
= Ƭ                                                                                         (5.2) 

where Ƭ is “time unit of planning”; hence, the allocated operation time, energy and power are 

limited by this constraint. The above correlation between power, time, and energy will be used 

as constraints in the proposed optimization model in the next section (Eq.5.19).  

Total energy and cost of 𝑚  electrical equipment Etotal m
n  and 𝐶𝑡𝑜𝑡𝑎𝑙 𝑚

𝑛 , during n timeslots can 

be formulated by Eq.5.3 and Eq.5.4. It is assumed that the energy price in each timeslot is 

constant and each timeslot is considered as a time unit of planning. 

𝐸𝑡𝑜𝑡𝑎𝑙,𝑚
𝑛 = ∑ ∑ 𝐸𝑖𝑗  𝑚

𝑖=1
𝑛
𝑗=1 = ∑ ∑ (𝑃𝑖𝑗 × 𝑡𝑖𝑗 )𝑚

𝑖=1
𝑛
𝑗=1                                                        (5.3) 

𝐶𝑡𝑜𝑡𝑎𝑙,𝑚
𝑛 = ∑ ∑ (𝑝𝑖𝑗 × 𝑡𝑖𝑗

𝑚
𝑖=1

𝑛
𝑗=1 ) × 𝑈𝑗                                                                           (5.4) 

𝑖 = 1,2, 3, . . , 𝑚 ;    𝑗 = 1,2,3, . . , 𝑛                                                                                   (5.5) 

 𝑡𝑖𝑗  ≤   Ƭ                                                                                                                         (5.6) 

where 𝐸𝑖𝑗  and 𝑃𝑖𝑗  are the amount of energy and power demanded by equipment 𝑖 during 

timeslot 𝑗 for executing an operation which takes 𝑡𝑖𝑗  in each Ƭ; and, 𝑈𝑗  is the price of energy 

in timeslot 𝑗 that is fixed during Ƭ. The product quantity produced can be related to its 

electricity consumption. This relationship is the product quantity function of electricity 

consumption as shown by Eqs. 5.7 and 5.8 [317]: 

𝑄𝑖𝑗 =  𝑓𝑄𝑖
(𝐸𝑖𝑗)                                                                                                                (5.7) 

 𝐴𝑄𝑖𝑗 =
𝑄𝑖𝑗

𝐸𝑖𝑗
                                                                                                                      (5.8) 

where 𝑄𝑖𝑗 is the production rate of equipment 𝑖 by consuming energy  𝐸𝑖𝑗, and 𝐴𝑄𝑖𝑗 is average 

production rate for each unit of energy (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠/𝑘𝑊. ℎ). This formula will be 

used to compute the production loss derived by energy curtailment (Table 5.2). 

 

5.5. DRP Engagement Evaluation 

For evaluating DRP engagement, the load of electrical equipment can be classified in two 

main groups of interruptible and non-interruptible. Furthermore, the interruptible loads can be 

categorized in two groups of deferrable (𝐿𝐷) and non-deferrable (𝐿𝑁𝐷) loads. The equipment 

with 𝐿𝐷  can run and be scheduled at any time and their operations are not a direct input to 

other processes. These types of loads will not disrupt other processes which may cause delay 

in operation management. Conversely, 𝐿𝑁𝐷 is for unscheduled operations for DRP because 

due to their load scheduling, the industrial unit will face financial damage or other processes 

will be interrupted. Operations in chemical production such as oil refinery, plating process, 

and heat treatment by a furnace are in the 𝐿𝑁𝐷 category. These types of loads cannot be 
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scheduled for DRP engagement [327]. Operations such as metal forming, stamping and 

cuttings in workshop press or spring manufacturing are examples of the 𝐿𝐷 category. In this 

Chapter, the proposed methodology is focused on 𝐿𝐷; therefore, 𝐸𝑡𝑜𝑡𝑎𝑙,𝑚
𝑛  in Eq.5.3 can be 

formulated as: 

 

𝐸𝑡𝑜𝑡𝑎𝑙,𝑚
𝑛 = 𝐸𝑡𝑜𝑡𝑎𝑙,𝑁𝐷

𝑛 + 𝐸𝑡𝑜𝑡𝑎𝑙,𝐷
𝑛                                                                                        (5.9) 

𝐶𝑡𝑜𝑡𝑎𝑙,𝑚
𝑛 = 𝐶𝑡𝑜𝑡𝑎𝑙,𝑁𝐷

𝑛 + 𝐶𝑡𝑜𝑡𝑎𝑙,𝐷
𝑛                                                                                        (5.10) 

𝐸𝑜𝑏𝑗,𝐷
𝑛 = 𝐸𝑡𝑜𝑡𝑎𝑙,𝐷

𝑛 − (𝐸𝑡𝑜𝑡𝑎𝑙,𝑚
𝑛 − 𝐸𝐷𝑅,𝑚 

𝑛 )                                                                        (5.11) 

Or 𝐸𝑜𝑏𝑗,𝐷
𝑛 = 𝐸𝐷𝑅,𝑚 

𝑛  −  𝐸𝑡𝑜𝑡𝑎𝑙,𝑁𝐷
𝑛                                                                                     (5.12) 

𝐶𝑜𝑏𝑗,𝐷
𝑛 =  ∑ 𝐸

𝑜𝑏𝑗,𝑖 ,𝑗
𝑛𝐷

𝑖′=1  × 𝑈𝑗;      ∀j ∈ {1, . . , n}                                                           (5.13) 

 

where Etotal,ND
n  and Etotal,D

n  are the total energy of equipment which have non-deferrable and 

deferrable loads and their associated costs are Ctotal,ND
n  and Ctotal,D

n , respectively.  𝑁𝐷 and D  

are the number of equipment with non-deferrable deferrable loads, respectively.  

By participating in demand response and accepting DR regulation and energy price 𝑈𝑗, the 

level of total required energy Etotal,m
n  shall be curtailed to reach to the demand response level 

EDR,m 
n . As discussed above, this excessive amount is subtracted from deferrable energy 

level Etotal,D
n  . This situation constructs the objective level of energy Eobj,D

n  which is calculated 

by Eq.5.11 or 5.12. This limit of energy and its associated cost, 𝐶𝑜𝑏𝑗,𝐷
𝑛  in each timeslot are the 

constraints in our optimization model.  Etotal,m
n  is the level of energy that is required based on 

production plan. These levels of energy for our case study have been shown in Figure 5.10.  

In the proposed methodology it is assumed that if 𝐸𝐷𝑅,𝑚
𝑛  ˂ 𝐸𝑡𝑜𝑡𝑎𝑙,𝑁𝐷

𝑛 , the DRP will interrupt 

the total production process and the engagement is not feasible. I present a DRP engagement 

evaluation algorithm following the optimization method given in the next section. 

 

5.6. Mathematical and Optimization Model and DRP Engagement Evaluation        

Algorithm 

In this section, LP is presented to perform energy optimization and energy planning for DRP. 

I design the optimization function by maximization because of the positive and direct 

correlation between production and electricity consumption [317] Hence, the more products 

are produced, the more energy is consumed. Therefore, I include the aforementioned DRP 

constraints in the formula and aim to maximize the production for simulating DRP as shown 

in objective function by Eq.5.14. The scheduling time horizon has been divided into 𝑛 

timeslots to plan the energy for 𝐷  amount of equipment and "𝑖" is an index to present the 
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equipment with deferrable loads. Considering the energy price 𝑈𝑗 in timeslot 𝑗, the energy cost 

of each 𝑖 will be computed. Constraints 5.15 and 5.16 will not allow these amounts to 

increase.  

DRP imposes two constraints that are considered as inputs to our model. The first constraint 

is the amount of total energy allocated to each timeslot shown by 𝛿𝑗 in Eq.5.17 (calculated by 

Eq.5.12) such that the total energy of equipment 𝐸𝑖𝑗 in that timeslot will not exceed this value 

(constraint Eq.5.18). The second constraint is energy price, where constraint Eq.5.18 indicates 

that the cost of total equipment during timeslot 𝑗 will not exceed the total cost allocated to that 

timeslot ( 𝑗). In the presented model, it is assumed that the energy price in each timeslot is 

constant and the equipment’s load is deferrable. 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   ∑ ∑   𝑣𝑖𝐸𝑖𝑗
𝑛
𝑗=1

𝐷
𝑖′=1                                          (5.14) 

Subject to: 

∑ 𝐸𝑖𝑗
𝑛
𝑗=1 ≤  𝑒𝑖 ,       ∀i  ∈ {1, . . , D}                                 (5.15) 

∑ 𝐸𝑖𝑗. 𝑈𝑗
𝑛
𝑗=1 ≤  𝑐𝑖 ,   ∀i ∈ {1, . . , D}                                 (5.16) 

∑ 𝐸𝑖𝑗
𝐷
𝑖=1 ≤  𝛿𝑗 ,        ∀j ∈ {1, . . , n}                                    (5.17) 

∑ 𝐸𝑖𝑗. 𝑈𝑗
𝐷
𝑖=1 ≤  𝑗  , ∀j ∈ {1, . . , n}                                    (5.18) 

𝐸𝑖𝑗  ≤  Ƭ × 𝑝𝑖 ,           ∀i ∈ {1, . . , D}, ∀j ∈ {1, . . , n}          (5.19) 

𝑒𝑖 ,  𝑝𝑖 , 𝑐𝑖  , 𝑈𝑗 ≥ 0                                                                (5.20) 

i∈ {1, . . , D}  ; j ∈ {1, . . , n}                                                 (5.21) 

 

where the input variables are:  

𝑒𝑖 : Total energy allocated to equipment 𝑖 

𝑐𝑖 : Total energy cost allocated to equipment 𝑖 

𝑝𝑖 : Amount of power used by equipment 𝑖 

𝑣𝑖 : Value of importance belongs to equipment 𝑖 

𝑈𝑗: Price of energy in timeslot 𝑗 indicated by DRP 

𝛿𝑗 : Total energy allocated to timeslot 𝑗  

ϒ𝑗 : Total cost of energy allocated to timeslot 𝑗 

Ƭ : Time unit of planning 

and the output variable is :  

𝐸𝑖𝑗 : Amount of energy required for equipment 𝑖 in timeslot 𝑗 
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The objective function maximizes the use of energy for the equipment in each timeslot along 

time horizon energy planning taking into account the value of each piece of equipment (𝑣𝑖′) 

calculated by the TOPSIS approach. 

In the above mathematical model, Eq.5.15 shows the constraint of energy allocation limit to 

the equipment 𝑖  during time horizon planning while Eq.5.16 indicates its associated cost 

constraint.  

 

Figure 5.5. ILOG CPLEX Optimization Studio Programming Code 

1 /********************************************* 
2 * OPL 12.6.0.0 Model 
3 * Author: Omid Ameri Sianaki 
4 * Creation Date: 06/08/2014 at 11:53:21 AM 
5 *This file has been programed for energy allocation and optimization 
to timeslots 
6 x[i][j] = amount of energy used by equipment i during timeslot j 
7  
8 *********************************************/ 
9 // parameter 
10 
11 int n=...; //number of equipment 
12 int m=...; //number of timeslot 
13 range equipment=1..n; 
14 range timeslot=1..m; 
15 float TopsisRankingValue[equipment]=...; 
16 float cost[equipment]=...; 
17 float usage_time[equipment]=...; 
18 float power[equipment]=...; 
19 float energy[equipment]=...; 
20 float TimeslotCostLimit[timeslot]=...; 
21 float TimeslotEnergyLimit[timeslot]=...; 
22 float energy_price[timeslot]=...; 
23 // variales 
24 dvar float+ x[equipment][timeslot]; 
25 maximize sum(i in equipment, j in timeslot) 
TopsisRankingValue[i]*x[i][j]; 
26 subject to { 
27 forall(i in equipment) 
28 Energy_limit_each_Equipment: 
29 sum(j in timeslot) x[i][j] <= energy[i]; 
30 forall(i in equipment) 
31 Cost_limit_each_Equipment: 
32 sum(j in timeslot) x[i][j]*energy_price[j] <= cost[i]; 
33 forall(j in timeslot) 
34 Timeslot_energy_capacity: 
35 sum(i in equipment) x[i][j]<= TimeslotEnergyLimit[j]; 
36 forall(j in timeslot) 
37 Timeslot_Cost_Capacity: 
38 sum(i in equipment) (x[i][j]*energy_price[j]) <= TimeslotCostLimit[j]; 
39 forall(i in equipment,j in timeslot) 
40 Max_timeslot_energy_limit_for_each_equipment: 
41 x[i][j]<= power[i]; 
42 } 
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Any change to this cost limit will be projected to the product cost and profit. Eq.5.17 is the 

constraint of energy in each timeslot indicating that the sum of consumed energy during each 

timeslot should not exceed the allocated energy level dedicated to that timeslot.  

Eq.5.18 is associated with the cost of energy constraint in Eq.5.17. Eq.5.19 expresses the 

relationship mentioned in section 5.4 indicating that the allocated power and operation time 

for the equipment in each timeslot will be limited to the unit of time planning Ƭ.  

Figure 5.6 shows the proposed decision algorithm for engaging in DRP. In the next section, a 

computational experiment is presented. 

 

5.7. A Computational Simulation for a Case Study 

The proposed methodology has been assumed for implementation in a metal components 

manufacturer. Employing the industrial DR information model of Figure 5.1, EMS and ERP 

will provide information about the amount of energy and associated cost required for 

production plan. Accordingly, deferrable and non-deferrable loads of equipment has been 

identified by which ten pieces of equipment (press machines) (𝐷 = 10) with deferrable loads 

( 𝐿𝐷) have been identified in the press-shop factory. 

 In this scenario, these ten pieces of equipment produce a set of ten parts (each made by a press 

machine) for making an assembly (a product) such that the coefficient of each part in the bill 

of material for this assembly is equal to “1”. The energy, cost and power of electricity for 24 

(n=24) hours production have been presented in Table 5.2. The energy price (before receiving 

DRP) has been considered 0.25 $/kW.h. A day-ahead demand response program has been 

offered with energy price presented in Figure 5.7 and  energy limits are presented in Figure 

5.10 for 24 hours; otherwise, without participating in DRP, the price of electricity will be  0.4 

$/kW.h. Accordingly, the time unit of planning, Ƭ is calculated by Eq. 5.2 such that Ƭ=1. By 

this primary information, the industrial unit shall make decision, whether to accept DRP or 

reject it. The implementation of proposed methodology is as follows. 

 

5.7.1. Selection Criteria  

According to the first step of the proposed methodology (Figure 5.4), experts from different 

departments such as quality control, quality assurance, sales, engineering and production can 

form the Delphi expert panel. It is assumed that the experts answered the questions about the 

potential effects that will occur by implementing DRP in operations management factors 
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presented in Figure 5.2. By executing the procedure presented in Figure 5.3, 26 criteria 

presented in Table 5.3 achieved. 

 

Figure 5.6. Decision-Making Algorithm for Assessing DRP Engagement 

Criteria 1 to 4, availability of reserved capacity, manufacturing lead time, operation cycle 

time, and number of bottleneck stages have been elicited from factor 2, the method. It means 

that these criteria are able to evaluate the effect of participating in DRP on production method. 

1- Receiving DRP, 𝐸
𝐷𝑅,𝑚 
𝑛  and/or commercial incentive 

from the utility  

2- Computing 𝑣𝑖 (Eqs. 3.6-3.21) and analysing energy and 

cost levels (Eqs. 5.9-5.10)  

4- Compute 𝐸
𝑜𝑏𝑗,  𝐷
𝑛  (Eq. 5.12) 

5- Execute LP optimization for 𝐸
𝑜𝑏𝑗,  𝐷
𝑛  and compute 

production lost (Eqs. 5.14-5.21)  

Accept DRP 

Reject DRP 

Accept DRP with on-site generation  

3- Is 𝐸
𝐷𝑅,𝑚 
𝑛 ≥ 𝐸

𝑡𝑜𝑡𝑎𝑙,  𝑚
𝑛  ? 

6- Will the amount of curtailed load be 

compensated by back-up on site generation? 

7- Is DRP incentive value more than cost of 

back-up generation? 

8- Is DRP incentive value more than the cost 

of loss production?  

Yes 

Yes 

No 

Yes 

No 

Yes 

No 
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Similarly, loss of customers and their satisfaction are those criteria by which, the system is 

able to evaluate the effect of performing DRP on “F4” (Figure 5.2), marketing factor, and so 

forth. In this procedure, all experts believed that the DRP has no effect on factor one, material. 

5.7.2. Decision Making  

 

In this stage, the energy manager will prioritize the equipment based on the selected criteria 

and specify the importance of each piece of equipment if enterprise participates in DRP. As 

there are 26 criteria and ten pieces of equipment, the dimension of decision matrix 𝑋 is 10 ×

26. Following the second step of our proposed methodology and the algorithm presented in 

Figure 5.6, the TOPSIS methodology presented in Table 5.1  has been implemented in 

MATLAB R2014b (64bit) on an Intel Core i7-3770S CPU @3.1 Ghz computer with 16 GB 

memory with timing performance of three seconds. 

 

Figure 5.7. Day-Ahead DRP Scheme 

 

Figure 5.8.  Normalized Decision Matrix (𝑵𝟏𝟎×𝟐𝟔) 

In the following, the intermediate TOPSIS calculations have been omitted for conciseness; 

however, the normalized matrix and the TOPSIS final result are shown in Figures5.8 and 9, 
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respectively. Figure 5.9 shows that the equipment 1, 6, 2, and 9 have high ranking levels while 

the equipment 3 and 10 have the lowest rank. In this experiment, the energy manager weights 

of (6) are assumed to be equal for all criteria; however, the effect of this weight aggregation 

will be discussed in section 5.8.    

 

Table 5.2. Energy Demand of Equipment (Eqpt) with Deferrable Load 

Equipment 

 

𝑐𝑖   

($) 

 

𝑒𝑖 (KW.h) 

 

 

Power 

(kW) 

 

Operation 

time (h) 

 

𝐴𝑄𝑖𝑗 

(Products 

/KW.h) 

Eqt1 25.00 100 10 10 15 

Eqt2 27.50 110 10 11 12 

Eqt3 50.00 200 10 20 10 

Eqt4 22.00 88 8 11 11 

Eqt5 15.00 60 6 10 13 

Eqt6 18.75 75 5 15 15 

Eqt7 30.00 120 10 12 10 

Eqt8 15.00 60 4 15 12 

Eqt9 25.00 100 10 10 13 

Eqt10 20.00 80 8 10 14 

Sum: 248.25 993 81 124  

 

 

5.7.3. Optimization Steps 

 

In this section, before performing the optimization technique, the energy and cost levels such 

as (E
total,  D
n  , C

total,  D
n )= (993 kW.h, $248.25), (E

total,  ND
n  , C

total,  ND
n )= (628 kW.h, $157), 

(E
total,  m
n  , C

total,  m
n ) = (1621 kW.h, $405.25) have been computed by (26, 27).   DRP requires 

the total energy limit of E
DR,  m
n  = 1503 kW.h which is less than the total required energy 

E
total,  m
n = 1621 kW.h. According to step 4 (Figure 5.6), the (E

obj,  D
n  , C

obj,  D
n ) = (875 kW.h, $ 

234.5) will be computed by (28)-(29). The amount of total objective energy and cost level for 

each timeslot, 𝛿𝑗 and 𝑗, have been presented by Figures 5.9 and 5.10. 

IBM ILOG CPLEX 12.6.1 was employed to simulate the LP optimization model on the same 

computer with timing performance of one second. The optimization results are shown in 

Figures 5.11, 5.12 and 5.13. Figure 5.12 shows the amount of energy used in each unit time 

of planning by each piece of equipment (Ƭ = 1).  
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For example, in timeslot 1, the equipment 1, 2, 6, and 10 are operating with energy levels of 

10, 10, 5 and 10 kW.h, respectively. However, in the second timeslot, the equipment 1 and 9 

will stop while the equipment 2 and 6 will continue their operations. Meanwhile, press 

machine 7 will start its operation with an energy level of 10 kW.h.  

These simulation results indicate that the trend of total optimized energy profile in Figure 5.12 

is exactly compatible with the energy objective level profile presented in Figure 5.10 so that 

Eobj,D
n = Eopt,D

n = 875 kW.h. Analysis and comparison of Figures 5.9 and 5.13 confirm that 

the equipment with higher priority values received the total energy while the energy for 

equipment with low values such as equipment 3-5, 8 and 10 were curtailed. 

Furthermore, the amount of production loss associated with this energy curtailment was 

calculated by Eq.5.8 as shown in Table 5.4. For example, according to production plan, press 

machine 3 was supposed to use 127 kW.h of energy for producing 1270 parts, but by 

participating in DRP and after optimization, this press will only receive 54 kW.h of energy, 

losing 73 kW.h that it is equal to 730 parts.  

 

5.7.4. Discussion 

 By participating in this DRP, the number of assembly (product) lost can be derived 

from the part which has the maximum amount of production loss. In this experiment, 

Eqpt. 3 has the maximum amount of production loss, 730 parts meaning that 730 

assemblies or products have been lost. Hence, if the unit of profit for each product is 

considered as one, then 730 units of profit have been lost for the company. 

 Before DRP participation, (E
total,  D
n  , C

total,  D
n ) were equal to (993 kW.h, $248.25). 

After implementing proposed methodology and curtailing the 118 kW.h energy 

(Table 5.4), the value of these parameters reached to the objective level (875 kW.h, 

$234.5) that it means saving $13.75 and losing 730 unit of benefit.  

 Moreover, if the enterprise does not accept the DRP and accept the flat rate of 0.4 

$/kW.h then in this condition (E
total,  m
n  , C

total,  m
n ) will be changed from (1621 kW.h, 

$405.25) to (1621 kW.h, $648.4) that it means $243.15 extra cost of electricity energy. 

 By achieving this information, the energy manager is able to make the final decision 

by answering the three questions asked in steps 6, 7 and 8 of the proposed algorithm 

in Figure 5.6. Therefore, if the on-site generator is capable to produce 118kW.h energy 

and assuming that the benefit of each product is equal to $1, then by accepting this 

DRP, the enterprise will lose $730 - $13.75=$716.25 which is bigger than $243.15. 

Moreover, if the cost of on-site generation is added, then this difference will increase 

and DRP will be strongly rejected.  
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  Assume that the benefit of each product is equal to $0.1, then by accepting this DRP, 

the enterprise will lose $59.25 (=$73 - $13.75). In this case if the price of onsite 

generation is less than $183.9 (=$243.15-$59.25) and the generator is able to generate 

118 kW.h energy then the DRP will be accepted.  

 The cost of running generators in every industrial unit depends on the type, size, and 

fuel, as well as many other generators’ factors that are not in the scope of this thesis.  

 

 

Figure 5.9. TOPSIS Output (𝒗𝒊) 

 

 

 

Figure 5.10. The Energy Levels  𝜹𝒋, 𝑬𝒕𝒐𝒕𝒂𝒍,𝒎
𝟐𝟒 , 𝑬𝒕𝒐𝒕𝒂𝒍,𝑵𝑫

𝟐𝟒 , and  𝑬𝒕𝒐𝒕𝒂𝒍,𝑫=𝟏𝟎
𝟐𝟒  
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Table 5.3. List of Criteria for Assessing the Risk of DPR Engagement 

C 
Fact

ors 
Criteria 

S
ig

n
 

C1 F2 Availability of reserve capacity + 

C2 F2 Manufacturing lead time (hour) - 

C3 F2 Operation cycle time (second) - 

C4 F2 Number of bottleneck stages - 

C5 F3 Pressures from top management - 

C6 F4 Loss of customer - 

C7 F4 Customer satisfaction + 

C8 F5 Delivery lead time (hours) - 

C9 F5 Frequency of the deliveries + 

C10 F5 Adherence to schedule + 

C11 F5 Overall machine flexibility + 

C12 F5 Delivery priority + 

C13 F6 Re-calibration and set-up time (minutes) - 

C14 F6 Impact on equipment’s safety - 

C15 F7 
Effects on hazard analysis and critical 

control points (HACCP) 
- 

C16 F8 Scrap and rework cost ($) - 

C17 F8 Operating cost ($) - 

C18 F8 Maintenance cost ($) - 

C19 F8 Tooling cost ($) - 

C20 F8 Establishment and set-up cost ($) - 

C21 F8 Personnel cost ($) - 

C22 F8 Profit per product ($/Product) + 

C23 F8 
Penalties due to short quantity or late 

delivery ($) 
- 

C24 F9 
Number of people involving in stopping 

the line due to re-set up 
- 

C25 F9 Operators dissatisfaction - 

C26 F10 Emissions per product - 
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Figure 5.11. Associated Cost of Objective Energy Level in Each Timeslot (ϒ𝒋) 

 

 

 

Figure 5.12. Production Energy Planning Based on DRP (𝑬𝒊𝒋) 

 

Figure 5.13. Energy Planning Before and After Optimization 
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Table 5.4. Summary of Energy and Production Loss 

Equipment 

Energy level after  

optimization 

during 24 hours 

(kW.h) 

Energy 

loss 

(kW.h) 

Product 

loss 

 (parts) 

Eqpt3 127 73 730 

Eqpt4 73.6 14.4 158 

Eqpt5 50 10 130 

Eqpt8 52.8 7.2 87 

Eqpt10 67 13.4 188 

sum 118  

 

 

Figure 5.14. Cost Planning Before and After Optimization 

 

5.8. Decision Making Sensitivity Analysis 

In the previous section, the simulation of the proposed algorithm was executed when decision 

maker (DM) weight vector  𝜆𝑔 (Eq.3.11),  was equal to one for all criteria. In the proposed 

methodology, the energy manager as an expert is able to increase or decrease the aggregated 

weight of the criteria 𝑤′ by vector 𝜆𝑔. In this section the sensitivity analysis for studying the 

effect of decision making on optimization model will be examined by comparing four 

scenarios as follows: 

Scenario 1: I have considered the previous experiment in section 5.7 as the first scenario when 

the value of vector 𝜆𝑔 was equal to 1 for all criteria and decision maker is neutral for positive 

and negative criteria . 𝜆𝑔 and computed 𝑣1 are shown in Figures 5.15, 5.16 for this scenario. 

Scenario 2: In this scenario the energy manager gives weights to the positive criteria ten times 

stronger than negative criteria. In the other words it makes the effect of the negative criteria 
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on decision making ten times lesser (weaker) than positive ones. By this, the alternatives (the 

pieces of the equipment) which have bigger value in positive criteria become more preferred.  

Scenario 3: In this scenario the energy manager gives weights to the negative criteria ten times 

stronger than positive criteria in the other words, the effect of positive criteria on decision 

making will be ten times weaker than negative ones. By this, the alternatives with fewer values 

in negative criteria are more effective in ranking process. 

Scenario 4: In this scenario, decision maker gives weights to the criteria 16 to 23 (Table 5.3) 

ten times stronger than other criteria. Referring Table 5.3, these criteria belongs to financial 

management factor (F8). By this DM has decided to increase the value of criteria which effect 

on cost. 

Parameters 𝜆𝑔 and 𝑣𝑖are computed by TOPSIS method for these four scenario have been 

presented in Figures 5.15 and 5.16. Table 5.5 shows the summary of optimization result and 

Figure 5.17 shows the amount of energy lost in each scenario. The results achieved by 

considering these scenarios can be discussed as follows: 

 Allocated energy after optimization in four scenarios to all equipment in Table 5.5 is 

equal to 𝐸𝑜𝑏𝑗,𝐷
𝑛 = 875 𝑘𝑊. ℎ that it indicates the robustness of the proposed 

optimization model. 

 

 Considering Figure 5.16, the computed value by TOPSIS method, the equipment 1 

and 6 have the highest value in all scenarios meanwhile the equipment 3 has the lowest 

value. As a result, the equipment 1 and 6 received the total required energy and 

equipment 3 received the maximum energy curtailment. 

 

 Considering scenarios 2 and 3, when the weight 𝜆𝑔 for positive criteria changes from 

maximum (in comparison to negative criteria) to minimum values, the most change 

in profile"𝑣𝑖" in Figure 5.16 can be seen in equipment 8, 9 and 10. The effect of this 

variance can be interpreted in product loss for these equipment in Table 5.5. 
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Figure 5.15. Weight Vector 𝛌𝐠in Four Scenarios 

 

 

Figure 5.16. TOPSIS Result Computed for Four Scenarios 

 

 

Figure 5.17 Energy Lost in Each Scenario 
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Table 5.5. The Optimization Result for Four Scenarios 

E
q

p
t 

Allocated Energy After 

Optimization (kW.h) 
Product Lost (parts) 

S1 S2 S3 S4 S1 S2 S3 S4 

1 100 100 100 100 0 0 0 0 

2 110 110 109.83 92 0 0 2 216 

3 127 182 182 127 730 180 180 730 

4 73.6 73.6 73.6 88 159 159 159 0 

5 50 50 50 51 130 130 130 117 

6 75 75 75 75 0 0 0 0 

7 120 110.77 120 102 0 93 0 180 

8 52.8 52.8 60 60 87 87 0 0 

9 100 100 37.5 100 0 0 813 0 

10 66.67 20.83 67 80 188 829 181 0 

∑ = 875 875 875 875 1293 1476 1464 1243 

 

5.9. Conclusions  

In this Chapter, a methodology has been proposed for assessing the effects of engaging in 

smart grid DRP on operational and production management. The Delphi method introduced 

to determine the criteria for assessing the effect of energy curtailment during DRP. The 

TOPSIS method is employed to apply the criteria and assist the energy manager to rank the 

equipment according to their significance. After explaining the correlation of energy, cost and 

power, a LP model was proposed to utilize those ranking values to optimize energy 

consumption to satisfy the energy limit posed by production demands. Unlike the other 

research discussed in the literature which are mostly focused on minimizing cost in their 

optimization objective, this Chapter proposes the maximizing of the energy use in order to 

increase production while taking into account the utility and production constraints. An 

algorithm is proposed to assist energy managers to decide whether or not to participate in 

DRP. This methodology was implemented in a press-shop factory and the result showed that 

according to 26 criteria, the equipment with high priority received more energy allocation and 

DRP affected equipment with low priority. The sensitivity analysis carried out for four 

scenarios and comparing the result of each scenario indicted the robustness of optimization 

model. The constraints used in the proposed model were the minimum constraints required 

for energy planning; however, depending on the nature of the process and products, different 

production methods may impose more constraints on the model. 
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Chapter 6 

Recapitulation and Future Work 

6.1. Introduction 

An energy management system in the context of the smart grid needs new approaches as the 

smart grid has added many new features in control methodologies and shifted the traditional 

paradigm to new and modern concepts of management. Hence, I examined the recent 

challenges in this field by conducting a survey in Chapter 2 which revealed that the literature 

to date has failed to consider all these aspects because the effective parameters in energy 

management systems belong to different domains of science such as science and engineering, 

sociology, and economics.  

In this thesis which pertains to energy management, I aim to design and present methodologies 

which are more dependent on users’ decisions or are more customer-oriented. This is an 

important consideration since the smart electrical network essentially has been created to 

benefit the end-users and they are the main customers of this provided service; so if customers 

are to contribute to this service management, they have to possess the facilities, technologies 

and methodologies enabling them to monitor the effects of the decisions they make regarding 

energy consumption; otherwise, they will not be motivated to engage in energy management 

policies or demand response programs, which are two of the most significant energy 

management tools in the smart grid.  

In order to overcome this disadvantage, a decision support system is required to assist end-

users to monitor and control their consumption in order to adapt their lifestyle to changes 

which have been imposed by DRPs.   

The main significance of this research is that it provides benefits for a number of entities 

including: 

 People and householders who consume electricity for their requirements and comfort.  

 Utility providers and aggregators which are generating and/or selling electricity. 

 Government bodies which allocate funds and invest in bulk electricity generation 

infrastructures. 

 Environment which directly bears the impact of the negative and destructive 

consequences of energy generation and consumption. 
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 Society, which is undoubtedly one of the main stakeholders of SG development.  

 

6.2. Recapitulation 

Chapter 1 of this thesis begins with a definition of the smart grid and its architecture, and 

describes the system’s components. Certain infrastructures are discussed for the 

implementation of energy management techniques at the residential level. Following this 

discussion, I introduce the important parameters of energy demand in the residential sector 

and optimization and scheduling methodologies. Finally, the research objectives and its 

significance along with the overall structure are presented. Chapter 1 provides the necessary 

background to the research motivations, its significance, and the objectives of the improved 

management system.  

The main objectives of this thesis are to research the characteristics and functionality of a 

home energy management system that are generally incorporated in demand response 

programs of the smart grid, and to develop a set of advanced solutions to address the following 

issues: 

1. The development of an intelligent decision support system to help users to manage 

their energy consumption according to their preferences and DR regulations. 

2. The development of a home energy management system by proposing methodologies 

in which intelligence is added to this system. 

3. The development of a mathematical optimization algorithm that takes into account 

users’ preferences and comfort level, while utilizing the maximum amount of 

distributed energy resources. 

4. The development of scheduling methodologies to encourage users to shift their 

consumption from on-peak period to off peak periods in demand response programs. 

5. The deployment of a decision-making methodology for the industrial sector of the 

smart grid in order to assist the operations manager to decide whether to participate 

in DRP or use distributed energy resources. 

In the second chapter of this thesis, I provide an overview of the literature surveyed and an 

evaluation of the state-of-the-art elements of an energy management system in the micro grid 

of the smart grid. Substantial progress has been made in providing a practical basis for a 

number of problems that are associated with energy optimization and scheduling 

methodologies in the residential sector. A number of energy efficiency tools and techniques 

have been documented in the literature. The works are discussed that have been previously 

undertaken to resolve some of the issues outlined in Chapter 1.  
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The research literature pertaining to the smart grid could be reviewed from an interdisciplinary 

perspective because this is a complex domain that involves human, socioeconomic, hardware, 

and software factors. However, in Chapter 2, the literature review is limited to the micro level 

of the smart grid since this is more relevant to the subject of this thesis. The research areas 

investigated in literature review can be classified into six categories: 

 

1. Demand-side management and demand response programs 

2. The role of smart meters in DR 

3. Building an energy management system 

a. Energy consumption scheduling and optimization methods 

b.  Prediction of building energy consumption 

c. Load demand identification 

4. The effect of consumers’ behaviour and their preferences on energy demand 

a. Energy consumption behaviour and activities related to energy demand 

b. The effect of consumers’ consumption behaviour in optimization models 

5. Comfort management 

a. Comfort management: Thermal Comfort 

b. Comfort Management: Indoor Air Quality 

c. Comfort Management: Visual Comfort 

i. Visual comfort: Electric Lighting Control by Switching Method 

ii. Visual Comfort: Electric Lighting Control by Dimming Method 

6. Decision-making approaches in energy management and smart grid 

In Chapter 2, I addressed the most significant elements of electrical energy management 

systems in terms of the end-users of the smart grid, and I examined those studies most relevant 

to the topic of this thesis.  

Hence, the main issues identified in the literature and that addressed in this research 

are: 

a. No approach in the literature has been proposed that measures consumers’ 

preferences and consumption profiles in order to efficiently utilize energy. 
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b. Much research has been done to achieve efficiency in demand response and 

price. However, none has proposed a solution for studying the effectiveness 

of such systems when customers are not well-trained, or unwilling or passive 

in responding to price signals; consequently, the demand increases. To 

overcome this, an intelligent decision support system for energy 

management is required to assist customers to make decisions according to 

their criteria for demand response. 

c. As shown in the optimization and scheduling literatures reviewed in Chapter 

2, the study of the preferences of consumers has been limited to the preferred 

set-up time for the scheduling of appliance operations or air or water 

temperatures. There are no any approaches in the literature that assist the 

end-user to aggregate the total preferences regarding all effective parameters 

in energy consumption, and employ them in optimization models that 

demonstrate the effect of these preference changes on the optimization of 

energy consumption. 

d. In the reviewed literature, no approach has been proposed that uses an 

algorithm to facilitate the decision-making process for end-users when they 

decide to participate in DRP and want to reduce energy consumption. 

 

In Chapter 3, I develop decision-making models by means of which intelligence is added at 

each home level on a continuous basis, thereby achieving demand response. Prior to 

constructing our model, firstly I introduce the decision-making process and methodologies. 

Secondly, the appropriate criteria for decision-making in the residential sector are discussed; 

and thirdly, I review the multi-criteria, decision-making techniques such as AHP, ANP, 

TOPSIS, Fuzzy TOPSIS, and ELECTRE and by means of several scenarios, I discuss the 

advantages and disadvantages of each method in the context of building energy management 

systems in the smart grid. Fourthly, an intelligent decision support system for building energy 

management system proposed. I explain that this model can be utilized in four steps: 

identifying the effective variables, developing the user interface for capturing the consumers’ 

preferences, developing a multi-criteria decision making model and finally developing a 

neural network based model for learning the consumers’ preferences and consumption profile 

based on the obtained data. 

The fourth chapter of this thesis proposes a system of systems approach for scheduling and 

optimizing the energy supply to buildings. It introduces the knapsack problem optimization 

method in order to save the householders’ utility budget while the preferences of using 

appliances have been maximized in a dynamic pricing scheme of DRP. I proposed a 
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methodology in which the multi-criteria decision-making approach which was proposed in 

Chapter 3 is combined with the knapsack problem optimization technique. In Chapter 4, I 

presented eight scenarios to demonstrate the methodology. Finally, Chapter 4 proposes a 

decision-making algorithm by which an optimization system of the proposed SoS model can 

perform optimization.  

Chapter 5 of this dissertation utilizes the TOPSIS method and combines it with a linear 

programming allocation technique to support an industrial energy manager (or an operation 

manager) in making the decision whether to participate in a DRP, or instead use the distributed 

resources. Our proposed methodology in this chapter has focused on the most available 

equipment the operations of which can be deferred or interrupted because they are not a 

prerequisite for other operations. Mathematical and optimization models and a DRP 

engagement evaluation algorithm have been simulated using ILOG CPLEX Optimization 

studio programming.  

The software employed for simulating and executing the proposed models and algorithms 

include Lingo, MATLAB, and IBM ILOG CPLEX Optimization studio.  

 

6.3. Contribution of the Thesis 

The major contribution of this thesis to the literature is that it proposes methodologies as 

decision-making frameworks for end-users to involve and consider the criteria which can be 

affected by the energy curtailment of DRP participation. In the residential sector, these criteria 

pertain to the users’ lifestyle, and in the industrial sector they concern the loss/ benefits and 

risks associated with production management. 

The contributions of this thesis are as follows: 

1. Addressed the most significant elements and approaches of electrical energy 

management systems in terms of the end-users of the smart grid by reviewing the 

researches presented in the literature review, Chapter 2. 

2. Proposed a methodology which allows users to apply the criteria to their decision-

making with a solution for the wise consumption of energy.  The proposed decision-

making framework helps users to manage their energy consumption according to 

their preferences and DR regulations and balance power consumption with their 

lifestyle. 

3. Proposed MCDM methodologies to measures consumers’ preferences in order to 

efficiently utilize energy, and compared the advantages and disadvantages of each 

method.  
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4. Proposed an IDSS to monitor consumers’ decision-making, elicit consumer 

preferences, and decisions make autonomously on behalf of the consumers to achieve 

more effective demand response. 

5. Proposed an optimization methodology by utilizing MCDM methods such as AHP 

and TOPSIS together with the knapsack problem approach in order to reflect the 

consumers’ preferences in the final optimal solution. The optimal solution reflects 

maximum consumer satisfaction. 

6. Proposed a system of systems model to create a robust building energy management 

system that is compatible with the dynamic pricing demand response program of the 

SG.  

7. Proposed a decision-making algorithm for implementing the optimization based on 

proposed KP and MCDM techniques and utilise the distributed energy resources in 

an efficient way. The application of this decision-making framework is essential 

particularly when the optimizer system interacts with other systems such as identifier, 

predictor and monitor systems. 

8.  Proposed the Delphi methodology to determine the appropriate criteria for assessing 

the effects of energy curtailment in the industrial sector of the SG.  

9. Proposed the application of TOPSIS technique for ranking electrical equipment based 

on the criteria when the manufacturer decides to engage in DRP. 

10. Proposed a combinatorial optimization technique for utilizing energy as much as 

possible when constraints are imposed by the amount of energy required to run 

equipment and the commitment to a particular energy level in DRP. 

11.  Proposed a decision-making algorithm in order to mitigate the effects of energy 

curtailment on operation management and assist energy managers to decide whether 

to engage DRP or draw from distributed energy resources. 

 

6.4. Future Work 

In this thesis, decision-making frameworks and optimization techniques are proposed as an 

important part of BEMS for the area of DRP in the SG. However, during the course of the 

approaches presented in this thesis, many significant future outlooks have emerged. The 

proposed methodology and framework would be strengthened further by future work that 

considers these directions. The following are the most significant areas which have been 

identified for future work. 

1. Expanding the intelligent decision support system proposed in Chapter 3 for achieving 

a unique energy consumption profile for the family members: Comparing the electrical system 
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with telecommunication and media system, especially the mobile network, the users of that 

system receive real-time data about their consumption. The provided information will detail 

the usage of each application. Furthermore, the mobile network providers are able to inform 

their users about any overconsumption trend and offer them a more appropriate service based 

on the user’s consumption profile. Consequently, because of the information provided, each 

user knows how many gigabytes of data and how many hours s/he requires during a billing 

period. In order to add such intelligence to the smart grid, the proposed IDSS must be able to 

examine the users’ consumption behaviour and lifestyle. 

2. Expanding the proposed knapsack method to an online stochastic knapsack: in our 

proposed optimization methodology, the data input to the system is done within the offline or 

semi-online state. But the online and stochastic method can provide an approximation of future 

energy consumption trends for the BEMS. 

3. Expanding the proposed methodology presented in Chapter 5 to consider the 

Operation process chart (OPC) and adding more operation constraints to the mathematical 

formula. These constraints can be the concurrent and preceding operation times in scheduling. 

4. Implementing the algorithm proposed in Chapter 5 for hourly real-time pricing 

demand response but with the addition of an energy price forecasting model. 

5. Expanding the optimization algorithm proposed in Chapter 5 by considering the 

parameters related to the flexibility of the equipment such as the set-up time in each 

interruption, the minimum energy required for performing an operation, as well as appropriate 

correlation between power and operation time for adjusting the energy needed to operate 

particular equipment. 

 

6.5. Conclusions 

This chapter reviewed the significance of the thesis and recapitulated the objectives, the issues 

and the proposed solutions that have been presented and discussed. The contributions of the 

thesis have been highlighted according to the identified research issues. Finally, it gave a brief 

description of future research directions which could extend the proposed approaches.  

The proposed methodologies and decision-making algorithms that were undertaken in this 

thesis have been published in peer reviewed international journal and conferences. 
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Appendix 01 

Predicted Mean Vote (PMV) index calculation by ISO 7730:2005(E), Ergonomics 

of the thermal environment - Analytical determination and interpretation of 

thermal comfort using calculation of the PMV and PPD indices and local thermal 

comfort criteria 

A human being's thermal sensation is mainly related to the thermal balance of his or her body 

as a whole. This balance is influenced by physical activity and clothing, as well as the 

environmental parameters such as:  

a) air temperature; 

b) mean  radiant  temperature; 

c) air velocity; 

d) air humidity. 

When these factors have been estimated or measured, the thermal sensation for the body as a 

whole can be predicted by calculating the predicted mean vote (PMV).  

The PMV is an index based on the heat balance of the human body that predicts the mean 

value of the votes of a large group of persons on the seven point thermal sensation scale shown 

by Table A1.1. Thermal balance is obtained when the internal heat production in the body is 

equal to the loss of heat to the environment. In a moderate environment, the human 

thermoregulatory system will automatically attempt to modify skin temperature and sweat 

secretion to maintain heat balance. 

Table A1.1. Seven-Point Thermal Sensation Scale 

+ 3 Hot 

+ 2 Warm 

+ 1 Slightly warm 

0 Neutral 

- 1 Slightly cool 

- 2 Cool 

- 3 Cold 

 

Calculate the PMV using Equations as follows: 

𝑃𝑀𝑉 = (0.303 ×  𝑒(−0.036×𝑀) + 0.028)𝐿 = 𝛼𝐿                                                (A1.1) 
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𝐿 = {(𝑀 − 𝑊) − 3.05 × 10−3 × (5733 − 6.99 × (𝑀 − 𝑉) − 𝑝𝑎) − 0.42 × ((𝑀 − 𝑉) −

58.15) − 1.7 × 10−5 × 𝑀 × (5867 − 𝑝𝑎) − 0.0014 × 𝑀 × (34 − 𝑡𝑎) − 3.96 × 10−8 ×

𝑓𝑐𝑙 × ((𝑡𝑐𝑙 + 273)4 − (𝑡𝑟̅ + 273)4) − (𝑓𝑐𝑙 ×  ℎ𝑐 × (𝑡𝑐𝑙 − 𝑡𝑎))}                         (A1.2) 

 

𝑡𝑐𝑙 = 35.7 − 0.028 × (𝑀 − 𝑉) − 𝐼𝑐𝑙 × {3.96 × 10−8 × 𝑓𝑐𝑙 × ((𝑡𝑐𝑙 + 273)4 − (𝑡𝑟̅ +

273)4) + (𝑓𝑐𝑙 ×  ℎ𝑐 × (𝑡𝑐𝑙 − 𝑡𝑎))}                                                                        (A1.3)                                        

ℎ𝑐 = {
2.38 × |𝑡𝑐𝑙 + 𝑡𝑎|0.25 𝑓𝑜𝑟 2.38 × |𝑡𝑐𝑙 + 𝑡𝑎|0.25 > 12.1 × √𝑣𝑎𝑟

12.1 × √𝑣𝑎𝑟 𝑓𝑜𝑟  2.38 × |𝑡𝑐𝑙 + 𝑡𝑎|0.25 < 12.1 × √𝑣𝑎𝑟

                (A1.4)                       

𝑓𝑐𝑙 = {
1.00 + 1.290 ×  𝐼𝑐𝑙     𝑓𝑜𝑟 𝐼𝑐𝑙  ≤ 0.078    𝑚2. 𝐾/𝑊 

1.05 + 0.645 ×  𝐼𝑐𝑙     𝑓𝑜𝑟 𝐼𝑐𝑙  > 0.078    𝑚2. 𝐾/𝑊
                                  (A1.5)                          

where  

𝐿 is the thermal load on the body defined as the difference between internal heat production 

and heat loss to the environment for a person hypothetically kept at comfort values of 

temperature of the skin layer and evaporative heat loss of regulatory sweeting at the activity 

level, and  

  𝛼 is the sensitivity coefficient; 

𝑀 is the metabolic rate, in watts per square metre (𝑊/𝑚2); 

𝑊 is the effective mechanical power, in watts per square metre (𝑊/𝑚2); 

𝑡𝑎 is the air temperature, in degrees Celsius (°C); 

𝑡𝑟̅  is the mean radiant temperature, in degrees Celsius (°C); 

𝑡𝑐𝑙 is the clothing surface temperature, in degrees Celsius (°C); 

𝑓𝑐𝑙  is the clothing surface area factor; 

𝐼𝑐𝑙  is the clothing insulation, in square metres kelvin per watt (
𝑚2.𝐾

𝑊
); 

ℎ𝑐 is the convective heat transfer coefficient, in watts per square metre kelvin (
𝑊

𝑚2.𝑘
) ; 

𝑣𝑎𝑟  is the relative air velocity, in metres per second (m/s); 

𝑝𝑎  is the water vapour partial pressure, in Pascals (Pa). 

And the units’ correlation is as follows: 
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1 metabolic unit = 1 met = 58.2 𝑊/𝑚2  

1 clothing unit = 1 clo = 0.155 
𝑚2×°C

𝑊
 

PMV may be calculated for different combinations of metabolic rate, clothing insulation, air 

temperature, mean radiant temperature, air velocity and air humidity. The equations for 𝑡𝑐𝑙  

and ℎ𝑐 may be solved by iteration. 

The PMV index is derived for steady-state conditions but can be applied with good 

approximation during minor fluctuations of one or more of the variables, provided that time-

weighted averages of the variables during the previous 1 h period are applied. 

The index should be used only for values of PMV between −2 and +2, and when the six main 

parameters are within the following intervals: 

 

Table A1.2. The Intervals of Parameters for PMV Calculation Using Eq.A1.1 

Parameter from to Unit 

M 46 232 𝑊/𝑚2 

𝐼𝑐𝑙 

0 0.310 
𝑚2. 𝐾

𝑊
 

0 2 clo 

𝑡𝑎 10 30 °C 

𝑡𝑟̅ 10 40 °C 

𝑣𝑎𝑟  0 1 m/s 

𝑝𝑎 0 2700 pa 

 

The PMV can be determined in one of the following ways: 

a) Using a digital computer and programming Eq. 1. A BASIC program has been given in 

Annex D of standard. 

b) Tables of PMV in Annex E standard ISO 7730:2005(E), give values for different 

combinations of activity, clothing, operative temperature and relative velocity. 
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c) By using an integrating sensor (equivalent and operative temperatures) and direct 

measurement. 

The PMV can be used to check whether a given thermal environment complies with comfort 

criteria (see Clause 7 and Annex A in Standard ISO 7730:2005(E)), and to establish 

requirements for different levels of acceptability. 

By setting PMV = 0, an equation is established which predicts combinations of activity, 

clothing and environmental parameters which on average will provide a thermally neutral 

sensation. 

The Institute for Environmental Research of the State University of Kansas, under ASHRAE 

contract, has conducted extensive research on the subject of thermal comfort in sedentary 

regime. The purpose of this investigation was to obtain a model to express he PMV in terms 

of parameters easily sampled in an environment. The results have yielded to an expression of 

the form: 

𝑃𝑀𝑉 = 𝑎𝑇 + 𝑏𝑃𝑣 − 𝑐                                                                                                             (A1.6) 

where 𝑃𝑣 is the pressure of water vapour in ambient air and T the temperature. Coefficients a, 

b and c are given in Table A1.3.  

Table A1.3. a, b, c Coefficients for Calculating PMV 

Time   Sex 𝒂 𝒃 𝒄 

1h 

man 0.220 0.233 6.673 

woman 0.272 0.248 7.245 

both 0.245 0.248 6.475 

2h 

man 0.221 0.270 6.024 

woman 0.283 0.210 7.694 

both 0.252 0.240 6.859 

3h 

man 0.212 0.293 5.949 

woman 0.275 0.255 8.620 

both 0.243 0.278 8.802 
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 Predicted Percentage Dissatisfied (PPD) Index 

The PPD predicts the percentage of the people who felt more than slightly warm or slightly 

cold. The PMV predicts the mean value of the thermal votes of a large group of people exposed 

to the same environment. But individual votes are scattered around this mean value and it is 

useful to be able to predict the number of people likely to feel uncomfortably warm or cool. 

The PPD is an index that establishes a quantitative prediction of the percentage of thermally 

dissatisfied people who feel too cool or too warm. For the purposes of this International 

Standard, thermally dissatisfied people are those who will vote hot, warm, cool or cold on the 

7-point thermal sensation scale given in Table A1.1. 

The predicted percentage dissatisfied (PPD) index provides information on thermal discomfort 

or thermal dissatisfaction by predicting the percentage of people likely to feel too warm or too 

cool in a given environment. The PPD can be obtained from the PMV. 

Dissatisfaction can be caused by hot or cold discomfort for the body as a whole. Comfort 

limits can in this case be expressed by the PMV and PPD indices. But thermal dissatisfaction 

can also be caused by local thermal discomfort parameters. 

With the PMV value determined by Eqs.A1.1- 4, the PPD will be calculated by using Equation 

𝑃𝑃𝐷 = 100 − 95 × 𝑒(−0.03353×𝑃𝑀𝑉4−0.2179 × 𝑃𝑀𝑉2)                                                              (A1.7) 

 

Figure A1.1.  PPD as a Function of PMV 

The merit of this relation is that, it reveals a perfect symmetry with respect to thermal 

neutrality (PMV = 0). It can be seen (Figure A1.2) that even when the PMV index is 0, there 

are some individual cases of dissatisfaction with the level of temperature, although all are 



233 

 

 

 

dressed in a similar way and that the level of activity is the same. This is due to some 

differences of approach in the evaluation of thermal comfort from one person to another. It is 

shown that at PMV = 0, a minimum rate of dissatisfied of 5% exists[336]. 

 The PPD predicts the number of thermally dissatisfied persons among a large group of people. 

The rest of the group will feel thermally neutral, slightly warm or slightly cool. The predicted 

distribution of votes achieved based on experiments involving 1300 subjects is given in Table 

A1.4. 

 

Table A1.4. Distribution of Individual Thermal Sensation Votes For Different Values Of Mean 

Vote 

PMV 
PPD 

(%) 

Persons predicted to vote Based on  

experiments involving 1300 subjects (%) 

0 -1,0 or +1 -2, -1, 0,+1,or +2 

+2 75 5 25 70 

+1 25 30 75 95 

+0.5 10 55 90 98 

0 5 60 95 100 

-0.5 10 55 90 98 

-1 25 30 75 95 

-2 75 5 25 70 

 

 

 

 

 

 


