73,561 research outputs found

    What are the most important tasks of tutors during the tutorials in hybrid problem-based learning curricula?

    Get PDF
    Background. In problem-based learning, a tutor, the quality of the problems and group functioning play a central role in stimulating student learning. This study is conducted in a hybrid medical curriculum where problem-based learning is one of the pedagogical approaches. The aim of this study was to examine which tutor tasks are the most important during the tutorial sessions and thus should be promoted in hybrid (and in maybe all) problem-based learning curricula in higher education. Methods. A student (N = 333) questionnaire was used to obtain data about the problem-based learning process, combined with the achievement score of the students on a multiple-choice exam. Structural equation modeling was used to test the fit of different models (two existing models and a new simplified model) representing the factors of interest and their relationships, in order to determine which tutor characteristics are the most important in the present study. Results. A new simplified model is presented, which demonstrates that stimulation of active and self-directed learning by tutors enhances the perceived case quality and the perceived group functioning. There was no significant effect between the stimulation of collaborative learning and perceived group functioning. In addition, group functioning was not a significant predictor for achievement. Conclusions. We found that stimulating active and self-directed learning are perceived as tutors’ most important tasks with regard to perceived case quality and group functioning. It is necessary to train and teach tutors how they can stimulate active and self-directed learning by students

    An innovative cooperative model for the Master Degree Project of Architecture. Overcoming the traditional system.

    Get PDF
    http://dx.doi.org/10.4995/HEAD17.2017.6713Although the Bologna’s process has highlighted the need to develop deep and structural changes in the educational institutions, there is a scarce bibliography on innovation projects in Master Degree Projects, specifically in the field of Architecture. This paper is part of a educational innovative reaserch project that is proposing a cooperative process-and-product model-based for MDP. The model is developed in three stages, from collaborative learning action groups to indivual project. At the end of the process the student has developed three documents: a presentation, a product and a daily-portfolio. Finally, MDP assessment is the sum of three evaluationsUniversidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Team-Based Learning in Law

    Get PDF
    Used for over thirty years in a wide variety of fields, Team-Based Learning is a powerful teaching strategy that improves student learning. Used effectively, it enables students to actively engage in applying legal concepts in every class -- without sacrificing coverage. Because this teaching strategy has been used in classes with over 200 students, it also provides an efficient and affordable way to provide significant learning. Based on the principles of instructional design, Team-Based Learning has built-in student accountability, promotes independent student preparation, and fosters professional skills. This article provides an overview of Team-Based Learning, reasons to adopt this teaching strategy in light of Best Practices for Legal Education and the Carnegie and MacCrate reports, concrete methods to use Team-Based Learning in Law School, and ways to address challenges to this teaching strategy. Co-authors Sophie M. Sparrow and Margaret Sova McCabe provide examples from their years of teaching a variety of courses using Team-Based Learning

    Infusing Problem-Based Learning (PBL) Into Science Methods Courses Across Virginia

    Get PDF
    This article outlines the results of a collaborative study of the effects of infusing problem-based learning (PBL) into K-12 science methods courses across four universities in Virginia. Changes in pre-service teachers\u27 attitudes surrounding science teaching were measured before and after completing a science methods course in which they experienced PBL first-hand as participants, and then practiced designing their own PBL units for use in their future classrooms. The results indicate that exposure to PBL enhances pre-service teachers\u27 knowledge of inquiry methods and self-efficacy in teaching science

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    Lessons Learned from a 10-Year Collaboration Between Biomedical Engineering and Industrial Design Students in Capstone Design Projects

    Get PDF
    Engineers and industrial designers have different approaches to problem solving. Both place heavy emphasis on identification of customer needs, manufacturing methods, and prototyping. Industrial designers focus on aesthetics, ergonomics, ease of use, manufacturing methods, and the user’s experience. They tend to be more visual and more concerned with the interaction between users and products. Engineers focus on functionality, performance requirements, analytical modeling, and design verification and validation. They tend to be more analytical and more concerned with the design of internal components and product performance. Engineers and industrial designers often work together on project teams in industry. Collaboration between the two groups on senior capstone design projects can teach each to respect and value the unique contributions each brings to the project team, result in improved design solutions, and help prepare students for future collaboration in industry. Student feedback and lessons learned by faculty and students from a ten-year collaboration between engineering and industrial design students from Marquette University and the Milwaukee Institute of Art and Design, respectively, are presented. Students learned to communicate with people in other disciplines, appreciate the complementary skills of each discipline, and value different approaches to problem solving

    Enhancing the Engineering Curriculum: Defining Discovery Learning at Marquette University

    Get PDF
    This paper summarizes the results of our investigation into the feasibility of increasing the level of discovery learning in the College of Engineering (COE) at Marquette University. We review the education literature, document examples of discovery learning currently practiced in the COE and other schools, and propose a Marquette COE-specific definition of discovery learn-ing. Based on our assessment of the benefits, costs, and tradeoffs associated with increasing the level of discovery learning, we pre-sent several recommendations and identify resources required for implementation. These recommendations may be helpful in enhancing engineering education at other schools

    Lessons Learned from a 10-Year Collaboration between Engineering and Industrial Design Students in Capstone Design Projects

    Get PDF
    Engineers and industrial designers have different approaches to problem solving. Both place heavy emphasis on identification of customer needs, manufacturing methods, and prototyping. Industrial designers focus on aesthetics, ergonomics, ease of use, and the user’s experience. They tend to be more visual and more concerned with the interaction between users and products. Engineers focus on functionality, performance requirements, analytical modeling, and design verification and validation. They tend to be more analytical and more concerned with the design of internal components and product performance. Engineers and industrial designers often work together on project teams in industry. Collaboration between the two groups on senior capstone design projects can teach each to respect and value the unique contributions each brings to the project team, result in improved design solutions, and help prepare students for future collaboration in industry. Student feedback and lessons learned by faculty and students from a ten-year collaboration between engineering and industrial design students from Marquette University and the Milwaukee Institute of Art and Design, respectively, are presented. Students learned to communicate with people in other disciplines, appreciate the complementary skills of each discipline, and value different approaches to problem solving
    • …
    corecore