575 research outputs found

    A Framework for Controlling Quality of Sessions in Multimedia Systems

    Get PDF
    Collaborative multimedia systems demand overall session quality control beyond the level of quality of service (QoS) pertaining to individual connections in isolation of others. At every instant in time, the quality of the session depends on the actual QoS offered by the system to each of the application streams, as well as on the relative priorities of these streams according to the application semantics. We introduce a framework for achieving QoSess control and address the architectural issues involved in designing a QoSess control laver that realizes the proposed framework. In addition, we detail our contributions for two main components of the QoSess control layer. The first component is a scalable and robust feedback protocol, which allows for determining the worst case state among a group of receivers of a stream. This mechanism is used for controlling the transmission rates of multimedia sources in both cases of layered and single-rate multicast streams. The second component is a set of inter-stream adaptation algorithms that dynamically control the bandwidth shares of the streams belonging to a session. Additionally, in order to ensure stability and responsiveness in the inter-stream adaptation process, several measures are taken, including devising a domain rate control protocol. The performance of the proposed mechanisms is analyzed and their advantages are demonstrated by simulation and experimental results

    Low-complexity video coding for receiver-driven layered multicast

    Get PDF
    In recent years, the “Internet Multicast Backbone,” or MBone, has risen from a small, research curiosity to a large- scale and widely used communications infrastructure. A driving force behind this growth was the development of multipoint audio, video, and shared whiteboard conferencing applications. Because these real-time media are transmitted at a uniform rate to all of the receivers in the network, a source must either run at the bottleneck rate or overload portions of its multicast distribution tree. We overcome this limitation by moving the burden of rate adaptation from the source to the receivers with a scheme we call receiver-driven layered multicast, or RLM. In RLM, a source distributes a hierarchical signal by striping the different layers across multiple multicast groups, and receivers adjust their reception rate by simply joining and leaving multicast groups. In this paper, we describe a layered video compression algorithm which, when combined with RLM, provides a comprehensive solution for scalable multicast video transmission in heterogeneous networks. In addition to a layered representation, our coder has low complexity (admitting an effi- cient software implementation) and high loss resilience (admitting robust operation in loosely controlled environments like the Inter- net). Even with these constraints, our hybrid DCT/wavelet-based coder exhibits good compression performance. It outperforms all publicly available Internet video codecs while maintaining comparable run-time performance. We have implemented our coder in a “real” application—the UCB/LBL videoconferencing tool vic. Unlike previous work on layered video compression and transmission, we have built a fully operational system that is currently being deployed on a very large scale over the MBone

    A Lean Enterprise Architecture Approach as an Enabler for Organizational Agility : Case: Metso Outotec

    Get PDF
    In the era where delivery speed is perceived more important than IT landscape integration, consistency and long-term planning, different architectural approaches have become important considerations of information systems management. Moreover, recent studies have shown that the need for a holistic EA is often overlooked, when organizations try to apply agile development models, which may lead to several problems, such as technical debt, redundant rework, inconsistent communication, decentralized and siloed architecture design, unsustainable architecture, and inconsistence in coding style. Hence, with the growing deployment of scaling agile methods there is a need for purpose-fit approaches to integrate EA frameworks to enable organization agility while maintaining long-term vision. This study aims to explore how EA activities are put into practices in a company deploying large-scale agile development methods – namely EA deliverables, EA benefits, EA concerns and EA enablers. In total, 13 semi-structured interviews were conducted from a case company, and an analysis was done using the Gioia method. As a result, EA deliverables (business objective deliverables, intentional architecture deliverables, and emergent design deliverables), EA benefits (organizational agility and organizational robustness), EA concerns (immaturity, disengagement, urgency, and resistance and anti-patterns), and EA enablers (communication and collaboration, Lean EA, and EA culture) were identified. The enterprise architecture practices used by the case company were in line with the guidelines and best practices recommended by the literature and industry experts. Moreover, a literature review provided some theoretical constructs and suggestions, namely the Lean EA development (LEAD) method and the design principles of architectural thinking for supporting organizational agility, which can be recommended to be applied by the case company or any other organization scaling agile

    Redes em malha sem fios baseadas em contexto

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn the modern society, new devices, applications and technologies, with sophisticated capabilities, are converging in the same network infrastructure. Users are also increasingly demanding in personal preferences and expectations, desiring Internet connectivity anytime and everywhere. These aspects have triggered many research efforts, since the current Internet is reaching a breaking point trying to provide enough flexibility for users and profits for operators, while dealing with the complex requirements raised by the recent evolution. Fully aligned with the future Internet research, many solutions have been proposed to enhance the current Internet-based architectures and protocols, in order to become context-aware, that is, to be dynamically adapted to the change of the information characterizing any network entity. In this sense, the presented Thesis proposes a new architecture that allows to create several networks with different characteristics according to their context, on the top of a single Wireless Mesh Network (WMN), which infrastructure and protocols are very flexible and self-adaptable. More specifically, this Thesis models the context of users, which can span from their security, cost and mobility preferences, devices’ capabilities or services’ quality requirements, in order to turn a WMN into a set of logical networks. Each logical network is configured to meet a set of user context needs (for instance, support of high mobility and low security). To implement this user-centric architecture, this Thesis uses the network virtualization, which has often been advocated as a mean to deploy independent network architectures and services towards the future Internet, while allowing a dynamic resource management. This way, network virtualization can allow a flexible and programmable configuration of a WMN, in order to be shared by multiple logical networks (or virtual networks - VNs). Moreover, the high level of isolation introduced by network virtualization can be used to differentiate the protocols and mechanisms of each context-aware VN. This architecture raises several challenges to control and manage the VNs on-demand, in response to user and WMN dynamics. In this context, we target the mechanisms to: (i) discover and select the VN to assign to an user; (ii) create, adapt and remove the VN topologies and routes. We also explore how the rate of variation of the user context requirements can be considered to improve the performance and reduce the complexity of the VN control and management. Finally, due to the scalability limitations of centralized control solutions, we propose a mechanism to distribute the control functionalities along the architectural entities, which can cooperate to control and manage the VNs in a distributed way.Na sociedade actual, novos dispositivos, aplicações e tecnologias, com capacidades sofisticadas, estão a convergir na mesma infra-estrutura de rede. Os utilizadores são também cada vez mais exigentes nas suas preferências e expectativas pessoais, desejando conetividade `a Internet em qualquer hora e lugar. Estes aspectos têm desencadeado muitos esforços de investigação, dado que a Internet atual está a atingir um ponto de rutura ao tentar promover flexibilidade para os utilizadores e lucros para os operadores, enquanto lida com as exigências complexas associadas `a recente evolução. Em sintonia com a linha de investigação para a Internet do futuro, muitas soluções têm sido propostas para melhorar as arquiteturas e protocolos da Internet atual, de forma a torná-los sensíveis ao contexto, isto é, adaptá-los dinamicamente `a alteração da informação que caracteriza qualquer entidade de rede. Neste sentido, a presente Tese propõe uma nova arquitetura que permite criar várias redes com diferentes características de acordo com o contexto das mesmas, sobre uma única rede em malha sem fios (WMN), cuja infra-estructura e protocolos são muito flexíveis e auto-adaptáveis. Mais especificamente, esta Tese modela o contexto dos utilizadores, que pode abranger as suas preferências de segurança, custo e mobilidade, capacidades dos seus dispositivos ou requisitos de qualidade dos seus serviços, de forma a transformar uma WMN num conjunto de redes lógicas. Cada rede lógica ´e configurada para satisfazer um conjunto de necessidades de contexto do utilizador (como exemplo, suporte de mobilidade elevada e de baixa seguran¸ca). Para implementar esta arquitetura centrada no utilizador, esta Tese utiliza a virtualização de redes, que tem muitas vezes sido defendida como um meio para implementar arquiteturas e serviços de rede de uma forma independente, enquanto permite uma gestão dinâmica dos recursos. Desta forma, a virtualização de redes pode permitir uma configuração flexível e programável de uma WMN, a fim de ser partilhada por várias redes lógicas (ou redes virtuais - VNs). Além disso, o grau de isolamento introduzido pela virtualização de redes pode ser utilizado para diferenciar os protocolos e mecanismos de cada VN baseada em contexto. Esta arquitetura levanta vários desafios para controlar e gerir as VNs em tempo real, e em resposta `a dinâmica dos utilizadores e da WMN. Neste contexto, abordamos os mecanismos para: (i) descobrir e selecionar a VN a atribuir a um utilizador; (ii) criar, adaptar e remover as topologias e rotas das VNs. Também exploramos a possibilidade de considerar a taxa de variação dos requisitos de contexto dos utilizadores de forma a melhorar o desempenho e reduzir a complexidade do controlo e gestão das VNs. Finalmente, devido ´as limitações de escalabilidade das soluções de controlo centralizadas, propomos um mecanismo para distribuir as funcionalidades de controlo ao longo das entidades da arquitectura, que podem cooperar para controlar e gerir as VNs de uma forma distribuída

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Description-driven Adaptation of Media Resources

    Get PDF
    The current multimedia landscape is characterized by a significant diversity in terms of available media formats, network technologies, and device properties. This heterogeneity has resulted in a number of new challenges, such as providing universal access to multimedia content. A solution for this diversity is the use of scalable bit streams, as well as the deployment of a complementary system that is capable of adapting scalable bit streams to the constraints imposed by a particular usage environment (e.g., the limited screen resolution of a mobile device). This dissertation investigates the use of an XML-driven (Extensible Markup Language) framework for the format-independent adaptation of scalable bit streams. Using this approach, the structure of a bit stream is first translated into an XML description. In a next step, the resulting XML description is transformed to reflect a desired adaptation of the bit stream. Finally, the transformed XML description is used to create an adapted bit stream that is suited for playback in the targeted usage environment. The main contribution of this dissertation is BFlavor, a new tool for exposing the syntax of binary media resources as an XML description. Its development was inspired by two other technologies, i.e. MPEG-21 BSDL (Bitstream Syntax Description Language) and XFlavor (Formal Language for Audio-Visual Object Representation, extended with XML features). Although created from a different point of view, both languages offer solutions for translating the syntax of a media resource into an XML representation for further processing. BFlavor (BSDL+XFlavor) harmonizes the two technologies by combining their strengths and eliminating their weaknesses. The expressive power and performance of a BFlavor-based content adaptation chain, compared to tool chains entirely based on either BSDL or XFlavor, were investigated by several experiments. One series of experiments targeted the exploitation of multi-layered temporal scalability in H.264/AVC, paying particular attention to the use of sub-sequences and hierarchical coding patterns, as well as to the use of metadata messages to communicate the bit stream structure to the adaptation logic. BFlavor was the only tool to offer an elegant and practical solution for XML-driven adaptation of H.264/AVC bit streams in the temporal domain

    Video Conference as a tool for Higher Education

    Get PDF
    The book describes the activities of the consortium member institutions in the framework of the TEMPUS IV Joint Project ViCES - Video Conferencing Educational Services (144650-TEMPUS-2008-IT-JPGR). In order to provide the basis for the development of a distance learning environment based on video conferencing systems and develop a blended learning courses methodology, the TEMPUS Project VICES (2009-2012) was launched in 2009. This publication collects the conclusion of the project and it reports the main outcomes together with the approach followed by the different partners towards the achievement of the project's goal. The book includes several contributions focussed on specific topics related to videoconferencing services, namely how to enable such services in educational contexts so that, the installation and deployment of videoconferencing systems could be conceived an integral part of virtual open campuses

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities
    • …
    corecore