
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997 983

Low-Complexity Video Coding for
Receiver-Driven Layered Multicast

Steven McCanne, Martin Vetterli,Fellow, IEEE, and Van Jacobson

Abstract—In recent years, the “Internet Multicast Backbone,”
or MBone, has risen from a small, research curiosity to a large-
scale and widely used communications infrastructure. A driving
force behind this growth was the development of multipoint
audio, video, and shared whiteboard conferencing applications.
Because these real-time media are transmitted at a uniform rate
to all of the receivers in the network, a source must either
run at the bottleneck rate or overload portions of its multicast
distribution tree. We overcome this limitation by moving the
burden of rate adaptation from the source to the receivers
with a scheme we call receiver-driven layered multicast, or
RLM. In RLM, a source distributes a hierarchical signal by
striping the different layers across multiple multicast groups,
and receivers adjust their reception rate by simply joining and
leaving multicast groups. In this paper, we describe a layered
video compression algorithm which, when combined with RLM,
provides a comprehensive solution for scalable multicast video
transmission in heterogeneous networks. In addition to a layered
representation, our coder has low complexity (admitting an effi-
cient software implementation) and high loss resilience (admitting
robust operation in loosely controlled environments like the Inter-
net). Even with these constraints, our hybrid DCT/wavelet-based
coder exhibits good compression performance. It outperforms
all publicly available Internet video codecs while maintaining
comparable run-time performance. We have implemented our
coder in a “real” application—the UCB/LBL videoconferencing
tool vic. Unlike previous work on layered video compression and
transmission, we have built a fully operational system that is
currently being deployed on a very large scale over the MBone.

Index Terms— Adaptive video, hierarchical conditional
replenishment, layered DCT, layered video, lightweight sessions,
MBone, multicast, multicast video, multirate video, network
heterogeneity, packet video, progressive video, rate-controlled
video, Receiver-Driven Layered Multicast, RTP, subband
coding, vic.

I. INTRODUCTION

I want to say a special welcome to everyone that’s climbed into the

Internet tonight, and has got into the MBone—and I hope it doesn’t

all collapse!

Mick Jagger

November 18, 1994

Manuscript received May 1, 1996; revised December 30, 1996. This
work was supported by the Director, Office of Energy Research, Scientific
Computing Staff, U.S. Department of Energy under Contract DE-AC03-
76SF00098 and by the National Science Foundation under Grant MIP-93-
21302. This paper was presented in part at SIGCOMM’96.

S. McCanne is with the Department of Electrical Engineering and Computer
Science, University of California, Berkeley, CA 94720-1776 USA.

M. Vetterli is with the Department of Electrical Engineering, Swiss Federal
Technical Institute, CH-1015 Lausanne, Switzerland.

V. Jacobson is with the Lawrence Berkeley Laboratory, Berkeley, CA
94720 USA.

Publisher Item Identifier S 0733-8716(97)04190-5.

Fig. 1. U. C. Berkeley MBone seminar. U. C. Berkeley transmits a multime-
dia seminar over their campus network, to users at home via ISDN, and over
the Internet. A single rate at the source cannot meet the conflicting bandwidth
requirements of this heterogeneous set of users.

W ITH these words, the Rolling Stones launched into
the first audio/video broadcast of a major rock band

over the Internet. Hundreds of Internet-based fans tuned in
by running software-based audio/video codecs on general-
purpose workstations and PC’s. At the concert site, a machine
digitized and compressed the analog audio and video feeds
into a serial bit stream, and in turn, broke the bit stream into
a sequence of discrete messages, orpackets, for transmission
over the Internet. Rather than send a copy of each packet
to each user individually—as is required by the conventional
unicast packet delivery model in the Internet—each packet
was efficientlymulticastto all receivers simultaneously using
a multicast-capable portion of the Internet known as the Mul-
ticast Backbone orMBone[1]. Although bandwidth efficient,
this style of multipoint transmission—where a packet stream
is transmitted to all receivers at a uniform rate—is undesirable
because receivers are usually connected to the Internet at
heterogeneous rates. For example, some users have high-speed
access to the backbone, while others connect through ISDN
or dial-up links. If a source’s transmission rate exceeds any
receiver’s access link capacity, network congestion ensues,
packets are discarded, and “reception quality” rapidly deterio-
rates. A single, fixed-rate stream cannot satisfy the conflicting
requirements of a heterogeneous set of receivers, and as Jagger
forewarned, large portions of the network can “collapse” under
sustained congestion.

Unfortunately, the same problem that plagued the Rolling
Stones broadcast constrains other “MBone sessions.” To illus-
trate more clearly the obstacles posed by network heterogene-
ity, consider the physical network topology that carries live
seminars broadcast regularly over the MBone from University

0733–8716/97$10.00 1997 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147900643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

984 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

of California, Berkeley (UCB).1 Fig. 1 depicts this scenario:
some users participate from their office over the high-speed
campus network, while other users interact over the Internet,
and still others join in from home using low-rate dial-up or
ISDN telephone lines. To maximize the quality delivered to
the largest audience, Berkeley runs the transmission at a rate
suitable for the MBone, which as a current rule of thumb,
is 128 kbit/s. But at this rate, home users cannot participate
because the transmission exceeds their access bandwidth,
and campus users must settle for unnecessarily low quality
because the low-rate video stream underutilizes the abundant
local bandwidth. If we run the broadcast at a lower rate,
then users behind ISDN lines would benefit, but the Internet
users would experience lower quality. Likewise, if we run
the transmission at a very high rate, then local users would
receive improved quality, but the MBone and ISDN users
would receive greatly reduced quality due to the resulting
congestion. A uniform transmission rate fails to accommodate
the bandwidth heterogeneity of this diverse set of receivers.

An often cited approach for coping with receiver hetero-
geneity in real-time multimedia transmissions is the use of
layered media streams [2]–[9]. In this model, rather than
distribute a single level of quality using a single network
channel, the source distributes multiple levels of quality si-
multaneously across multiple network channels. In turn, each
receiver individually adapts its reception rate by adjusting
the number of layers that it receives. The net effect is that
the signal is delivered to a heterogeneous set of receivers at
different levels of quality using a heterogeneous set of rates.

To fully realize this architecture, we must solve two sub-
problems: thelayered compressionproblem and thelayered
transmissionproblem. That is, we must develop a compression
scheme that allows us to generate multiple levels of quality
using multiple layers simultaneously with a network delivery
model that allows us to selectively deliver subsets of layers
to individual receivers.

A. Layered Compression

One approach for delivering multiple levels of quality
across multiple network connections is to encode the video
signal with a set of independent encoders each producing
a different output rate (e.g., through controlled quantization,
pixel subsampling, or frame subsampling). This approach,
often called simulcast, has the advantage that we can use
existing codecs and/or compression algorithms as system
components. However, because simulcast does not exploit
statistical correlations across subflows, its compression per-
formance is suboptimal.

In contrast, alayered coderexploits correlations across sub-
flows to achieve better overall compression. The input signal
is compressed into a number of discrete layers, arranged in a
hierarchy that provides progressive refinement. For example, if
only the first layer is received, the decoder produces the lowest
quality version of the signal. If, on the other hand, the decoder
receives two layers, it combines the second layer information
with the first layer to produce improved quality. Overall, the

1See http://bmrc.berkeley.edu/298/.

Fig. 2. Layered video. A layered codec produces a cumulative set of
layers where information is combined across layers to produce progressive
refinement. Each decoder moduleD is capable of decoding any cumulative
set of bit strings. Here, we show an image at multiple resolutions, but the
refinement can occur across other dimensions like frame rate or signal-to-noise
ratio.

Fig. 3. Layered transmission. By combining a layered source coder with a
layered transmission system, we solve the heterogeneity problem. The network
forward only the number of layers that each physical link can support.

quality progressively improves with the number of layers that
are received and decoded.

The structure of such a layered video coder is depicted
in Fig. 2. The input video is compressed to produce a set
of logically distinct output strings on channels ,
and each decoder module is capable of decoding any
cumulative set of bit strings. Each additional string produces
an improvement in reconstruction quality.

By combining this approach of layered source coding with
a layered transmission system, we can solve the multicast
heterogeneity problem [3], [5] , [6], [8]. In this architecture, the
multicast source produces a layered stream where each layer
is transmitted on a different network channel, as illustrated in
Fig. 3 for the case of the UCB seminar. In turn, the network
forwards only the number of layers that each physical link
can support. For example, users at home receive only the base
layer across their ISDN lines, users in the Internet receive two
layers, and users on campus receive all three. Thus, each user
receives the best quality signal that the network can deliver.

In this scheme, the network must be able to selectively drop
layers at each bottleneck link. While much of the previous
work leaves this problem as an implementation detail, a novel
and practical scheme was proposed by Deering [2] and was
further described and/or independently cited in [10], [3]–[5],
[8], and [11]. In this approach, the layers that comprise the
hierarchical signal are striped across distinct IP Multicast

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 985

groups, thereby allowing receivers to adjust their reception
rate by controlling the number of groups they receive. In other
words, selective forwarding is implicit in receiver interest—if
there are no receivers downstream of a given link in the
network, multicast routers “prune back” that portion of the
distribution tree. Although this general mechanism has been
discussed in the research community, a system based on this
framework had not been deployed because the problem was
not studied in detail, and specific adaptation protocols that
employ the architecture had not been developed. In recent
work, we filled this void with a specific protocol we call
receiver-driven layered multicast or RLM [12].

A number of research activities have laid the groundwork
both for layered video compression [10], [7], [9] and for
layered transmission systems [13], [14], [2], [15], [16], [8].
However, these research efforts are each polarized: they either
solve the networking half of the problem (i.e., the transmission
system) or they solve the compression half of the problem.
Consequently, none of these proposed systems has resulted
in fully operational prototypes because, in each instance,
only half of the problem is solved. Our work bridges this
gap. We have developed, analyzed, simulated, and refined a
comprehensive framework for layered video compression and
transmission that explicitly addresses the constraints imposed
by real, operational networks. We account for each component
in the overall system—from the network adaptation protocol
and layered compression algorithm to the application design
and deployment strategy—resulting in a design and implemen-
tation of a comprehensive system for scalable multicast video
distribution in heterogeneous networks.

In this paper, we give a high-level description of our layered
transmission system based on RLM to motivate the detailed
discussion of our layered coder. In the next section, we sketch
the RLM architecture. Subsequently, we describe our layered
video compression algorithm based on hybrid DCT/wavelet
transform coding and hierarchical conditional replenishment.
Next, we describe the packetization protocol and receiver
recovery strategies. Finally, we report on implementation
status and deployment, and conclude.

II. RECEIVER-DRIVEN LAYERED MULTICAST

In this section, we give a high-level sketch of our receiver-
driven layered multicast scheme to establish design constraints
on and motivation for a new layered codec. Details of RLM
are presented in [12] and [17].

RLM operates within the traditional Internet Protocol archi-
tecture, and relies upon the delivery efficiency of IP Multicast
[18]. It does not require real-time traffic guarantees, and
assumes only best effort, multipoint packet delivery. A key
feature of IP Multicast is the level of indirection provided
by its host groupabstraction. Host groups provide agroup-
oriented communication framework where senders need not
know explicitly about receivers and receivers need not know
about senders. Instead, a sender simply transmits packets to
a “group address,” and receivers tell the network (via the
Internet Group Management Protocol or IGMP [19]) that
they are interested in receiving packets sent to that group.

(a)

(b)

Fig. 4. End-to-end adaptation. Receivers join and leave multicast groups at
will. The network forwards traffic only along paths that have downstream
receivers. In this way, receivers define multicast distribution trees implicitly
through their locally advertised interest. A three-layer signal is illustrated
by the solid, dashed, and dotted arrows, traversing high-speed (1 Mbit/s),
medium-speed (512 kbit/s), and low-speed (128 kbit/s) links. In (a), we assume
that the 512 kbit/s is oversubscribed and congested. ReceiverR2 detects the
congestion and reacts by dropping the dotted layer. Likewise, receiverR3

eventually joins just the solid layer. These events lead to the configuration
in (b).

Moreover, the process by which receivers join and leave these
multicast groups is efficient and timely (on the order of a few
milliseconds).

Fig. 4 illustrates how the group membership protocol can
be used to dynamically induce selective forwarding of layers.
In this example, source transmits three layers of video to
receivers , and . Because the path has high
capacity, can successfully subscribe to all three layers and
receive the highest quality signal. However, if either or

tries to subscribe to the third layer, the 512 kbit/s link
becomes congested and packets are dropped. Both receivers
react to this congestion by dropping layer 3, prompting the
network to prune the unwanted layer from the 512 kbit/s link.
Finally, because of the limited capacity of the 128 kbit/s link,

drops down to just a single layer. In effect, the distribution
trees for each layer are implicitly defined as a side effect of
receiver adaptation.

By complementing a layered compression algorithm with
the mechanism described above to configure selective forward-
ing of flows, we move the burden of rate adaptation from the
source to the receivers. In effect, the source takes no active
role in the protocol: it simply transmits each layer of its signal
on a separate multicast group. The key protocol machinery is
run at each receiver, where adaptation is carried out by joining

986 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

Fig. 5. RLM “sample path.” This diagram illustrates the basic adaptation
strategy from the perspective of a given receiver. Initially, the receiver joins
the base layer and gradually adds layers until the network becomes congested
(C). Here, the receiver drops the problematic layer, and scales back its
join-experiment rate for that level of subscription.

and leaving multicast groups. Conceptually, each receiver runs
the following simple control loop:

• on congestion, drop a layer;
• on spare capacity, add a layer.

Under this scheme, a receiver searches for the optimallevel of
subscriptionmuch as a TCP source searches for the bottleneck
transmission rate with the slow-start congestion avoidance al-
gorithm [20]. The receiver adds layers until congestion occurs,
and backs off to an operating point below this bottleneck.

Although a receiver can easily detect that the network
is congested by noting gaps in the sequence space of the
inbound packet stream, it cannot so easily determine when
spare bandwidth becomes available. If only passive monitoring
of the inbound packet stream is carried out, differentiating
between an inbound rate that is just below capacity and one
that is far below capacity is impossible. Instead, RLM uses
spontaneous “join experiments” to probe for spare bandwidth.
That is, a receiver occasionally tests for residual bandwidth
by experimentally adding a layer. If this experiment causes
congestion, then the receiver reacts by exponentially scaling
back the rate at which it conducts join experiments for that
layer in the future. Over time, a receiver learns that certain
levels are problematic while others are not. By running join
experiments infrequently when they are likely to fail, but
readily when they are likely to succeed, we minimize their
adverse effects.

Fig. 5 illustrates the exponential backoff strategy from
the perspective of a single host receiving up to four layers.
Initially, the receiver subscribes to layer 1 and sets a join
timer (A). At this point, the timer duration is short because
the layer has not yet proved problematic. Once the join timer
expires, the receiver subscribes to layer 2 and sets another join
timer (B). Again, the timer is short, and layer 3 is soon added.
The process repeats to layer 4, but at this point, we assume
that congestion occurs (C). As a result, a queue builds up and
causes packet loss. When the receiver detects this loss, it drops
back to layer 3. The layer 3 join timer is then multiplicatively
increased, and another timeout is scheduled (D). Again, the
process repeats, and the join timer is further increased (E).
Later, unrelated transient congestion provokes the receiver to
drop down to layer 2 (F). At this point, because the layer 3
join timer is still short, the layer is quickly reinstated.

If each receiver runs this adaptation algorithm indepen-
dently, the protocol would break down at large scales because

join experiments would occur often and cause frequent con-
gestion. Instead, RLM augments its adaptation scheme with
“shared learning,” where receivers learn from other receivers’
failed join experiments. Details of the shared learning algo-
rithm are described in [12].

Although RLM receivers adapt locally to network capacity,
the target operating point is not globally optimized. If multiple,
simultaneous transmissions are sharing a single network, RLM
apportions the bandwidth among each transmission in an ad
hoc fashion. In general, it is not possible to achieve a “fair”
allocation of bandwidth without some additional machinery
in the network, even if all of the end nodes cooperate [21].
Even if the bandwidth allocation were fair, the aggregate
system performance, as measured by the sum of distortions
at each receiver, would not be optimal. As shown in [22],
minimization of the total distortion in general requires an
exchange of information among receivers.

III. T HE COMPRESSIONALGORITHM

Having described the RLM framework, we now address the
design of a video compression algorithm that complements
RLM. To this end, our compression algorithm must satisfy a
number of requirements.

• First, the bit stream must have alayered representationin
order to interact with the RLM layered delivery model.

• Second, the algorithm must below complexity. Because
we want to study the scaling behavior of our video delivery
system, we must be able to deploy it on a large scale. One
way to do this is to implement the codec in software, publicly
distribute it, and have many people use it. In order to provide
incentive for people to use it, the software must work well
over a large range of machine capabilities, and therefore must
have an efficient implementation.

• Finally, because RLM drives the network into momentary
periods of congestion, and because the Internet environment
is best effort, loosely controlled, sometimes unpredictable, and
involves bursty packet loss [23], the algorithm must have high
loss resilience. That is, when packets are dropped, the decoder
should not have to wait long before resynchronizing, and the
resulting errors should not persist unreasonably long or make
the partially decoded video signal incomprehensible.

If an existing compression algorithm met all of these
requirements, then we could simply incorporate it into our
system. Unfortunately, no scheme currently does. For example,
the ITU’s H.261 and H.263 and ISO’s MPEG-1 international
standards do not provide layered representations, and are all
relatively sensitive to packet loss. Although the MPEG-2 stan-
dard does support layered representations, it does not operate
efficiently at low bit rates because it relies on intraframe
updates, or I frames, to resynchronize the decoder in the
presence of errors or packet loss. In order to make the decoder
robust to loss, the I frame interval must be made relatively
small, forcing the encoder to produce full frame updates
relatively often. In many conference-style video sequences,
there are large static backgrounds, and frequent I frame updates
result in a highly redundant and inefficient transmission.
Moreover, existing compression standards that were designed

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 987

for hardware implementation over bit-oriented constant-rate
channels impose undesirable constraints on software-based
implementations for packet-switched networks. For example,
an H.320 codec must compute an error-correcting polyno-
mial and interleave bits from audio and video on nonbyte
boundaries—both trivial in hardware, but cumbersome and
inefficient in software.

Instead of a standardized compression algorithm, we could
potentially adopt an existing experimental layered compression
algorithm in our system. Taubman and Zakhor’s 3-D subband
coding system is a high-performance scalable video compres-
sion algorithm that produces a very fine-grained layered repre-
sentation [7]. Its computational complexity, however, is rela-
tively high, and acceptable run-time performance will require
a few more generations of processor evolution. Vishwanath
and Chou’s weighted wavelet hierarchical vector quantization
algorithm [9] is low complexity and has a layered output
format. Their algorithm is based entirely on table lookups
and runs fast on current generation hardware. However, they
have not produced a publicly available implementation nor
presented details on its overall performance in real environ-
ments. Although a table-driven approach may yield speed-ups
on today’s hardware, the ever-increasing performance gap
between the processor and memory system may make such
an approach less attractive in the future.

Given that no current algorithm satisfied all of our design
constraints, we designed a new layered compression scheme
based on our experiences adapting H.261 for Internet transmis-
sion [24]. To meet our goal of low complexity, the algorithm is
relatively simple and admits an efficient software implementa-
tion. Moreover, the software-based approach provides an easy
route for incrementally improving the algorithm as technology
improves, and as we better understand how to achieve robust
compression in the presence of packet loss.

In the following sections, we present our video compression
algorithm by decomposing it into the two subproblems of
temporal compression and spatial compression. Temporal com-
pression attempts to reduce the bit rate by exploiting statistical
correlations from frame to frame in an image sequence, while
spatial compression attempts to eliminate redundancies by
exploiting statistical correlations within a given frame. Our
algorithm employs a very simple model for temporal com-
pression known as block-based conditional replenishment [24],
[25], and uses a hybrid DCT/subband transform coding scheme
for spatial compression. In the next section, we describe the
conditional replenishment algorithm, and in the subsequent
section, we describe the spatial compression algorithm.

A. Temporal Compression

In block-based conditional replenishment, the input image is
gridded into small blocks (e.g., 8 8 or 16 16 pixels), and
only the blocks that change in each new frame are encoded
and transmitted. Several existing Internet video tools use this
approach (e.g., our toolvic [24], the Xerox PARC Network
Video nv [26], and Cornell’s CU-SeeMe[27]), and some
commercial H.261 codecs send “block skip codes” for static
blocks.

Fig. 6. Temporal compression models. A conditional replenishment system
encodes and transmits blocks as independent units, while a predictive system
encodes and transmits the residual error between a prediction and the input
signal.

Fig. 6 depicts a block diagram for the conditional re-
plenishment algorithm. The encoder maintains a reference
frame of transmitted blocks. For each new block, a distance
between the reference block and the new block is computed.
If the distance is above a threshold, the block is encoded and
transmitted across the network. At each receiver, the new block
is decoded and placed in a reconstruction buffer for rendering
and eventual display.

In contrast, compression algorithms like H.261, H.263, or
MPEG employ temporal prediction to achieve higher com-
pression performance. These schemes compute a difference
between the current block and the previously transmitted block
and code this “prediction error.” If the block does not change
much, then the difference signal has low energy and can be
substantially compressed. Often, the encoder compensates for
camera pan and scene motion by sending a “motion vector”
with each block that accounts for a spatial displacement
between the current block and the reference frame at the
decoder (a copy of which is maintained at the encoder).

While the compression performance of motion-compensated
prediction exceeds that of conditional replenishment in the
absence of packet loss, there are a number of significant
advantages of conditional replenishment.

• Reduced Complexity:Because the encoder decides very
early in the coding process not to code a block, many of the
input blocks are simply skipped, thereby saving computational
resources. Moreover, because the encoder does not form a
prediction signal, there is no need to run a (partial) copy of
the decoder at the encoder.

• Loss Resilience:Coding block differences rather than the
blocks themselves substantially amplifies the adverse effects
of packet loss. When a loss occurs, the resulting error persists
in the decoder’s prediction loop until the coding process is
reset with an “intramode” update. That is, the loss of a single
differential update causes the error to propagate from frame to
frame until the decoder resynchronizes. In H.261, for example,
these updates can be very infrequent—as little as once every
132 frames. As a result, packet loss causes persistent corrup-
tion of the decoded image sequence. Alternatively, the use
of “leaky prediction” lessens the impact of errors, but incurs
increased complexity and slower recovery [28, ch. 5].

988 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

• Decoupled Decoder State:In the temporal prediction
model, there is a tight coupling between the prediction state
at the encoder and that at the decoder. But in a heterogeneous
multicast environment, each decoder might receive a different
level of quality, and hence have a different reference state
from which to form the prediction. Since the “base layer”
state is common across all receivers, the encoder can use it to
perform the prediction. But in practice, the base layer provides
inadequate conditional information to improve compression
performance significantly across all of the layers. In contrast,
conditional replenishment gives the advantage of temporal
block suppression across all layers without relying on a
matched decoder state.

• Compute-Scalable Decoding:Heterogeneity exists not
only in the network, but also across end systems, where some
receivers might be outdated workstations while others are
high-performance PC’s. Consequently, in addition to packet
loss in the network, messages can be lost in the end system
when the decoder cannot keep up with a high-rate incoming bit
stream. In this case, the decoder should gracefully adapt by
trading off reconstruction quality to shed work [29], [30].
However, such adaptation is difficult under the temporal
prediction model because the decoder must fully decodeall
differential updates to maintain a consistent prediction state. In
contrast, with conditional replenishment, compute scalability
is both feasible and simple. The decoder simply collapses
multiple frame updates by discarding all but the most recent
compressed representation of each block.

Moreover, conditional replenishment does not suffer from
the well-knowndecoder drifteffect. In predictive algorithms,
the decoder’s prediction state can gradually drift away from the
encoder’s because of numerical inconsistencies in the encoder
and decoder implementations. (To limit the degree of decoder
drift, compression specifications typically define the toler-
ances and the time extent between synchronization points.)
On the other hand, conditional replenishment accommodates
compute-scalable algorithms at both the decoder and encoder
because there is no prediction loop to cause decoder drift.
Here, we can exploit numerical approximations to trade off
reconstruction quality for run-time performance. For example,
the inverse DCT could be replaced by an approximate algo-
rithm that runs faster at the expense of decreased accuracy
[31]. Likewise, the degree of quantization applied to the
DCT coefficients can be dynamically manipulated to meet a
computation budget [32].

• Self-Correlated Updates:The update heuristic that trans-
mits only blocks that change works well in practice because
block updates are “self-correlated.” If a certain block is
transmitted because of motion in the scene, then that same
block will likely be transmitted again in the next frame because
of the spatial locality of motion. Thus, a block update that is
lost in a dropped packet is often soon thereafter retransmitted
and recovered as part of the natural replenishment process.

For these reasons, we sacrifice the compression advantage
of temporal prediction for the simplicity and practical advan-
tages of conditional replenishment. In short, our compression
algorithm exploits temporal redundancy only through condi-
tional replenishment. Reference [17] presents evidence that for

certain signals and packet loss rates, conditional replenishment
outperforms traditional codecs based on temporal prediction.

We now describe the major components of our conditional
replenishment algorithm: block selection, block aging, and
temporal layering. Our scheme is derived in part from the
conditional replenishment algorithm used by the Xerox PARC
Network Video toolnv [26].

1) Block Selection:To decide whether or not to encode
and transmit a block, the conditional replenishment algorithm
computes a distance between the reference block and the
current block. As is standard practice with common motion-
compensation algorithms, we run conditional replenishment
exclusively off the luminance component of the video. The
particular metric we use is an absolute sum of pixel luminance
differences. If the block of reference pixels is ,
the block of new pixels is , and the threshold
is , then the new block is selected if

We use an absolute sum of differences rather than a sum
of absolute differences for several reasons. First, because the
background noise process is zero mean, a sum of differences
tends to filter out the noise, while a sum of absolute differences
amplifies it. Hence, the threshold becomes more sensitive to
the noise level. Second, since motion artifacts tend to have a
strong dc bias, the sum of differences will successfully extract
this bias. Finally, the sum of differences is less expensive to
compute (i.e., it uses one rather than many absolute value
operations).

Unfortunately, changes to a small portion of a block are
not detected by our distance metric alone because it is hard to
disambiguate noise and isolated changes without sophisticated
analysis. We solve this problem by exploiting the fact that
frame-to-frame changes typically result from scene motion or
camera pan, and both of these processes create large spans
of spatially correlated pixels. Hence, we assume that isolated
changes occur to a block only when there are large changes to
an adjacent block. We give up on detecting small, isolated
changes, and simply “spread” the block selection decision
from one block to adjacent blocks. While we have found that
this algorithm works well most of the time, certain types of
image sequences cause problems (e.g., small mouse cursors
on a video-captured display or a laser pointer on a captured
projection screen).

The exact choice of the threshold is not particularly
critical. We found heuristically that values ranging from 40
to 80 or so all work reasonably well across different camera
types and lighting conditions. Our current implementation uses
a fixed value of 48. We conjecture that the metric might be
improved by accounting for the average luminance value of
the input, but have not yet experimented with this approach or
any other methods of adaptation because the current algorithm
works well enough in practice.

Fig. 7 illustrates the basic block selection and spreading
algorithm. Unlike nv, which uses a “flat” algorithm that
operates on 8 8 blocks, we use a two-tiered algorithm that
carries out selection and spreading over a 44 grid which,

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 989

Fig. 7. Block selection algorithm. Block selection is carried out on a 4� 4
grid (thin lines) that determines if the containing 16� 16 block (thick lines)
is replenished. As indicated by the arrows, updates are spread to adjacent 16
� 16 blocks to minimize “small motion” artifacts.

in turn, is used to update 16 16 blocks. The diagram shows
each pixel as a small square dot, the 44 cells as thin lines,
and the 16 16 block as thick lines. If any of the cells that
comprise a block is selected, then that entire 1616 block is
encoded. Furthermore, each selected cell is spread to adjacent
blocks as indicated by the arrows in the diagram. For example,
if the lower left cell is selected, then the three adjacent blocks
(at 180, 225, and 270) are also selected. The four internal
cells cause no spreading.

2) Robust Refresh:The threshold in the block selection
algorithm provides hysteresis by suppressing block updates
when there is little change. Unfortunately, this hysteresis
causes minor but noticeable blocking artifacts. The problem
can be explained as follows. Consider a block that is static,
changes due to motion, then returns to a static state. In effect,
the block travels along a trajectory from its initial state to
its final state. At some point before its final state, the block
selection hysteresis takes hold, and the block is no longer
replenished even though the block continues to change. Hence,
the final block has a persistent error with respect to the final
static state.

We can solve this problem with a refresh heuristic. When
the selection algorithm ceases to send a given block, we age
the block and resend it at some later time. Presumably, by then,
the block will have reached its final state along the “change
trajectory” and the refresh will counteract the artifact.

We carry out this “robust refresh” algorithm using the finite-
state machine (FSM) illustrated in Fig. 8. Each block in the
image has a separate FSM, and we encode and transmit a block
only in the shaded states. Whenever the block selection algo-
rithm detects motion in a block, the state machine transitions
to the motion state (labeled). When there is no motion, the
FSM transitions through a number of aging states. At the age
threshold (state), we send the block, and in turn, enter the
idle state (). In the current implementation, we fix at 31.

Fig. 8. Block aging algorithm. A separate finite-state machine is maintained
for each block in the image. State transitions are based on the presence
(m) or absence (m) of motion within the block. A background fill process
spontaneously promotes a small number of idle blocks to the background state
(bg). The block is replenished in the shaded states.

At high frame rates, this translates into approximately 1 s of
delay, which is sufficient time for motion artifacts to decay. At
low frame rates, the lag is longer because does not depend
on the frame rate, and hence causes a more persistent artifact.

We additionally run a background fill process to contin-
uously refresh all of the blocks in the image to guarantee
that lost blocks are eventually retransmitted, and that the
entire image is filled in for receivers that join an in-progress
transmission. This process selects some number of idle blocks
in each frame, and spontaneously transitions them to the
background state ().

By supplying the FSM state information for each block to
the encoder, adaptive quantization can be utilized to substan-
tially improve the perceived quality of the reconstructed video.
Since block updates at the age threshold are less frequent than
those in the motion state, and since the aged block is likely to
persist into the future, it is advantageous to spend extra bits
to code such blocks at a higher quality. Similarly, because
background blocks are sent infrequently, we can send them at
the highest quality with little increase in overall rate, causing
static scenes (like screen captures of projected slides) to
eventually attain high fidelity. Upon implementing this scheme
in an early version ofvic, the utility of the tool for video-
captured viewgraph transmission increased substantially.

3) Temporal Layering:The conditional replenishment al-
gorithm described above generates a single rate of block
updates for a given input frame rate. We can extend the
algorithm to produce multiple rates in a temporal hierarchy by
splitting block updates into separate layers. One well-known
approach for creating a temporal hierarchy is temporal subband
decomposition. To this end, we could carry out subband
analysis on a block granularity, and extend the block update
across the next power of two interval for which the block
remains active. Unfortunately, this introduces complexity and
extra delay over simple conditional replenishment.

Instead, we utilize our robust block refresh algorithm and
stripe block updates across different layers to provide multiple
frame rates. To produce a graceful degradation in frame rates,
we arrange the subsampled frames so that any set of layers
produces frames spaced evenly over time. We do this as
follows. Assuming that there are layers, we assign
layer to all block updates during frame time, where

mod
with

990 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

Fig. 9. Temporal layering. We extend the conditional replenishment algo-
rithm to produce multiple rates by striping block updates across different
output layers. When a block becomes idle, we “slide it” down the layer
hierarchy to guarantee that the most up-to-date version appears on the base
layer.

i.e., is the bit position (numbered from 0) of the rightmost
nonzero bit in the binary representation of.

The hierarchy that results in the case for is shown
in Fig. 9. If the receiver processes all four layers, then the
resulting frame rate is maximal. If the receiver processes only
three layers, the frame rate is half the maximum rate. For two
layers, it is one-fourth, and so on.

As long as a block is continuously transmitted, this scheme
works well. But when a block undergoing motion becomes
inactive and its last update occurs on any layerwith ,
that block position will be inconsistent on all layerssuch
that . A simple remedy is to force the block update in
the age-threshold state onto layer 1, thereby limiting the time
extent of the inconsistency. We tried this approach, but the
qualitative performance was unsatisfactory because the block
artifacts were too noticeable for too long. Instead, when a
block becomes inactive at time , we transmit it additionally
at times given by

for . In other words, after a block becomes
inactive, it “slides down” the layer hierarchy. As indicated
by the gray blocks in Fig. 9, we transmit a block update at
each inferior layer down to layer 1. At that point, the block
undergoes the aging algorithm, and is eventually resent on
layer 1 in the age-threshold state.

The overhead incurred by the redundant block transmissions
is not as great as it may seem. Because the redundant block
updates only occur after a block under motion becomes
inactive, the overall redundancy is inversely proportional the
length of this “active period.” Moreover, the redundancy
present in lower rate layers, where bandwidth is critical, is less
than that in higher rate layers. For example, layer 1 alone never
has a redundant block update, while the full hierarchy contains
the maximum number of redundant updates. Reference [17]
contains a detailed analysis of this overhead.

B. Spatial Compression

After the conditional replenishment stage selects blocks for
transmission, they are compressed spatially. In this section,
we describe the layered spatial compression algorithm that is
applied to each block.

Fig. 10. Zero tree wavelet coding structure. We decompose a pixel block
using our 1/3/3/1 4-tap biorthogonal wavelet (B.W.), and in turn, transform
the LL subband with a Haar wavelet (H.W.). The resulting subband coefficient
hierarchy is entropy coded using zero trees (ZTC).

The first version of our coder [5] utilized subband decom-
position since this approach induces an inherently layered rep-
resentation. In this coder, we carry out subband decomposition
over the entire image, and then use pixel-domain conditional
replenishment to determine the subband coefficients to trans-
mit. We first perform subband analysis horizontally across
the image to yield low- and high-frequency representations
of the signal, commonly called the L and H subbands. In
turn, we apply the same low/high-frequency decomposition
vertically yielding a total of four subbands: the coarse-scale
LL subband, containing a low resolution version of the signal,
and the enhancement subbands containing horizontal detail
(HL), vertical detail (LH), and diagonal detail (HH). After
subband analysis, we encode those subband coefficients whose
basis vectors are spatially centered over each selected pixel
block. We then group the coefficients across scales with like
orientation into the well-known quad-tree structure, and then
entropy code them using a variant of Shapiro’s scheme for
embedded zero trees of wavelet coefficients (EZW) [33]. This
coding structure is illustrated in Fig. 10.

Unfortunately, a tension arises between subband decom-
position and conditional replenishment. While subband de-
composition induces a multiscale structure where transform
coefficients correspond to multiple overlapping regions of the
image, conditional replenishment assumes spatially confined
pixel blocks. Moreover, in traditional subband coding systems,
the analysis/synthesis filters are relatively long, and when
iterated, generate basis vectors that span large regions of the
image. While this has attractive properties for multiresolution
representation (i.e., one can achieve very good low-resolution
approximations at low bit rate), it is a poor match to the block
replenishment model. Our solution for the coder described
above was to use short analysis filters to increase the coherence
between the subband and pixel representations. We used the
following biorthogonal filters for the first-stage analysis [34]:

with the following synthesis:2

and Haar filters for the remaining three stages. Because a four-
tap filter induces only one pixel of overlap, and because the
Haar basis vectors induce no additional overlap, we can exploit

2 Note that we use the moreregular filters at synthesis, where regularity
implies that the iterated filter bank converges to a smooth basis.

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 991

Fig. 11. Hybrid transform coding structure. We decompose a pixel
block using our 1/3/3/1 4-tap biorthogonal wavelet (B.W.) and, in turn,
transform the LL subband with a DCT. The resulting DCT coefficients are
run-length/entropy coded and progressively refined (L/DCT= “layered
DCT”). The LH/HL subband coefficients are progressively coded by
compressing them a bit plane at a time using a quad-tree decomposition
(L/SBC = “layered subband coefficients”).

pixel-domain conditional replenishment to determine which
subband coefficients to encode.

Although this codec outperforms several existing Inter-
net video coding schemes, its compression performance is
somewhat inferior to the commonly used Intra-H.261 format
[24]. To carry out ongoing, large-scale experiments within the
MBone user community, we rely on active use of the appli-
cations, protocols, and compression formats. Our experience
is that a few isolated experiments do not provide the level of
feedback necessary to evolve a robust and thoroughly tuned
codec design that interacts gracefully with the network. To
encourage the largest possible user community to participate in
experiments with the new format, we felt that it was necessary
to produce a layered codec that outperforms the best existing
practice.

1) PVH—A Hybrid Transform:Our approach for improv-
ing the compression performance of our wavelet coder is
to leverage off the compression advantages of the discrete
cosine transform (DCT) for block-oriented processing. In the
wavelet coder described above, the first stage of subband
decomposition generates an 8 8 block of coarse-scale
subband coefficients. Since this coarse-scale block represents
a low-resolution version of the original image, its statistics are
consistent with a typical image signal. Hence, a coding scheme
tailored for normal images will work well on the coarse-scale
LL subband [35]. Rather than carry out additional subband
decomposition using the Haar transform on the LL subband,
we instead apply an 8 8 DCT as depicted in Fig. 11.

To retain an embedded bit stream, we encode the transform
coefficients progressively by coding the DCT coefficients a
bit plane at a time. Our technique is similar to the point
transform used in progressive-mode JPEG [36, Annex G] and
the SNR-scalability profile in MPEG-2. We code the DCT
coefficients in a number of passes. In the first pass, the dc
coefficient is quantized and coded (using spatial DPCM across
blocks), while the ac coefficients are quantized to a power of
2, scanned in “zig-zag” order, and run-length/entropy coded
in a fashion similar to JPEG, MPEG, or H.261. This “base-
layer” pass is followed by a number of enhancement passes
which are, in turn, decomposed into a refinement pass and an
identification pass. Each new pass corresponds to an additional
bit of precision:

• Refinement:In the refinement pass, an additional bit of
precision of the magnitude of each previously transmitted
coefficient is sent verbatim (there is little opportunity to
compress these refinement bits).

• Identification: In the identification pass, coefficients that
become nonzero at the current quantization level are transmit-
ted (along with their sign). These coefficients are identified
simply by a series of run codes, interleaved with sign bits,
and terminated by an end-of-block symbol. As in JPEG, the
coefficient positions that have already been sent are skipped
in the calculation of the run codes. This decreases the entropy
of the run codes, and therefore increases the compression
efficiency.

By decomposing the compression process into a number of
passes that successively refine the transform coefficients, we
can easily format the bit stream into a layered representation.
Although DCT-based coding of the LL coarse scale band has
been previously proposed [35], as far as we know, the com-
bination of progressive DCT transmission and multiresolution
subband decomposition has not been explored.

Simultaneously with the progressive coding of DCT coeffi-
cients, we encode the LH and HL subband coefficients using a
simple quad-tree decomposition of bit planes. Unfortunately,
we must sacrifice the compression advantages of zero trees
since we no longer carry out multiple levels of subband
decomposition, and hence cannot use zero trees to predict
information across scales. We experimented with a version
of the algorithm that additionally applied a DCT to the
8 8 LH and HL bands, but found that this provided
negligible improvement. We discard the HH band altogether
as it typically contributes little energy to the reconstructed
signal.

Conceptually, the progressive coding of subband coeffi-
cients is carried out as follows. We represent the coefficients
in sign/magnitude form, and scan the coefficient bit planes one
plane at a time, from most significant bit to least significant
bit. We code a bit plane as follows.

• If the size of a bit plane is 1 bit, output that bit.
• Otherwise:

— If all bits are zero, output 0.

— Otherwise, output 1. If this is the most significant
bit of the magnitude of this position, output the
sign. Divide the bit plane into four equally sized
bit planes, and recursively code these subplanes.

This decomposition is similar to the “autoadaptive block
coding” algorithm of Kunt and Johsen [37], although they
applied it to bilevel images without any transformation. The
hcompressalgorithm described in [38] similarly exploits this
technique in combination with subband decomposition over
the entire image.

In practice, our algorithm diverges somewhat from this
conceptual framework in order to optimize the syntax for
better run-time performance. Instead of carrying out a separate
pass for every bit plane, the first several planes are grouped
together and treated as a quantized coefficient. This reduces the
run-time overhead since we process multiple layers in parallel
as is done by the “layered-DCT” implementation in [39]. In
addition, the output codewords are rearranged to facilitate a
performance optimization described later. Version 1 of this
codec bit syntax, which we call progressive video with hybrid
transform (PVH), is detailed in [17, Appendix].

992 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

Fig. 12. Bit allocation. We determine the best mix of rate across the DCT and subband coefficients by computing the convex hull of a family of
curves. Each curve is swept out by progressively scanning the DCT coefficients of the LL subband, and each separate curve corresponds to a fixed
set of LH/HL coefficient refinement passes.

2) Bit Allocation: To optimize the compression perfor-
mance of PVH, we must partition the rate between the DCT
and subband coding subprocesses in an intelligent fashion.
For example, if we allocated all of the rate to the subband
coefficients, then the resulting image would be a “ghost
image” composed of fine-scale edges in a gray background.
On the other hand, if we allocated all of the rate to the
DCT coefficients, then we would code noise in the DCT
transform coefficients without recovering any of the fine-scale
details. Clearly, the optimal allocation is not at either of these
extremes.

Fig. 12 plots a family of operational distortion-rate curves
generated by coding the 512512 gray-scaleLenaimage with
our hybrid coder. Each separate curve corresponds to a fixed
number of refinement passes over the subband coefficients
or, conversely, to the amount of quantization applied to each
subband. In turn, we swept out each individual curve by suc-
cessively increasing the number of refinement passes applied
to the DCT transform coefficients. The best combinations of
quantizers occur along the upper convex hull of the family of
curves, i.e., for a given rate constraint, the quality is maximal
along this curve. Hence, we achieve the best performance
by partitioning the rate to each subprocess according to the
convex hull.

One approach for choosing these quantizers is to run an
on-line optimization that continually updates quantization mix
to reflect the changing signal statistics. By including codes
to adaptively adjust the quantization mix at the start of each
block, we can perform adaptation on a block granularity. Since
the subprocess distortions are additive (by linearity of the DCT
and subband transforms), we could use a dynamic program to
find a good approximation of the optimal solution [40].

Unfortunately, computing an on-line, adaptive optimization
algorithm like this adds complexity that inhibits real-time

TABLE I
LAYERED BIT ALLOCATION

performance. An alternative approach is to preselect a fixed
set of quantizers by hand, and hope that they are never far
from optimal. We do exactly this in our prototype because
it is much simpler to implement and incurs no overhead.
Using the Lena rate-distortion curves from above, we derive
the progressive quantization structure given in Table I. The
BL columns indicate whether the corresponding base layer
is present, and theREF columns indicate the number of
bits of refinement to the luminance DCT (LD), luminance
subband (LS), or chrominance DCT (CD) coefficients.3 The
DCT chrominance refinements were chosen by hand based on
visual inspection of quality and rate since our PSNR metric
does not account for the color dimension. The luminance
and chrominance DCT base-layer coefficients are quantized
with a uniform quantizer of magnitude 32, while the SBC
base-layer coefficients are quantized by 16. Note how the
chrominance base layer is distributed on layer 1, resulting in
a gray-scale-to-color transition from layer 0 to layer 1. This
overall decomposition gives a total of five spatial layers which,
when convolved with the temporal hierarchy, produces a rich
set of tunable output rates.

While this scheme has low complexity and is simple to
implement, the compression performance may be suboptimal

3There are no chrominance subband coefficients because the 16� 16
chrominance planes are directly subsampled by two, and each resulting 8
� 8 block is coded exclusively with the progressive DCT.

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 993

Fig. 13. Relative compression performance. The compression performance of PVH is better than Intra-H.261 at low rates, comparable at medium rates,
and somewhat inferior at high rates.

if the input signal statistics do not match those of Lena.
We tested the sensitivity of the optimal choice of quantizers
to signal statistics by computing the optimum for several
images from the USC image database. In each case, the
result was the same as that for Lena. Although optimal
quantization selection is, in general, strongly image dependent,
our relatively constrained choice of quantizers limits their
variability. Because our successive quantization scheme uses
full powers of 2, there are only a small number of refinement
passes, and the distance in distortion between quantizers is
relatively large. Hence, there is little opportunity for the
optimal points to shift.

3) Compression Performance:We compared PVH with
two prevalent compression schemes for Internet video to
assess its compression performance. These existing algorithms
include the native format used bynv and the Intra-H.261
format used byvic. Because these schemes use similar
conditional replenishment algorithms, we can compare their
two-dimensional compression performance to assess their
overall performance. Hence, we removed temporal coding
overheads (like macroblock addressing codes) from each
codec, and because we compare only gray-scale PSNR
performance, we additionally removed chrominance syntax
overhead. In addition to the Internet video codecs, we
compared our results against Shapiro’s EZW algorithm [33]
and progressive-mode JPEG [36, Annex G] to gauge the
performance of our scheme against well-established subband-
and DCT-based image codecs. For each algorithm, we
obtained a distortion-rate characteristic for the 512512
Lena gray-scale test image as follows.

• Intra-H.261: We modified the Intra-H.261 coder from
vic for arbitrarily sized images, and omitted macroblock ad-
dressing codes and chrominance processing. We obtained the
rate-distortion curve by varying the standard H.261 quantizer.

• NV: We modified thenv coder for gray-scale operation,

and omitted block addressing codes. We obtained the curve by
varying the Haar coefficient dead zone.

• PVH: We used our prototype PVH coder with sub-
band/DCT quantizers chosen by inspection according to Fig.
12.

• Progressive JPEG:We employed Release 6 of the In-
dependent JPEG Group codec in gray scale and progressive
modes. We obtained the curve using the JPEG codec’s “scans”
option to compute multiple operating points by controlling the
number of refinement passes used by the encoder.

• EZW: We used the performance results reported in [33].
Fig. 13 shows the results. Although EZW outperforms all of

the other schemes, it has high complexity and cannot be used
with conditional replenishment because its wavelet domain
representation is not localized to blocks. At low rates, PVH
performs as good as EZW and better than Progressive-JPEG.
At roughly 1 bit/pixel and beyond, PVH performs 0.5–1 dB
below both Progressive-JPEG and Intra-H.261. At these rates,
PVH spends a significant fraction of its bit budget coding
the fine-scale subband coefficients, which do not benefit from
any lower resolution conditioning information. Thenv coding
algorithm is about 6 dB below the rest; for a fixed level of
quality, the rate performance is two–four times worse. In sum-
mary, over the commonly used low-rate quality ranges, PVH
outperforms existing Internet video formats and is comparable
to the other schemes at high rate.

C. The Spatiotemporal Hierarchy

Layered conditional replenishment and layered spatial com-
pression together form a two-dimensional space over which
we can scale the overall bit rate. But, unfortunately, we cannot
adjust both dimensions independently at each receiver—from
the perspective of the network, the aggregate bit rate is just
one parameter.

994 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

Fig. 14. Temporal/spatial scaling. We cannot scale the spatial and
temporal qualities simultaneously. Instead, we must choose a single path
through this rate-scaling space. We show three such paths: the lower
path leads to a high-motion/low-quality signal, the upper path leads to
a low-motion/high-quality signal, and the middle path is a compromise
between the two.

Fig. 14 illustrates the tradeoff involved in scaling rate over
the two-dimensional space. The vertical axis represents the rate
allocated to improving spatial quality, while the horizontal axis
represents the rate allocated to improving temporal quality.
A point in the upper left region corresponds to low frame
rate and high spatial quality, while a point in the lower right
corresponds to high frame rate and low spatial quality. The
aggregate rate is the sum of the two coordinates. Hence, the
isolines of fixed rate are straight lines with slope1. When we
increase the rate, say from rate to , we can move from a
point on the isoline to any point along the isoline that
is reachable by a vector with direction 0–90. The problem
then is to plot asingletrajectory through this two-dimensional
space to obtain a layered stream with a one-dimensional rate
parameter. We call the trajectory through this two-dimensional
space thelayering policy.

The layering policy is a free parameter that should match
the application context. For example, when the video channel
is used to transmit seminar slides, spatial quality must be high
so that the slides are readable. Likewise, if the application
is educational instruction of art history, then spatial quality
should be high to faithfully represent illustrative artwork. On
the other hand, if the speaker’s slides are distributed over a
separate “whiteboard channel,” then many users would prefer
high frame rate at the cost of lower spatial quality to provide
a heightened “sense of presence” of the remote location.
Unfortunately, we must fix a single layering policy at the
source, and this prevents us from satisfying conflicting user
desires.

We define a layering policy explicitly through the method
by which temporal and spatial hierarchies are combined into a
single layered stream. The problem is to map some number of
spatial layers and temporal layers into some number of output
or network layers. Ideally, we would simply stripe mixtures of
bits from the temporal and spatial layers across the appropriate
output layers. However, this scheme works only if the temporal
layers appear explicitly as bits to transmit. For example, in
subband decomposition, temporal information is represented

Fig. 15. Spatiotemporal layering. We combine layered conditional replen-
ishment with the spatial compression algorithm to induce a spatiotemporal
hierarchy where the allocation of spatial layers to network channels evolves
over time.

as explicit enhancement information to a coarse-scale temporal
(i.e., blurred) signal. But in layered conditional replenishment,
temporal layers do not appear as bits to transmit. Rather, the
algorithm shifts spatial layers up and down the output layer
hierarchy over time. For example, let be a set of
spatial layers, and let be a set of output
layers indexed by the frame number. Suppose we want two
temporal layers and three output layers (). Then, the
following assignment of spatial information to output layers
gives the desired spatiotemporal structure:

even
odd
even
odd

Layer 1 provides a low-rate low-quality signal, layer 2 doubles
the frame rate, and layer 3 enhances the spatial quality.

A richer example is illustrated in Fig. 15. Here, we have
three spatial layers and three temporal layers. Layer 1 alone
provides the lowest quality, lowest frame-rate signal. Layer 2
increases the spatial quality, but leaves the frame rate fixed.
From there, layer 3 doubles the frame rate without changing
the spatial quality. Layer 4 again doubles the frame rate.
Finally, layer 5 refines the spatial quality to its maximum
level. Note how we manipulate the frame rate for a given level
of subscription by dynamically varying the output channel
assigned to each spatial layer.

More generally, we define a map from spatial layers to
output channels that varies over time according to the layered
replenishment algorithm. In the previous two examples, the
amount of spatial quantization is fixed for any subset of the
layers, but we can extend the scheme to dynamically adjust the
allocation, for instance, to meet different bit-rate constraints for
each layer. We must solve an optimization problem that places
constraints on the rate limit of each layer by scheduling the

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 995

selection of quantizers and temporal hierarchy to smoothly
adapt to changing input signal statistics.

For our particular codec, a general solution to this problem
is still an open issue. We currently employ a simple interim
strategy that works adequately in many contexts. In this
approach, we control the bit rate of the base temporal layer,
which may be composed of multiple spatial layers, by running
it at a variable frame rate to match the target rate. Whenever
we transmit bits on this base layer, we schedule the subsequent
frame time adequately far into the future to obey the rate
limit. Accordingly, if the input video has high activity and
motion, then the frame updates are large, the interframe time
increases, and the frame rate drops. Conversely, if there is
low activity, the frame rate increases. Since the frame times
of successive temporal layers are tied to the base layer, we
distribute the temporal hierarchy evenly over each frame-
update interval.

Although far from perfect, we believe that this rate-control
policy is reasonable in an environment like the MBone.
Here, we might want to limit the rate of a low-quality
subset for the MBone, but distribute the remainder of the
hierarchy locally without explicit rate limits. Additionally,
we could decompose a 128 kbit/s MBone layer into two
spatial layers where the bottommost layer could be transmitted
over narrow-band ISDN. Because the layout is completely
configurable at the encoder, the layering policy can be freely
manipulated without modification to the decoder. Accord-
ingly, we can incrementally deploy improved versions of
rate allocation algorithms without requiring global codec up-
grades.

D. Run-Time Performance

Now that we have described the basic compression al-
gorithm, we turn to implementation issues, and discuss the
algorithm’s complexity and how we achieve a fast implemen-
tation. First of all, we reduce run-time overhead compared
to traditional DCT-based schemes through our use of subband
decomposition. Instead of computing four relatively expensive
DCT’s and progressively coding all four blocks of DCT
coefficients, we carry out one stage of subband analysis using
inexpensive filters, code only one 8 8 block of DCT
coefficients, code two 8 8 enhancement subbands with a
fast algorithm, and discard the 8 8 HH subband. Although
subband coding algorithms generally have higher complexity
than DCT-based schemes, the combination of cheap filters and
an inexpensive algorithm for encoding subband coefficients
reduces the overall complexity.

We exploit a number of optimizations to speed up the
encoding and decoding of DCT coefficients. At the encoder,
we maintain the DCT coefficients in a sparse array. On the
initial base-layer pass, we collect up the coefficients that are
needed in later passes and store them in a temporary array.
Since there are typically many zero-valued coefficients, and
we make multiple passes over the coefficients, the abbreviated
array reduces loop overhead and memory traffic.

At the decoder, we store the DCT coefficients in the normal
block-array format, but use a 64 element bit vector to identify

the significant coefficients (on a modern architecture, this
bit vector fits in a processor register). For each nonzero
coefficient, the corresponding bit is set; otherwise, it is clear.
This data structure improves performance in two ways.

• We avoid initializing the DCT coefficient array to zero on
each new block. Instead, we simply clear the bit vector.

• We carry out abbreviated processing of the refinement
stages by structuring loops to skip over missing coeffi-
cients quickly using bitwise logic that efficiently detects
and skips over contiguous runs of zeros

Conditional replenishment is the first stage of compression,
and requires access to only a subset of the pixels in a given
block. If we decide to skip a block at this stage, we avoid all
further processing. This approach complements video capture
architectures that use direct memory access (DMA) to transfer
each digitized frame directly into memory, lifting the burden of
processing uncompressed, high-rate video off the CPU. Since
most of the pixels are (potentially) never referenced, much of
the video data never needs to enter the CPU or processor cache.
In our implementation, only 32 of the 256 pixels that make
up a block are accessed, resulting in an eightfold reduction in
CPU/memory traffic.

We compute the subband coefficient quad trees for each bit
plane in parallel with a single pass over the data. At the quad-
tree leaves, we perform a bitwise “OR” over 7 bit magnitudes
of the four coefficients that comprise a leaf. For a 16
16 block, this gives eight trees each with seven bit planes,
giving 56 binary-valued elements (again, this 56-element bit
vector fits in a 64 bit processor register). We then compute
internal nodes of the quad tree using bitwise “OR” operations
over the appropriate subsets of the 56 element bit vector. In
practice, not all bit planes are needed, and we collapse the
first several planes into a single layer, allowing us to carry out
these computations in 32 bits.

Additionally, we improve performance by using only shifts
and adds to compute the subband analysis filter. Further,
we can compute these operations in parallel using the par-
allelism inherent in a 32 or 64 bit ALU. Several new pro-
cessor architectures provide 8 bit parallel add instructions
to do exactly this (e.g., SPARC VIS, Intel MMX, and HP
PA-RISC), but even on traditional architectures, we exploit
ALU parallelism by inserting guards in the machine word.
For example, to process a row of samples, we initialize
a 64 bit register with eight pixels (or coefficients) in a
single memory load. We mask out every other pixel, per-
form several operations, then place the result back in mem-
ory with a single store instruction. Moreover, we check for
overflow of several results simultaneously using a single
conditional to reduce the number of branches in the inner
loop.

We optimize the Huffman decoding stage with a table-
driven design. In this scheme, we buffer the head of the bit
stream in a processor register, and parse the next Huffman
codeword with a table lookup. If the longest legal codeword
is bits, then we use the next bits to index the table.
The table entry provides the length (with) of
the codeword and the corresponding symbol. To decode

996 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

the next symbol, we form an index from the next bits in
the bit buffer, locate the table entry, discardbits from the
bit stream, and process according to the codec syntax. We
can additionally enhance memory locality, thereby improving
processor cache performance, by using a two-tiered lookup
table. Since the goal of a Huffman code is to minimize the
average codeword size, the typical codeword length is small.
Hence, we can construct an abbreviated table that contains
the most frequently appearing codewords, and is indexed
by only bits of input (with). However, the
codewords whose lengths are greater thancollide with other
codewords in the table. In this case, the table entry contains an
ESCAPE code that instructs the decoder to use a slower but
completely defined operation (e.g., a full-sized table lookup).
The Berkeley MPEG decoder [41] uses a similar table-driven
approach.

Several operations are combined or are carried out “in-
place” to reduce processor/memory traffic.

• The subband analysis stage performs quantization “on
the fly” so that the output coefficients are stored in 8-
bit format. This reduces memory traffic by a factor of 4
over full-precision representation.

• We place the output of the inverse DCT directly into the
LL subband coefficient buffer.

• We combine the first stage of subband reconstruction,
the conversion from sign-magnitude to two’s-complement
numerical form, and the coefficient-centering step (i.e.,
the step that biases each coefficient to the midrange of
the quantization interval) all into a single pass.

We implemented PVH and these optimizations in our video-
conferencing applicationvic, and compared its performance
with the widely used Intra-H.261 codec [24]. As a simple
quantitative assessment, we measured the run-time perfor-
mance of both codecs withinvic on an SGI Indy (200
MHz MIPS R4400) using the built-in VINO video device.
To measure the maximum sustainable compression rate, we
disabled the bandwidth and frame rate controls for both coders,
and ran the test on an unloaded machine. We measured the
resulting frame rates by decoding the streams on a separate
machine. We configured the PVH coder with enough DCT and
subband refinement layers to give quality roughly equivalent
to that of the Intra-H.261 coder with its quantizer set to
“5” (based on visual inspection and the Lena rate-distortion
curves), and provided both coders with (approximately) the
same, “high-motion” 320 240 video input. The results
were remarkably consistent across the two coders as they
both generated output at approximately 11 frames/s. Because
both schemes were limited only by the workstation’s fixed
computational resources, the run-time performance for this
level of quality is roughly equivalent. For a typical “talking
head” sequence with low scene activity, both encoders perform
close to real time (20–30 f/s).

IV. PACKETIZATION

We have thus far described the RLM network protocol and
the complementary PVH video codec that was codesigned with
RLM, but the overall system is still incomplete because we

have not specified the machinery to map PVH bit streams onto
network packets for transmission across multiple communica-
tion layers. One approach for packetizing the PVH bit stream is
to use a simple fragmentation protocol. Here, a source simply
breaks its bit stream into arbitrary packet-sized fragments, and
receivers reconstruct the original stream by reassembling these
fragments. But this approach interacts poorly with the Internet
protocol architecture because network packets can be lost,
reordered, duplicated, or delayed. Under these conditions, we
must be able to process packets from multiple, interdependent
layers in an efficient and robust fashion.

To this end, we might attempt to build a modular, “black
box” protocol that could provide generic semantics to cope
with packet loss, delay, and reordering. However, such a
protocol would poorly match our layered video stream. For
example, the protocol could not know about specific rela-
tionships between the packets in different layers (without a
complex programming interface), and thus would not know
how to best proceed in the presence of loss. If a base-layer
packet is lost, then all of the dependent packets may have to be
discarded. On the other hand, if an enhancement layer packet
is lost, then decoding can proceed, but only for some subset of
the received packets. This is just one example of application
semantics that cannot be easily expressed in a generic network
protocol.

In 1990, Clark and Tennenhouse recognized that this type
of problem could be solved if application semantics were
reflected in the design of an application’s network protocol.
Their application level framing (ALF) protocol architecture
[42] leads to a design where the application takes an active
role in the encapsulation of its data into network packets,
and hence can optimize for loss recovery through intelligent
fragmentation and framing. About the same time that ALF
emerged, we and others developed a number of tools to explore
the problem of interactive audio and video transport across
packet-switched networks [43]–[48]. After several iterations of
protocols and experimentation with audio and several different
video compression formats, it became clear that a “one size fits
all” protocol was inadequate [49], [24]. Instead, a framework
based on ALF emerged where a “thin” base protocol defines
the core mechanisms and profile extensions define application-
specific semantics. The Audio/Video Transport Working Group
of the Internet Engineering Task Force (IETF) standardized
this base protocol in the “real-time transport protocol” or RTP
[50], and developed a profile for audio- and videoconferences
with minimal control [51], along with a number of payload
format standards for specific applications like H.261, JPEG,
MPEG, etc.

A. The Real-Time Transport Protocol

RTP defines much of the protocol architecture necessary
for video transmission over a multipoint packet network.
An RTP “session” represents a collection of two or more
end systems sending data and control information to each
other over two distinct underlying transport channels. For
UDP [52] over IP Multicast, these two underlying transport
channels are mapped onto two distinct UDP port numbers

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 997

sharing a common IP multicast group address. An active
source transmits its signal by generating packets on the data
channel that conform to the “payload format specification”
for the underlying compression format. Simultaneously, all of
the end systems in a session exchange information over the
control channel. Periodically, each source generates a real-time
transport control protocol or RTCP message. These messages
provide mechanisms for sender identification, data distribution
monitoring and debugging, cross-media synchronization, and
so forth.

Each source in a session is identified by a 32 bit Source
ID. Source ID’s are allocated randomly, and conflicts are
handled by a resolution algorithm. Since Source ID’s can
change dynamically (because of conflicts), the “canonical
name” or CNAME provides a persistent and globally unique
identifier. Data packets are identified only by Source ID,
and the RTCP control messages contain the binding between
CNAME and Source ID. The CNAME is a variable-length
ASCII string.

Data packets also contain a media specific time stamp (e.g.,
a sample counter for audio and a frame clock for video).
RTCP packets advertise the mapping between media time and
the sender’s real-time clock. To counteract delay variances
induced by the network, each receiver dynamically adjusts
the amount of playback buffering in order to reconstruct
the sender’s original timing while minimizing delay. This
“playback point algorithm” can be extended to carry out
cross-media synchronization [53] by aligning each individual
medium with the medium that has the maximal playback point.

Unfortunately, RTP has no notion of layered streams. In
particular, the use of multiple IP multicast addresses in RLM
requires that the layered bit stream be striped across distinct
RTP sessions. An effort is currently underway—based in part
on the work presented in this paper—to modify RTP to allow
a single session to span multiple underlying network channels
[12], [54]. Our proposed change is an extension to RTP that
allows a participant to use one Source ID consistently across
the logically distinct RTP sessions comprising the hierarchy.
Accordingly, we run the Source ID allocation and collision
detection algorithm only on the base layer, and likewise,
transmit sender identification information only on the base
layer. This proposal is currently under review by the IETF4

[54].

B. The PVH Framing Protocol

The flexibility of RTP’s ALF-based framework gives us
the freedom to optimize the PVH framing protocol for robust
interaction with the underlying network. We based our framing
protocol in part on our work adapting H.261 for resilient
packet transmission invic. In this previous work, we developed
a codec based on a subset of the H.261 standard, called
Intra-H.261, that uses only “intracoding” of conditionally
replenished blocks [24]. A key property of the Intra-H.261
framing protocol is that packets are independent of each other,
and can be decoded in isolation or in arbitrary order (up to

4 We developed an Internet Draft describing extensions to RTP for layered
media streams jointly with M. Speer of Sun Microsystems.

a frame boundary). This simplifies loss recovery since the
start of each packet provides an explicit resynchronization
point.

Ideally, we would like to incorporate the “idempotent”
nature of Intra-H.261 packets into our PVH framing protocol,
but unfortunately, this is not entirely possible with the layered
approach. A fundamental problem is the necessary dependence
between the packets at different layers within the spatial
hierarchy. For example, block address codes appear only on
the base layer. Thus, in order to decode enhancement layer
packets, we must know the positioning context from the base
layer. During decoding, we can propagate this conditioning
information across the hierarchy by either processing packets
in a carefully defined order and retaining information to
provide later context or by grouping related packets and
decoding the group as a unit.

At one extreme, we buffer, reassemble, and decode all of
the packets of an entire frame. At the other extreme, we
process each packet as it arrives, assuming that all necessary
earlier context arrives first. Within a frame, the decoder can
process the spatial layers either sequentially or in parallel.
In sequential decoding, all of the blocks of a given layer
are processed before advancing to the next layer, while in
parallel decoding, all the layers of a given block are decoded
before advancing to the next block. These different approaches
involve implementation complexity and efficiency tradeoffs.
For example, parallel decoding yields good memory-system
locality (and hence good cache behavior) since each block is
processed in its entirety before moving on.

We decided to develop a framing protocol that would
provide enough flexibility to allow either the parallel or the
sequential decoding method without incurring an unreasonable
header overhead. Hence, we adopted a group-based framing
protocol that allows the receiver to decode the bit stream in
units smaller than a frame. To enhance loss recovery, groups
are independent of each other—a packet loss in one group
cannot adversely impact another group. Although groups are
independent, a packet may straddle two groups. To account
for this, PVH includes “resumption offsets” that indicate the
offset into the packet at which the new group begins. Thus the
decoder can process a subsequent group without first decoding
the previous group.

Slice-Based Framing:Borrowing terminology from the
MPEG specification, we define an idempotent decoding unit
or slice as a range of coded image blocks. Each PVH packet
header indicates the block addresses of the first and last blocks
encoded in the packet, and we associate a slice with the block
range of exactly one base-layer packet. That is, each base-
layer packet induces a slice defined by that packet plus those
packets at higher layers within the same frame whose block
addresses overlap.

To identify and decode all the packets in this slice-oriented
fashion, we must:

1) identify each base-layer packet;
2) indicate how spatial layers are mapped onto network

channels;
3) specify how the encoded bit stream is allocated across

the spatial hierarchy.

998 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

Fig. 16. RTP/PVH packet headers. The RTP header contains a version
number (V), a padding bit (P), an extension bit (X), a count of “contributing
sources” (CC), i.e., for audio mixing or video compositing, a marker bit (M),
a payload type (PT), a 16-bit sequence number (SEQNO), a media-specific
timestamp (TS), and a “Source ID” (SSRC). If the payload type indicates
PVH, then a PVH header immediately follows the RTP header, and consists
of a PVH version number (V), a base-layer indicator (B), a count of padding
bits (EBIT), a start block (SBLK), and an end block (EBLK).

First, we must identify base-layer packets explicitly because
the decoder does not knowa priori on which network layer
they appear (i.e., the temporal layering algorithm moves the
spatial base-layer packet up and down in the hierarchy).
Accordingly, the PVH header contains a designated bit that
is one for base-layer packets and is otherwise zero. Second,
we must indicate how spatial layers are mapped onto network
channels. For a given slice, we need to know which network
layers contain actual data and which do not. We therefore
explicitly encode these dependencies as a set of “resumption
levels” in the base-layer packet that defines the slice. Finally,
the decoder must know the specific arrangement of bits across
layers in order to decode the bit stream. That is, the decoder
must be able to switch layers dynamically during the decoding
process as it encounters different segments of the spatial
hierarchy. To do so, we prefix each block in the base layer
with a special codeword called abit-allocation descriptor
(BD).

A BD indicates where in the hierarchy we encode the base-
layer information, and where each refinement pass appears for
each of the three types of spatial components: DCT luminance
coefficients, subband coefficients, and DCT chrominance co-
efficients. In effect, the BD codes the quantization information
given earlier in Table I. Because each image block has its own
BD, we can carry out spatially adaptive quantization where
some regions of the image have higher fidelity than others.
To reduce the overhead of coding the BD’s, the descriptor is
spatially predicted. For example, we represent the BD with a
single bit in the common case where it does not change from
the previous image block.

Fig. 16 illustrates the layout of the RTP/PVH packet header.
In addition to the standard RTP header fields, the block ranges,
and the base-layer bit mentioned above, the PVH header
includes a version number and an EBIT field. Because packets
are an integral number of bytes, some number of bits from
the last octet should be discarded. The EBIT fields explicitly
indicate this count. A PVH version number is included to
incrementally deploy new versions of the codec. Also, if the
packet is a base-layer packet (i.e., B is set), then an auxiliary
header immediately follows the PVH header. This header
includes the width and height (in blocks) of the video image,

Fig. 17. Sample PVH packet stream. Each base-layer packet defines a range
of macroblocks that comprise a slice. Here, we show two slices, each enclosed
by a dashed line, that are spread across the layer hierarchy.

as well as a count and list of the resumption levels and offsets
described above.

Fig. 17 illustrates an example arrangement of packets in
the slice-oriented hierarchy. Although coding layers are spread
across network channels according to the temporal hierarchy,
we simplify the diagram by indicating only the relationship
among packets within the spatial hierarchy. Each labeled box
corresponds to a packet header, and the pair of numbers
represents the range of macroblocks that are contained within
the packet.

Each slice is identified by exactly one base-layer packet,
and the diagram contains two such slices, encircled by the
dashed lines. Each base-layer packet additionally contains
explicit pointers to all of the network channels that comprise
the slice as indicated by the solid arrows. Moreover, each
packet’s resumption pointer and offset are indicated by the
dashed arrows. The packet that defines the (88,150) block
range appears on layer 1, and naturally has its base-layer bit
set (B=1). Each packet that is a member of the (88,150) slice
is either wholly contained in or partially covers those blocks,
and is encircled by the left-hand dashed line. The base-layer
packet additionally contains a count of resumption pointers
and their values. For example, the base-layer packet points to
successor packets in both layers 2 and 3, while the (101 130)
layer 2 packet points to only the (100 130) layer 3 packet. If
there were more layers, then the layer 2 packet would contain
additional resumption pointers.

Given a base-layer packet, the decoder can extract the layer
hierarchy and resumption pointers and offsets to definitively
locate all of the packets and layer offsets in a slice. A
naive algorithm might perform this relatively complex task
by buffering all received packets and scanning the buffer
pool on each packet arrival to determine when slices be-
come complete. Under this scheme, however, the decoder
cannot easily differentiate between a packet that has not yet
arrived and one that has been lost or reordered, and hence
cannot easily decide when to decode a partially received
slice.

Instead of this data-driven approach to receiver buffering,
we combine the timing recovery algorithm used by RTP-
based applications with the slice reassembly algorithm. In
this model, packets are synchronized across layers using the
“playback point algorithm” modified to function across packet
slices. That is, we schedule the packets from a given slice
to be decoded together, and discard the rare packet that
arrives too late. When a slice’s playback point arrives, we
determine whether it is entirely intact and, if so, simply

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 999

decode it. Otherwise, we invoke a loss recovery strategy to
patch the missing data, possibly discarding unusable packets.
(In practice, the loss recovery mechanism is folded into the
decoding process.)

In our current implementation, we use the following hybrid
of the data- and timer-driven approaches. We maintain two
“containers” keyed by the RTP timestamp. Within each con-
tainer, we maintain a circular buffer of packets for each layer
and within each layer, we map packets directly into slots in a
circular buffer using the low bits of the packet’s RTP sequence
number (so lookup and insertion are cheap). We also track the
boundaries of the current “window” of packets stored in a
given layer. This allows us to quickly traverse over all of the
packets in a layer to check for gaps in the sequence space.
Finally, we store all of the pending base-layer packets in a
hash table for the current frame container.

Whenever a base-layer packet arrives, we check whether
its constituent slice is ready to decode by scanning each
layer indicated in the resumption pointer list, and checking
if a contiguous block of packets at each layer “covers” the
range of blocks in the base layer. If so, we decode the slice
immediately, and all packets wholly contained in the decoded
slice are freed. Otherwise, the base-layer packet is buffered,
and a timer is scheduled whose timeout is proportional to
the packet interarrival time variance. If an enhancement layer
packet arrives and completes the slice, then the slice is decoded
and the timer is canceled. Otherwise, if the timer expires,
we assume that packet loss occurred, invoke a loss recovery
strategy, and decode the partial slice. When we are completely
done with a frame, we free all of the packets stored in the
frame container data structure.

V. IMPLEMENTATION STATUS

The PVH codec, spatiotemporal layering, and RTP-based
packetization scheme are all implemented in an experimental
version of our videoconferencing applicationvic. The PVH
codec and framing protocol are implemented as a modular
C++ object in the Tcl/Tk-based [55] multimedia toolkit used to
build vic. We implemented the RLM protocol in our network
simulation testbed [56], and carried out a simulation study
reported in [12], [17].

Even with RLM fully integrated intovic, the current frame-
work is still experimental. We are just beginning to understand
the interaction between RLM and other adaptive congestion
control schemes, e.g., those in TCP/IP. Moreover, RLM re-
quires the “fast leave” mechanism in IGMP to quickly react
to network congestion, but this has not yet been widely
deployed.

While we continue to experiment with, refine, and deploy
RLM, we can immediately leverage PVH by itself through the
use of manually configured (hence nonscalable) distribution
groups. Since IP multicast provides mechanisms to limit
the “scope” of a group transmission, we can effect layered
transmission though a hierarchical arrangement of scopes,
where the layers in the distribution are allocated to a set
of nested scopes each with a larger reach. That is, we can
use distribution scope to topologically constrain the reach

of each layer. For example, we might distribute the UCB
MBone seminar by sending 32 kbit/s to the “world” scope,
128 kbits/s to the well-connected MBone, 256 kbit/s across
our campus network, and 1 Mbit/s throughout the department
network.

PVH can also be used in tandem with the resource reser-
vation protocol (RSVP) [57], [58], which supports the notion
of layered reservations. In this approach, receivers negotiate
explicitly with the network for bandwidth by adjusting their
reservation to the maximum number of layers that the network
can deliver [4].

Although transition from one technology to another is often
a slow process—even in the MBone where new tools are
deployed simply by distributing them over the network—the
outlook for layered video is promising for several reasons.

• First, the extension of the RTP specification for layered
streams will enable multiple, interoperable implementations.

• Second, the availability of a fast and efficient layered
video codec (PVH) will bootstrap experimentation with lay-
ered media, and demonstrate its ability to accommodate the
Internet’s heterogeneity.

• Finally, the widespread deployment of administrative
multicast scope will enable the incremental deployment of
layered transmission while we continue to refine the RLM
framework.

We believe that these factors will combine to make layered
video transmission commonplace in the Internet within the
next few years.

VI. SUMMARY

In this paper, we proposed a framework for the transmis-
sion of layered signals over heterogeneous networks using a
receiver-driven adaptation protocol, RLM. We described the
details of our low-complexity, loss-resilient layered source
coder, PVH, and presented performance results to show that
it performs as well as or better than the current practice in
Internet video codecs. Moreover, the run-time performance
of our software PVH codec is no worse than our highly
tuned H.261 implementation (at equivalent signal quality)
even though it produces a layered output format. Existing
solutions to heterogeneous video transmission are either net-
work oriented or compression oriented—in contrast, our focus
is on the complete systems design and implementation. To-
gether, RLM and PVH provide a comprehensive solution
for scalable multicast video transmission in heterogeneous
networks.

ACKNOWLEDGMENT

E. Amir’s work on his “layered-DCT” algorithm [39] in-
spired the author’s approach to decomposing the LL subband
with a DCT and progressively coding transform coefficients. E.
Amir, H. Balakrishnan, and D. McCanne provided thoughtful
comments on drafts of this paper. The authors thank the anony-
mous reviewers for their excellent feedback. Equipment grants
and additional support were provided by Sun Microsystems,
Digital Equipment Corporation, Silicon Graphics Inc., and
Phillips.

1000 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 15, NO. 6, AUGUST 1997

REFERENCES

[1] M. R. Macedonia and D. P. Brutzman, “MBone provides audio and
video across the Internet,”IEEE Computer, pp. 30–36, Apr. 1994.

[2] S. Deering, “Internet multicast routing: State of the art and open research
issues,” presented at the Multimedia Integrated Conferencing for Europe
(MICE) Seminar at the Swedish Inst. of Comput. Sci., Stockholm,
Sweden, Oct 1993.

[3] L. Delgrossi, C. Halstrick, D. Hehmann, R. G. Herrtwich, O. Krone, J.
Sandvoss, and C. Vogt, “Media scaling for audiovisual communication
with the Heidelberg transport system,” inProc. ACM Multimedia’93,
Aug. 1993, pp. 99–104.

[4] D. Hoffman and M. Speer, “Hierarchical video distribution over Internet-
style networks,”Proc. IEEE Int. Conf. Image Processing, Lausanne,
Switzerland, Sept. 1996, pp. 5–8.

[5] S. McCanne and M. Vetterli, “Joint source/channel coding for multicast
packet video,” inProc. IEEE Int. Conf. Image Processing, Washington,
DC, Oct. 1995, pp. 25–28.

[6] N. Shacham, “Multicast routing of hierachical data,” inProc. IEEE Int.
Conf. Comput. Commun., 1992.

[7] D. Taubman and A. Zakhor, “Multi-rate 3-D subband coding of video,”
IEEE Trans. Image Processing, vol. 3, pp. 572–588, Sept. 1994.

[8] T. Turletti and J.-C. Bolot, “Issues with multicast video distribution
in heterogeneous packet networks,” inProc. 6th Int. Workshop Packet
Video, Portland, OR, Sept. 1994.

[9] M. Vishwanath and P. Chou, “An efficient algorithm for hierarchical
compression of video,” inProc. IEEE Int. Conf. Image Processing,
Austin, TX, Nov. 1994.

[10] N. Chaddha, “Software only scalable video delivery system for mul-
timedia applications over hetrogeneous networks,” inProc. IEEE Int.
Conf. Image Processing, Washington, DC, Oct. 1995.

[11] S. Y. Cheung, M. H. Ammar, and X. Li, “On the use of destination set
grouping to improve fairness in multicast video distribution,” inProc.
IEEE INFOCOM’96, San Francisco, CA, Mar. 1996, pp. 553–560.

[12] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered
multicast,” in Proc. SIGCOMM’96, ACM, Stanford, CA, Aug. 1996,
pp. 117–130.

[13] G. Karlsson and M. Vetterli, “Packet video and its integration into
the network architecture,”IEEE J. Select. Areas Commun., vol. 7, pp.
739–751, June 1989.

[14] M. W. Garrett and M. Vetterli, “Joint source/channel coding of statisti-
cally multiplexed real-time services on packet networks,”IEEE/ACM
Trans. Networking, vol. 1, pp. 71–80, Feb. 1993.

[15] J. C. Pasquale, G. C. Polyzos, E. W. Anderson, and V. P. Kompella,
“Filter propagation in dissemenation trees: Trading off bandwidth and
processing in continuous media networks,” inProc. 4th Int. Workshop
Network and OS Support for Digital Audio and Video, ACM, Lancaster,
U.K., Nov. 1993, pp. 269–278.

[16] N. Shacham, “Multipoint communication by hierarchically encoded
data,” in Proc. IEEE INFOCOM’92, pp. 2107–2114.

[17] S. R. McCanne, “Scalable compression and transmission of Internet
multicast video,” Ph.D. dissertation, Univ. California, Berkeley, Dec.
1996.

[18] S. E. Deering, “Multicast routing in a datagram internetwork,” Ph.D.
dissertation, Stanford Univ., Stanford, CA, Dec. 1991.

[19] W. Fenner, Internet Group Management Protocol Version 2, Inter-
Domain Multicast Routing Working Group, Internet Eng. Task Force,
Internet Draft, Feb. 1996 (work in progress).

[20] V. Jacobson, “Congestion avoidance and control,” inProc. SIG-
COMM’88, Stanford, CA, Aug. 1988.

[21] J. M. Jaffe, “Bottleneck flow control,”IEEE Trans. Commun., vol.
COM-29, pp. 954–962, July 1981.

[22] M. Vetterli and S. McCanne, “On the sub-optimality of receiver-driven
layered multicast,” Univ. California, Berkeley Tech. Rep., Jan. 1997.

[23] J.-C. Bolot, “End-to-end packet delay and loss behavior in the Internet,”
in Proc. SIGCOMM’93, ACM, San Francisco, CA, Sept. 1993, pp.
289–298.

[24] S. McCanne and V. Jacobson, “vic: A flexible framework for packet
video,” in Proc. ACM Multimedia’95, San Francisco, CA, Nov. 1995,
pp. 511–522.

[25] F. W. Mounts, “A video encoding system with conditional picture-
element replenishment,”Bell Syst. Tech. J., vol. 48, pp. 2545–2554,
Sept. 1969.

[26] R. Frederick, “Experiences with real-time software video compression,”
in Proc. 6th Int. Workshop Packet Video, Portland, OR, Sept. 1994.

[27] T. Dorcey, “CU-SeeMe desktop videoconferencing software,”ConneX-
ions, vol. 9, Mar 1995.

[28] A. Netravali and B. Haskell,Digital Pictures. New York: Plenum,
1988.

[29] C. Compton and D. Tennenhouse, “Collaborative load shedding for
media-based applications,” presented at the Int. Conf. Multimedia Com-
puting and Syst., May 1994.

[30] K. Fall, J. Pasquale, and S. McCanne, “Workstation video playback
performance with competitive process load,” inProc. 5th Int. Workshop
Network and OS Support for Digital Audio and Video, Durham, NH,
Apr. 1995, pp. 179–182.

[31] L. Kasperovich, “Multiplication free scaled 8� 8 DCT algorithm with
530 additions,” inProc. SPIE, ACM, vol. 2419, 1995, pp. 105–110.

[32] K. Lengwehasatit and A. Ortega, “Distortion/decoding time trade-offs
in software DCT-based image coding,” inProc. IEEE Int. Conf. Acoust.,
Speech, Signal Processing, Munich, Germany, Apr. 1997.

[33] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445–3462,
Dec. 1993.

[34] M. Vetterli and J. Kovacevic,Wavelets and Subband Coding.Engle-
wood Cliffs, NJ: Prentice-Hall, 1995.

[35] D. J. LeGall, H. Gaggioni, and C. T. Chen, “Transmission of HDTV
signals under 140 Mbits/s using a subband decomposition and dis-
crete cosine transform coding,” inSignal Processing of HDTV, L.
Chiariglione, Ed. Amsterdam: Elsevier, 1988, pp. 287–293.

[36] ISO DIS 10918-1 Digital Compression and Coding of Continuous-Tone
Still Images (JPEG), CCITT Recommendation T.81.

[37] M. Kunt and O. Johnsen, “Block coding of graphics: A tutorial review,”
Proc. IEEE, vol. 68, pp. 770–786, July 1980.

[38] R. L. White, “High-performance compression of astronomical images,”
in Proc. NASA Space and Earth Science Data Compression Workshop,
J. C. Tilton, Ed., Snowbird, UT, Mar. 1992.

[39] E. Amir, S. McCanne, and M. Vetterli, “A layered DCT coder for
Internet video,” inProc. IEEE Int. Conf. Image Processing, Lausanne,
Switzerland, Sept. 1996, pp. 13–16.

[40] A. Ortega, K. Ramchandran, and M. Vetterli, “Optimal trellis-based
buffered compression and fast approximations,”IEEE Trans. Image
Processing, vol. 3, pp. 16–40, Jan. 1994.

[41] K. Patel, B. C. Smith, and L. A. Rowe, “Performance of a software
MPEG video decoder,” inProc. ACM Multimedia’93, Aug. 1993, pp.
75–82.

[42] D. D. Clark and D. L. Tennenhouse, “Architectural considerations
for a new generation of protocols,” inProc. SIGCOMM’90, ACM,
Philadelphia, PA, Sept. 1990.

[43] V. Jacobson and S. McCanne,Visual Audio Tool, Lawrence Berkeley
Lab., Berkeley, CA, ftp://ftp.ee.lbl.gov/conferencing/vat.

[44] E. M. Schooler and S. L. Casner, “A packet-switched multimedia
conferencing system,”ACM Special Interest Group Office Inform. Syst.
Bull., vol. 10, pp. 12–22, Jan. 1989.

[45] R. Frederick, Network Video (nv), Xerox Palo Alto Res. Ctr.,
ftp://ftp.parc.xerox.com/net-research.

[46] S. McCanne, “A distributed whiteboard for network conferencing,” U.C.
Berkeley CS268 Comput. Networks term project and paper, May 1992.

[47] T. Turletti, INRIA Video Conferencing System (ivs), Institut
National de Recherche en Informatique et an Automatique,
http://www.inria.fr/rodeo/ivs.html.

[48] H. Schulzrinne, “Voice communication across the Internet: A network
voice terminal,” Dep. Comput. Sci., Univ. Massachusetts, Amherst,
Tech. Rep. TR 92-50, July 1992.

[49] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang, “A
reliable multicast framework for light-weight sessions and application
level framing,” inProc. SIGCOMM’95, ACM, Boston, MA, Sept. 1995,
pp. 342–356.

[50] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,RTP: A
Transport Protocol for Real-Time Applications, Audio-Video Transport
Working Group, Internet Eng. Task Force, RFC-1889, Jan. 1996.

[51] H. Schulzrinne,RTP Profile for Audio and Video Conferences with
Minimal Control, Audio-Video Transport Working Group, Internet Eng.
Task Force, RFC-1890, Jan. 1996.

[52] J. Postel, User Datagram Protocol, Internet Eng. Task Force,
USC/Inform. Sci. Inst., RFC-768, Aug. 1980.

[53] V. Jacobson, “SIGCOMM ’94 tutorial: Multimedia conferencing on the
Internet,” Aug. 1994.

[54] M. F. Speer and S. McCanne,RTP Usage with Layered Multimedia
Streams, Audio-Video Transport Working Group, Internet Eng. Task
Force, Internet Draft, Mar. 1996 (work in progress).

[55] J. K. Ousterhout,Tcl and the Tk Toolkit. Reading, MA: Addison-
Wesley, 1994.

[56] S. McCanne and S. Floyd,The LBNL Network Simulator, Lawrence
Berkeley Lab., Berkeley, CA, http://www.nrg.ee.lbl.gov/ns/.

[57] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP:
A new resource reservation protocol,”IEEE Network, vol. 7, pp. 8–18,
Sept. 1993.

MCCANNE et al.: LOW-COMPLEXITY VIDEO CODING FOR RLM 1001

[58] R. Braden, L. Zhang, D. Estrin, S. Herzog, and S. Jamin, “Resource
reservation protocol (RSVP)—Version 1 function specification,” Internet
Draft (RFC pending), Nov. 1996.

Steven McCanne received the B.S. degree with
high honors and the Ph.D. degree in electrical
engineering and computer science, from the Uni-
versity of California, Berkeley, in 1990 and 1996,
respectively.

From 1988 to 1996, he was on the staff at
the Lawrence Berkeley National Laboratory where
he codeveloped the network and application ar-
chitecture and software that underlies the Internet
Multicast Backbone or “MBone” tools. In 1996, he
joined the faculty of the Department of Electrical

Engineering and Computer Science, University of California, Berkeley, where
he is currently an Assistant Professor. His research interests include multi-
media networking, multicast communication protocols, signal compression,
remote collaboration technologies, and network simulation architectures.

Dr. McCanne received the Best Student Paper award at Winter USENIX’93
and at ACM Multimedia’95, the AT&T Graduate Scholarship, and the 1995
R&D 100 Award for the development of the MBone tools. He is a member
of the ACM, the AAAS, and the Internet Engineering Task Force.

Martin Vetterli (S’86–M’86–SM’90–F’95) re-
ceived the Dipl. El.-Ing. degree from ETHZ,
Switzerland, in 1981, the M.S. degree from Stanford
University, Stanford, CA, in 1982, and the Doctorat
es Science degree from EPFL, Switzerland, in
1986.

He was a Research Assistant at Stanford and
EPFL, and has worked for Siemens and AT&T
Bell Laboratories. In 1986, he joined Columbia
University, New York, where he was last an
Associate Professor of Electrical Engineering. Since

July 1993, he has been on the faculty of the Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley. His
research interests include wavelets, multirate signal processing, computational
complexity, signal processing for telecommunications, and digital video
processing and compression.

Dr. Vetterli is a member of SIAM, and of the editorial boards ofSignal
Processing, Image Communication, Annals of Telecommunications, Applied
and Computational Harmonic Analysis, andThe Journal of Fourier Analysis
and Applications. He received the Best Paper Award of EURASIP in 1984
for his paper on multidimensional subband coding, the Research Prize of the
Brown Bovery Corporation, Switzerland, in 1986 for his thesis, and the IEEE
Signal Processing Society’s 1991 Senior Award for a 1989 TRANSACTIONS
paper with D. LeGall. He was a Plenary Speaker at the 1992 IEEE ICASSP,
and is the coauthor, with J. Kovacevic, of the book,Wavelets and Subband
Coding (Englewood Cliffs, NJ: Prentice-Hall, 1995).

Van Jacobson, photograph and biography not available at the time of
publication.

