242 research outputs found

    Spectral methods for multimodal data analysis

    Get PDF
    Spectral methods have proven themselves as an important and versatile tool in a wide range of problems in the fields of computer graphics, machine learning, pattern recognition, and computer vision, where many important problems boil down to constructing a Laplacian operator and finding a few of its eigenvalues and eigenfunctions. Classical examples include the computation of diffusion distances on manifolds in computer graphics, Laplacian eigenmaps, and spectral clustering in machine learning. In many cases, one has to deal with multiple data spaces simultaneously. For example, clustering multimedia data in machine learning applications involves various modalities or ``views'' (e.g., text and images), and finding correspondence between shapes in computer graphics problems is an operation performed between two or more modalities. In this thesis, we develop a generalization of spectral methods to deal with multiple data spaces and apply them to problems from the domains of computer graphics, machine learning, and image processing. Our main construction is based on simultaneous diagonalization of Laplacian operators. We present an efficient numerical technique for computing joint approximate eigenvectors of two or more Laplacians in challenging noisy scenarios, which also appears to be the first general non-smooth manifold optimization method. Finally, we use the relation between joint approximate diagonalizability and approximate commutativity of operators to define a structural similarity measure for images. We use this measure to perform structure-preserving color manipulations of a given image

    Dimers and cluster integrable systems

    Get PDF
    We show that the dimer model on a bipartite graph on a torus gives rise to a quantum integrable system of special type - a cluster integrable system. The phase space of the classical system contains, as an open dense subset, the moduli space of line bundles with connections on the graph. The sum of Hamiltonians is essentially the partition function of the dimer model. Any graph on a torus gives rise to a bipartite graph on the torus. We show that the phase space of the latter has a Lagrangian subvariety. We identify it with the space parametrizing resistor networks on the original graph.We construct several discrete quantum integrable systems.Comment: This is an updated version, 75 pages, which will appear in Ann. Sci. EN

    Joint Symmetry Detection and Shape Matching for Non-Rigid Point Cloud

    Full text link
    Despite the success of deep functional maps in non-rigid 3D shape matching, there exists no learning framework that models both self-symmetry and shape matching simultaneously. This is despite the fact that errors due to symmetry mismatch are a major challenge in non-rigid shape matching. In this paper, we propose a novel framework that simultaneously learns both self symmetry as well as a pairwise map between a pair of shapes. Our key idea is to couple a self symmetry map and a pairwise map through a regularization term that provides a joint constraint on both of them, thereby, leading to more accurate maps. We validate our method on several benchmarks where it outperforms many competitive baselines on both tasks.Comment: Under Review. arXiv admin note: substantial text overlap with arXiv:2110.0299

    Localized Manifold Harmonics for Spectral Shape Analysis

    Get PDF
    The use of Laplacian eigenfunctions is ubiquitous in a wide range of computer graphics and geometry processing applications. In particular, Laplacian eigenbases allow generalizing the classical Fourier analysis to manifolds. A key drawback of such bases is their inherently global nature, as the Laplacian eigenfunctions carry geometric and topological structure of the entire manifold. In this paper, we introduce a new framework for local spectral shape analysis. We show how to efficiently construct localized orthogonal bases by solving an optimization problem that in turn can be posed as the eigendecomposition of a new operator obtained by a modification of the standard Laplacian. We study the theoretical and computational aspects of the proposed framework and showcase our new construction on the classical problems of shape approximation and correspondence. We obtain significant improvement compared to classical Laplacian eigenbases as well as other alternatives for constructing localized bases

    Manifold Learning with Tensorial Network Laplacians

    Get PDF
    The interdisciplinary field of machine learning studies algorithms in which functionality is dependent on data sets. This data is often treated as a matrix, and a variety of mathematical methods have been developed to glean information from this data structure such as matrix decomposition. The Laplacian matrix, for example, is commonly used to reconstruct networks, and the eigenpairs of this matrix are used in matrix decomposition. Moreover, concepts such as SVD matrix factorization are closely connected to manifold learning, a subfield of machine learning that assumes the observed data lie on a low-dimensional manifold embedded in a higher-dimensional space. Since many data sets have natural higher dimensions, tensor methods are being developed to deal with big data more efficiently. This thesis builds on these ideas by exploring how matrix methods can be extended to data presented as tensors rather than simply as ordinary vectors
    • …
    corecore