81,975 research outputs found

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Semantic scene classification for content-based image retrieval

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2008.Thesis (Master's) -- Bilkent University, 2008.Includes bibliographical references leaves 60-64.Content-based image indexing and retrieval have become important research problems with the use of large databases in a wide range of areas. Because of the constantly increasing complexity of the image content, low-level features are no longer sufficient for image content representation. In this study, a content-based image retrieval framework that is based on scene classification for image indexing is proposed. First, the images are segmented into regions by using their color and line structure information. By using the line structures of the images the regions that do not consist of uniform colors such as man made structures are captured. After all regions are clustered, each image is represented with the histogram of the region types it contains. Both multi-class and one-class classification models are used with these histograms to obtain the probability of observing different semantic classes in each image. Since a single class with the highest probability is not sufficient to model image content in an unconstrained data set with a large number of semantically overlapping classes, the obtained probability values are used as a new representation of the images and retrieval is performed on these new representations. In order to minimize the semantic gap, a relevance feedback approach that is based on the support vector data description is also incorporated. Experiments are performed on both Corel and TRECVID datasets and successful results are obtained.Çavuş, ÖzgeM.S

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    The relationship between IR and multimedia databases

    Get PDF
    Modern extensible database systems support multimedia data through ADTs. However, because of the problems with multimedia query formulation, this support is not sufficient.\ud \ud Multimedia querying requires an iterative search process involving many different representations of the objects in the database. The support that is needed is very similar to the processes in information retrieval.\ud \ud Based on this observation, we develop the miRRor architecture for multimedia query processing. We design a layered framework based on information retrieval techniques, to provide a usable query interface to the multimedia database.\ud \ud First, we introduce a concept layer to enable reasoning over low-level concepts in the database.\ud \ud Second, we add an evidential reasoning layer as an intermediate between the user and the concept layer.\ud \ud Third, we add the functionality to process the users' relevance feedback.\ud \ud We then adapt the inference network model from text retrieval to an evidential reasoning model for multimedia query processing.\ud \ud We conclude with an outline for implementation of miRRor on top of the Monet extensible database system

    Shape-based defect classification for Non Destructive Testing

    Full text link
    The aim of this work is to classify the aerospace structure defects detected by eddy current non-destructive testing. The proposed method is based on the assumption that the defect is bound to the reaction of the probe coil impedance during the test. Impedance plane analysis is used to extract a feature vector from the shape of the coil impedance in the complex plane, through the use of some geometric parameters. Shape recognition is tested with three different machine-learning based classifiers: decision trees, neural networks and Naive Bayes. The performance of the proposed detection system are measured in terms of accuracy, sensitivity, specificity, precision and Matthews correlation coefficient. Several experiments are performed on dataset of eddy current signal samples for aircraft structures. The obtained results demonstrate the usefulness of our approach and the competiveness against existing descriptors.Comment: 5 pages, IEEE International Worksho

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Deep Discrete Hashing with Self-supervised Pairwise Labels

    Full text link
    Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, which require labels. In this paper, we propose a novel unsupervised deep hashing method, named Deep Discrete Hashing (DDH), for large-scale image retrieval and classification. In the proposed framework, we address two main problems: 1) how to directly learn discrete binary codes? 2) how to equip the binary representation with the ability of accurate image retrieval and classification in an unsupervised way? We resolve these problems by introducing an intermediate variable and a loss function steering the learning process, which is based on the neighborhood structure in the original space. Experimental results on standard datasets (CIFAR-10, NUS-WIDE, and Oxford-17) demonstrate that our DDH significantly outperforms existing hashing methods by large margin in terms of~mAP for image retrieval and object recognition. Code is available at \url{https://github.com/htconquer/ddh}

    Evaluation of Deep Convolutional Nets for Document Image Classification and Retrieval

    Full text link
    This paper presents a new state-of-the-art for document image classification and retrieval, using features learned by deep convolutional neural networks (CNNs). In object and scene analysis, deep neural nets are capable of learning a hierarchical chain of abstraction from pixel inputs to concise and descriptive representations. The current work explores this capacity in the realm of document analysis, and confirms that this representation strategy is superior to a variety of popular hand-crafted alternatives. Experiments also show that (i) features extracted from CNNs are robust to compression, (ii) CNNs trained on non-document images transfer well to document analysis tasks, and (iii) enforcing region-specific feature-learning is unnecessary given sufficient training data. This work also makes available a new labelled subset of the IIT-CDIP collection, containing 400,000 document images across 16 categories, useful for training new CNNs for document analysis
    corecore