
SEMANTIC SCENE CLASSIFICATION FOR
CONTENT-BASED IMAGE RETRIEVAL

a thesis

submitted to the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By
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ABSTRACT

SEMANTIC SCENE CLASSIFICATION FOR
CONTENT-BASED IMAGE RETRIEVAL

Özge Çavuş

M.S. in Computer Engineering

Supervisor: Asst. Prof. Dr. Selim Aksoy

August, 2008

Content-based image indexing and retrieval have become important research

problems with the use of large databases in a wide range of areas. Because of the

constantly increasing complexity of the image content, low-level features are no

longer sufficient for image content representation. In this study, a content-based

image retrieval framework that is based on scene classification for image indexing

is proposed. First, the images are segmented into regions by using their color and

line structure information. By using the line structures of the images the regions

that do not consist of uniform colors such as man made structures are captured.

After all regions are clustered, each image is represented with the histogram of

the region types it contains. Both multi-class and one-class classification models

are used with these histograms to obtain the probability of observing different

semantic classes in each image. Since a single class with the highest probability

is not sufficient to model image content in an unconstrained data set with a large

number of semantically overlapping classes, the obtained probability values are

used as a new representation of the images and retrieval is performed on these

new representations. In order to minimize the semantic gap, a relevance feedback

approach that is based on the support vector data description is also incorporated.

Experiments are performed on both Corel and TRECVID datasets and successful

results are obtained.

Keywords: content based image retrieval, relevance feedback, scene classification,

segmentation.
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ÖZET

İÇERİK TABANLI GÖRÜNTÜ ERİŞİMİ İÇİN
ANLAMSAL SAHNE SINIFLANDIRMASI

Özge Çavuş

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yard. Doç. Dr. Selim Aksoy

Ağustos, 2008

Son yıllarda çok geniş veri tabanlarının kullanımıyla birlikte içerik tabanlı

görüntü indekslemesi ve erişimi önemli bir araştırma konusu halini almıştır.

Görütü indekslenmesinde kullanılan alt düzey öznitelikler görüntülerin karmaşık

içeriklerini yeterli olarak ifade edememektedirler. Bu çalışmada, görüntü in-

dekslemesi için sahne sınıflandırmasını baz alan bir görüntü erişim sistemi

tanımlanmıştır. İlk olarak renk ve doǧrusal çizgi yapı özellikleri kullanılarak

görüntüler bölütlenmiştir. Çizgi yapı özellikleri kullanılarak, insan yapısı gibi

birörnek renklerden oluşmayan yapıların görüntülerden bölütlenmesi hedeflen-

mektedir. Bölütleme sonucunda elde edilen tüm bölütler k-means öbekleme al-

goritması kullanılarak öbeklendikten sonra, her görüntü içermiş olduǧu bölüt

türlerinin histogramıyla ifade edilmiştir. Elde edilen histogramlar üzerinde çok

sınıflı ve tek sınıflı sınıflandırıcılar eǧitilmiş ve her görüntü için o görüntünün

farklı sınıflara ait olma olasılıkları bulunmuştur. Bir görüntü aynı anda bir-

den fazla sınıfa ait olabileceǧinden, görüntüleri en yüksek olasılık deǧerini veren

sınıfla etiketlemek yeterli olmayabilir. Bu nedenle, görüntüler tüm sınıflara ait

olma olasılıkları ile indekslenmiş ve içerik tabanlı görüntü erişimi bu indeksler

kullanılarak gerçekleştirilmiştir. Görüntü erişim sistemini insan algısıyla destekle-

mek ve anlambilimsel uçurumu en aza indirgemek için erişim senaryosuna tek sınıf

sınıflandırıcı bazlı ilgililik geri beslemesi eklenmiştir. Bunun için, ilgili görüntüleri

çok iyi modelleyen, ilgili olmayan görüntülerden de bir o kadar uzak duran

bir hiperküre oluşturan destek vektör veri tanımlaması kullanılmıştır. Önerilen

yöntemler TRECVID ve Corel veri kümelerinde denenmiş ve başarılı sonuçlar

elde edilmiştir.

Anahtar sözcükler : içerik tabanlı görüntü erişimi, ilgililik geri beslemesi, sahne

sınıflandırması, bölütleme.
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Chapter 1

INTRODUCTION

1.1 Motivation

Content based image indexing and retrieval (CBIR) has become an extremely

important issue with the use of large databases in a wide range of areas. Searching

in huge image datasets according to their contents has been the major subject of

many research areas in the last decade. Many studies are proposed for content-

based analysis, indexing and retrieval in these types of datasets [11, 38, 4, 36, 34,

33, 27].

In CBIR, the image contents are represented by low-level features that are

extracted from the images automatically by using several low-level feature ex-

traction algorithms. Most of early approaches have resorted to global feature

extraction to represent the images [13, 30, 9, 7, 31, 34, 33]. However the global

features can not catch the semantic content of the images that humans receive.

Hence the results of retrieval process may not satisfy the user.

In order to solve this problem, recent works propose techniques that uses local

descriptors [10, 27] instead of global ones while indexing the images and include

local information of the images in the model. Although these types of techniques

have more advantages compared to global based ones, they are not successful

1



CHAPTER 1. INTRODUCTION 2

enough to model the visual content of the images.

The contextual information is very important to reflect the semantic content

of the images. Having knowledge about the contextual information provides

contribution to make more robust modeling while indexing the images since it

reduces the gap between the low level features and high level content. As a result,

more satisfied results to human perception is proposed in retrieval process.

Scene classification is a promising method to model the context in the images

since it enables the images to be represented with semantic labels. Therefore,

in indexing process of this work, scene classification techniques are used instead

of direct local features representation to model the contextual information of

the images. Each image is indexed with the probability of observing different

semantic classes in it by using the classification results.This indexing structure is

used in retrieval process to obtain more satisfactory results.

Scene classification is a difficult problem since determining context of an im-

age depends not only on a single object in it as in object recognition. The context

of an image is meaningful when consulting all entities in it. Therefore in order to

model the scenes, the descriptors that represent all entities in the images should

be used. Early approaches that only look global features extracted on the whole

image [13, 30, 9, 7, 31, 34, 33] suffer from the incapability of the global features

to derive higher semantic meanings of the images. Recent approaches use local

descriptors in scene classification. The common characteristic of these approaches

representing the images as histogram of local descriptors. They adapt the tra-

ditional “bag of words” document analysis technique to the scene classification

as “bag of visterms (visual terms)” [20, 17, 12, 35, 14, 25, 37]. The visual scene

descriptors of the images stand for words in the documents here. Each image is

modeled as a collection of local descriptors that come from the codebook con-

structed. Most of the researches use invariant local descriptors called patches to

represent the images [20, 17, 12, 14, 25]. However, using patches can give rise to

visual polysemy problem since the same patches can be seen in different entities

in the images. On this account, more meaningful descriptors for the scenes are

used in this work. In order to achieve this, images are segmented into meaningful
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regions by using color and line structure information of the images. By using the

line structures of the images the regions that do not consist of uniform colors such

as man made structures are captured. After all regions are clustered, each image

is represented with the histogram of the region types it contains. Both multi-class

and one-class classification models are used with these histograms to obtain the

probability of observing different semantic classes in each image. Since a single

class with the highest probability is not sufficient to model image content in an

unconstrained data set with a large number of semantically overlapping classes,

the obtained probability values are used as a new representation of the images and

retrieval is performed on these new representations. For example in Figure 1.1

the graphic shows the probability values of observing different semantic classes

in the image.

As seen in the Figure 1.1 the images that are used in the experiments can

belong to more than one scene category semantically. While using the probability

values in scene classification directly causes classification errors, using them in

retrieval process that enables the contribution of each scene category gives more

satisfactory results.

Although the probability based modeling reduces the gap between the simi-

larities of the images in feature space and in the human perception, it can not

eliminate the subjectivity of human perception. In order to overcome this prob-

lem a relevance feedback technique is introduced and the user contribution is

included to the retrieval process. According to user feedback the discriminant

hyper-sphere is generated to represent relevant images area by using One Class

Support Vector Data Description (SVDD) [32]. The images that are relevant to

the user are ranked according to the discriminant hyper-sphere and displayed to

the user. By this technique, retrieval performance is also increased in addition to

its serving to the subjectivity of human perception.
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Figure 1.1: Class posterior probabilities of a scene annotated as Building
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1.2 Dataset

The performance of the proposed work is illustrated on two different datasets,

TRECVID 2005 video shots and COREL dataset. Totally 24517 video shots that

are manually labeled into 18 scene categories are used from TRECVID dataset.

16340 of them which are randomly selected from each class are used as training

and remaining 8177 shots are used for testing processes. The number of video

shots that are used for each class are shown in Table 1.1 with the names of

the classes. Figure 1.2 and Figure 1.3 illustrate example shots from each class.

Table 1.1 illustrates that the dataset contains semantically overlapping classes.

As an example, the outdoor class covers almost all the classes.

Table 1.1: The number of training and testing images that are used for each class
from TRECVID dataset

Training Testing Total
Airplane 54 27 81
Boat&Ship 53 27 80
Building 1333 667 2000
Bus 29 15 44
Car 419 210 629
Desert 136 68 204
Explosion&Fire 138 69 207
Mountain 91 46 137
Natural Disaster 47 24 71
Outdoor 6970 3485 10455
Road 550 276 826
Sky 2438 1220 3658
Snow 55 28 83
Sports 398 199 597
Truck 98 49 147
Urban 1527 764 2291
Vegetation 1740 870 2610
Waterscape&Waterfront 264 133 397
Total 16340 8177 24517

Corel dataset contains 4999 images that are composed of 20 natural scene
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Figure 1.2: Example images from TRECVID dataset for classes Airplane,
Boat&Ship, Building, Bus, Car, Desert, Explosion&Fire, Mountain, Natural Dis-
aster.



CHAPTER 1. INTRODUCTION 7

Figure 1.3: Example images from TRECVID dataset for classes Outdoor, Road,
Sky, Snow, Sports, Truck, Urban, Vegetation, Waterscape&Waterfront.
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categories. Each category of scenes is randomly divided into two sets: 1663 for

training and 1663 for testing. The number of images that are used for each scene

category is listed in Table 1.2 and example sets for each category are illustrated

in Figure 1.4 and Figure 1.5

Table 1.2: The number of training and testing images that are used for each class
from COREL dataset

Training Testing Total
Airplane 133 66 199
Boat&Ship 200 100 300
Building 200 100 300
Bus 67 33 100
Car 200 100 300
Castle 200 100 300
Coastal 200 100 300
Desert 134 66 200
Harbor 67 33 100
Mountain 200 100 300
Night 67 33 100
Road 67 33 100
Rock 200 100 300
Ruin 200 100 300
Sky 200 100 300
Snow 200 100 300
Sunset 134 66 200
Surfing 200 100 300
Train 200 100 300
Vegetable 200 100 300
Waterfall 67 33 100

1.3 Summary of Contribution

In CBIR, the image contents are often represented by low-level features that are

extracted from the images automatically by using several low-level feature ex-

traction algorithms. However low-level features are no longer sufficient for image
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Figure 1.4: Example images from COREL dataset for classes Airplane,
Boat&Ship, Building, Bus, Car, Castle, Coastal, Desert, Harbor, Mountain,
Night.
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Figure 1.5: Example images from COREL dataset for classes Road, Rock, Ruin,
Sky, Snow, Sunset, Surfing, Train, Vegetable, Waterfall.
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content representation. In this study each image is represented with the proba-

bility of observing different semantic classes in it by using the scene classification

techniques and retrieval is performed on these new representations. In order to

minimize the semantic gap, a relevance feedback approach that is based on the

support vector data description is also incorporated.

1.4 Organization of the Thesis

The organization of the thesis is as follows. Chapter 2 summarizes the related

background work about annotation methods and relevance feedback techniques

in content based image retrieval. Segmentation of images into regions by using

spatial & spectral information and line structure information are described in

Chapter 3 and Chapter 4 respectively. In Chapter 5, multi class and one class

scene classifications that are used for indexing the images are presented. Chap-

ter 6 introduces a CBIR framework with relevance a feedback technique that is

based on one class support vector data description. Chapter 7 contains the ex-

perimental results by applying our approaches to TRECVID and Corel datasets.

We conclude with a discussion in Chapter 8.



Chapter 2

RELATED WORK

In the literature there are two main approaches in image retrieval according to

image indexing method they use. First one is based on representation of the

images by a set of keywords that are attached manually to images according

to their contents. Queries are created using these keywords. Although efficient

image indexing and access tools are available for annotating the images [39], these

approaches are not preferable since image annotation is a tedious process. Firstly,

it is a hard process to annotate all images of a huge database manually. Second,

since a single image may include a multiplicity of contents, and since human

perception and understanding vary it is almost impossible for the same images to

be annotated with exactly the same keywords by different annotators. The second

approach is more efficient than the first one. The images contents are represented

by low-level features that are extracted from the images automatically by using

several low-level feature extraction algorithms. Most of early approaches have

resorted to global feature extraction to represent the images [13, 30, 9, 7, 31, 34,

33]. Vailaya [34] used color histogram, color coherence vector, DCT coefficient,

edge direction histogram, and edge direction coherence vector as the features

of the image in CBIR. However the global features can not be a solution for

the semantic gap between the low level features of the images and high level

contents of them. In order to achieve this problem, recent works propose two

different types of techniques for CBIR. First one is using local descriptions [10, 27]

12
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instead of global ones while indexing the images and the other ones is using

learning techniques [40, 8, 21, 4, 6, 23] in CBIR. Whereas Cordelia [27] used

local invariant descriptors, Jing [10] used the segmented regions to represent

the images. Since the descriptors they use are limited to model the context

of the images, to use the performance of contextual information in CBIR many

researches apply scene classification techniques to index the images with semantic

class information [2, 38, 29, 16, 37]. Carneiro [2] used classification in order to

annotate the images and perform retrieval based on this annotation. In order to

annotate an image modeled by Gaussian mixture, he used minimum probability

error rule based class densities obtained from Gaussian mixture models of images

that are annotated with the same semantic class. In the SIMPLIcity system [38]

the images are segmented and model-based approach is used to classify the images

into basic classes. In CBIR, they used the features that are extracted from the

segmented regions based on the classification results they performed. Smith and

Li [29] proposed a scene classification method using composite region templates

(CRTs) that are generated by using spatial ordering of segmented regions. Then

they used classification information in order to index the images. Shapiro [16]

used combination of multiple feature types that are extracted from the segmented

regions. Multiple types of features are extracted by 3 different segmentation

processes based on different context within an image. Then the combination of

the features is used for annotation. Vogel [37] used the classification results to

rank the images according to their semantic similarities to a semantic class.

When looking more deeply in scene classification recent works use “bag of

visterms (visual terms)” technique in classification as mentioned in Chapter 1

[20, 17, 12, 35, 14, 25, 37]. Pedro [25] used difference of Gaussians (DOG) point

detector to detect interest points which were used for generating invariant lo-

cal descriptors. In order to generate patches (invariant local descriptors) Per-

ona [14] used 4 different ways: evenly sampled grid, random sampling, Kadir &

Brady saliency detector, Lowe’s DOG detector. For recognition phase they used

Bayesian hierarchical models for represent each class. Monay [20] used proba-

bilistic aspect models in addition to “bag of visterms (visual terms)” approach
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in order to solve the visual polysemy problem. Lazebnik [12] used spatial in-

formation of the local descriptors addition to other approaches. She partitioned

the images into sub-regions and computed the histogram of the patches inside in

each sub-region. Marszalek [17] used spatial information of the patches in order

to reduce the influence of the patches that come from the background by giving

weights to patches. Gemert [35] and Vogel [37] divided the images in grid cells

that are used as visual scene descriptors. Gemert [35] used overlapping grid cells

as local descriptors. Gemert [35] thought that choosing a vocabulary to compose

codebook is an inherent problem of codebook approach. Therefore in contrast to

other approaches they used all vocabulary elements as a codebook.

Relevance feedback is a popular example for the second technique to narrow

the gap between the low level features and high level concepts of the images. The

typical scenario for relevance feedback in CBIR is as follows:

1. Initial retrieval results are displayed to the user.

2. User gives feedback to the system by selecting the images as relevant or irrel-

evant according to his/her request.

3. System rearranges the results according to user feedback.

Step 1 and 2 is repeated iteratively until user is satisfied. Several relevance

feedback algorithms are proposed in order to perform step 3. The traditional

ones are based on assigning weights values to the low-level features and updating

them according to the user feedback in CBIR [23, 26, 10]. Another approach called

query point movement (QPM) tries to improve the results by moving the query

point towards the relevant examples and away from the non-relevant examples [10,

6]. Jing [10] and Giacinto [6] uses Rocchio formula in order to improve the

estimate of query point:

Q1 = α.Q0 + β.mR − γ.mN , (2.1)

where Q1 is the updated and Q0 is the original query, mR and mN means of pos-

itive and negative samples provided by user respectively. Rather than a redefin-

ing a query, Cox [4] used Bayesian framework to estimate probability distribution

over all images and update the distribution according to user feedback. The main
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problem encountered by these approaches in relevance feedback is small feedback

data provided by the user. Guo [8] and Setia [28, 8] tries to solve this problem by

using support vector machines (SVM) which generate a discriminant hyper-plane

that separates the relevant examples from the non-relevant ones. They updated

the hyper-plane according to user feedback. Some researchers try to learn the

boundary from only relevant or irrelevant samples and use one class SVM instead

of two class [21, 3].



Chapter 3

SEGMENTATION USING

COLOR INFORMATION

Scene classification is a difficult problem since determining context of an image

depends not only on a single object in it as in object recognition. The context

of an image is meaningful when consulting all entities in it. Therefore in order

to model the scene of the images the descriptors that represent all entities in the

images should be used. Early approaches that only look global features extracted

on the whole image [13, 30, 9, 7, 31, 34, 33] suffer from the incapability of the

global features to derive higher semantic meanings of the images.

In scene classification phase of this work, “bag of visterm” technique [20,

17, 12, 35, 14, 25, 37], which models the images as a collection of visual scene

descriptors, is used. Using invariant local descriptors (patches) [20, 17, 12, 14, 25]

as visterms can give rise to visual polysemy problem since the same visterms can

be seen in different entities in the images. On this account, more meaningful

descriptors for the scenes are used in this work. In order to achieve this, images

are segmented into meaningful regions.

Image segmentation is still an unsolved problem in image processing and com-

puter vision. The images that include fewer number of objects in a simple back-

ground can be segmented successfully by recent studies. However, estimating

16
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common set of parameters makes these studies deficient for large and complex

image datasets. Another problem for common segmentation algorithms is using

only spectral information of the images. Performing segmentation process only

in spectral domain causes noisy structure in the images. Therefore spatial infor-

mation is also used in addition to spectral information in our approach. In the

spectral domain, HSV color values and in the spatial domain position values of

the corresponding image pixels are used and these two types of information is

combined by combined classifier approach [22].

In the first step of the segmentation, an initial labeling process is performed

for the image pixels and a labeled pixel dataset is constructed for each image.

After initial labeling step, a new labeling is started iteratively.

The initial labeling is performed by k-means clustering algorithm in spec-

tral (HSV color values) domain and each pixel is assigned to a cluster t, where

t = 1, . . . , T . The next labeling step of the initially labeled pixels is performed

by using both spectral (HSV color values) and spatial (position values) infor-

mation. In this step, nearest mean classifier is trained on the spectral domain

and Parzen classifier with Gaussian kernel is trained on the spatial domain it-

eratively. By running the trained classifiers on the same datasets, two class

posterior probabilities are computed for each pixel of the image. Pspec(wt|xi) and

Pspat(wt|x′
i), t = 1, . . . , T . xi is 3 dimensional feature vector that contains HSV

values and x′
i is 2 dimensional feature vector that contains x and y coordinates

of the pixel i. For assigning a new label to each pixel both probability values are

combined by using the product combination rule:

∀i, i = 1, . . . , R,

Pcomb(wt|xi) =
Pspec(wt|xi)Pspat(wt|x′

i)∑T
k=1 Pspec(wk|xi)Pspat(wk|x′

i)
(3.1)

R is number of pixels in each image. New class label that maximizes the combi-

nation probability Pcomb(wt|xi) is assigned to the pixel i.

This new labeling process is an iterative procedure. At each iteration, the

results of spectral and spatial classifiers are combined and new labels are assigned

to the pixels by combined classifier until a stable segmentation is reached before
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20 iterations. Assume that the label of pixel i at iteration j is λij, j ≥ 0. Then

lets define a function DIFFj,j+1 that gives number of labels changes between the

iterations j and j + 1.

DIFFj,j+1 =
R∑

i=1

I(λij, λij+1) (3.2)

where I is the indicator function:

I(λa, λb) =

{
1 λa 6= λb

0 otherwise
(3.3)

A stable segmentation is reached if DIFFj,j+1 = 0 for two consecutive itera-

tions j and j +1. The labels of the pixels in the 20th iteration are used if a stable

segmentation has not been reached yet.

In most segmentation algorithms the number of regions have to be predefined.

However estimating a region number that is suitable for all images in a dataset is

considerably hard issue. By using combined classifier approach dynamic region

number is attained for each image since after segmentation process there are

regions that share same class labels but are located in different locations in the

image. Hence, the only parameter that has to be estimated is an approximate

value for number of dominant colors, T , which is common for all images.

Since many inhomogeneous color regions are available as well as smooth ones,

after segmentation process the segmented images can have many noisy pixels

as seen in the second column of the Figure 3.1. In order to eliminate these

noisy pixels, a two step filtering process is performed on segmented images. In

the first step, the segmented regions that are smaller than a threshold, F , are

eliminated and labeled as outlier. In the second step, the regions that are labeled

as outlier and smaller than a threshold, B, are merged to their closest neighbor

regions. Examples for segmentation and two step filtering processes are shown

in Figure 3.1. The original images are given in the first column. The second

column shows the segmentation results before applying filtering process. After

filtering, the final segmentation results are shown in the last column. The black
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regions denote the regions that are labeled as outlier. As seen, the regions are

captured by this segmentation process are color uniform regions. The entities

with miscellaneous colors are eliminated as outlier regions. These types of regions

are captured by using their line structural information as explained in the next

chapter.
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(a) (b) (c)

Figure 3.1: Segmentation examples using spatial and spectral information: (a)
Original images, (b) Results of segmentation process, (c) Results of filtering pro-
cess



Chapter 4

SEGMENTATION USING LINE

STRUCTURE

Some objects that do not consist of uniform colors can not be segmented by using

basically color information of the pixels. The edge structure of the man made ob-

jects that includes miscellaneous colors are more distinct feature rather than the

color information for them. They generally consist of regular line segments that

share common color pairs from two sides (Figure 4.1). In this work, segmentation

process is performed by using color information around line segments and the line

segments that share common color pairs from two sides are grouped. Since dif-

ferent objects that are close to each other may consist of common colors, their

line segments can be located in the same line group.Therefore, presegmented re-

gions are segmented again by using the position information of the line segments.

In order to perform segmentation processes hierarchical clustering algorithm is

used since constructing hierarchical structure on the line segments allows us to

use dynamic number of regions. By deciding the cutting level of the hierarchical

structure, suitable number of regions for each image can be estimated.

21
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Figure 4.1: Color pairs of two line segment groups ( Figure is taken from [15] )

4.1 Extracting Line Features

First the edges from the images are extracted by using canny edge detector [1].

Then object recognition tool (ORT) line detector is applied to extracted edges in

order to get line segments [5]. The jth line segment, Lij extracted from the image

Ii is represented as a feature set with 5 values:

Lij = { sx, sy, ex, ey, l } i = 1, . . . , n j = 1, . . . ,m (4.1)

Above, n stands for the number images in the dataset and m stands for the

number of line segments in image Ii. sx, sy and ex, ey are x and y coordinates of

the start and end points of the line segment Lij respectively. Length of Lij is l.

The color information around the line segments that belong to same object

are expected to be similar. The line segments of an object usually contain two

major colors around them as can be seen in the example in Figure 4.1. Both

buildings have two observable colors. One comes from the windows and the other

one comes from concrete of the buildings. If we imagine them as line structures

we realize that the line segments that belong to same building share two common

color pairs one from one side, the other one from other side. Therefore we can

say that color information of the line segments is a distinguishing feature for the
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objects (e.g. man made structures) with regular line segments and miscellaneous

colors. This information can be used to segment the images that contain this

type of objects into meaningful regions. In order to perform segmentation, first

the average RGB color values for defined rectangular regions that cover the line

segments are calculated. An example for a rectangular region that covers a line

segment with length l is shown in Figure 4.2. It has 2h units height.

Figure 4.2: Rectangular region around a line segment with length l

Average RGB color values are calculated for two sides of the line segment

separately. Therefore, each line segment is represented by 6 color values; 3 of

them come from the left and the other 3 come from the right region of the

rectangle.

These 6 color values are appended to the previous line feature set Eq. 4.1 and

each line segment is represented with new feature set as follows:

Lij = { sx, sy, ex, ey, l, Rr, Gr, Br, Rl, Gl, Bl } i = 1, . . . , n j = 1, . . . ,m

(4.2)

Rr, Gr and Br are the average RGB values on the right and Rl, Gl and Bl are

the average RGB values on the left region of the line Lij.

4.2 Clustering Line Segments

In order to detect the regions that include common line structure, first the line

segments in each image are clustered according to their color pairs (Section 4.2.2).

In the second phase, position based clustering is performed within the preclus-

tered line segments in order to separate different objects which are close to each

other and share common line color pairs (Section 4.2.3). In order to estimate an



CHAPTER 4. SEGMENTATION USING LINE STRUCTURE 24

optimal number of regions for each image, stopping rule technique of hierarchical

clustering is used (Section 4.2.1).

4.2.1 Determining Number of Clusters

The main problem in clustering is to decide the number of clusters because the

number of objects in an image varies according to the image complexity. Stop-

ping rule for hierarchical clustering is used to estimate an optimum number of

clusters for each image [19]. This rule is based on the determination of the cutting

level of the dendrogram that is created by agglomerative hierarchical clustering.

The dissimilarity matrix of line segments for each image is calculated by using

Euclidean distance measurement. Then for each image a dendrogram is created

as a result of agglomerative hierarchical clustering. The problem is at which level

the dendrogram is cut and which partitions are used as clusters. For example

in the Figure 4.3, if the dendrogram is cut at the level between 4 and 5 where

the cutting dissimilarity value is 45 then the resulted cluster number is 4. The

question is why it is 45. Assume that we have m line segments in image Ii. Then

number of levels in the created dendrogram is m− 2. The stopping rule uses the

distribution of the dissimilarity values that are used for creation of the dendro-

gram at each level. The most appropriate level to cut the dendrogram is the first

level j that satisfies:

αj+1 > α + bsα j = 1, . . . ,m− 2 (4.3)

where αj+1 represents the distance between the partitions at level j + 1; α is the

mean and sα is the unbiased standard deviation of the α distribution; b is the

standard deviate which is a threshold that determines how many sα units the α

value deviates from the mean, α. After determining the cutting level j, optimum

number of clusters is calculated as m− j.
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Figure 4.3: Determination of Number of Clusters in a Dendrogram

4.2.2 Clustering According to Color Information

As mentioned the color information around the line segments that belong to same

object are expected to be similar. Therefore, the first clustering is performed

according to color information of the line segments by using average linkage hier-

archical clustering. Using single or complete linkage in clustering can cause some

dissimilar clusters to merge due to the outliers they contain. However in average

linkage clustering this situation does not occur since each cluster is represented

with its average of its members.

By using Euclidean distance measurement, dissimilarity matrix of line seg-

ments in each image for hierarchical clustering is calculated. In this calculation

6 color values, Rr, Gr, Br, Rl, Gl, Bl, of the line segments from the feature set

Eq. 4.2. Line segments in each image are clustered into an optimum number

of clusters that is estimated by the stopping rule of hierarchical clustering as

mentioned in Section 4.2.1. The second row of Figure 4.4 shows some examples

for clustered lines according to their color pairs (Clusters are shown with unique

colored lines).
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Figure 4.4: Segmentation examples using line structure. First row: original im-
ages; second row: result of a color based line clustering; third row: Result of a
position based line clustering within one of the color based clusters by average
linkage (examples for good clusters); fourth row: Result of a position based line
clustering within one of the color based clusters by average linkage (examples
for bad clusters); fifth row: Result of a position based line clustering by single
linkage; sixth row: Final result of line clustering; seventh row: Regions that are
obtained from line clustering (outlier regions are showed with black color).



CHAPTER 4. SEGMENTATION USING LINE STRUCTURE 27

4.2.3 Clustering According to Position Information

In outdoor images, many different objects have lines with similar color values.

As seen in the examples at the second row of Figure 4.4, the lines segments of

different entities may still belong to the same clusters. For the first and second

example images, the lines of two different buildings belong to the same clusters.

In the third example image, it is valid for the lawn part. To rule out such

situations, position information of line segments are used. Within the color based

line segments they are clustered according to their position information, first using

average linkage then single linkage hierarchical clustering algorithms.

4.2.3.1 Step1: Average Linkage Hierarchical Clustering

In order to cluster line segments according to their positions first average linkage

hierarchical clustering is used. Average linkage is preferred to reduce the outlier

effects of the clusters. To calculate the distance matrix of the line segments both

their start and end points are used.

D =



d11 d12 . . . d1m

d21 d22 ... d2m

. . . . . .

. . . . . .

. . . . . .

dm1 dm2 . . . dmm



dij = min{d(si, sj), d(ei, ej)} i, j = 1, ..,m (4.4)

si is the start point with the coordinates six and siy, ei is the end point with

the coordinates eix and eiy of the ith line segment. D is m by m distance matrix

of the line segments that are in the same color based cluster. dij stands for the

distance between the ith and jth line segments and take the value of minimum of

d(si, sj) and d(ei, ej). d(si, sj) and d(ei, ej) are Euclidean distances of the start

and end points of the ith and jth line segments.
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After calculating the distance matrix within the color based line segments,

clustering is performed by using average linkage hierarchical clustering. Some

clusters have a few number of line segments that can not be appropriate to form

an object. Therefore some clusters have less than 3 line segments are discarded

as a result of elimination process. Third row of the Figure 4.4 shows the results

of the position based clustering within one of the color based clusters for each

sample image.

Although some resulted clusters have adequate line segments to form an ob-

ject, their line segments can be too scattered and not exhibit a compact form.

These type of line segments usually occur in the boundaries of the objects since

the boundary lines share common color pairs one comes from outside, the other

from inside of the object. In Figure 4.4, these types of clusters for the sample

images can be seen. To rule out this problem a criteria that gives acceptability

rate for a cluster is introduced. This criteria is based on the organization of the

line segments. If line segments in a cluster exhibit a compact form then this

cluster is a good cluster, otherwise, if the line segments exhibit a scattered form

then the cluster is a bad cluster. A ratio for each cluster is defined in order to

determine this criteria.

Riv =
Aiv

Miv

(4.5)

where v is cluster id in image Ii; Aiv is the area of convex hull that includes all

line segments in cluster v; Miv is the number of lines in cluster v. If Riv > 450

then the cluster v is not acceptable to represent an object or a region in the

image. After applying average linkage hierarchical clustering, the clusters whose

Riv ratio is bigger than 450 are eliminated and the next steps are not performed

for these clusters. If Riv <= 100 then the cluster v is a good cluster. After

applying average linkage hierarchical clustering the clusters whose Riv ratio is

smaller than or equal to 100 are accepted and the next steps are not performed

for these clusters.



CHAPTER 4. SEGMENTATION USING LINE STRUCTURE 29

4.2.3.2 Step3: Single Linkage Hierarchical Clustering

Sometimes the optimal number of clusters estimated by stopping rule is inade-

quate to divide line clusters to get the best region representations. Some clusters

still have some irrelevant line segments because of color similarity. The form of

the clusters are distorted by these irrelevant line segments. This type of clusters

are neither in the bad category nor the good one. Their Riv ratio is between

100 and 450 and should be clustered again. Therefore the line segments in these

clusters are clustered by single linkage hierarchical clustering. Single linkage sim-

ilarity method is used this time since the main purpose here is eliminating the

outlier lines from the clusters. In the third row of Figure 4.4, the green line

segments, which belong to two different buildings exhibit this like of destructed

forms. At the fifth row of the Figure 4.4, the results of reclustering step for this

cluster can be seen.

The final results of line based segmentation process are shown at the sixth

row of the Figure 4.4 for the sample images.

4.3 Representing Line Segment Clusters as Re-

gions

Each line segment cluster represents a region for an image. Segmentation of the

images with respect to these line segment clusters is a challenging topic. The first

idea that comes to mind is, defining convex hulls which cover all line members of

each cluster. However, it causes using of irrelevant area with meaningful regions

due to the concave hull structure of the clusters. To rule out this problem a

more appropriate method that preserves the form of clusters is introduced. First

the images are partitioned into non-overlapping grid cells. Then each grid cell is

labeled with the label of the cluster any of whose line member makes an inter-

section with the corresponding cell. If there is no intersection or the number of

intersections in grid cell does not reach a sufficient value then the corresponding

cell is labeled as outlier. Finally each line cluster is represented by grid cells as
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seen at the last row of the Figure 4.4.

Bu using the line structure information of the images, the regions, which

are eliminated with color based segmentation process (Chapter 3), are captured.

Therefore the meaningful regions, which do not consist of uniform colors and are

labeled as outliers are captured in the line structure based segmentation process.
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SCENE CLASSIFICATION

Scene classification is a different research area from the object categorization since

in scene classification, determining scene of an image does not depend on fixed

content as in object categorization. Contents of an image that belongs to a specific

scene can vary. This varied content of the scenes gets scene classification into more

challenging problem and the techniques that are used in object categorization can

not be used in scene classification. In order to model the scene of an image, visual

components that are large enough to represent all entities in the image should

be used. Recent approaches use local descriptors as visual components in scene

classification. The common characteristic of these approaches is adapting the

traditional bag of words document analysis technique to the scene classification

as bag of visterms [24, 18, 20, 17, 12, 35, 14, 25]. The visual scene descriptors

of the images stand for words in the documents here. Each image is modeled

as a collection of local descriptors that come from the codebook constructed.

Most of the researches use invariant local descriptors called patches to represent

the images [20, 17, 12, 14, 25]. However, using patches can give rise to visual

polysemy problem since the same patches can be seen in different entities in the

images. On this account, more meaningful descriptors that are obtained as a

result of the segmentation process (Chapter 3, Chapter 4) are used in this work.

Another popular problem encountered in scene classification is the restriction

of number of classes. Many approaches use limited number of classes in their

31
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studies and most of them restrict their studies to two class classification problem.

The performed work has dealt with large number of classes. In both datasets,

TRECVID and Corel include large number of scene categories. In the following

sections the steps in our scene classification algorithm are described.

5.1 Image Representation

The images are represented as a collection of regions that come from the con-

structed region codebooks.

5.1.1 Region Codebook Construction

In our work two different types of regions are used, one of them comes from

color based segmentation and the other one comes from line based segmentation

process. Each of these two region collections are represented by different ways

and a region codebook is constructed for each of them.

5.1.1.1 Codebook Construction Using Color Based Segmented Re-

gions

The regions which are extracted by color based segmentation process explained

in Section 3 are modeled using the multivariate histogram of the HSV values with

8 bins used for the H channel and 3 bins for each of S and V channels, resulting

in a 72-dimensional features vector. Then the codebook for k1 region clusters are

learned by performing k-means algorithm on the region features.

5.1.1.2 Codebook Construction Using Line Segment Clusters

Two different representations for line segment clusters are used. One of them is

same as the color based region representations. The regions that are obtained
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by grid cells method explained in Section 4.3 are modeled by HSV histograms

as described above (Section 5.1.1.1). The other representation method is based

on orientation values of line segment clusters since the color values in a line

based region may not be stable. Each line segment cluster is modeled using

10-bin histogram of orientation values of its line segments. These two types of

representations are used separately in our work. After the regions are modeled for

line clusters, the codebook for k2 region types is obtained by applying k-means

algorithm on the region features.

The codebooks that are generated as a result of two different region types are

combined and a new codebook with k1 + k2 region clusters are constructed.

5.1.2 Image Features

After region codebook is constructed and k1 + k2 region types are determined,

each image is represented as a bag-of-regions as below by calculating histogram

of the region types it contains.

Ii = {ri1, . . . , rit} (5.1)

where {ri1, . . . , rit} are the regions the image Ii contains and t denotes the number

of regions in image Ii.

5.2 Classification

For probability estimation two different classification models are used: multi class

and one class. In both settings, the goal is to estimate the posterior probabilities

P (wj|r1, . . . , rt), j = 1, . . . , c, where wj represents the jth class, c is the number

of classes.



CHAPTER 5. SCENE CLASSIFICATION 34

5.2.1 Multi Class Scene Classification

The images are classified using the Bayesian decision rule according to posterior

probabilities. The image with the set of regions {r1, . . . , rt} is assigned to the

class

w∗
j = arg max

j=1,...,c
p(wj|r1, . . . , rt) (5.2)

where wj represents the jth class, c is the number of classes, and t is the number

of regions in the scene. Using the Bayes rule, the posterior probabilities can be

computed as

P (wj|r1, . . . , rt) =
P (r1, . . . , rt|wj)P (wj)

P (r1, . . . , rt)
. (5.3)

Assuming equal priors for all classes, the classification problem reduces to the

computation of class-conditional probabilities P (r1, . . . , rt|wj).

Each region is assumed to be independent of others given the class. Therefore

class conditional probability can be calculated as

P (r1, . . . , rt|wj) =
t∏

i=1

P (ri|wj). (5.4)

The probability of region ri having label u is computed as

P (ri = u|wj) = Pju =
nju

nj

. (5.5)

where u ∈ 1, . . . , k1 + k2 , j = 1, . . . , c, nju is the number of regions with the

label u in the training set for class j, and nj is the total number of regions in the

training set for class j.

5.2.2 One Class Scene Classification

Since the scene classes may not be mutually exclusive, the multi class classification

is not always suitable. Therefore one class classification has also been used and

each class is independently modeled. Assuming all classes in the training set

form a normal distribution, classifiers that estimate a Gaussian density on each
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class are trained. Therefore probability density function for the jth class can be

calculated from the following equation:

P (x|wj) =
1

(2π)
d
2 (Σj)

1
2

e
−1
2

(x−µj)
T (Σj)

−1(x−µj) (5.6)

where x is the histogram vector of region types with length k1+k2 for an image in

jth class, µj and Σj are the mean and covariance matrix of the jth class. These are

estimated from the training samples. The test images can be classified according

to posterior probabilities

P (wj|x), j = 1, . . . , c (5.7)

and again from the Bayes rule, assuming equal priors for all classes, the classifi-

cation problem reduces to P (x|wj).

The images that are used in the experiments can belong to more than one

scene category semantically. For instance, the example images in Figure 5.1 can

not belong to exactly one scene category. The graphical representations of the

class probability values of each image are shown on the top.

As seen in the Figure 5.1 the probability values for the scenes that images can

belong to are similar to each other. Whereas assigning the first two images to

the scene categories with the maximum probability gives successful results, for

the last two images, using probability values results in failure in classification.

For example the third image which is annotated as Boat&Ship, will be labeled

as WaterScape&Waterfront in classification process, although the probability of

belonging to Boat&Ship class is high.

Therefore instead of assigning strict labels to the images, they have been

modeled with their class posterior probabilities and the models are used as indices

of the images in retrieval process. Thanks to this method, contribution of each

scene category can be used for representing the images.
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Figure 5.1: Class posterior probabilities of scenes for example images



Chapter 6

CONTENT BASED IMAGE

RETRIEVAL WITH

RELEVANCE FEEDBACK

In content based image retrieval there is always a gap between the high level

semantics of the images that human perceives and the low level features of the

images that machines compute. In order to deal with the semantic gap prob-

lem various relevance feedback algorithms are proposed in the area of content

based image retrieval and include the user in retrieval process. In most com-

mon techniques, user judges the retrieved results as relevant or non-relevant to

the query image. Then new results are calculated by using the feedback of the

user. The user applies feedback until getting satisfactory results. There are var-

ious algorithms for recalculation of new results according to user feedback. The

main problem encountered in relevance feedback approaches is small feedback

data provided by the user. Some approaches tries to solve problem by using

classification techniques. One of the most popular techniques is using support

vector machines (SVM) which generate a discriminant hyper-plane that separate

the relevant examples from the non-relevant ones [28, 8]. Then the images that

are in the relevant side are reranked according to distance to the hyper-plane in

descending order. The major stumble in this approach is treating the problem as
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two class classification problem. It is straightforward to assume that all relevant

images belong to the same class. On the other hand, the classes of non-relevant

images probably vary. Hence forcing to assign them to the same class decreases

the retrieval performance. In this work, to deal with this problem a relevance

feedback approach is proposed by using one class data description technique,

Support Vector Data Description (SVDD) [32, 21]. One class SVDD is inspired

by Support Vector Classifier and can be used for classification where one of the

classes is sampled well and the other one is not. SVDD generates a discrimi-

nant hyper-sphere that can separate the target class from the outliers. Detailed

description about SVDD is explained in Appendix A.

In our work, the relevant images that user presents are used as target samples

and non-relevant images as outliers. While SVDD tries to find a hyper-sphere

which contains most of the target samples, by using non-relevant samples it tries

to minimize the volume of the sphere in order not to include any superfluous

space. Therefore, it uses also outliers to find a more efficient description [32].

In retrieval scenario, using region histogram features as image features is not

an effective way to represent the images since the number of region types that

an image includes is very small related to the total number of region types.

Therefore, the images are modeled with class posterior probability values that

come from classification process for each class.

In the first retrieval process, the images are sorted according to the poste-

rior probability values of the scene class that user searches for and displayed to

the user. After obtaining a feedback from the user an optimum hyper-sphere is

generated by SVDD that separates the relevant samples from the non-relevant

ones. Then again the images in the relevant area are ranked in decreasing order

according to the distance to the hyper-sphere. After the images in non-relevant

area are ranked in increasing order according to the distance to the hyper-sphere,

they are appended to the first ranking group (Figure 6.1). Then the results are

shown to the user to obtain a new feedback until a satisfactory result is reached.

Whole retrieval scenario with relevance feedback is shown in Figure 6.2.

Relevance feedback technique also solves the problem that grows out of class
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Figure 6.1: Generation of a hyper-sphere to discriminate relevant images area
by SVDD: Black circles denote relevant and gray boxes denotes the non-relevant
images are evaluated by the user. Empty boxes are the displayed images that are
not checked. ( Figure is taken from [21] )

overlapping since by giving the individual contribution, the user eliminates the

visual polysemy in his/her point of view.
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Figure 6.2: Relevance Feedback Scenario



Chapter 7

EXPERIMENTS

7.1 TRECVID

7.1.1 Classification

A codebook has been learned from the regions that are extracted from whole

dataset by a segmentation process. Because of crowded and complex structure

of the images in TRECVID dataset, line based segmentation process gives bad

performance on this dataset. Therefore, the segmentation has been performed

by using only color information (Chapter 3). The values of 5, 7 and 10 are

used for T . The value 7 has been selected for T as a result of observations on

a randomly selected sample dataset. The elimination process, which is the last

part of segmentation, is performed by using values 2000 for F and 100 for B.

The codebook is constructed from the regions that are modeled by HSV color

histograms by using the values 100, 500 and 1000 for k1. Two type of models

for each category of scenes have been obtained from the training images. One of

the models is created by using multi class classifier and the other is created by

using one class classifier that fits Gaussian model on each class independently.

One class classifier has been used in order to eliminate classification errors arise

from class overlapping problem. The value 1000 for k1 gave the best classification
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results for both model types as seen in Table 7.1.

Table 7.1: Classification success rates for different k1 values for both multi class
classifier and one class classifier models

Multi Class One Class
k1 = 50 %18 %13
k1 = 200 %25 %12
k1 = 500 %32 %10
k1 = 1000 %38 %10

Confusion matrices for classification result are illustrated in Figure 7.1 for both

types of models. On the confusion matrices each column represents the instances

in the predicted class and each row represents the instances in an actual class.

Overall classification accuracies are 16.57% and 10.26% for Figure 7.1(a) and

Figure 7.1(b), respectively.

The low performance for multi class classification is obtained for “outdoor”

and “sky” classes as seen in the confusion matrix in Figure 7.1. These are the

expected results for the scene categories that enclose other scenes semantically.

Most of the images in TRECVID dataset are outdoor images and include sky

scene. There is also class overlapping problem for all other scene categories. Ne-

cessity of assigning each image, which can belong to multiple scene categories

but annotated with one of them, to a single class reduces the success rates dra-

matically. The last two images in the Figure 5.1 of Chapter 5 is an evidence of

this situation. The third image, which is annotated as Boat&Ship, is predicted

as WaterScape&Waterfront in classification process since it should be assigned to

the class with the maximum probability. Since “outdoor” is more general scene

category, in one class model there is also instability problem for the number of

class instances. Number of instances in the “outdoor” class exceeds all other

class populations. Therefore, the Gaussian model for the “outdoor” class encap-

sulates most of the images in other classes. Although it is an expected situation,

it raises problems in classification process. As seen in confusion matrix in Fig-

ure 7.1(b) most of the images in different categories are predicted as “outdoor”
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(a)

(b)

Figure 7.1: Confusion matrices of TRECVID for two different models: (a) Con-
fusion matrix for multi class classifier model, (b) Confusion matrix for one class
model
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since TRECVID dataset consists of outdoor images. In confusion matrix, the

other scene category dominates others is “sky”. It is an expected situation since

most of outdoor images include sky but the results are reflected as classification

errors.

In order to show the performance of probability model we sort the images

according to class probabilities for each category then we calculate mean average

precision (MAP) values using this ranking (Figure 7.2). For multi class classifi-

cation model (Figure 7.2(a)), MAP values are above 0.5 for all classes. As seen

in Figure 7.2(a) and Figure 7.2(b), the performances of both multi class and one

class models are very high for “outdoor” and “sky” classes.

7.1.2 Retrieval with Relevance Feedback

Instead of using class probabilities obtained from classification process, they are

used for image representation in a retrieval process. Each image is represented

by a vector whose components are class posterior probabilities for each scene

category. The classification results are used for generating queries automatically

and ground truth is used for providing feedback to the system. Quarter of the

images of each class population is used as query images. For each query, the

top 30 images are employed for providing feedback by automatically labeling

each image that belonged to the same ground truth group with the query as

relevant and the remaining images as irrelevant at each iteration. This process

is repeated for each selected query image for 4 feedback iterations. Figure 7.3

shows precision plots of the original retrieval and the following 4 iterations for

multi class and one class classifier models. Figure 7.4 illustrates the mean average

precision values (MAP) of each scene category again for multi class and one class

classifier models. MAP values are calculated for the original retrieval and the

following 4 iterations. For both of the models the first iteration gave the largest

increase in precision. A little rise is obtained for the next 4 iterations. The

precision values for one class classification model is much higher than the multi

class classification model since while calculating the posterior class probabilities

for overlapping classes, learning a boundary for each class that separates it from
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(a)

(b)

Figure 7.2: Mean average precision values (MAP) according to class posterior
probabilities of each scene category of TRECVID dataset: (a) MAP values for
multi class classifier model, (b) MAP values for one class classifier model.
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the others is more efficient than learning a boundary that separates all the classes

from each other. In TRECVID dataset the big problem is existence of “outdoor”

class. It is almost impossible to represent the “outdoor” scene category with

multinomial model since it can not be separated from the other classes. Both

results are more acceptable than the classification results since the contribution of

each of 18 scene categories are used in image representations. Since high precision

values have been already reached in the first retrieval, satisfactory increases can

not be obtained for feedback iterations. TRECVID dataset is a hard dataset

for classification. Images in TRECVID dataset have complex background with

multiple contents and it is not possible to assign them to a single class. In order

to retrieve more realistic performance, we annotate the images with multiple class

labels to use in retrieval process. While calculating the precision values, we use

all possible class labels of the images. This is the main reason that the retrieval

performance is higher than the performance of COREL dataset which will be

explained in the next Section 7.2.

7.2 COREL

7.2.1 Classification

For COREL dataset the codebook is generated by using the regions that are ob-

tained by both color based and line based segmentation processes. The value of

1.6l is used for h, to create the rectangle that surrounds a line segment which

has a length l. In order to determine the the number of line clusters, stopping

rule is applied to the line clustering using the value 4 for b. The color based

segmentation and elimination processes are performed with the same parameters

as the parameters that are used in TRECVID dataset. Two types of codebooks

are constructed from the color based and line based regions. The regions from

the codebook, which is obtained by the color based segmentation, are modeled by

HSV color histograms. Region clustering uses 1000 for k1. The regions from the

codebook, which is obtained by line based segmentation, are modeled by both
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(a)

(b)

Figure 7.3: Precision vs. number of images retrieved plots of TRECVID for
two different models. ‘Feedback 0’ refers to the retrieval without feedback: (a)
Precision plot for multi class classifier model, (b) Precision plot for one class
classifier model
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(a)

(b)

Figure 7.4: Mean average precision (MAP) graph of each scene category of
TRECVID dataset for the original retrieval and the following 4 iterations. ‘Feed-
back 0’ refers to the retrieval without feedback: (a) MAP graph for multi class
classifier model, (b) MAP graph for one class classifier model
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HSV color histograms and orientation histograms of the line segments in the re-

gions. As a result, two types of codebooks with size k1+k2 = 2000 are obtained,

one is a combination of color based regions that are modeled by HSV histograms

and line based regions that are modeled again by HSV histograms, the other one

is a combination of color based regions that are modeled by HSV histograms and

line based regions that are modeled by orientation histograms of the line seg-

ments. For classification process only multi class classifier is used for modeling

the scene categories since in COREL dataset there is not a scene category as “out-

door” that encapsulates the other classes. Therefore we do not get better results

from the experiments that are performed using one class classifier. Figure 7.5

shows the confusion matrices for classification results of each type of codebook

representations. Overall classification accuracies are 61.35% and 34.76% for Fig-

ure 7.5(a) and Figure 7.5(b), respectively.Since there are large number of scene

categories and these categories are not mutually exclusive semantically, we do

not expect satisfactory results in classification. For example a mountain scene,

a sky scene and a waterfall scene can take place at the same image. Instead of

assigning the images that are modeled by posterior class probabilities to a single

class, we attempt to use these probability values to show the performance of the

model. We sort the images according to their class probabilities for each category

then we calculate MAP values using this ranking (Figure 7.6). The MAP values

are very high for all classes for both codebook types. These values verify the

suitability of our representation technique in modeling the visual content of the

images. It is adequate to represent the images with the contribution of each scene

category to perform retrieval process.

7.2.2 Retrieval with Relevance Feedback

The same processes as TRECVID dataset for content based image retrieval are

applied to COREL dataset by using class posterior probability representations

of the images. Figure 7.7 shows precision plots of the original retrieval and the

following 4 iterations for the codebook based on HSV histograms and the code-

book based on the combination of HSV and orientation histograms. Figure 7.8
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(a)

(b)

Figure 7.5: Confusion matrices of COREL for two different codebook types: (a)
Confusion matrix for the codebook that is constructed by using HSV histograms
of the regions, (b) Confusion matrix for the codebook that is constructed by using
HSV and orientation histograms of the regions



CHAPTER 7. EXPERIMENTS 51

(a)

(b)

Figure 7.6: Mean average precision values (MAP) according to class posterior
probabilities of each scene category of COREL dataset: (a) MAP values for
the codebook that is constructed by using HSV histograms of the regions, (b)
MAP values for the codebook that is constructed by using HSV and orientation
histograms of the regions
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illustrates the mean average precision values of each scene category again for each

codebook type respectively. MAP values are calculated for the original retrieval

and the following 4 iterations. For both of codebook representations the first

iteration gave the largest increase in precision. A little rise is obtained for the

next 4 iterations. The precision values for the codebook representation which is

constructed using the combination of HSV histograms and orientation histograms

is much higher than the codebook representation which is constructed using only

HSV histograms. It is assumed that orientation characteristics of the lines seg-

ments in a region can be a distinguishing property for that region. On the other

hand, color information in a region can be variable. For example assume that a

region from a building and a region from a road. The building regions generally

contain line segments with two major orientations and the road regions generally

contains line segments with one major orientation. On the other hand, the color

information is not distinguishing information for that types of regions since it can

be vary according to the material of the object in the regions.

7.3 Comparison

We ran the bag-of-words model with probabilistic latent semantic analysis [25] on

the Corel dataset and obtained 19.58% accuracy ( compared to 61.35% by in Fig-

ure 7.5(a) and 34.76% by in Figure 7.5(b) ). Although the proposed classification

results are not very satisfactory, they are better than the popular classification

approaches.

In order to verify the success of our representation model which is based

on probabilities of observing different semantic scene classes in the images, we

perform the same retrieval scenario on the bag of regions representations of the

images. Each image is represented with the histogram of regions types it contains

as before the classification process. The Figure 7.9 illustrates the precision values

of the original retrieval and the following 4 iterations for Corel dataset. As seen,

although there are high increases in precision values after feedback iterations, the

precision values for the class probability representation is higher than the values
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(a)

(b)

Figure 7.7: Precision vs. number of images retrieved plots of COREL for two
codebook types. ’Feedback 0’ refers to the retrieval without feedback: (a) Pre-
cision plot for the codebook that is constructed by using HSV histograms of the
regions, (b) Precision plot for the codebook that is constructed by using HSV
and orientation histograms of the regions
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(a)

(b)

Figure 7.8: Mean average precision (MAP) graph of each scene category of
COREL dataset for the original retrieval and the following 4 iterations. ‘Feed-
back 0’ refers to the retrieval without feedback: (a) MAP graph for the codebook
that is constructed by using HSV histograms of the regions, (b) MAP graph for
the codebook that is constructed by using HSV and orientation histograms of the
regions
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for the bag of regions representation.

Figure 7.9: Precision vs. number of images retrieved plots of COREL for bag of
regions representation

We compare our relevance feedback technique with weighted based techniques

which is most preferred one to include human interaction in retrieval process

because of its intuitive assumptions. Its working principle is based on assigning

weights values to the low-level features and updating them according to the user

feedback in CBIR.

The feedback information is incorporated into the database search in terms

of iterative retrievals by modifying the contributions of different class probability

values in the overall similarity computation. These modifications are done via

assigning a weight to probability values of each of C classes and updating these

weights in subsequent iterations. We assign a weight value Weightj to the jth

class. Given two images, distances dj between their jth class probability values are

computed, and then, these distances are combined as the overall (dis)similarity

value

d =
C∑

j=1

dj ∗Weightj (7.1)
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dj is dissimilarity value between jth class probability values of two images. In

order to compute the weights for each class probability we use the following ap-

proach: Given the positive and negative examples for a class model being signif-

icant for a particular query the distances for the corresponding class probability

values for relevant images must usually be similar (hence, a small variance), but

the distances between the class probability values for relevant images and irrel-

evant images must usually be different (hence, a large variance). Therefore, the

weights are computed using the ratio of the standard deviation of the distances

between relevant and irrelevant images to the standard deviation of the distances

between relevant images.

Figure 7.10 shows mean average precision values for each feedback iteration

by using SVDD and Weight based approaches for (a)TRECVID and (b)Corel

datasets. For TRECVID dataset we use results of the one class model and for

Corel dataset we use results of the codebook that is constructed by using the

combination of HSV and orientation histograms. As seen in the figures the per-

formance of our approach is higher than the weighted approach for all feedback

iterations of both datasets.
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(a)

(b)

Figure 7.10: Mean average precision (MAP) graph of the original retrieval
and the following 4 iterations for SVDD based and weight based feedback ap-
proaches. ‘Feedback 0’ refers to the retrieval without feedback: (a) MAP graph
for TRECVID dataset, (b) MAP graph for Corel dataset
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CONCLUSION

In this study, a content-based image retrieval framework that is based on scene

classification for image indexing is proposed. Instead of using low-level features

to index the images as in traditional CBIR approaches, classification results are

used to represent the images semantically. Each image is indexed with the prob-

ability of observing different semantic classes in it. To obtain the probabilities,

both multi-class and one-class classification techniques are used. First, the im-

ages are segmented into meaningful regions by using two different information

from the images: color and line structure. The line structure information is used

for the regions that do not consist of uniform colors such as man made structures.

After all regions are clustered with k-means clustering algorithm, each image is

represented with the histogram of the region types it contains and the histograms

are classified by using Bayesian framework. For probability estimation two dif-

ferent models are used: multi class and one class. In the multi class model, the

region types are treated independently and class-condition probabilities are esti-

mated using multinomial model. This model is not suitable for TRECVID dataset

since the classes are not mutually exclusive. Therefore, in addition to multi class

model, one class model is used. In one class modeling Gaussian classifier in each

class is trained independently and probability density function is estimated for

the training set of each class. The classification results are not satisfactory since

assigning the images to the class with the highest probability is not suitable in
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a dataset which contains classes that overlap semantically. These results show

that associating the images with a single class with the highest probability is

not sufficient in retrieval process. Therefore, images are represented with the

posterior class probability values that come from classification process. In order

to minimize the semantic gap between the image similarity understanding of hu-

mans and the computer one class support vector data description based relevance

feedback is performed. The performance of retrieval process based on one class

classification is higher than multi class classification for TRECVID dataset since

the semantical class overlapping is very high in this dataset. Both in TRECVID

and Corel datasets the results are very satisfactory. We compare our results with

a weight based relevance feedback technique. The comparison results show that

the performance of our approach is much higher.
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Appendix A

Support Vector Data Description

(Taken from [32])

A.1 Normal data description

Assume that x is a column vector and we want to find a description for a dataset

that contains N data objects {xi, i = 1, . . . , N}. The data description models a

closed boundary which is a hypersphere with minimum radius that contains all

data points. Error function is defined to minimize the volume of hypersphere:

F (R, a) = R2 (A.1)

with constraints:

‖xi − a‖2 ≤ R2,∀i (A.2)

If the hypersphere is enlarged in order to force to obtain all data points with

outliers, the hypersphere with a large radius will not represent the data very well.

Therefore, some data points are allowed to be outside of the sphere and they are

called slack variables. Minimization problem changes into:

65



APPENDIX A. SUPPORT VECTOR DATA DESCRIPTION 66

F (R, a) = R2 + C
∑

i

ξi (A.3)

with constraints

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0∀i (A.4)

where the parameter C gives the trade-off between the volume and the errors.

Incorporate Eq. A.3 into Eq. A.4 with Lagrange multipliers following equation

is obtained:

L(R, a, αi, γi, ξi) = R2 + C
∑

i

ξi +
∑

i

αi{R2 + ξi − (‖xi‖2 − 2a.xi + ‖a‖2)}

−
∑

i

γiξi (A.5)

with the Lagrange multipliers αi ≥ 0 and γi ≥ 0. L should be minimized with

respect to R, a, ξi and maximized with respect to αi and γi .

Setting partial derivatives to zero gives the constraints:

∂L

∂R
= 0 :

∑
i

αi = 1 (A.6)

∂L

∂a
= 0 : a =

∑
i αixi∑
i αi

=
∑

i

αixi (A.7)

∂L

∂ξi

= 0 : C − αi − γi = 0 (A.8)

when we demand 0 ≤ αi ≤ C we can remove the variables γi from the Eq. A.5

since αi ≥ 0, γi ≥ 0.

Resubstituting Eq. A.6 Eq. A.8 into Eq. A.5 results in:

L =
∑

i

αi(xixi)−
∑
i,j

αiαj(xixj) (A.9)
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with constraints

0 ≤ αi ≤ C (A.10)

Maximizing Eq. A.9 gives a set αi. Lagrange multiplier αi will be zero when

the inequality ‖xi − a‖2 < R2 + ξi is satisfied by xi and αi become bigger than

zero when the equality ‖xi − a‖2 = R2 + ξi is satisfied by xi.

‖xi − a‖2 < R2 → αi = 0, γi = 0 (A.11)

‖xi − a‖2 = R2 → 0 < αi < C, γi = 0 (A.12)

‖xi − a‖2 > R2 → αi = C, γi > 0 (A.13)

The objects xi with αi > 0 will be called support vectors. An object z is

accepted if the distance of the object to the center of the sphere is smaller than

or equal to the radius

‖z− a‖2 = (z.z)− 2
∑

i

αi(z.xi) +
∑
i,j

αiαj(xi.xj) ≤ R2 (A.14)

where R2 is the distance from the center of the sphere a to (any of the support

vector on) the boundary. Support Vectors which fall outside the description are

excluded. Therefore:

R2 = (xs.xs)− 2
∑

i

αi(xi.xs) +
∑
i,j

αiαj(xi.xj) (A.15)

for any support vector xs which have αs < C.

A.2 SVDD with negative examples

Assume again we want to find a description for a dataset that contains N data

objects {xi, i = 1, . . . , N}. However this time we have M negative data objects
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{xl, l = N +1, . . . , N +M} that we do not want them to be inside the hypersphere

which contains the target data objects. Two types of slack variables, ξi and ξl are

introduced this time to allow outliers from the target set and from the negative

set and the error function becomes:

F (R, a, ξi, ξl) = R2 + C1

∑
i

ξi + C2

∑
l

ξl (A.16)

with constraints:

‖xi − a‖2 ≤ R2 + ξi, ‖xl − a‖2 ≥ R2 + ξl, ξi ≥ 0, ξl ≥ 0,∀i, l (A.17)

These constraints are again incorporated in Eq. A.16 by using the Lagrange

multipliers αi, αl, γi and γl, which are all bigger than 0.

L(R, a, ξi, ξl, αi, αl, γi, γl) = R2 + C1

∑
i

ξi + C2

∑
l

ξl

−
∑

i

αi{R2 + ξi − (‖xi‖2 − 2a.xi + ‖a‖2)}

−
∑

l

αl{R2 + ξl − (‖xl‖2 − 2a.xl + ‖a‖2)}

−
∑

i

γiξi −
∑

l

γlξl (A.18)

After setting the partial derivatives of L with respect to R, a, ξi and ξl to

zero we get the constraints:

∑
i

αi −
∑

l

αl = 1 (A.19)

a =
∑

i

αixi −
∑

l

αlxl (A.20)

0 ≤ αi ≤ C1, 0 ≤ αl ≤ C2,∀i, l (A.21)
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Resubstituting Eq. A.19 - Eq. A.21 into Eq. A.18 results in:

L =
∑

i

αi(xixi)−
∑

l

αl(xlxl)−
∑
i,j

αiαj(xixj)

+ 2
∑
l,j

αlαj(xlxj)−
∑
l,m

αlαm(xlxm)

(A.22)

If we introduce a new variable α′
k = ykαk, where k = 1, . . . , N + M and yk

is 1 for target data and −1 for negative data, Eq. A.19 becomes
∑

k α′
k = 1 and

Eq. A.20 becomes a =
∑

k α′
kxk. We can again use the testing function Eq. A.14.

Therefore if the negative data objects are available with the target data, Eq. A.9

is replaced with Eq. A.22 and α′
kis used instead of αi.


