1,655 research outputs found

    An experimental study on evolutionary reactive behaviors for mobile robots navigation

    Get PDF
    Mobile robot's navigation and obstacle avoidance in an unknown and static environment is analyzed in this paper. From the guidance of position sensors, artificial neural network (ANN) based controllers settle the desired trajectory between current and a target point. Evolutionary algorithms were used to choose the best controller. This approach, known as Evolutionary Robotics (ER), commonly resorts to very simple ANN architectures. Although they include temporal processing, most of them do not consider the learned experience in the controller's evolution. Thus, the ER research presented in this article, focuses on the specification and testing of the ANN based controllers implemented when genetic mutations are performed from one generation to another. Discrete-Time Recurrent Neural Networks based controllers were tested, with two variants: plastic neural networks (PNN) and standard feedforward (FFNN) networks. Also the way in which evolution was performed was also analyzed. As a result, controlled mutation do not exhibit major advantages against over the non controlled one, showing that diversity is more powerful than controlled adaptation.Facultad de Informátic

    An experimental study on evolutionary reactive behaviors for mobile robots navigation

    Get PDF
    Mobile robot's navigation and obstacle avoidance in an unknown and static environment is analyzed in this paper. From the guidance of position sensors, artificial neural network (ANN) based controllers settle the desired trajectory between current and a target point. Evolutionary algorithms were used to choose the best controller. This approach, known as Evolutionary Robotics (ER), commonly resorts to very simple ANN architectures. Although they include temporal processing, most of them do not consider the learned experience in the controller's evolution. Thus, the ER research presented in this article, focuses on the specification and testing of the ANN based controllers implemented when genetic mutations are performed from one generation to another. Discrete-Time Recurrent Neural Networks based controllers were tested, with two variants: plastic neural networks (PNN) and standard feedforward (FFNN) networks. Also the way in which evolution was performed was also analyzed. As a result, controlled mutation do not exhibit major advantages against over the non controlled one, showing that diversity is more powerful than controlled adaptation.Facultad de Informátic

    Evolutionary robotics and neuroscience

    Get PDF
    No description supplie

    Evolution of Swarm Robotics Systems with Novelty Search

    Full text link
    Novelty search is a recent artificial evolution technique that challenges traditional evolutionary approaches. In novelty search, solutions are rewarded based on their novelty, rather than their quality with respect to a predefined objective. The lack of a predefined objective precludes premature convergence caused by a deceptive fitness function. In this paper, we apply novelty search combined with NEAT to the evolution of neural controllers for homogeneous swarms of robots. Our empirical study is conducted in simulation, and we use a common swarm robotics task - aggregation, and a more challenging task - sharing of an energy recharging station. Our results show that novelty search is unaffected by deception, is notably effective in bootstrapping the evolution, can find solutions with lower complexity than fitness-based evolution, and can find a broad diversity of solutions for the same task. Even in non-deceptive setups, novelty search achieves solution qualities similar to those obtained in traditional fitness-based evolution. Our study also encompasses variants of novelty search that work in concert with fitness-based evolution to combine the exploratory character of novelty search with the exploitatory character of objective-based evolution. We show that these variants can further improve the performance of novelty search. Overall, our study shows that novelty search is a promising alternative for the evolution of controllers for robotic swarms.Comment: To appear in Swarm Intelligence (2013), ANTS Special Issue. The final publication will be available at link.springer.co

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators, and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Evolution of Neuro-Controllers for Robots\u27 Alignment using Local Communication

    Get PDF
    In this paper, we use artificial evolution to design homogeneous neural network controller for groups of robots required to align. Aligning refers to the process by which the robots managed to head towards a common arbitrary and autonomously chosen direction starting from initial randomly chosen orientations. The cooperative interactions among robots require local communications that are physically implemented using infrared signalling. We study the performance of the evolved controllers, both in simulation and in reality for different group sizes. In addition, we analyze the most successful communication strategy developed using artificial evolution

    Neuro-evolution search methodologies for collective self-driving vehicles

    Get PDF
    Recently there has been an increasing amount of research into autonomous vehicles for real-world driving. Much progress has been made in the past decade with many automotive manufacturers demonstrating real-world prototypes. Current predictions indicate that roads designed exclusively for autonomous vehicles will be constructed and thus this thesis explores the use of methods to automatically produce controllers for autonomous vehicles that must navigate with each other on these roads. Neuro-Evolution, a method that combines evolutionary algorithms with neural networks, has shown to be effective in reinforcement-learning, multi-agent tasks such as maze navigation, biped locomotion, autonomous racing vehicles and fin-less rocket control. Hence, a neuro-evolution method is selected and investigated for the controller evolution of collective autonomous vehicles in homogeneous teams. The impact of objective and non-objective search (and a combination of both, a hybrid method) for controller evolution is comparatively evaluated for robustness on a range of driving tasks and collection sizes. Results indicate that the objective search was able to generalise the best on unseen task environments compared to all other methods and the hybrid approach was able to yield desired task performance on evolution far earlier than both approaches but was unable to generalise as effectively over new environments
    corecore