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ABSTRACT 

Mobile robot’s navigation and obstacle avoidance in 
an unknown and static environment is analyzed in 
this paper. From the guidance of position sensors, 
artificial neural network (ANN) based controllers 
settle the desired trajectory between current and a 
target point. Evolutionary algorithms were used to 
choose the best controller. This approach, known as 
Evolutionary Robotics (ER), commonly resorts to 
very simple ANN architectures. Although they 
include temporal processing, most of them do not 
consider the learned experience in the controller’s 
evolution. Thus, the ER research presented in this 
article, focuses on the specification and testing of the 
ANN based controllers implemented when genetic 
mutations are performed from one generation to 
another. Discrete-Time Recurrent Neural Networks 
based controllers were tested, with two variants: 
plastic neural networks (PNN) and standard feed-
forward (FFNN) networks. Also the way in which 
evolution was performed was also analyzed. As a 
result, controlled mutation do not exhibit major 
advantages against over the non controlled one, 
showing that diversity is more powerful than 
controlled adaptation.  

Keywords: Evolutionary Robotics; Evolutionary 
Neural Networks; Robotic Adaptability; Simulated 
Robotic Agents  

1. Introduction 

According to Hebb [1], behavior is the primarily 
adaptation to the environment under sensory 
guidance. It takes the organism away from harmful 
events and toward favorable ones, or introduces 
changes in the immediate environment that make 
survival more likely. In this line of reasoning, Cliff 
et al. [9] and Nolfi [10] indicate that the most 
straightforward way to shape adaptive behavior is to 
use the evolutionary robotic (ER) approach. In  ER 

behaviors are developed in close interaction with the 
environment, limiting the human intervention to set 
a target behavior. Then, a rule for determining how 
much a given behavior approximates to the one 
desired must be specified. 

In this paper, ER concepts are used to obtain 
controllers that can adapt the robot’s behavior 
according to its sensory inputs. 

1.1. Evolutionary Robotics 

Evolutionary Robotics (ER) is a sub-field of 
Behavioral Robotics and it is concerned with the 
application of evolutionary computation methods to 
the area of autonomous robotic control systems. One 
of the central goals of ER is to develop automated 
methods that can be used to evolve complex 
behavior-based control strategies [2]. 

Several works pointed out that one of the main 
interests in ER is the development of computational 
intelligence based control systems or intelligent 
control systems for short [2][3][4][5][6][7]. Mainly, 
these works describe experimental proof about 
obstacle avoidance, maze exploration, robot learning, 
and adaptive controllers using small mobile robots 
or computational models of them (simulated 
approach). 

1.2. Artificial Agents 

According to Russell and Norvig [8], “an agent is 
anything that can be viewed as perceiving its 
environment through sensors and acting upon that 
environment through effectors”. In addition, in [8] 
an “ideal agent” is defined as “one that always takes 
the action that is expected to maximize its 
performance measure, given the perceived sequence 
it has seen so far”. Based on it, an agent that 
maximizes its fitness (expressed by a mathematical 
fitness function) will be considered appropriated for 
a certain task in a specific environment. In the 
present context, to construct an agent that adapts 
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himself in an appropriate way retaining and 
responding to information from the environment are 
one of the goals to overcome.  

1.3. Evolutionary Robotics and Adaptation in 
Artificial Systems  

In a natural system, animals can be considered as 
falling into the category of one of these agents. In 
fact, animals do not only adapt to environmental 
changes, but they can also accumulate adaptations. 
They can store “knowledge” about a previously 
encountered environment and use it to alter their 
behavior when faced with a specific environment 
again. This process is called learning when it occurs 
in a lifetime and evolution when it occurs in a 
lineage [13]. In other words, the agent adapts itself 
by evolving different behaviors appropriate for 
different environments. However, it is important to 
notice that the definition of appropriate for each 
environment is defined explicitly without ambiguity 
in a fitness function. In addition, in [13] it is not 
considered directly the interaction between evolution 
and learning, but they make the assumption that all 
previous generations have been exposed to the same 
set of environments. This assumption is a bit strong 
and unrealistic. Instead, it can be assumed that the 
agent had been able to accumulate adaptations with 
a slow change on the experience obtained in one 
generation. In this particular instance, the experience 
obtained by a neuro-controller refers to the features 
that it might develop in a generation (i.e., the 
synaptic weights established after an evolution 
process). 

One of the main challenges in ER is to discover 
and to model diffe rent adaptation mechanisms. Most 
of the works in ER [3][10][11] consider the artificial 
evolution of neuro-controllers as one of these 
adaptation mechanisms. It is considered a viable 
methodology to develop autonomous agents that 
could exhibit conscious abilities. Artificial evolution 
differs from other learning schemes because it works 
on a population of different individuals and it is 
based on a selectionist approach, rather than a goal-
directed one [12]. This is the main approach adopted 
in this work. 

1.4. Artificial Neural Networks in Evolutionary 
Robotics 

Artificial Neural Networks (ANN) have become the 
chosen computational structure in ER. ANN based 
controllers have been implemented for different 
functions in mobile robots [2][4][14][15]. Most of 
these applications developed simple ANN 
architectures, which are capable of temporal 
processing. Typical examples are the Discrete-Time 
Recurrent Neural Networks (TRNN) with two 
variants: Plastic Neural Networks (PNN) used in 
[16][17], and a variant of Feed-Forward (FFNN) 
described in [18][19]. This kind of controllers is 

capable of behaving properly, remembering the 
acquired abilities and passing it to the next 
generations. They can store previous experience and 
use it to alter their present behavior, as well as their 
descendants’ behavior, when faced with an 
environment (or situation). This adaptation is faster 
as the fitness function is achieved. 

In this paper, an evolutionary robot control 
system is examined in a simulated environment 
through generation of neuro-controllers in an 
artificial evolutionary process. Description of the 
simulation environment, the implemented neuro-
controllers and their evolution through the use of 
genetic algorithms, is given in the following sections. 
The article also includes results and preliminary 
conclusions on the use of ANN based controllers in 
ER, advantages and disadvantages of permanent 
adaptation, and the influence of the speed of 
adaptation in the general behavior. 

2. Evolutionary neuro-controllers and 
simulation environment 

2.1. Robot description 

The robot used was Khepera [25] which provides a 
simple model of mobile robot that is frequently used 
in ER area.  

The inputs to the neuro-controllers consist of the 
readings of three distance sensors separated 45° one 
from another in the frontal half of the robot and four 
light sensors. Distance sensor outputs a positive 
value if there is an obstacle in its direction and 
within 15 length units of the robots. Light sensor’s 
output value is negatively correlated to the angle 
between the sensor and the source, and also to the 
distance between robot an source. Fig. 1 shows the 
sensors positions according to robot model. 

Robot front side

Sensors

Front
30 ° right

45 ° right

60 ° right

30 ° left

45 ° left

60 ° left

Light sensor
Obstacle sensor

 

Fig.  1 - Sensory layout  

2.2. The artificial neuro-controllers 

The ANN based controllers used in the simulated 
environment respond to the agent paradigm 
described previously. The ANN selected for testing 
correspond to Discrete-Time Neural Networks in the 
way of PNN and FFNN networks.  

Two classes of tests were developed. The first 
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was related with non-recurrent networks (PNN and 
FFNN) and the second one adding recurrence at 
hidden level of the previous ones. The FFNN non-
recurrent network used is a simple network similar 
to Braintenberg vehicle [21] in that they produce the 
output signal in direct response to current range 
sensor readings. 

The single-layered recurrent networks have the 
possibility of developing temporal processing. The 
recurrent connections allow ANN to remember the 
action taken at a previous temporal stage. According 
to [2], controllers that can make use of temporal 
information have the potential to outperform 
completely reactive controllers considering simple 
sensors used by the robots.  

In evolutionary terms, only the weights of 
FFNN networks were evolved, instead of other 
parameters were evolved for PNN. These parameters 
are signaled in section 2.3, in the same way as [18]. 

To implement the ANN based controller, two 
neurons with sigmoid activation function were used 
in the hidden layer. The output layer consisted of 
one neuron with sigmoid activation function. 

For FFNN networks several instances were 
analyzed: 

 

• Single FFNN without hidden-layer recurrence vs. 
FFNN with hidden-layer recurrence 

• Random weights initialization (RANDOM-INIT) 
vs. apriori weight-sign initialization (PRESEL-
INIT) for FFNN with recurrence  

• Randomized weight mutation (TOTAL-
MUTATION) vs. controlled mutation (PARTIAL-
MUTATION) for FFNN with recurrence. 

 

For recurrent PNN, a priori vs. randomized sign 
initialization was analyzed. 

The typical network configuration used is 
shown in Fig. 2. However setting recurrent weights 
in the hidden layer to zero (dot arrows) allows to 
remove recurrence connection to implement non-
recurrent networks. 

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7
Full recurrent
hidden layer

Turn robot
left or right

(left side 
of robot)

(right side 
of robot)

 

Fig. 2 - The neural network topology. The input layer consists of 
seven receptors fully connected to two hidden neurons. A set of 
recurrent connections are added to the hidden units only for the 
recurrent networks implemented. The hidden units were not 
connected to two motor-actuators, which are connected to an 
output neuron modeling the deviation robot angle. 

2.3. The simulation environment 

The simulation environment consists of planar 
objects in which each component is a solid 
occupying a space in this environment. The number 
of objects is fixed to 10, and their position is 
randomized. During each generation, the members 
of the population are initialized to also random 
locations in the environment space. This is a 
continuous region in R2 allowing the simulation of 
the robot’s movements. Also, there is one light 
source in a random location. This light represents the 
goal position to be reached by the robot. 

In each environment, just one robot, which is 
specified as a structure that maintain the robots 
current position, number of sensors, and sensor input 
readings, is simulated. In addition, both the neuro-
controller structure and the evolved algorithms are 
associated with the robot. 

It is important to remark that the robotic-agent 
model does not consider actuators like motors and 
wheels: only the robot deviation angle is considered 
in each simulation step. This ideal (supervisory 
control level) approach allows the robot to turn in 
any direction or go straightforward.  

2.4. The Simulation Environment 

To carry out the tests, two simulation 
environments were used: one for learning and the 
other for validation.  

The learning environment was represented by 
two-dimensional rectangles (x, y). For experiments, 
ten objects were ramdomicaly placed inside the 
environment. In each generation, the population's 
members (different instances of neuro-controllers for 
the robot) were also initialized in random positions 
inside the environment. Besides the obstacles, the 
environment had a source of light in a random 
position for each run. This light represents the goal 
to be reached by the robot. Each environment that 
allows the simulation of a run was specified as a 
structure containing the robot and the objects 
position (obstacles and lights). Furthermore, both 
neuro-controller's structure and evolutionary 
algorithms are associated to robot's instance 
generated for the learning. Neither dynamic models  
nor non-linealities in actuator model (motors and 
wheels) were considered. Instead, in each simulation 
step the angle of the robot's deviation regarding their 
objective was taked into account. 

When the learning stage is over, the best robot 
controller was selected and it was evaluated in a 
more complex simulator called YAKS [22]. The 
results obtained are qualitatively similar to those 
reached in the previous learning environment.  

2.5. The evolutionary algorithm 

Each neuro-controller was specified using an 
evolutionary computing algorithm and tested into 
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the environment. For PNN controller, the Hebbian 
rules were determined according to [7][18]. While 
for FFNN networks connection weights were 
initialized with random values in [-2, 2] range, for 
RANDOM -INIT configuration, or random values in 
[0, 2] range with preselected sign, for PRESEL-INIT 
setting. 

The chromosome data structure (Table 1) 
represent a controller like the one specified in [18] 
for genetically determined controllers (e.g. FFNN) 
(a sign and weight strength for each synapses), and 
for adaptive synapse controllers (e.g. PNN) (a sign, 
a specific Hebb-adaptive rule, and a learning rate). 

Genotype 
encoding Values for one synapse 

FFNN sign weight 

PNN sign Hebb rule rate 

Table 1 - Genetic encoding for synaptic parameters. For FFNN 
controllers, a signed weight for each synapse. For PNN 
controllers, a weight-sign, one (of four) Hebbian rules and a 
mutation rate [18]. 

 
According to [20], the adaptation ignores the 

diversity. Referring to neuro-controllers’ mutations 
in an evolutionary scale, diversity is related to a free 
random selection of genetic values. Instead the 
mutation criteria refers to a controlled random 
selection of genetic mutation parameters (e.g. 
synaptic weight mutations and its mutation rates). In 
this work, weights are mutated with a fixed mutation 
rate of 50%. 

The mutation criterion selected for this work is 
as follows. Each weight magnitude for a synaptic 
connection in a FFNN network (genetically 
determined controller) depends on the accumulated 
adaptation by the evolutionary process [11], and it is 
affected by a randomized adaptation rate in the [-2, 2] 
range, for TOTAL-MUTATION configuration, or a 
variation in [-0.25, 0.25] range over original mutated 
weight, for PARTIAL-MUTATION setting, valid 
only for FFNN. This small adaptation rate slowly 
provokes mutations to the neuro-controller in an 
evolutionary scale.  

 
For FFNN case, weights (w) were mutated using 

the following equation: 

w  = w + u * R (1) 

where u is the mutation rate in [0, 1] range and R is a 
randomized value in [-0.25, 0.25] range. The effect 
of the weight mutation Eq. (1) is a slow drift from 
one generation to another. Instead, for PNN the 
mutation refers only to sign changes, while 
variations in magnitude weight are determined by 
Hebbian rules into the evaluation process. 

This mutation criterion permits a neuro-

controller with good fitness to be close to several 
descendants in the next generation in a genetic 
mutation. As a result of this, descendants will be 
also appropriately adapted to the environment, 
taking advantage of the acquired experience. 

2.6. The fitness function 

The performance evaluation for each controller is 
based on a variant of the performance fitness 
function showed in [2]. The net offset between a 
robot starting position and its final position, and 
whether or not the robot becomes stuck within the 
simulated environment are considered to write down 
the fitness function. It is shown in equation (2).  

F(ci) +1    if   k1  ∧  k2 
 F(ci) = 
F(ci)                      else 

(2) 

where k1 relates the blocking of the robot near an 
obstacle. Therefore, the controllers that are most 
times blocked will obtain a lower fitness level than 
others presenting an avoidance obstacle behavior; 
and k2 states the offset between a robot’s starting and 
final position. The refered fitness level is normalized 
between the possible successful actions during the 
controller life time (iterations). Fig. 3 shows the 
fitness function evolution in the [0; 1] range. 

A robot that cannot avoid objects  will soon 
became immobilized when its path is blocked, 
obtaining the robot controller a low fitness result.  

3. Results and discussion 

Obstacle avoidance and navigation behaviors are 
used in several tests in the ER literature [3]. They 
consist of evolutionary training of specific neural 
controllers to obstacles avoidance or towards 
navigating to a specific point within enclosed areas 
[2][19].  

In our previous tests (e.g., [23][24]) and in [2] it 
was found that single-hidden layer feed-forward 
neural networks were capable to control robotic-
agents in a simulated environment, similar to the one 
used in this work. It was possible when the robot 
sensors were simple approximation sensor models. 
A simple Braitenberg vehicle was implemented to 
effectively perform the obstacle avoidance task 
reasonably well in the simulated environment. The 
Braitenber’s controller was selected because it had 
no necessity of reading information fron the past to 
overcome perceptual aliasing. These controllers had 
no capacity for temporal processing.  

Seven alternatives of FFNN and PNN networks 
were trained with 30 genotypes (20 chromosome 
each one) over 200 generations and 10 runs for each 
neuro-controller (or phenotype). Evolved controllers 
show different behaviors depending on the 
initialization and mutation characteristics. 
Particularly, neuro-controllers with pre -selected 
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weight-sign and/or controlled weight mutation 
evolved better than others with random initialization 
and mutation. It reffers to controllers with shortest 
navigational paths. The robotic-agent in each test 
signaled was evolved with a standard mutation 
criteria for PNN and a generational mutation criteria 
for FFNN. 

It was found that TRNN_PRESEL_MUTPAR 
configuration on FFNN produces the best results in 
least amount of simulation time (or generations). 
Networks settings described in section 2.1 were 
tested with fixed synaptic weights, and with 
randomized weights (Fig. 3). According to 
performed test controllers with preselected weight-
sign and/or controlled weight mutation evolved 
better than others. 

Fig. 3 shows the average of fitness evolution 
generated during a typical run for the tested 
recurrent FFNN configurations. At each generation 
the best, the worst, and the average controller 
behavior performances were recorded. 
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Fig. 3 – Results from three evolutionary generations. In this graph, 
(a) the fitness function is plotted against generation for best 
(TRNN_PRESEL_MUTPAR), medium (FFNN_RND_ 
MUTRND), and worst (TRNN_RND_MUTPAR) studied 
controllers; (b) lineal tendency for best, medium, and worst 
controllers. Evolved controllers shows different behaviors 
depending on the initialization and mutation characteristics. 

Fig. 4 shows the average of fitness evolution 
generated during a typical run for the tested PNN 
configurations (with total and controlled weight-sign 
mutation) and recurrent FFNN with a priori weight-
sign initialization and controlled weight mutation 
(best controller of Fig. 3). Training performance was 
averaged for each controller for one simulation of 
200 steps each one with selection and mutation 
processes.  
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Fig. 4 - Comparative fitness evolution for the best controller of 
figure 3 (TRNN_PRESEL_MUTPAR) and two alternative PNN 
controllers (with total and controlled weight-sign mutation). 

The results of the mutation criteria selected in 
this work (section 2.3) shows that the controlled 
mutation does not present advantages over those 
with non-controlled mutations. It means that 
diversity is more powerful than controlled 
adaptations. 

Simulation shows that the robotic-agent is able 
to avoid obstacle with recurrent configuration after 
encountering an obstacle and backing out of sensor 
range. Robotic-agent also displayed movement 
sequences appreciated before in time. This indicates 
that the neuro-controller with evolving capabilities 
proposed in this work resort to previous responses as 
expected (Fig. 5.b). In addition, it was appreciated 
the robot lost the light source when it passed near  
this point, because the robot light-sensors did not 
receive these stimules. 

 

 
(a) 

 

 
(b) 

Fig. 5. An example of simulated movement of the robot with 
neuro-controller for obstacle avoidance. The lines indicate the 
paths taken by the robot during the curse of the simulation, and 
the red point represents the light source or robot goal point. 
Figure 5. a - for non-recurrent FFNN network and Figure 5. b - 
for recurrent PNN network, both of them with no weight-sign 
initialization (random initialization). 
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4. Conclusions and future work 

The work presented here describe in general terms 
robot controllers instantiated in simulated obstacle 
avoidance environment. Different neuro-controllers 
were evolved in simulation and the best of them was 
selected in each generation to obtain an appropriate 
final controller. The robot model was developed 
based on evolutionary and adaptive criteria.  

Some recurrent neuro-controllers showed 
special behavior: they have a tendency to do circular 
movements after avoiding an obstacle. Also, a more 
detailed study of the sensors layout should be 
developed to avoid erratic behaviors when the robot 
finds the goal. 

This work demonstrates once more the 
feasibility in application of ANN based controllers 
on ER, showing its potentials as regards as 
adaptability and learning behaviors.  

Future work will be related to obtain neuro-
controllers with architectures like the one presented 
here or similar, for mobile robots in real physical 
environments.  
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