
AN EXPERIMENTAL STUDY ON EVOLUTIONARY REACTIVE BEHAVIORS
FOR MOBILE ROBOTS NAVIGATION

José A. Fernández León1-3 Marcelo Tosini1 Gerardo G. Acosta 2-3 H. N. Acosta1

1 INTIA Research Institute – Computer and Systems Department
Exact Sciences Faculty - Universidad Nacional del Centro de la Provincia de Buenos Aires

(7000) Tandil - Buenos Aires – Argentina
2 INTELYMEC Group – Electromechanical Engineering Department

Engineering Faculty - Universidad Nacional del Centro de la Provincia de Buenos Aires
(B7400JWI) Olavarría - Buenos Aires – Argentina

3 CONICET - National Council of Scientific and Technological Research, Argentina

{jleon, mtosini, nacosta} @ exa.unicen.edu.ar gerardo.acosta @ ieee.org

ABSTRACT

Mobile robot’s navigation and obstacle avoidance in
an unknown and static environment is analyzed in
this paper. From the guidance of position sensors,
artificial neural network (ANN) based controllers
settle the desired trajectory between current and a
target point. Evolutionary algorithms were used to
choose the best controller. This approach, known as
Evolutionary Robotics (ER), commonly resorts to
very simple ANN architectures. Although they
include temporal processing, most of them do not
consider the learned experience in the controller’s
evolution. Thus, the ER research presented in this
article, focuses on the specification and testing of the
ANN based controllers implemented when genetic
mutations are performed from one generation to
another. Discrete-Time Recurrent Neural Networks
based controllers were tested, with two variants:
plastic neural networks (PNN) and standard feed-
forward (FFNN) networks. Also the way in which
evolution was performed was also analyzed. As a
result, controlled mutation do not exhibit major
advantages against over the non controlled one,
showing that diversity is more powerful than
controlled adaptation.

Keywords: Evolutionary Robotics; Evolutionary
Neural Networks; Robotic Adaptability; Simulated
Robotic Agents

1. Introduction

According to Hebb [1], behavior is the primarily
adaptation to the environment under sensory
guidance. It takes the organism away from harmful
events and toward favorable ones, or introduces
changes in the immediate environment that make
survival more likely. In this line of reasoning, Cliff
et al. [9] and Nolfi [10] indicate that the most
straightforward way to shape adaptive behavior is to
use the evolutionary robotic (ER) approach. In ER

behaviors are developed in close interaction with the
environment, limiting the human intervention to set
a target behavior. Then, a rule for determining how
much a given behavior approximates to the one
desired must be specified.

In this paper, ER concepts are used to obtain
controllers that can adapt the robot’s behavior
according to its sensory inputs.

1.1. Evolutionary Robotics

Evolutionary Robotics (ER) is a sub-field of
Behavioral Robotics and it is concerned with the
application of evolutionary computation methods to
the area of autonomous robotic control systems. One
of the central goals of ER is to develop automated
methods that can be used to evolve complex
behavior-based control strategies [2].

Several works pointed out that one of the main
interests in ER is the development of computational
intelligence based control systems or intelligent
control systems for short [2][3][4][5][6][7]. Mainly,
these works describe experimental proof about
obstacle avoidance, maze exploration, robot learning,
and adaptive controllers using small mobile robots
or computational models of them (simulated
approach).

1.2. Artificial Agents

According to Russell and Norvig [8], “an agent is
anything that can be viewed as perceiving its
environment through sensors and acting upon that
environment through effectors”. In addition, in [8]
an “ideal agent” is defined as “one that always takes
the action that is expected to maximize its
performance measure, given the perceived sequence
it has seen so far”. Based on it, an agent that
maximizes its fitness (expressed by a mathematical
fitness function) will be considered appropriated for
a certain task in a specific environment. In the
present context, to construct an agent that adapts

 JCS&T Vol. 5 No. 4 December 2005

183

himself in an appropriate way retaining and
responding to information from the environment are
one of the goals to overcome.

1.3. Evolutionary Robotics and Adaptation in
Artificial Systems

In a natural system, animals can be considered as
falling into the category of one of these agents. In
fact, animals do not only adapt to environmental
changes, but they can also accumulate adaptations.
They can store “knowledge” about a previously
encountered environment and use it to alter their
behavior when faced with a specific environment
again. This process is called learning when it occurs
in a lifetime and evolution when it occurs in a
lineage [13]. In other words, the agent adapts itself
by evolving different behaviors appropriate for
different environments. However, it is important to
notice that the definition of appropriate for each
environment is defined explicitly without ambiguity
in a fitness function. In addition, in [13] it is not
considered directly the interaction between evolution
and learning, but they make the assumption that all
previous generations have been exposed to the same
set of environments. This assumption is a bit strong
and unrealistic. Instead, it can be assumed that the
agent had been able to accumulate adaptations with
a slow change on the experience obtained in one
generation. In this particular instance, the experience
obtained by a neuro-controller refers to the features
that it might develop in a generation (i.e., the
synaptic weights established after an evolution
process).

One of the main challenges in ER is to discover
and to model diffe rent adaptation mechanisms. Most
of the works in ER [3][10][11] consider the artificial
evolution of neuro-controllers as one of these
adaptation mechanisms. It is considered a viable
methodology to develop autonomous agents that
could exhibit conscious abilities. Artificial evolution
differs from other learning schemes because it works
on a population of different individuals and it is
based on a selectionist approach, rather than a goal-
directed one [12]. This is the main approach adopted
in this work.

1.4. Artificial Neural Networks in Evolutionary
Robotics

Artificial Neural Networks (ANN) have become the
chosen computational structure in ER. ANN based
controllers have been implemented for different
functions in mobile robots [2][4][14][15]. Most of
these applications developed simple ANN
architectures, which are capable of temporal
processing. Typical examples are the Discrete-Time
Recurrent Neural Networks (TRNN) with two
variants: Plastic Neural Networks (PNN) used in
[16][17], and a variant of Feed-Forward (FFNN)
described in [18][19]. This kind of controllers is

capable of behaving properly, remembering the
acquired abilities and passing it to the next
generations. They can store previous experience and
use it to alter their present behavior, as well as their
descendants’ behavior, when faced with an
environment (or situation). This adaptation is faster
as the fitness function is achieved.

In this paper, an evolutionary robot control
system is examined in a simulated environment
through generation of neuro-controllers in an
artificial evolutionary process. Description of the
simulation environment, the implemented neuro-
controllers and their evolution through the use of
genetic algorithms, is given in the following sections.
The article also includes results and preliminary
conclusions on the use of ANN based controllers in
ER, advantages and disadvantages of permanent
adaptation, and the influence of the speed of
adaptation in the general behavior.

2. Evolutionary neuro-controllers and
simulation environment

2.1. Robot description

The robot used was Khepera [25] which provides a
simple model of mobile robot that is frequently used
in ER area.

The inputs to the neuro-controllers consist of the
readings of three distance sensors separated 45° one
from another in the frontal half of the robot and four
light sensors. Distance sensor outputs a positive
value if there is an obstacle in its direction and
within 15 length units of the robots. Light sensor’s
output value is negatively correlated to the angle
between the sensor and the source, and also to the
distance between robot an source. Fig. 1 shows the
sensors positions according to robot model.

Robot front side

Sensors

Front
30 ° right

45 ° right

60 ° right

30 ° left

45 ° left

60 ° left

Light sensor
Obstacle sensor

Fig. 1 - Sensory layout

2.2. The artificial neuro-controllers

The ANN based controllers used in the simulated
environment respond to the agent paradigm
described previously. The ANN selected for testing
correspond to Discrete-Time Neural Networks in the
way of PNN and FFNN networks.

Two classes of tests were developed. The first

 JCS&T Vol. 5 No. 4 December 2005

184

was related with non-recurrent networks (PNN and
FFNN) and the second one adding recurrence at
hidden level of the previous ones. The FFNN non-
recurrent network used is a simple network similar
to Braintenberg vehicle [21] in that they produce the
output signal in direct response to current range
sensor readings.

The single-layered recurrent networks have the
possibility of developing temporal processing. The
recurrent connections allow ANN to remember the
action taken at a previous temporal stage. According
to [2], controllers that can make use of temporal
information have the potential to outperform
completely reactive controllers considering simple
sensors used by the robots.

In evolutionary terms, only the weights of
FFNN networks were evolved, instead of other
parameters were evolved for PNN. These parameters
are signaled in section 2.3, in the same way as [18].

To implement the ANN based controller, two
neurons with sigmoid activation function were used
in the hidden layer. The output layer consisted of
one neuron with sigmoid activation function.

For FFNN networks several instances were
analyzed:

• Single FFNN without hidden-layer recurrence vs.
FFNN with hidden-layer recurrence

• Random weights initialization (RANDOM-INIT)
vs. apriori weight-sign initialization (PRESEL-
INIT) for FFNN with recurrence

• Randomized weight mutation (TOTAL-
MUTATION) vs. controlled mutation (PARTIAL-
MUTATION) for FFNN with recurrence.

For recurrent PNN, a priori vs. randomized sign
initialization was analyzed.

The typical network configuration used is
shown in Fig. 2. However setting recurrent weights
in the hidden layer to zero (dot arrows) allows to
remove recurrence connection to implement non-
recurrent networks.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Sensor 7
Full recurrent
hidden layer

Turn robot
left or right

(left side
of robot)

(right side
of robot)

Fig. 2 - The neural network topology. The input layer consists of
seven receptors fully connected to two hidden neurons. A set of
recurrent connections are added to the hidden units only for the
recurrent networks implemented. The hidden units were not
connected to two motor-actuators, which are connected to an
output neuron modeling the deviation robot angle.

2.3. The simulation environment

The simulation environment consists of planar
objects in which each component is a solid
occupying a space in this environment. The number
of objects is fixed to 10, and their position is
randomized. During each generation, the members
of the population are initialized to also random
locations in the environment space. This is a
continuous region in R2 allowing the simulation of
the robot’s movements. Also, there is one light
source in a random location. This light represents the
goal position to be reached by the robot.

In each environment, just one robot, which is
specified as a structure that maintain the robots
current position, number of sensors, and sensor input
readings, is simulated. In addition, both the neuro-
controller structure and the evolved algorithms are
associated with the robot.

It is important to remark that the robotic-agent
model does not consider actuators like motors and
wheels: only the robot deviation angle is considered
in each simulation step. This ideal (supervisory
control level) approach allows the robot to turn in
any direction or go straightforward.

2.4. The Simulation Environment

To carry out the tests, two simulation
environments were used: one for learning and the
other for validation.

The learning environment was represented by
two-dimensional rectangles (x, y). For experiments,
ten objects were ramdomicaly placed inside the
environment. In each generation, the population's
members (different instances of neuro-controllers for
the robot) were also initialized in random positions
inside the environment. Besides the obstacles, the
environment had a source of light in a random
position for each run. This light represents the goal
to be reached by the robot. Each environment that
allows the simulation of a run was specified as a
structure containing the robot and the objects
position (obstacles and lights). Furthermore, both
neuro-controller's structure and evolutionary
algorithms are associated to robot's instance
generated for the learning. Neither dynamic models
nor non-linealities in actuator model (motors and
wheels) were considered. Instead, in each simulation
step the angle of the robot's deviation regarding their
objective was taked into account.

When the learning stage is over, the best robot
controller was selected and it was evaluated in a
more complex simulator called YAKS [22]. The
results obtained are qualitatively similar to those
reached in the previous learning environment.

2.5. The evolutionary algorithm

Each neuro-controller was specified using an
evolutionary computing algorithm and tested into

 JCS&T Vol. 5 No. 4 December 2005

185

the environment. For PNN controller, the Hebbian
rules were determined according to [7][18]. While
for FFNN networks connection weights were
initialized with random values in [-2, 2] range, for
RANDOM -INIT configuration, or random values in
[0, 2] range with preselected sign, for PRESEL-INIT
setting.

The chromosome data structure (Table 1)
represent a controller like the one specified in [18]
for genetically determined controllers (e.g. FFNN)
(a sign and weight strength for each synapses), and
for adaptive synapse controllers (e.g. PNN) (a sign,
a specific Hebb-adaptive rule, and a learning rate).

Genotype
encoding Values for one synapse

FFNN sign weight

PNN sign Hebb rule rate

Table 1 - Genetic encoding for synaptic parameters. For FFNN
controllers, a signed weight for each synapse. For PNN
controllers, a weight-sign, one (of four) Hebbian rules and a
mutation rate [18].

According to [20], the adaptation ignores the

diversity. Referring to neuro-controllers’ mutations
in an evolutionary scale, diversity is related to a free
random selection of genetic values. Instead the
mutation criteria refers to a controlled random
selection of genetic mutation parameters (e.g.
synaptic weight mutations and its mutation rates). In
this work, weights are mutated with a fixed mutation
rate of 50%.

The mutation criterion selected for this work is
as follows. Each weight magnitude for a synaptic
connection in a FFNN network (genetically
determined controller) depends on the accumulated
adaptation by the evolutionary process [11], and it is
affected by a randomized adaptation rate in the [-2, 2]
range, for TOTAL-MUTATION configuration, or a
variation in [-0.25, 0.25] range over original mutated
weight, for PARTIAL-MUTATION setting, valid
only for FFNN. This small adaptation rate slowly
provokes mutations to the neuro-controller in an
evolutionary scale.

For FFNN case, weights (w) were mutated using

the following equation:

w = w + u * R (1)

where u is the mutation rate in [0, 1] range and R is a
randomized value in [-0.25, 0.25] range. The effect
of the weight mutation Eq. (1) is a slow drift from
one generation to another. Instead, for PNN the
mutation refers only to sign changes, while
variations in magnitude weight are determined by
Hebbian rules into the evaluation process.

This mutation criterion permits a neuro-

controller with good fitness to be close to several
descendants in the next generation in a genetic
mutation. As a result of this, descendants will be
also appropriately adapted to the environment,
taking advantage of the acquired experience.

2.6. The fitness function

The performance evaluation for each controller is
based on a variant of the performance fitness
function showed in [2]. The net offset between a
robot starting position and its final position, and
whether or not the robot becomes stuck within the
simulated environment are considered to write down
the fitness function. It is shown in equation (2).

F(ci) +1 if k1 ∧ k2
 F(ci) =
F(ci) else

(2)

where k1 relates the blocking of the robot near an
obstacle. Therefore, the controllers that are most
times blocked will obtain a lower fitness level than
others presenting an avoidance obstacle behavior;
and k2 states the offset between a robot’s starting and
final position. The refered fitness level is normalized
between the possible successful actions during the
controller life time (iterations). Fig. 3 shows the
fitness function evolution in the [0; 1] range.

A robot that cannot avoid objects will soon
became immobilized when its path is blocked,
obtaining the robot controller a low fitness result.

3. Results and discussion

Obstacle avoidance and navigation behaviors are
used in several tests in the ER literature [3]. They
consist of evolutionary training of specific neural
controllers to obstacles avoidance or towards
navigating to a specific point within enclosed areas
[2][19].

In our previous tests (e.g., [23][24]) and in [2] it
was found that single-hidden layer feed-forward
neural networks were capable to control robotic-
agents in a simulated environment, similar to the one
used in this work. It was possible when the robot
sensors were simple approximation sensor models.
A simple Braitenberg vehicle was implemented to
effectively perform the obstacle avoidance task
reasonably well in the simulated environment. The
Braitenber’s controller was selected because it had
no necessity of reading information fron the past to
overcome perceptual aliasing. These controllers had
no capacity for temporal processing.

Seven alternatives of FFNN and PNN networks
were trained with 30 genotypes (20 chromosome
each one) over 200 generations and 10 runs for each
neuro-controller (or phenotype). Evolved controllers
show different behaviors depending on the
initialization and mutation characteristics.
Particularly, neuro-controllers with pre -selected

 JCS&T Vol. 5 No. 4 December 2005

186

weight-sign and/or controlled weight mutation
evolved better than others with random initialization
and mutation. It reffers to controllers with shortest
navigational paths. The robotic-agent in each test
signaled was evolved with a standard mutation
criteria for PNN and a generational mutation criteria
for FFNN.

It was found that TRNN_PRESEL_MUTPAR
configuration on FFNN produces the best results in
least amount of simulation time (or generations).
Networks settings described in section 2.1 were
tested with fixed synaptic weights, and with
randomized weights (Fig. 3). According to
performed test controllers with preselected weight-
sign and/or controlled weight mutation evolved
better than others.

Fig. 3 shows the average of fitness evolution
generated during a typical run for the tested
recurrent FFNN configurations. At each generation
the best, the worst, and the average controller
behavior performances were recorded.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 10 19 28 37 46 55 64 73 82 9 1 100 109 118 127 136 145 154 163 172 181 190 199

Generation

Fi
tn

es
s

TRNN_RND_MUTPAR TRNN_PRESEL_MUTPAR FFNN_RND_MUTRND

(a)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 10 1 9 28 37 46 55 64 73 82 91 100 109 118 127 1 3 6 145 154 163 172 181 190 199

Generation

Fi
tn

es
s

Lineal (TRNN_RND_MUTPAR) Lineal (FFNN_RND_MUTRND) Lineal (TRNN_PRESEL_MUTPAR)

(b)

Fig. 3 – Results from three evolutionary generations. In this graph,
(a) the fitness function is plotted against generation for best
(TRNN_PRESEL_MUTPAR), medium (FFNN_RND_
MUTRND), and worst (TRNN_RND_MUTPAR) studied
controllers; (b) lineal tendency for best, medium, and worst
controllers. Evolved controllers shows different behaviors
depending on the initialization and mutation characteristics.

Fig. 4 shows the average of fitness evolution
generated during a typical run for the tested PNN
configurations (with total and controlled weight-sign
mutation) and recurrent FFNN with a priori weight-
sign initialization and controlled weight mutation
(best controller of Fig. 3). Training performance was
averaged for each controller for one simulation of
200 steps each one with selection and mutation
processes.

0.45

0.5

0.55

0.6

0.65

0.7

0.75

1 10 19 28 37 46 55 64 73 82 9 1 100 109 118 127 136 145 154 163 172 181 190 199

Generation

Fi
tn

es
s

PNN_PRESEL PNN_RND TRNN_RND_MUTPAR

Fig. 4 - Comparative fitness evolution for the best controller of
figure 3 (TRNN_PRESEL_MUTPAR) and two alternative PNN
controllers (with total and controlled weight-sign mutation).

The results of the mutation criteria selected in
this work (section 2.3) shows that the controlled
mutation does not present advantages over those
with non-controlled mutations. It means that
diversity is more powerful than controlled
adaptations.

Simulation shows that the robotic-agent is able
to avoid obstacle with recurrent configuration after
encountering an obstacle and backing out of sensor
range. Robotic-agent also displayed movement
sequences appreciated before in time. This indicates
that the neuro-controller with evolving capabilities
proposed in this work resort to previous responses as
expected (Fig. 5.b). In addition, it was appreciated
the robot lost the light source when it passed near
this point, because the robot light-sensors did not
receive these stimules.

(a)

(b)

Fig. 5. An example of simulated movement of the robot with
neuro-controller for obstacle avoidance. The lines indicate the
paths taken by the robot during the curse of the simulation, and
the red point represents the light source or robot goal point.
Figure 5. a - for non-recurrent FFNN network and Figure 5. b -
for recurrent PNN network, both of them with no weight-sign
initialization (random initialization).

 JCS&T Vol. 5 No. 4 December 2005

187

4. Conclusions and future work

The work presented here describe in general terms
robot controllers instantiated in simulated obstacle
avoidance environment. Different neuro-controllers
were evolved in simulation and the best of them was
selected in each generation to obtain an appropriate
final controller. The robot model was developed
based on evolutionary and adaptive criteria.

Some recurrent neuro-controllers showed
special behavior: they have a tendency to do circular
movements after avoiding an obstacle. Also, a more
detailed study of the sensors layout should be
developed to avoid erratic behaviors when the robot
finds the goal.

This work demonstrates once more the
feasibility in application of ANN based controllers
on ER, showing its potentials as regards as
adaptability and learning behaviors.

Future work will be related to obtain neuro-
controllers with architectures like the one presented
here or similar, for mobile robots in real physical
environments.

Acknowledgments

To the R+D network RIDIAAR (Red de Inves-
tigación y Desarrollo en Inteligencia Artificial
Aplicada a Robótica), conformed by the
INTELYME e INTIA Groups, supported by the
UNICEN.

This research was also partially supported by a
Marie-Curie International Fellowship within the 6th
European Community Framework Programme
(Project 03027 – AUVI).

5. References
[1] D. O. Hebb. A Textbook of Psychology. Philadelphia,

PA., W. B. Saunders, 1958, pp 44-45.
[2] A. L. Nelson; E. Grant; J. M. Galeotti; S. Rhody.

Maze exploration behaviors using an integrated
evolutionary robotic environment. Robotic and
Autonomous Systems 46. 2004, pp. 159-173.

 [3] Nolfi S. and Floreano, D. Evolutionary Robotics: The
Biology, Intelligence, and Technology of Self-
Organizing Machines. MA: MIT Press/Bradford
Books. 2000.

[4] Elio Tuci, Inman Harvey, and Matt Quinn. Evolving
integrated controllers for autonomous learning robots
using dynamic neural networks. Proceedings of The
Seventh International Conference on the Simulation
of Adaptive Behavior (SAP’02), 4-9 August 2002,
Edimburgh, UK.

 [5] Lipson, H. Uncontrolled Engineering: A review of
Nolfi and Floreano’s Evolutionary Robotics. 2000.

[6] Urzelai, J. and Floreano, D. Evolution of adaptive
synapses: Robots with fast adaptive behavior in new
environments. Evolutionary Computation, 9:495-524.
2001.

[7] E. Tuci, M. Quinn. Behavioural plasticit y in
autonomous agents: a comparison between two types
of controller. Proceedings of The Second European
Workshop on Evolutionary Robotics EvoROB2003,
14-16 April 2003, Essex, UK, pp. 661-672.

[8] S. Russell and P. Norvig. Artificial Intelligence: A
Modern Approach, Prentice-Hall, Inc. 1995.

[9] D. Cliff; I. Harvey, and P. Husbands. Explorations in

Evolutionary Robotics. Adaptive Behavior, 2:73-110.
1993.

[10] Nolfi, S. Adaptation as a more powerful than
decomposition and integration: Experimental
evidences from evolutionary robotics. In P. K.
Simpson (Ed.), Proceedings of the IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE’98),
New York: IEEE Press, 141-146. 1998.

[11] D. Floreano. Ago Ergo Sum. In Mulhauser, G. Editor,
Evolving Consciousness. Benjamins Press, New
York. 1997.

[12] L. Steels. Building agents out of autonomous
behavior systems. In L. Steels and R. Brooks, editors.
The Artificial Life route to Artificial Intelligence
building situated embodied agents, pp. 102-137.
Lawrence Erlbaum, New Haven, 1993.

[13] C. Fernando. Accumulation of Adaptations in Plastic
Neural Networks. MSc. Dissertation. COGS,
University of Sussex. 2002.

[14] D. Floreano and F. Mondada. Evolutionary
Neurocontrollers for autonomous Mobile Robots.
Neural Networks, 11:1461-1478, 1998.

[15] J. A. Driscoll, R. A. Peters II. A development
environment for evolutionary robotics. Proceedings
of the 2000 IEEE International Conference on
Systems, Man, and Cybernetics, vol., pp. 3841-3845.
2000.

[16] D. Floreano and J. Urzelai. Neural morphogenesis,
synaptic plasticity, and evolution. Theory in
Biosciences, 120 (3-4), 223-238. 2001.

[17] S. Nolfi and D. Floreano. Learning and evolution.
Autonomous Robots, 7(1): 89-113, 1999.

[18] Floreano, D. and Urzelai, J. (1999) Evolution of
Adaptive-Synapse Controllers. In D. Floreano et al.
(Eds.), Advances in Artificial Life. Proceedings of the
5th European Conference on Artificial Life, Berlin:
Springer Verlag. (ECAL'1999). 1999.

[19] Togelius, J. Evolution of th Layers in a Subsumption
Architecture Robot Controller. Master of Science in
Evolutionary and Adaptive Systems. University of
Sussex, UK. 2003.

[20] D. E. Goldberg. Genetic Algorithms in search,
optimization, and machine learning. Addison-Wesley.
1989.

[21] Braitenberg, V. Vehicles: Experiments in synthetic
psychology. Cambridge, MA: MIT Press. 1984.

[22] Karlson, J. YAKS Yet Another Khepera Simulator.
URL: http://r2d2.ida.his.se/ . 2002.

[23] Fernández León, J. A.; Tosini, M.; Acosta, G. G.
Evolutionary Reactive Behavior for Mobile Robots
Navigation. IEEE Conference on Cybernetics and
Intelligent Systems (CIS). Proceedings of the 2004
IEEE CIS, Singapore, pp. 532-537. 2004.

[24] Fernández León, J. A.; Acosta, G. G.; Mayosky,
Miguel A. Estudio de Neuro-Controladores
Evolutivos para Navegación de Ro bots Autónomos.
Maestría en Ingeniería de Sistemas. UNCPBA,
Argentina.2005.

[25] Khepera, mini robot. K-Team. http://www.k-
team.com/robots/khepera /index.html. 2004.

 JCS&T Vol. 5 No. 4 December 2005

188

