45 research outputs found

    Structure Theorem and Isomorphism Test for Graphs with Excluded Topological Subgraphs

    Get PDF
    We generalize the structure theorem of Robertson and Seymour for graphs excluding a fixed graph HH as a minor to graphs excluding HH as a topological subgraph. We prove that for a fixed HH, every graph excluding HH as a topological subgraph has a tree decomposition where each part is either "almost embeddable" to a fixed surface or has bounded degree with the exception of a bounded number of vertices. Furthermore, we prove that such a decomposition is computable by an algorithm that is fixed-parameter tractable with parameter H|H|. We present two algorithmic applications of our structure theorem. To illustrate the mechanics of a "typical" application of the structure theorem, we show that on graphs excluding HH as a topological subgraph, Partial Dominating Set (find kk vertices whose closed neighborhood has maximum size) can be solved in time f(H,k)nO(1)f(H,k)\cdot n^{O(1)} time. More significantly, we show that on graphs excluding HH as a topological subgraph, Graph Isomorphism can be solved in time nf(H)n^{f(H)}. This result unifies and generalizes two previously known important polynomial-time solvable cases of Graph Isomorphism: bounded-degree graphs and HH-minor free graphs. The proof of this result needs a generalization of our structure theorem to the context of invariant treelike decomposition

    Fixed-parameter tractable canonization and isomorphism test for graphs of bounded treewidth

    Get PDF
    We give a fixed-parameter tractable algorithm that, given a parameter kk and two graphs G1,G2G_1,G_2, either concludes that one of these graphs has treewidth at least kk, or determines whether G1G_1 and G2G_2 are isomorphic. The running time of the algorithm on an nn-vertex graph is 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5, and this is the first fixed-parameter algorithm for Graph Isomorphism parameterized by treewidth. Our algorithm in fact solves the more general canonization problem. We namely design a procedure working in 2O(k5logk)n52^{O(k^5\log k)}\cdot n^5 time that, for a given graph GG on nn vertices, either concludes that the treewidth of GG is at least kk, or: * finds in an isomorphic-invariant way a graph c(G)\mathfrak{c}(G) that is isomorphic to GG; * finds an isomorphism-invariant construction term --- an algebraic expression that encodes GG together with a tree decomposition of GG of width O(k4)O(k^4). Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies or the construction terms for G1G_1 and G2G_2 are equal.Comment: Full version of a paper presented at FOCS 201

    Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs

    Get PDF
    We show that the model-checking problem for successor-invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topological subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input formula and the width of the poset. Our result for successor-invariant FO extends previous results for this logic on planar graphs (Engelmann et al., LICS 2012) and graphs with excluded minors (Eickmeyer et al., LICS 2013), further narrowing the gap between what is known for FO and what is known for successor-invariant FO. The proof uses Grohe and Marx's structure theorem for graphs with excluded topological subgraphs. For order-invariant FO we show that Gajarsk\'y et al.'s recent result for FO carries over to order-invariant FO

    Planar graphs have bounded nonrepetitive chromatic number

    Get PDF
    A colouring of a graph isnonrepetitiveif for every path of even order, thesequence of colours on the first half of the path is different from the sequence of colours onthe second half. We show that planar graphs have nonrepetitive colourings with a boundednumber of colours, thus proving a conjecture of Alon, Grytczuk, Hałuszczak and Riordan(2002). We also generalise this result for graphs of bounded Euler genus, graphs excluding afixed minor, and graphs excluding a fixed topological minor
    corecore