
http://wrap.warwick.ac.uk

Original citation:
Lokshtanov, Daniel, Pilipczuk, Marcin, Pilipczuk, Michal and Saurabh, Saket (2014) Fixed-
parameter tractable canonization and isomorphism test for graphs of bounded treewidth. In:

2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), Philadelphia,
PA, 18-21 Oct 2014. Published in: Proceedings of 2014 IEEE Annual Symposium on
Foundations of Computer Science pp. 186-195.

Permanent WRAP url:
http://wrap.warwick.ac.uk/66066

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/29192937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/66066
mailto:publications@warwick.ac.uk

Fixed-parameter tractable canonization and isomorphism test

for graphs of bounded treewidth∗

Daniel Lokshtanov † Marcin Pilipczuk ‡ Micha l Pilipczuk § Saket Saurabh¶

Abstract

We give a fixed-parameter tractable algorithm that, given a parameter k and two graphs
G1, G2, either concludes that one of these graphs has treewidth at least k, or determines
whether G1 and G2 are isomorphic. The running time of the algorithm on an n-vertex graph
is 2O(k5 log k) · n5, and this is the first fixed-parameter algorithm for Graph Isomorphism
parameterized by treewidth.

Our algorithm in fact solves the more general canonization problem. We namely design a
procedure working in 2O(k5 log k) ·n5 time that, for a given graph G on n vertices, either concludes
that the treewidth of G is at least k, or:

• finds in an isomorphic-invariant way a graph c(G) that is isomorphic to G;

• finds an isomorphism-invariant construction term — an algebraic expression that encodes
G together with a tree decomposition of G of width O(k4).

Hence, the isomorphism test reduces to verifying whether the computed isomorphic copies or
the construction terms for G1 and G2 are equal.

∗A preliminary version of this paper has been presented at FOCS 2014. D. Lokshtanov is supported by the BeHard
grant under the recruitment programme of the of Bergen Research Foundation. The research of M. Pilipczuk and
M. Pilipczuk leading to these results has received funding from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n. 267959. S. Saurabh is supported
by PARAPPROX, ERC starting grant no. 306992.
†Department of Informatics, University of Bergen, Norway, daniello@ii.uib.no.
‡Department of Computer Science, University of Warwick, UK, M.Pilipczuk@dcs.warwick.ac.uk.
§Institute of Informatics, University of Warsaw, Poland, michal.pilipczuk@mimuw.edu.pl.
¶Institute of Mathematical Sciences, India, saket@imsc.res.in, and Department of Informatics, University of

Bergen, Norway, Saket.Saurabh@ii.uib.no.

1 Introduction

Graph Isomorphism is one of the most fundamental graph problems: given two graphs G1, G2,
decide whether G1 and G2 are isomorphic, i.e., there exists a bijection φ between V (G1) and V (G2)
such that uv ∈ E(G1) if and only if φ(u)φ(v) ∈ E(G2). Despite extensive research on the topic, it
is still unknown whether the problem can be solved in polynomial time. On the other hand, there
are good reasons to believe that Graph Isomorphism is not NP-hard either, since NP-hardness of
Graph Isomorphism would imply a collapse of the polynomial hierarchy [35].

A significant amount of effort has been put into understanding and broadening the spectrum
of classes of graphs where polynomial-time isomorphism tests can be designed. Perhaps the
most important example is the classic algorithm of Babai and Luks [3, 28], which solves Graph
Isomorphism on graphs of maximum degree d in time nO(d). On the other hand, following
polynomial-time solvability of Graph Isomorphism on planar graphs [21, 22, 23, 38] it has
been investigated how more general topological constraints can be exploited to design efficient
algorithms for the problem. Isomorphism tests for graphs of genus g working in time nO(g) were
proposed independently by Filotti and Mayer [16] and by Miller [29]. These results were improved by
Ponomarenko [32], who gave an O(nf(|H|)) algorithm for graphs excluding a fixed graph H as a minor,
for some function f . The result of Ponomarenko implies also that Graph Isomorphism can be solved
in polynomial time on graphs of constant treewidth. A simple algorithm for graphs of treewidth
k running in time O(nk+4.5) was independently given by Bodlaender [5]. Finally, we mention the
result of Arnborg and Proskurowski [2], who gave canonical representation of partial 2- and 3-trees.

Recently, Grohe and Marx [18, 19] obtained a structure theorem for graphs excluding a fixed graph
H as a topological minor. This theorem roughly states that such graphs can be decomposed along
small separators into parts that are either H-minor-free, or of almost bounded degree (in terms of |H|).
Using previous algorithms for H-minor-free graphs [32] and bounded-degree graphs [3, 28], they man-
aged to show that Graph Isomorphism can be solved inO(nf(|H|)) time forH-topological-minor-free
graphs, for some function f . Note that this result generalizes both the algorithms for Graph
Isomorphism on minor free-graphs [32] and on bounded degree graphs [3, 28]. The work of Grohe
and Marx constitutes the current frontier of polynomial-time solvability of Graph Isomorphism.

Observe that in all the aforementioned results the exponent of the polynomial depends on the
considered parameter, be it the maximum degree, genus, treewidth, or the size of the excluded
(topological) minor. In the field of parameterized complexity such algorithms are called XP algo-
rithms (for slice-wise polynomial), and are often compared to the more efficient FPT algorithms (for
fixed-parameter tractable), where the running time is required to be of the form f(k) · nc. Here k is
the parameter, f is a computable function, and c is a universal constant independent of k. One of the
main research directions in parameterized complexity is to consider problems that admit XP algo-
rithms and determine whether they admit an FPT algorithm; we refer to the monographs [15, 17] for
more information on parameterized complexity. It is therefore natural to ask which of the the afore-
mentioned results on Graph Isomorphism can be improved to fixed-parameter tractable algorithms.

Prior to this work very little was known about such improvements. In particular, the existence
of FPT algorithms for Graph Isomorphism parameterized by maximum degree, genus or treewidth
of the input graph have remained intriguing open problems. A reader familiar with the algorithmic
aspects of treewidth might find it surprising that the existence of an FPT algorithm for Graph
Isomorphism parameterized by treewidth is a difficult problem. The parameter has been studied in-
tensively during the last 25 years, and is quite well-understood. Many problems that are very hard on
general graphs become polynomial time, or even linear-time solvable on graphs of constant treewidth.
For the vast majority of these problems, designing an FPT algorithm parameterized by treewidth
boils down to designing a straightforward dynamic programming algorithm over the decomposition.

1

For Graph Isomorphism this is not the case, even the relatively simple O(nk+4.5) time algorithm
of Bodlaender [5] is structurally quite different from most algorithms on bounded treewidth graphs.
This might be the reason why Graph Isomorphism was one of very few remaining problems of funda-
mental nature, whose fixed-parameter tractability when parameterized by treewidth was unresolved.

Therefore, fixed-parameter tractability of Graph Isomorphism parameterized by treewidth has
been considered an important open problem in parameterized complexity for years. This question
(and its weaker variants for width measures lower-bounded by treewidth) was asked explicitly
in [9, 10, 18, 24, 27, 30, 39], and appears on the open problem list of the recent edition of the
monograph of Downey and Fellows [15].

Most of the related work on the parameterized complexity of Graph Isomorphism with respect
to width measures considers parameters that are always at least as large as treewidth. The hope
has been that insights gained from these considerations might eventually lead to settling the main
question. In particular, fixed-parameter tractable algorithms for Graph Isomorphism has been
given for the following parameters: tree-depth [10], feedback vertex set number [27], connected
path distance width [30], and rooted tree distance width [39]. Very recent advances by Otachi and
Schweitzer [31] give FPT algorithms for parameterizations by root-connected tree distance width
and by connected strong treewidth. Even though all these parameters are typically much larger
than treewidth, already settling fixed-parameter tractability for them required many new ideas and
considerable technical effort. This supports the statement by Kawarabayashi and Mohar [24] that
“[...] even for graphs of bounded treewidth, the graph isomorphism problem is not trivial at all”.

Our results. In this paper we answer the question of fixed-parameter tractability of Graph
Isomorphism parameterized by treewidth in the affirmative, by proving the following theorem:

Theorem 1.1. There exists an algorithm that, given an integer k and two graphs G1, G2 on n
vertices, works in time 2O(k5 log k) ·n5 and either correctly concludes that tw(G1) ≥ k or tw(G2) ≥ k,
or determines whether G1 and G2 are isomorphic.

In fact, we prove a stronger statement, that is, we provide a canonization algorithm for graphs of
bounded treewidth. This can be defined in two manners. First, following the formalism of Grohe and
Marx [18, 19], we show an algorithm that, given G, constructs a canonical graph c(G) on the vertex
set {1, 2, . . . , |V (G)|} isomorphic to G, such that c(G1) = c(G2) whenever G1 and G2 are isomorphic.

Theorem 1.2. There exists an algorithm that, given an integer k and a graph G on n vertices, works
in time 2O(k5 log k) · n5 and either correctly concludes that tw(G) ≥ k or outputs, in an isomorphic-
invariant way, a graph c(G) that is isomorphic to G, together with a mapping φ : V (G)→ V (c(G))
that certifies this isomorphism.

A second way is through so-called construction terms, defined formally in Section 6: they are alge-
braic expressions encoding construction procedures for graphs of bounded treewidth. Thus, construc-
tion terms can be seen as an alternative definition of treewidth via graph grammars (see Lemma 6.1).

Theorem 1.3. There exists an algorithm that, given a graph G and a positive integer k, in time
2O(k5 log k) · n5 either correctly concludes that tw(G) ≥ k, or outputs an isomorphism-invariant term
t that constructs G and uses at most O(k4) labels. Moreover, this term has length at most O(k4 · n).

The approach to treewidth and tree decompositions via graph grammars and tree automata
dates back to the earliest works on this subject, and is the foundation of intensive research on links
between treewidth and monadic second-order logic; we refer to a recent monograph of Courcelle
and Engelfriet [12] for a more thorough introduction. Unfortunately there is currently no agreed

2

standard notation for these concepts. In order to ensure clarity of notation, we introduce our own
formalism in Section 6.1.

Let us point out that for all the aforementioned classes where Graph Isomorphism can be
solved in XP time, corresponding XP canonization algorithms were also developed: for bounded-
degree graphs by Babai and Luks [3], for H-minor-free graphs by Ponomarenko [32], and for
H-topological-minor-free graphs by Grohe and Marx [18, 19].

We also remark that Theorems 1.1 and 1.2 are straightforward corollaries of Theorem 1.3. For The-
orem 1.1, we apply the algorithm of Theorem 1.3 to both G1 and G2, and verify whether the obtained
terms are equal. Similarly, for Theorem 1.2, we may order the vertices of the input graph G according
to the order of they appearance in the canonical term. Formal proofs are provided in Section 6.3.

Our techniques. We now sketch the main ideas behind the proof of Theorem 1.3. The starting
point is the classic algorithm of Bodlaender [5] that resolves isomorphism of graphs of treewidth
k in time O(nk+4.5). Essentially, this algorithm considers all the (k + 1)-tuples of vertices of each
of the graphs as potential bags of a tree decomposition, and tries to assemble both graphs from
these building blocks in the same manner using dynamic programming. It turns out that with a
slight modification, the algorithm of Bodlaender can be extended to solve the canonization problem
as well. We now direct our attention to speeding up the algorithm.

Our idea is the following: if we were able to constrain ourselves to a small enough family of
potential bags, then basically the same algorithm restricted to the pruned family of states would
work in FPT time. For this to work we need the family to be of size f(k) · nc for some function
f and constant c. Furthermore, we would need an algorithm that given as input the graph G,
computes this family in FPT time. Finally, we would need this family of bags to be isomorphism
invariant. Informally, we want the pruned family of bags to only depend on the (unlabelled) graph
G, and not on the labelling of vertices of G given as input. A formal definition of what we mean
by isomorphism invariance is given in the preliminaries.

Therefore, the goal is to find a family B ⊆ 2V (G) of potential bags that is on one hand
isomorphism-invariant and reasonably small, and on the other hand it is rich enough to contain
all the bags of some tree decomposition of width at most g(k), for some function g. Coping with
this task is the main contribution of this paper, and this is achieved in Theorems 3.4, 4.2, and 5.5.
The idea that finding an isomorphism-invariant family of potential bags of size f(k) · nc is sufficient
for designing an isomorphism test was first observed by Otachi and Schweitzer [31].1 However, their
approach for proving this initial step is completely different.

The crucial idea of our construction of a small isomorphism-invariant family of bags is to
start with the classic 4-approximation algorithm for treewidth given in the Graph Minors series
by Robertson and Seymour [33]; we also refer to the textbook of Kleinberg and Tardos [25] for
a comprehensive exposition of this algorithm. Since a good understanding of this algorithm is
necessary for our considerations, let us recall it briefly.

The algorithm of Robertson and Seymour constructs a tree decomposition of the input graph
G in a top-down manner. More precisely, it is a recursive procedure that at each point maintains a
separator S of size at most 3k +O(1), which separates the part of G we are currently working with
(call it H) from the rest. The output of the procedure is a tree decomposition of H with the set
S as the top adhesion. At each recursive call the algorithm proceeds as follows. If S is small, the
algorithm adds to S an arbitrarily chosen vertex u ∈ V (H). If S is large, the algorithm attempts to

1We remark that even though the work of Otachi and Schweitzer was announced almost simultaneously with
our work, we believe it should be considered prior to our results. Their results were presented at a Shonan meeting
as early as in May 2013 [20].

3

break S into two roughly equal-sized pieces using a separator X of size at most k+ 1. The fact that
the graph has treewidth at most k ensures that such a separator X will always exist. The new set S′,
defined as S∪{u} or S∪X, becomes the top-most bag. Below this bag we attach tree decompositions
obtained from the recursive calls for instances (H := G[N [Z]], S := N(Z)), where Z iterates over
the family of vertex sets of the connected components of H \ S′. The crucial point is that if S is
large (of size roughly 3k) and X is of size at most k+1, then every such component Z will neighbour
at most |S| vertices of S′, and hence the size of S will not increase over the course of the recursion.

Our high-level plan is to modify this algorithm so that it works in an (almost) isomorphism-
invariant manner, and then return all the produced bags as the family B. At a glance, it seems
that the algorithm inherently uses two ‘very non-canonical’ operations: adding an arbitrarily chosen
vertex u and breaking S using an arbitrarily chosen separator X. Especially canonizing the choice
of the separator X seems like a hard nut to crack. We circumvent this obstacle in the following
manner: we take X to be the union of ‘all possible’ separators that break S evenly. The problem
that now arises is that it is not clear how to bound the number of neighbours in S′ = S ∪X that
can be seen from a connected component we want to recurse on; recall that we needed to bound
this number by |S|, in order to avoid an explosion of the bag sizes throughout the course of the
algorithm. The crucial technical insight of the paper, proved in Lemma 3.2, is that if one defines
‘all possible separators’ in a very careful manner, then this bound holds. The proof of Lemma 3.2
relies on a delicate argument that exploits submodularity of vertex separations.

Even if the problem of canonizing the choice of X is solved, we still need to cope with the
arbitrary choice of u in case S is small. It turns out that the problem appears essentially only if
the set S is very well connected: for every two vertices x, y ∈ S, the vertex flow between x and y
is more than k. In other words, the set S constitutes a clique separator in the k-improved graph
of G, i.e., a graph derived from G by making every pair of vertices with vertex flow more than k
adjacent. It is known that for the sake of computing tree decompositions of width k one can focus
on the k-improved graph rather than the original one (see, e.g., [6] and Lemma 2.6). Therefore, our
algorithm will work without any problems provided that the k-improved graph of the input one does
not admit any clique separators. The produced tree decomposition has width 2O(k log k), due to a
possibly exponential number of separators breaking S at each step, and is isomorphism-invariant up
to the choice of a single vertex from which the whole procedure begins. By running the algorithm
from every possible starting point and computing the union of the families of bags of all the obtained
decompositions, we obtain an isomorphism-invariant family of potential bags of size O(n2). This
result is obtained in Theorem 3.4, which summarizes the case when no clique separators are present.

However, the behaviour of clique separators in the graph has been well understood already in the
1980s, starting from the work of Tarjan [36], and studied intensively from a purely graph-theoretical
viewpoint. It turns out that all inclusion-wise minimal clique separators of a graph form a tree-like
structure, giving raise to so-called clique minimal separator decomposition, which decomposes the
graph into pieces that do not admit any clique separators. These pieces are often called atoms.
Most importantly for us, the set of atoms of a graph is isomorphism-invariant, and can be computed
in polynomial time. Therefore, in the general case we can compute the clique minimal separator
decomposition of the k-improved graph of the input graph, run the algorithm for the case of no
clique separators on each atom separately, and finally output the union of all the obtained families.
This result is obtained in Theorem 4.2. We refer to the introductory paper of Berry et al. [4] for
more information on clique separators.

The family B given by Theorem 4.2 is essentially already sufficient for running the modified
algorithm of Bodlaender [5] on it, and thus resolving fixed-parameter tractability of Graph Isomor-
phism parameterized by treewidth. However, the bags contained in the family B may be of size as
much as 2O(k log k). Our canonization algorithm considers every permutation of every candidate bag.

4

Hence, this would result in a double-exponential dependence on k in the running time. In Section 5
we demonstrate how to reduce this dependence to 2poly(k). More precisely, we prove that instead of
the original family B, we can consider a modified family B′ constructed as follows: for every B ∈ B,
we replace B with all the subsets of B that have size O(k4). Thus, every bag of B gives raise to(
2O(k log k)

O(k4)

)
= 2O(k5 log k) sets in B′, and hence |B′| ≤ 2O(k5 log k) · |B|. However, now every bag of B′

has only 2O(k4 log k) possible permutations, instead of a number that is double-exponential in k. In
this manner, we can trade a possible explosion of the size of the constructed family for a polynomial
upper bound on the cardinality of its members. This trade-off is achieved in Theorem 5.5, and leads
to a better time complexity of the canonization algorithm.

Organization of the paper. Section 2 contains preliminaries. Sections 3, 4, 5 contain proofs of
Theorems 3.4, 4.2, 5.5, respectively. In Section 6 we utilize Theorem 5.5 to present the canonization
algorithm, i.e., to prove Theorems 1.1 and 1.3. In particular, Section 6.1 introduces the formalism
of construction terms. In Section 7 we gather concluding remarks. Proofs of lemmas denoted by
(♠) are straightforward, and have been moved to the appendix in order not to disturb the flow of
the arguments.

2 Preliminaries

In most cases, we use standard graph notation, see e.g. [14].

Separations, separators, and clique separators. We recall here standard definitions and
facts about separations and separators in graphs.

Definition 2.1 (separation). A pair (A,B) where A ∪ B = V (G) is called a separation if
E(A\B,B \A) = ∅. The separator of (A,B) is A∩B and the order of a separation (A,B) is |A∩B|.

Let X,Y ⊆ V (G) be two not necessarily disjoint subsets of vertices. Then a separation (A,B) is
an X −Y separation if X ⊆ A and Y ⊆ B. The classic Menger’s theorem states that for given X,Y ,
the minimum order of an X−Y separation is equal to maximum vertex-disjoint flow between X and
Y in G. This minimum order (denoted further µ(X,Y)) can be computed in polynomial time, using
for instance the Ford-Fulkerson algorithm. Moreover, among the X − Y separations of minimum
order there exists a unique one with inclusion-wise minimal A, and a unique one with inclusion-wise
minimal B. We will call these minimum-order X − Y separations pushed towards X and pushed
towards Y , respectively. It is known that the Ford-Fulkerson algorithm can actually find the
minimum order X − Y separations that are pushed towards X and Y within the same running time.

For two vertices x, y ∈ V (G), by µ(x, y) we denote the minimum order of a separation (A,B)
in G such that x ∈ A \B and y ∈ B \A. Note that if xy ∈ E(G) then such a separation does not
exist; in such a situation we put µ(x, y) = +∞. Again, classic Menger’s theorem states that for
nonadjacent x and y, the value µ(x, y) is equal to the maximum number of internally vertex-disjoint
x− y paths that can be chosen in the graph, and this value can be computed in polynomial time
using the Ford-Fulkerson algorithm. The notions of minimum-order separations pushed towards
x and y are defined analogously as before. If the graph we are referring to is not clear from the
context, we put it in the subscript by the symbol µ.

We emphasize here that, contrary to X − Y separations, in an x − y separation we require
x ∈ A \B and y ∈ B \A, that is, the separator A ∩B cannot contain x nor y. This, in particular,
applies to minimum-order x− y separations pushed towards x or y.

5

Definition 2.2 (clique separation). A separation (A,B) is called a clique separation if A\B 6= ∅,
B \A 6= ∅, and A ∩B is a clique in G.

Note that an empty set of vertices is also a clique, hence any separation with an empty separator
is in particular a clique separation. We will say that a graph is clique separator free if it does not
admit any clique separation. Such graphs are often called also atoms, see e.g. [4]. From the previous
remark it follows that every clique separator free graph is connected.

Tree decompositions. In this paper it is most convenient to view tree decompositions of graphs
as rooted. The following notation originates in Marx and Grohe [19], and we use an extended
version borrowed from [13].

Let T be a rooted tree and let t be any non-root node of T . The parent of t in T will be denoted
by parent(t). A node s is a descendant of t, denoted s � t, if t lies on the unique path connecting
s to the root. We will also say that t is an ancestor of s. Note that in this notation every node
is its own descendant as well as its own ancestor.

Definition 2.3 (tree decomposition). A tree decomposition of a graph G is a pair (T, β), where
T is a rooted tree and β : V (T)→ 2V (G) is a mapping such that:

• for each node v ∈ V (G), the set {t ∈ V (G) | v ∈ β(t)} induces a nonempty and connected
subtree of T ,

• for each edge e ∈ E(G), there exists t ∈ V (T) such that e ⊆ β(t).

Sets β(t) for t ∈ V (T) are called the bags of the decomposition, while sets β(s)∩β(t) for st ∈ E(T)
are called the adhesions. We sometimes implicitly identify a node of T with the bag associated
with it. The width of a tree decomposition T is equal to its maximum bag size decremented by
one, i.e., maxt∈V (T) |β(t)| − 1. The adhesion width of T is equal to its maximum adhesion size, i.e.,
maxst∈E(T) |β(s) ∩ β(t)|. We define also additional mappings as follows:

γ(t) =
⋃
u�t

β(u),

σ(t) =

{
∅ if t is the root of T
β(t) ∩ β(parent(t)) otherwise,

α(t) = γ(t) \ σ(t).

The treewidth of a graph, denoted tw(G), is equal to the minimum width of its tree decomposition.
Let us remark that in this paper we will be mostly working with graphs of treewidth less than k,
while most of the literature on the subject considers graphs of treewidth at most k. This irrelevant
detail will help us avoid clumsy additive constants in many arguments.

If B ⊆ 2V (G) is a family of subsets of vertices, then we say that B captures a tree decomposition
(T, β) if β(t) ∈ B for each t ∈ V (T). In this context we often call B a family of potential bags.

Graphs of treewidth at most k are known to be k-degenerate, that is, every subgraph of a graph
of treewidth at most k has a vertex of degree at most k. This in particular implies that an n-vertex
graph of treewidth at most k can have at most kn edges.

Let G be a graph and let S ⊆ V (G). We say that a separation (A,B) in G is α-balanced for S
if |(A \B) ∩ S|, |(B \A) ∩ S| ≤ α|S|. The following lemma states that graphs of bounded treewidth
provide balanced separations of small order.

Lemma 2.4 ([7]). Let G be a graph with tw(G) < k and let S ⊆ V (G) be a subset of vertices.
Then there exists a 2

3 -balanced separation for S of order at most k.

6

Improved graph. For a positive integer k, we say that a graph H is k-complemented if the
implication (µH(x, y) ≥ k)⇒ (xy ∈ E(H)) holds for every pair of vertices x, y ∈ V (H). For every
graph G we can construct a k-improved graph G〈k〉 by having V (G〈k〉) = V (G) and xy ∈ E(G〈k〉)
if and only if µG(x, y) ≥ k. Observe that G〈k〉 is a supergraph of G, since µG(x, y) = +∞ for all
x, y that are adjacent in G. Moreover, observe that every k-complemented supergraph of G must be
also a supergraph of G〈k〉. It appears that G〈k〉 is k-complemented itself, and hence it is the unique
minimal k-complemented supergraph of G.

Lemma 2.5 ([8, 11],♠). For every graph G and positive integer k, the graph G〈k〉 is k-complemented.
Consequently, it is the unique minimal k-complemented supergraph of G.

For completeness we give a proof of Lemma 2.5 in the appendix. The following lemma formally
relates tree decompositions of a graph and its improved graph, and states that for the sake of
computing a tree decomposition of small width we may focus on the improved graph. The proof (given
in the appendix) is basically an application of a simple fact that two vertices x, y with µ(x, y) ≥ k
must be simultaneously present in some bag of every tree decomposition of width smaller than k.

Lemma 2.6 (♠). Let k be a positive integer and let G be a graph. Then every tree decomposi-
tion (T, β) of G that has width less than k, is also a tree decomposition of G〈k〉. In particular, if
tw(G) < k then tw(G) = tw(G〈k〉).

The idea of focusing on the improved graph dates back to the work of Bodlaender on a linear
time FPT algorithm for treewidth [6]. Actually, Bodlaender was using a weaker variant an improved
graph, where an edge is added only if the vertices in question share at least k common neighbors.
The main point was that this weaker variant can be computed in linear time [6] with respect to
the size of the graph. In our work we use the stronger variant, and we can afford spending more
time on computing the improved graph.

Lemma 2.7 (♠). There exists an algorithm that, given a positive integer k and a graph G on n
vertices, works in O(k2n3) time and either correctly concludes that tw(G) ≥ k, or computes G〈k〉.

Isomorphisms and isomorphism-invariance. We say that two graphs G1, G2 are isomorphic
if there exists a bijection φ : V (G1) → V (G2), called isomorphism, such that xy ∈ E(G1) ⇔
φ(x)φ(y) ∈ E(G2) for all x, y ∈ V (G1). We will often say that some object D(G) (e.g., a set of
vertices, a family of sets of vertices), whose definition depends on the graph, is isomorphism-invariant
or canonical. By this we mean that for any graph G′ that is isomorphic to G with isomorphism
φ, it holds that D(G′) = φ(D(G)), where φ(D(G)) denotes the object D(G) with all the vertices of
G replaced by their images under φ. The precise meaning of this term will be always clear from the
context. Most often, isomorphism-invariance of some definition or of the output of some algorithm
will be obvious, since the description does not depend on the internal representation of the graph,
nor uses any tie-breaking rules for choosing arbitrary objects.

We also extend the notion of isomorphism-invariance to structures, which are formed by the
considered graph G together with some object E (e.g., a vertex, a set of vertices, a subgraph).
Such structures usually represent the graph together with an initial set of choices made by some
algorithm, for instance the starting vertex from which the construction of a tree decomposition
begins. We say that some object D(G, E), whose definition is dependant on the structure (G, E),
is invariant under isomorphism of (G, E), if D(G′, E ′) = φ(D(G, E)) for any structure (G′, E ′) such
that φ is an isomorphism between G and G′ that additionally satisfies φ(E) = E ′. Again, the precise
definition of this term will be always clear from the context.

7

3 The case of no clique separators

Let G be graph and let S ⊆ V (G) be any subset of vertices. The following definition will be a
crucial technical ingredient in our reasonings.

Definition 3.1. Suppose that (SL, SR) is a partition of S. We say that a separation (A,B) of G is
stable for (SL, SR) if (A,B) is a minimum-order SL−SR separation. A separation (A,B) is S-stable
if it is stable for some partition of S.

Note that (SL, V (G)) and (V (G), SR) are both SL − SR separations, and they have orders |SL|
and |SR|, respectively. Hence, if (A,B) is a separation that is stable for (SL, SR), then in particular
|A ∩B| ≤ min(|SL|, |SR|).

The following lemma will be the main tool for constructing an isomorphism invariant family
of candidate bags.

Lemma 3.2. Let G be a graph, let S ⊆ V (G) be any subset of vertices, and let F be any finite
family of S-stable separations. Define

X := S ∪
⋃

(A,B)∈F

A ∩B.

Suppose that Z is the vertex set of any connected component of G \X. Then |N(Z)| ≤ |S|.

Proof. We proceed by induction w.r.t. |F|. For F = ∅ we have N(Z) ⊆ X = S, so the claim is trivial.
Assume then that F = F ′ ∪ {(A,B)} for some family F ′ with |F ′| < |F|, and let X ′ be defined

in the same manner for F ′ as X is for F . As (A,B) is S-stable, there is some a partition (SL, SR)
of S such that (A,B) is a minimum-order SL − SR separation. Let Z be the vertex set of any
connected component of G \X, and let Z ′ ⊇ Z be the vertex set of the connected component of
G\X ′ that contains Z. Since G[Z] is connected and Z ∩ (A∩B) = ∅, we have that either Z ⊆ A\B
or Z ⊆ B \A; without loss of generality assume the former.

Let (C,D) = (V (G) \ Z ′, N [Z ′]). Observe that (C,D) is a separation in G. Moreover, since
Z ′∩S = ∅, then (C,D) is a S−Z ′ separation, so in particular also a S−Z separation. Furthermore,
observe that C ∩D = N(Z ′), so by the induction hypothesis we obtain |C ∩D| = |N(Z ′)| ≤ |S|.
We can partition V (G) into 9 parts, where the part a vertex belongs to depends on its membership
to A \B, A ∩B, or B \A, and its membership to C \D, C ∩D, or D \ C. Let us call these parts
Q1,1, Q1,2, . . . , Q3,3, as depicted on Figure 1.

Observe now that Z ⊆ (A\B)∩ (D \C) = Q1,3. Since X \X ′ ⊆ A∩B and C∩D = N(Z ′) ⊆ X ′,
we have that N(Z) ⊆ (A ∩ C ∩ D) ∪ (Z ′ ∩ A ∩ B) = Q1,2 ∪ Q2,2 ∪ Q2,3. On the other hand, by
induction hypothesis we have |N(Z ′)| = |Q1,2∪Q2,2∪Q3,2| ≤ |S|. Hence, to prove that |N(Z)| ≤ |S|,
it suffices to prove that |Q1,2 ∪Q2,2 ∪Q2,3| ≤ |Q1,2 ∪Q2,2 ∪Q3,2|, or, equivalently, |Q2,3| ≤ |Q3,2|.

To this end, consider a pair of subsets (L,R) = (A ∪D,B ∩ C). We first claim that (L,R) is a
separation. Indeed, if u ∈ L\R = Q1,1∪Q1,2∪Q1,3∪Q2,3∪Q3,3 and v ∈ R\L = Q3,1, then existence of
an edge uv would contradict the fact that both (A,B) and (C,D) are separations. Now we claim that
(L,R) is a SL−SR separation. Indeed, we have SL ⊆ A ⊆ L, and moreover SR ⊆ B and SR ⊆ S ⊆ C
implies that SR ⊆ B ∩ C = R. Since (A,B) is a minimum-order SL − SR separation, we have

|Q2,1 ∪Q2,2 ∪Q3,2| = |L ∩R| ≥ |A ∩B| = |Q2,1 ∪Q2,2 ∪Q2,3|.

Hence indeed |Q2,3| ≤ |Q3,2| and we are done.

8

Q1,1

Q1,2

Q1,3 Q2,3

Q2,2

Q2,1 Q3,1

Q3,2

Q3,3

Z

S

C
\
D

=
V

(H
)\

N
[Z
′]

C
∩
D

=
N

(Z
′)

D
\
C

=
Z
′

A \B A ∩B B \A

Figure 1: Sets in the proof of Lemma 3.2

Lemma 3.2 is used in the following result, which encapsulates one step of the construction of an
isomorphism-invariant family of candidate bags. In the sequel, we will use the following parameters:

τ = 6k,

ρ = τ + 2(k − 1) ·
(
τ

2

)
= O(k3),

ζ = ρ+ 2k ·
(

ρ

k + 1

)2

= 2O(k log k).

Lemma 3.3. Let k be a positive integer and let H be a connected graph that is k-complemented.
Let S ⊆ V (H) be a subset of vertices such that (a) ∅ 6= S (V (H), (b) |S| ≤ ρ, (c) S does not
induce a clique, (d) H \ S is connected, and (e) S = NH(V (H) \ S). There exists an algorithm that
either correctly concludes that tw(H) ≥ k, or finds a set X with the following properties:

(i) X) S, that is, X is a proper superset of S;

(ii) |X| ≤ ζ; and

(iii) if Z is the vertex set of any connected component of H \X, then |N(Z)| ≤ ρ.

9

The algorithm runs in 2O(k log k) · |V (H)| time and the constructed set X is invariant with respect
to isomorphisms of the structure (H,S).

Proof. We consider two cases. In the first case we assume that |S| ≤ τ , and in the second case we
assume that τ < |S| ≤ ρ.

Case 1: |S| ≤ τ . Consider any pair of vertices x, y ∈ S such that xy /∈ E(H). Since H is k-
complemented, we have that µH(x, y) < k, and hence the minimum-order separations that separate
x and y have order less than k. Let (Axx,y, B

x
x,y) and (Ayx,y, B

y
x,y) be the minimum-order separations

separating x and y that are pushed towards x and y, respectively. Recall that, by the definition of
an x− y separation, the separators Axx,y ∩Bx

x,y and Ayx,y ∩By
x,y do not contain x nor y. We define

the set X as follows:

X := S ∪
⋃

x,y∈S,
xy/∈E(H)

(Axx,y ∩Bx
x,y) ∪ (Ayx,y ∩By

x,y). (1)

In other words, we enhance S by adding, for every pair of nonadjacent vertices from S, both the
extreme minimum separators separating them. Observe that the definition of X is invariant with
respect to isomorphisms of the structure (H,S). Observe also that |X| ≤ |S|+ 2(k − 1) ·

(|S|
2

)
≤ ρ,

since |S| ≤ τ . This proves properties (ii) and (iii) of X. For property (i), observe that by our
assumptions about the set S we have that there exists at least one pair x, y ∈ S with xy /∈ E(H)
(by properties (a) and (c)), and that for this pair there exists a path that starts in x, ends in y, and
whose all internal vertices are contained in V (H) \ S (by properties (a), (d), and (e)). The internal
vertices of this path need to include a vertex of Axx,y ∩Bx

x,y and a vertex Ayx,y ∩By
x,y. Hence, the

set X contains at least one vertex outside S, and property (i) holds.
Note that in this case X can be computed in time kO(1) · |V (H)|, by considering every pair of

non-adjacent vertices of S, and for each of them running at most k iterations of the Ford-Fulkerson
algorithm. (Observe that, unless tw(H) ≥ k, we have |E(H)| = O(k|V (H)|) and, hence, each of
these iterations takes O(k|V (H)|) time.)

Case 2: τ < |S| ≤ ρ. We construct the set X as follows. Consider all the pairs (L,R) of subsets
of S such that L ∩ R = ∅ and |L| = |R| = k + 1. For every such pair, let us verify whether the
minimum order of a separation separating L and R is at most k, and in this case let us compute
minimum-order L − R separations (ALL,R, B

L
L,R), (ARL,R, B

R
L,R) that are pushed towards L and R,

respectively (note that here the vertices of L and R can be included in the separator). We now
define X similarly as in the previous case:

X := S ∪
⋃

L,R⊆S, L∩R=∅,
|L|=|R|=k+1, µ(L,R)≤k

(ALL,R ∩BL
L,R) ∪ (ARL,R ∩BR

L,R). (2)

Note that the definition of X is invariant with respect to isomorphism of the structure (H,S).
Property (ii) of X follows directly from the definition and the fact that |S| ≤ ρ. We proceed to
checking the other two properties.

For property (iii), take any pair (L,R) considered in the union in (2), and let us look at a
separation (A,B) ∈ {(ALL,R, BL

L,R), (ARL,R, B
R
L,R)}. We can easily construct a partition (SL, SR) of S

such that L ⊆ SL ⊆ A and R ⊆ SR ⊆ B, by assigning vertices of L to SL, vertices of R to SR, and
assigning vertices of S \ (L ∪R) according to their containment to A or B (thus, we have a unique
choice for all the vertices apart from (S \ (L∪R))∩ (A∩B)). Then (A,B) is a SL − SR separation,

10

and since it was a minimum-order L − R separation, it must be also a minimum-order SL − SR
separation. Hence, (A,B) is an S-stable separation. We infer that all the separations considered
in the union in (2) are S-stable. From Lemma 3.2 it follows that |N(Z)| ≤ |S| ≤ ρ, where Z is the
vertex set of any connected component of H \X. This concludes the proof of property (iii).

For property (i), if tw(H) < k then Lemma 2.4 implies an existence of a separation (A,B) of
order at most k that is 2

3 -balanced for S. Consequently,

|(A \B) ∩ S| ≥ |S| − |A ∩B| − |(B \A) ∩ S| ≥ 1
3
|S| − k > k,

where the last inequality follows from the fact that |S| > τ = 6k. Symmetrically, |(B \A) ∩ S| > k.
Let then L and R be any two subsets of (A \B) ∩ S and (B \A) ∩ S, respectively, that have sizes
k+ 1. Observe that the existence of separation (A,B) certifies that µ(L,R) ≤ k, and hence the pair
(L,R) is considered in the union in (2). Recall that (ALL,R, B

L
L,R) is then the corresponding L−R

separation of minimum order that is pushed towards L. Since |ALL,R∩BL
L,R| ≤ k and |L|, |R| = k+ 1,

there exist some vertices x, y such that x ∈ L \ (ALL,R ∩BL
L,R) and y ∈ R \ (ALL,R ∩BL

L,R). Similarly
as in Case 1, there exists a path that starts in x, ends in y, and whose all internal vertices are
contained in V (H) \ S (by properties (a), (d), and (e)). The internal vertices of this path need to
contain at least one vertex from ALL,R ∩BL

L,R. We infer that if tw(H) < k, then X computed using
formula (2) is a proper superset of S. Therefore, we may output the conclusion that tw(H) ≥ k
if X computed using formula (2) is equal to S; otherwise X is a proper superset of S, as requested.

Note that in this case X can be computed in time 2O(k log k) · |V (H)| as follows. There are at
most

(
ρ

k+1

)2 = 2O(k log k) possible choices for L and R, and for each of them we may check whether
µ(L,R) ≤ k (and compute (ALL,R, B

L
L,R) and (ARL,R, B

R
L,R), if needed) using at most k + 1 iterations

of the Ford-Fulkerson algorithm. Similarly as in Case 1, we may assume that each iteration takes
O(k|V (H)|) time.

Armed with Lemma 3.3, we may proceed to the main result of this section, that is, the enumer-
ation of an isomorphism-invariant family of bags that captures a tree decomposition of reasonably
small width.

Theorem 3.4. Let k be a positive integer, and let G be a graph on n vertices that is clique-separator
free (in particular, connected), and k-complemented. There exists an algorithm that computes an
isomorphism-invariant family of potential bags B ⊆ 2V (G) with the following properties:

(i) |B| ≤ ζ for each B ∈ B;

(ii) |B| = O(n2);

(iii) assuming that tw(G) < k, the family B captures some tree decomposition of G that has width
at most ζ + 1 = 2O(k log k) and adhesion width at most ρ = O(k3).

Moreover, the algorithm runs in 2O(k log k) · n3 time.

Proof. We first consider the border case when G is a clique. Then we can output B = {V (G)} if
n ≤ k, and B = ∅ if n > k. In the following we assume that G is not a clique.

Let u be any vertex of G whose degree is less than k. Observe that since graphs of treewidth
t are t-degenerate, then there exists at least one such vertex, provided that tw(G) < k (otherwise
we may output B = ∅). For each such vertex u we will construct a family Bu such that (a) Bu
satisfies properties (i) and (iii), (b) |Bu| = O(n), (c) the definition of Bu is invariant with respect

11

to isomorphisms of the structure (G, u), and (d) computing Bu can be done in time 2O(k log k) · n2.
The final family B can be then defined simply as:

B :=
⋃

u∈V (G)
deg(u)<k

Bu.

It follows that the definition of B is isomorphism-invariant, and the running time of the whole
algorithm follows from the running time of computing a single Bu.

Let us focus on one vertex u. The algorithm will actually compute some tree decomposition
(Tu, βu) of G that has width 2O(k log k) and adhesion width O(k3), and then it will output the set of
all its bags as Bu. Hence it will be clear that (Tu, βu) is captured by Bu. The definition of (Tu, βu)
will be invariant with respect to isomorphisms of the structure (G, u).

We describe the algorithm as a recursive routine that takes as input an induced subgraph G′

of G together with a set X, ∅ 6= X ⊆ V (G′), that is supposed to be the root bag. We ensure that
the algorithm does not loop using a potential Φ(G′, X) = (|V (G′)|+ 1) · (ζ + 1)− |X|. Formally,
every call of the algorithm will use only calls for inputs with a strictly smaller potential, and the
potential is always nonnegative. For the set X, we require the following invariants:

(a) |X| ≤ ζ,

(b) X ⊇ NG(V (G′) \X), that is, X separates V (G′) \X from the rest of the graph,

(c) |NG(Z)| ≤ ρ for Z being the vertex set of any connected component of G′ \X, and

(d) u /∈ NG[V (G′) \X].

The output of the algorithm will be a tree decomposition of G′ that has O(|V (G′)|) bags, width
2O(k log k) and adhesion width O(k3), and whose root bag is equal to X. The top-most call of the
routine is for G′ = G and X = N [u]; that is, we will construct a tree decomposition of G with the
top bag being N [u]. Note that the invariants (a), (b), (c), and (d) are satisfied in this call.

The algorithm first checks whether X = V (G′), in which case it simply returns a decomposition
consisting of one root bag being X. Assume then that X (V (G′). The algorithm considers all the
connected components of G′ \X. Let Z be the vertex set of one of them; recall that |N(Z)| ≤ ρ.
Let us examine the graph G′′Z = G′[N [Z]], and let SZ = N(Z). Observe that the pair (G′′Z , SZ)
satisfies the prerequisites of Lemma 3.3:

• prerequisite (a) follows from the fact that Z is nonempty and G is connected;

• prerequisite (b) follows from invariant (c);

• prerequisite (c) follows from the observation that if SZ induced a clique, then this clique
would be a clique separator separating any vertex of Z from u (since invariants (b) and (d)
are satisfied);

• prerequisite (d) follows from the fact that Z is connected;

• prerequisite (e) follows from the definition of SZ .

Hence, let us apply the algorithm of Lemma 3.3 to the pair (G′′Z , SZ), obtaining a set XZ . (If the
algorithm of Lemma 3.3 returned that tw(G′′Z) ≥ k, then also tw(G) ≥ k and we may return B = ∅.)

Having computed XZ , the algorithm calls itself recursively for the graph G′′Z and the top bag XZ .
Note that by the properties guaranteed by Lemma 3.3, we either have that |V (G′′Z)| < |V (G′)| or

12

that G′ = G′′Z and |XZ | > |X|. Hence we have that Φ(G′′Z , XZ) < Φ(G′, X), as was requested. Let
us check also that the invariants are satisfied for this call: invariant (b) follows from the definitions
of G′′Z and SZ , invariants (a) and (c) follow directly from Lemma 3.3, and invariant (d) follows from
the definition of (G′′Z , XZ), and satisfaction of this invariant for the call (G′, X).

Let (TZ , βZ) be the returned tree decomposition of G′′Z ; this decomposition has guaranteed small
width and adhesion width, and its top bag is XZ . We construct the final output decomposition of
G′ by creating a root bag equal to X, and attaching all the decompositions (TZ , βZ) for connected
components Z as subtrees below this bag. It is easy to verify that this is indeed a tree decomposition
of the graph G′. Moreover, it has required width and adhesion width; note here that adhesions
adjacent to the root bag are neighbourhoods of connected components of G′ \X, which have size
at most ρ by invariant (c).

Observe also that since we start with the top-most call (G,N [u]), and operations performed
in each recursive call (G′, X) are invariant with respect to isomorphisms of the structure (G′, X),
it follows that the computed tree decomposition of G is invariant with respect to isomorphisms of
the structure (G′, u).

We are left with bounding the number of bags of the returned decomposition and analyzing the
running time of the algorithm. Let (T, β) be the returned tree decomposition of G. Recall that for
every v ∈ V (G), the set of nodes whose bags contain v induces a connected subtree of T . Let t(v)
be the top-most node of this subtree, i.e., the top-most node where v appears in the bag. We will
also say that vertex v charges node t(v). We now claim that every node of the decomposition (T, β)
is charged at least once. Indeed, the root node with bag N [u] is charged by u, and for every other
node, its bag appears as XZ in some recursive call (G′, X). By Lemma 3.3, property (i), we have
XZ \X 6= ∅, and so the considered node will be charged by any vertex of XZ \X. Consequently,
the total number of produced nodes is at most the total number of vertices of the graph, which is n.

To bound the running time of the algorithm, we sum the total work performed in each recursive
call of the algorithm. Let us take one call, say (G′, X), and observe that the work performed in this
call (excluding recursive sub-calls) consists of applications of the algorithm of Lemma 3.3 to instances
(G′′Z , SZ), for all connected components Z of G′ \X. By Lemma 3.3, each such application (together
with auxiliary operations like construction of the subinstance) takes at most 2O(k log k) · n time, and
results in obtaining one subtree of the decomposition that is then attached below the bag X. Let
us assign the time spent on running the algorithm of Lemma 3.3 on instance (G′′Z , SZ) to the root
node of this subtree, i.e., to the node with bag XZ . Observe that thus every node of the constructed
tree decomposition (T, β) of G is being assigned at most once. Since the total number of nodes in T
is at most n, we infer that the total time used by the algorithm is 2O(k log k) · n2, as requested.

4 Taming clique separators

The main tool that we will use in this section is a decomposition theorem that breaks the graph using
minimal clique separators into pieces that cannot be decomposed further. It appears that such a
decomposition can be done, with a set of its bags defined in a unique manner. The idea of decomposing
a graph using clique separators dates back to the work of Tarjan [36], and has been studied intensively
thereafter. We refer to an introductory article of Berry et al. [4] for more details. The following
theorem states all the properties of this decomposition in the language of tree decompositions.

Theorem 4.1 (see e.g. [4]). Let G be a connected graph. There exists a tree decomposition (T ?, β?)
of G, called clique minimal separator decomposition, with the following properties:

• for every t ∈ V (T ?), G[β?(t)] is clique-separator free;

13

• each adhesion of (T ?, β?) is a clique in G.

Moreover, T ? has at most n−1 nodes, and the bags of (T ?, β?) are exactly all the inclusion-wise maxi-
mal induced subgraphs of G that are clique-separator free. Consequently, the family of bags of (T ?, β?)
is isomorphism-invariant. Finally, the decomposition (T ?, β?) can be computed in O(nm) time.

We remark that the exact shape of the clique minimal separator decomposition is not isomorphism-
invariant: the construction procedure depends on the order in which inclusion-wise minimal clique
separators of the graph are considered. However, the family of bags of this decomposition is
isomorphism-invariant, since these bags may be characterized as all the inclusion-wise maximal
induced subgraphs of G that are clique-separator free. In other words, all the possible runs of the
decomposition algorithm yield the same family of bags, just arranged in a different manner.

Theorem 4.1 enables us to conveniently extend Theorem 3.4 to graphs that may contain clique
separations.

Theorem 4.2. Let k be a positive integer, and let G be a graph on n vertices that is k-complemented.
There exists an algorithm that computes an isomorphism-invariant family of bags B with the following
properties:

(i) |B| ≤ ζ for each B ∈ B;

(ii) |B| ≤ O(k2n2);

(iii) assuming that tw(G) < k, the family B captures some tree decomposition of G that has width
at most ζ + 1 = 2O(k log k) and adhesion width at most ρ = O(k3).

Moreover, the algorithm runs in 2O(k log k) · n3 time.

Proof. In O(nm) time we compute a clique minimal separator decomposition (T ?, β?) of G. We
can assume that all the adhesions of (T ?, β?) are of size at most k, since otherwise G contains a
clique on k + 1 vertices; then, tw(G) ≥ k and we may output B = ∅. In the following, let r? be
the root of T ?. Observe that:∑

t∈V (T ?)

|β?(t)| = n+
∑

t∈V (T ?)\{r?}

|σ?(t)| ≤ n+ (n− 2)k = O(kn).

For every t ∈ V (T ?), let us examine the graph G[β?(t)]. Since G[β?(t)] does not admit a clique
separation, it is in particular connected. Moreover, since G is k-complemented, then so is G[β?(t)].
Hence, G[β?(t)] satisfies the prerequisites of Theorem 3.4.

For each t ∈ V (T ?), let us apply the algorithm of Theorem 3.4 with parameter k to the graph
G[β?(t)]. Let Bt be the obtained family of bags. We now define the output family to be simply
B :=

⋃
t∈V (T ?) Bt. Observe that since the family of bags of (T ?, β?) is isomorphism-invariant, and

for each t ∈ V (T ?) the constructed family Bt is invariant with respect to isomorphisms of the graph
G[β?(t)], then it follows that the definition of B is isomorphism-invariant.

We now verify the requested properties of family B. Property (i) follows directly from the
construction and Theorem 3.4. For property (ii), by Theorem 3.4 we have that |Bt| ≤ O(|β?(t)|2)
for each t ∈ V (T). Since

∑
t∈V (T ?) |β?(t)| = O(kn), it follows that |B| ≤ O(k2n2). Note here

that a similar argument gives the bound on the running time of the algorithm: processing
graph G[β?(t)] takes 2O(k log k) · |β?(t)|3 time, so the whole algorithm may be implemented in
time O(nm) + 2O(k log k) · k3n3 = 2O(k log k) · n3.

We are left with verifying property (iii). Assume that tw(G) < k; then also tw(G[β?(t)]) < k for
each t ∈ V (T ?). By Theorem 3.4, for each t ∈ V (T ?) there exists some tree decomposition (Tt, βt)

14

of G[β?(t)] that is captured by Bt and satisfies properties (i), (ii), and (iii) of Theorem 3.4. Since
σ?(t) is a clique for each t ∈ V (T ?), it follows that some bag of (Tt, βt) contains the whole σ?(t).
By re-rooting the decomposition (Tt, βt) if necessary, without loss of generality we may assume that
βt(rt) ⊇ σ?(t) for each t ∈ V (T ?), where rt is the root of Tt.

Now the goal is to combine all the decompositions (Tt, βt) into one decomposition (T, β) of
G that satisfies the conditions expressed in property (iii). We construct (T, β) by a bottom-up
induction on decomposition (T ?, β?). For each t ∈ V (T ?) we will construct a decomposition (T ′t , β

′
t)

of G[γ?(t)] with the property that σ?(t) will be contained in the root bag of (T ′t , β
′
t). Then we will

simply take (T, β) := (T ′r? , β
′
r?).

Assume we are considering a node t ∈ V (T ?), and assume that we have constructed decompo-
sitions {(T ′ti , β

′
ti)}1≤i≤p for the children t1, t2, . . . , tp of t (possibly p = 0). For each i = 1, 2, . . . , p,

recall that σ?(ti) is a clique, and hence there exists some node si of (Tt, βt) whose bag contains
the whole set σ?(ti). We construct (T ′t , β

′
t) from (Tt, βt) by attaching, for every i = 1, . . . , p, the

decomposition (T ′ti , β
′
ti) as a subtree below node si. Since σ?(ti) is exactly the intersection of βt(si)

and the root bag of (T ′ti , β
′
ti), it can be easily verified that (T ′t , β

′
t) constructed in this manner is

a tree decomposition of G[γ?(t)]. Moreover, since σ?(t) ⊆ βt(rt), then the invariant that σ?(t) is
contained in the root bag of (T ′t , β

′
t) is preserved.

The bound on the width of (T, β) follows from the bound on the widths of decompositions
(Tt, βt) given by Theorem 3.4. For the adhesion width, observe that the only adhesions that were
not present in some decomposition (Tt, βt) are the adhesions created when attaching some (T ′ti , β

′
ti)

below the node si. However, these adhesions are exactly adhesions of decomposition (T ?, β?), which
are of size at most k < ρ. Finally, observe that each bag of (T, β) originates in decomposition (Tt, βt)
for some t ∈ V (T ?); since (Tt, βt) was captured by Bt, it follows that (T, β) is captured by B.

5 Reducing bag sizes

Definition 5.1. Let G be a graph, let B ⊆ 2V (G) be a family of candidate bags, and let q be a
positive integer. Then

B≤q := {X ⊆ V (G) : |X| ≤ q and ∃B∈BX ⊆ B}.

Note that if family B is isomorphism-invariant, then so does B≤q.
The following lemma will be the crucial technical insight of this section. Intuitively it states

that by focusing on the family B≤q for large enough q, instead of the original B, we still capture
some tree decomposition of the graph that has a reasonably small width. The crucial point here is
that the candidate bags of B≤q are much smaller than those of B. Since the canonization algorithm
of Section 6 is essentially considering all permutations of all the bags, reducing the bag size will
be useful for speeding it up.

Lemma 5.2. Let G be a connected graph of treewidth less than k, and let B ⊆ 2V (G) be a family of
candidate bags that captures some tree decomposition of G that has width at most k′ and adhesion
width at most `, where k ≤ ` ≤ k′. Then the family B≤(k+1)` captures some tree decomposition of
G that has width at most (k + 1)`− 1.

Before we proceed with the proof of Lemma 5.2, we need one more definition.

Definition 5.3 (connectivity-sensitive tree decomposition). We say that a tree decomposi-
tion (T, β) of a connected graph G is connectivity-sensitive (cs-tree decomposition, for short), if the
following conditions are satisfied for every t ∈ V (T):

15

• G[α(t)] is connected, and

• σ(t) = NG(α(t)).

Actually, one can see that the tree decomposition constructed in the proof of Theorem 3.4 is
connectivity sensitive, so the family B actually captures a cs-tree decomposition of the graph with
required width and adhesion width. A similar conclusion, however, is not so clear in the case of
Theorem 4.2. Fortunately, it is easy to see that every tree decomposition of a connected graph can
be turned into a cs-tree decomposition without increasing the widths. For the sake of completeness,
we attach the easy proof in the appendix.

Lemma 5.4 (♠). If a connected graph G admits a tree decomposition (T, β) of width k and adhesion
width `, then G admits also a cs-tree decomposition (T ′, β′) of width at most k and adhesion width
at most `. Moreover, every bag appearing in (T ′, β′) is a subset of some bag of (T, β).

We are ready to proceed to the proof of Lemma 5.2.

Proof of Lemma 5.2. Let (T0, β0) be a tree decomposition of G that has width at most k′ and
adhesion width at most `, and is captured by B. Let (T, β) be the cs-tree decomposition of G given
by Lemma 5.4 applied to (T0, β0). That is, (T, β) is connectivity-sensitive, has width at most k′

and adhesion width at most `, and its every bag is contained in some bag (T0, β0), so in particular
in some bag of B. We now prove that there exists a tree decomposition (T ′, β′) of G such that:

• (T ′, β′) has width at most (k + 1)`− 1,

• every bag of (T ′, β′) is a subset of some bag of (T, β).

From these properties it follows that (T ′, β′) is captured by B≤k`, which will conclude the proof.
We construct the decomposition (T ′, β′) by a bottom-up induction on the decomposition (T, β).

For each node t ∈ V (T), we construct a decomposition (T ′t , β
′
t) that has the following properties:

(i) (T ′t , β
′
t) is a tree decomposition of G[γ(t)] of width at most (k + 1)`− 1;

(ii) every bag of (T ′t , β
′
t) is a subset of some bag of (T, β);

(iii) the root bag of (T ′t , β
′
t) contains σ(t).

The decomposition (T ′, β′) will be then simply (T ′r, β
′
r), where r is the root node of (T, β).

Take any node t, and let t1, t2, . . . , tp be its children in T (possibly p = 0 if t is a leaf). By
induction hypothesis we have decompositions {(T ′ti , β

′
ti)}1≤i≤p for the subtrees below t that satisfy

properties (i), (ii), (iii).
Let us construct a graph Ht from G[γ(t)] by contracting, for every i ∈ {1, 2, . . . , p}, the subgraph

G[α(ti)] into a single vertex ui; recall that this subgraph is connected since (T, β) is connectivity-
sensitive. Moreover, by connectivity-sensitivity we have that NHt(ui) = σ(ti). Since Ht is a minor
of G, we infer that tw(Ht) ≤ tw(G) < k. Let then (THt , βHt) be a tree decomposition of Ht of
width less than k.

We construct decomposition (T ′t , β
′
t) from (THt , βHt) in the following steps:

1. Include all the vertices of σ(t) into each bag of (THt , βHt).

2. Replace every occurrence of each vertex ui in each bag by all the vertices of NHt(ui) = σ(ti).

16

3. For every i = 1, 2, . . . , p, find any node of the decomposition whose bag originally contained
ui (and so now it contains NHt(ui) = σ(ti)). Attach the decomposition (T ′ti , β

′
ti) as a subtree

below this node.

It is straightforward to verify that (T ′t , β
′
t) constructed in this manner is a valid tree decomposition

of G[γ(t)]. Moreover, observe that the bags of (T ′t , β
′
t) are of size at most k`: For bags originating in

decompositions (T ′ti , β
′
ti) this follows from induction hypothesis, while bags originating in (THt , βHt)

had size at most k in the beginning, then got augmented by at most ` vertices in step (1), and
finally some of the original vertices got replaced by ` other vertices in step (2). This implies that
these bags have size at most k`+ ` = (k + 1)` at the end. This proves property (i). Properties (ii)
and (iii) follow directly from the construction: every bag originating in (THt , βHt) is a subset of β(t)
and a superset of σ(t), and property (ii) for bags originating in decompositions (T ′ti , β

′
ti) follows

from the induction hypothesis.

Using Lemma 5.2, we can further refine Theorem 4.2. The new property (iv) is a technical
condition that will be used later.

Theorem 5.5. Let k be a positive integer, and let G be a graph on n vertices that is connected and
k-complemented. There exists an algorithm that computes an isomorphism-invariant family of bags
B with the following properties:

(i) |B| ≤ (k + 1)ρ ∈ O(k4) for each B ∈ B;

(ii) |B| ≤ 2O(k5 log k) · n2;

(iii) assuming that tw(G) < k, the family B captures some tree decomposition of G that has width
at most (k + 1)ρ− 1 ∈ O(k4);

(iv) family B is closed under taking subsets.

Moreover, the algorithm runs in 2O(k5 log k) · n3 time.

Proof. We run the algorithm of Theorem 4.2 on the graph G to obtain an isomorphism-invariant
family B0. Then, we output the family B := B≤(k+1)ρ

0 . Observe that since |B| ≤ ζ for each B ∈ B0,
then each B ∈ B0 gives rise to at most

∑(k+1)ρ
i=0

(
ζ
i

)
∈ 2O(k5 log k) sets in the output family B. This

justifies the bound on |B| (property (ii)) and on the running time. Properties (i) and (iv) follow
directly from the construction, and property (iii) follows from Lemma 5.2.

6 Canonization

In this section we utilize the isomorphism-invariant family of candidate bags constructed in The-
orems 3.4, 4.2, and 5.5 to give a canonization algorithm for graphs of bounded treewidth running
in FPT time. Our main goal is to prove Theorem 1.3; we then deduce Theorems 1.1 and 1.2 in
Section 6.3.

First we introduce a concept that we call construction terms, which is an alternative definition of
treewidth and tree decompositions via graph grammars. Our canonization algorithm then produces
a canonical expression (construction term) that builds the graph; the isomorphism tests boils down
to verifying equality of these canonical expressions.

17

6.1 Construction terms

The formalization given in this section has been known in the graph grammar literature from eighty’s.
We refer to [7, 37] for a review on these topics. We would also like to mention that the materials
presented in this subsection is not much more than a formalization of what is commonly known
as nice tree decomposition [26]. We give the details here to make the presentation self-content. In
the sequel, for a positive integer q we denote by [q] = {1, 2, . . . , q}. For a function f by f [x→ y]
we denote a function defined as follows:

f [x→ y](z) =

{
y if z = x,
f(z) otherwise.

Note that this definition is correct regardless whether x was in the domain of f or not. If x belongs
to the domain of f , then by f [x→ ⊥] we denote the function f \ {(x, f(x))}, i.e., f with x deleted
from the domain.

Let k be a positive integer and let Σ = {1, 2, . . . , k} be an alphabet of k labels. We now define
a family T of terms; each term t ∈ T will have a prescribed subset used(t) ⊆ Σ of labels used by
t, and a graph bag(t) with vertex set used(t).

• We have a leaf term l ∈ T, with used(l) = ∅ and bag(l) being the empty graph.

• If t ∈ T and i ∈ Σ \ used(t), then we can create an introduce term ii(t) ∈ T, with
used(ii(t)) = used(t) ∪ {i} and bag(ii(t)) being bag(t) with an isolated vertex i introduced.

• If t ∈ T and i ∈ used(t), then we can create a forget term fi(t) ∈ T, with used(fi(t)) =
used(t) \ {i} and bag(fi(t)) = bag(t) \ {i}.

• If t ∈ T, i, j ∈ used(t), i 6= j and ij /∈ E(bag(t)), then we can create an introduce edge term
ei,j(t) ∈ T, with used(ei,j(t)) = used(t) and bag(ei,j(t)) being bag(t) with edge ij added.

• Let q ≥ 2 be any integer. Suppose that there are terms t1, t2, . . . , tq ∈ T such that

– used(t1) = used(t2) = . . . = used(tq), and

– all the graphs bag(t1),bag(t2), . . . ,bag(tq) are edgeless.

Then we can create a join term j(t1, t2, . . . , tq) ∈ T, with

used(j(t1, t2, . . . , tq)) = used(t1) = used(t2) = . . . = used(tq),

and bag(j(t1, t2, . . . , tq)) being the edgeless graph on vertex set used(j(t1, t2, . . . , tq)).

The family T comprises all the terms that can be built from leaf terms using introduce, forget,
introduce edge, and join terms. Note that the join terms can have arbitrarily large arity, but has
to be at least 2. We define the length of the term t, denoted |t|, as the total number of operators
l, ii, fi, ei,j , j used in it.

Terms from T have a natural interpretation as expressions building graphs with at most k
distinguished vertices. More formally, with every term t ∈ T we associate a pair G[t] = (G[t], λ[t]),
called a labelled graph, where G[t] is a graph and λ[t] is bijection between some subset of V (G[t])
of cardinality |used(t)|, and used(t). The bijection λ[t] is also called the labelling. We maintain
the invariant that λ[t] is an isomorphism between the graph induced by its domain in G[t] and
the graph bag(t); this invariant follows by a trivial induction from the definition to follow. The
labelled graph G[·] is defined as follows:

18

• If t = l, then G[l] is an empty graph and λ[l] is an empty function.

• If t = ii(t′) for some t′ ∈ T and i ∈ Σ, then G[t] is equal to G[t′] with a new independent
vertex v introduced, and λ[t] = λ[t′][v → i].

• If t = fi(t′) for some t′ ∈ T and i ∈ Σ, then G[t] = G[t′] and λ[t] = λ[t′][λ[t′]−1(i)→ ⊥].

• If t = ei,j(t′) for some t′ ∈ T and i, j ∈ Σ, i 6= j, then G[t] is equal to G[t′] with an edge
between λ[t′]−1(i) and λ[t′]−1(j) introduced, and λ[t] = λ[t′]. Recall that ij /∈ E(bag(t′)), so
by the induction hypothesis we have that λ[t′]−1(i) and λ[t′]−1(j) are not adjacent in G[t′].

• Suppose t = j(t1, t2, . . . , tq) for some t1, t2, . . . , tq ∈ T. Then G[t] is constructed by taking
the disjoint union of G[t1], G[t2], . . . , G[tq], and, for every i ∈ used(t1) = used(t2) = . . . =
used(tq), identifying all vertices {λ[tj]−1(i) : j = 1, 2, . . . , q} into one vertex. This identified
vertex is assigned label i in the labelling λ[t].

We now say that t is a construction term for graph G if used(t) = ∅ and G[t] is isomorphic to
G. As the reader probably suspects, construction terms and tree decompositions are tightly related.

Lemma 6.1 (♠). A graph G has treewidth less than k if and only if it admits a construction term
that constructs it and uses at most k labels.

Let O = {ii : i ∈ Σ} ∪ {fi : i ∈ Σ} ∪ {ei,j : i, j ∈ Σ, i 6= j} ∪ {l, j} be the set of operators
used in the terms of T. Let us introduce an arbitrary linear order E on the elements of O: for
instance first come operators ii, sorted by i, then operators fi, sorted by i, then operators ei,j , sorted
lexicographically by (i, j), and finally operators l and j. Given this order, we may inductively define
a linear order E on the terms from T as follows. Let t1, t2 be two terms, and let o1, o2 ∈ O be the
top-most operations used in t1 and t2, respectively. Then relation E between t1 and t2 is defined
inductively based on the definition for terms of smaller depth.

• If o1 6= o2, then t1 C t2 if o1 C o2, and t1 B t2 if o1 B o2.

• If o1 = o2 = l, then t1 = t2.

• If o1 = o2 /∈ {l, j}, then let t1 = o(t′1) and t2 = o(t′2), where o = o1 = o2. If t′1 = t′2 then
t1 = t2, if t′1 C t′2 then t1 C t2, and if t′1 B t′2 then t1 B t2.

• Suppose o1 = o2 = j, and let the arity of the join operation in t1, t2 be equal to q1, q2,
respectively. Let t1 = j(t1,1, t1,2, . . . , t1,q1) and t2 = j(t2,1, t2,2, . . . , t2,q2). Since terms t1,j

and t2,j has smaller depth than t1 and t2, respectively, the order E is already defined for
them. Hence, we may compare sequences (t1,1, t1,2, . . . , t1,q1) and (t2,1, t2,2, . . . , t2,q2) lexico-
graphically. If (t1,1, t1,2, . . . , t1,q1) C (t2,1, t2,2, . . . , t2,q2) then t1 C t2, if (t1,1, t1,2, . . . , t1,q1) B
(t2,1, t2,2, . . . , t2,q2) then t1 B t2, and if (t1,1, t1,2, . . . , t1,q1) = (t2,1, t2,2, . . . , t2,q2) then t1 = t2.

Note here that two join terms that differ only in the order of arguments are considered different,
even though they construct the same labelled graph. The term where the arguments are sorted
nondecreasingly is considered the smallest.

6.2 Constructing a canonical construction term

We are finally ready to prove the main result of this paper.

19

Theorem 6.2 (Theorem 1.3, restated). There exists an algorithm that, given a graph G and a
positive integer k, in time 2O(k5 log k) · n5 either correctly concludes that tw(G) ≥ k, or outputs an
isomorphism-invariant term t that constructs G and uses at most (k+ 1)ρ ∈ O(k4) labels. Moreover,
this term has length at most O(k4 · n).

Proof. Let k′ = (k + 1)ρ. Firstly, without loss of generality we assume that G is connected. For dis-
connected graphs we can apply the algorithm to each connected component G1, G2, . . . , Gp separately,
obtaining terms t1, t2, . . . , tp, then sort these terms nondecreasingly so that t1 E t2 E . . . E tp, and
output the term t := j(t1, t2, . . . , tp). Thus, providing that the construction for a connected graph
is isomorphism-invariant, then due to the sorting step so is the construction for disconnected graphs.

We now compute the k-improved graph G〈k〉, using Lemma 2.7. If computation of this graph
revealed that tw(G) ≥ k, then we provide a negative answer to the whole algorithm. Now, we apply
Theorem 5.5 to the graph G〈k〉, obtaining an isomorphism-invariant family of candidate bags B.
Observe that since the definition of G〈k〉 is invariant w.r.t. isomorphisms of G, and the definition of
B is invariant w.r.t. isomorphisms of G〈k〉, then the family B is invariant w.r.t. isomorphisms of G.

Assume for a moment that G has a tree decomposition of width less than k. Then, by Lemma 2.6,
so does G〈k〉. Consequently, by Theorem 5.5 we have that B captures some tree decomposition of
G〈k〉 that has width at most k′ − 1. Since G〈k〉 is a supergraph of G, this tree decomposition is also
a tree decomposition of G. By Lemma 5.4 and property (iv) of Theorem 5.5, we can further infer
that B captures some cs-tree decomposition of G of width at most k′ − 1. Let us denote this cs-tree
decomposition by (T, β).

The plan for the rest of the proof is as follows. We provide a dynamic programming algorithm
that exploits the family B to compute a term t that constructs G. From the algorithm it will be
clear that the definition of t is isomorphism-invariant. It is possible that the computation of t fails,
but only if tw(G) ≥ k: using the captured cs-tree decomposition (T, β), we will argue that the
algorithm computes some feasible construction term, providing that tw(G) < k. Hence, in case of
failure we can safely report that tw(G) ≥ k.

Let us define the family of states S as the family of all the triples (B, λ, Z), where

• B ∈ B;

• λ is an injective function from B to [k′];

• Z = ∅ or Z is the vertex set of a connected component of G \B.

Observe that |S| ≤ |B| · k′! · (n+ 1) = 2O(k5 log k) · n3. For every state I = (B, λ, Z) ∈ S, we compute
a term t[I] that constructs the labeled graph G[I] := (G[B ∪ Z] \

(
B
2

)
, λ), i.e., the graph G[B ∪ Z]

with all the edges inside B cleared, and with labelling λ on B. The definition of t[I] will be invariant
w.r.t. isomorphisms of the structure G[I]. Computation of t[I] can possibly fail, in which case we
denote it by t[I] = ⊥. The output term t is simply defined as t[∅, ∅, V (G)], and using the captured
cs-tree decomposition (T, β) we will make sure that t[∅, ∅, V (G)] 6= ⊥ in case tw(G) < k.

To make sure that the inductive definition of t[I] is well-defined, we also define the potential
Φ of a state I = (B, λ, Z) similar to the one defined in Theorem 3.4: Φ(B, λ, Z) = 2|Z|+ |B|. The
definition of t[I] depends only on the terms for states with a strictly smaller potential. Since the
potential is always nonnegative, the definition is valid.

Before we proceed to the definition of t[I], let us introduce one more helpful definition. We
often run into situations where we would like to compute the canonical term for a triple (B, λ, Z)
that is not necessarily a state according to our definition, because Z consists of several connected
components of G \ B rather than at most one. To cope with such situations, we define operator
break[B, λ, Z]. Formally, operator break[B, λ, Z] can be applied to triples (B, λ, Z) where B ∈ B, λ

20

is an injective function from B to [k′], and Z comprises vertex sets of some (possibly zero) connected
components of G \B. The behaviour of break[B, λ, Z] is defined as follows:

• If Z = ∅ or G[Z] is connected (equivalently, (B, λ, Z) ∈ S), then we simply put break[B, λ, Z] =
t[B, λ, Z].

• If G[Z] consists of more than one connected component, then let Z1, Z2, . . . , Zp be the vertex
sets of these connected components. Let ti = t[B, λ, Zi] for i = 1, 2, . . . , p. If any of the terms
ti is equal to ⊥, then we put break[B, λ, Z] = ⊥. Otherwise, by sorting the terms if necessary,
assume that t1 E t2 E . . . E tp. Then break[B, λ, Z] = j(t1, t2, . . . , tp).

Observe that the join operation is valid, since we assumed that term ti constructs (G[B∪Zi]\
(
B
2

)
, λ),

where all the edges between the vertices of B are cleared. We naturally extend the notation G[·]
to triples that can be arguments of the operator break[·].

We now proceed to the definition of t[I] for a state I = (B, λ, Z) ∈ S. We generate a family C of
candidates for t[I]. We put t[I] = ⊥ if C = ∅, and otherwise t[I] is defined as the E-minimum element
of C. Elements of C reflect possible ways of obtaining the term constructing G[I] from simpler terms.

Firstly, if Z = B = ∅, then we take C = {l}.
Assume now that B contains some vertex u that is not adjacent to any vertex of Z. Then, for

every such vertex u, we add to C the term ti,u := iλ(u)(t[I ′]) for I ′ = (B \ u, λ[u→ ⊥], Z). Formally,
we add this term only if I ′ ∈ S and t[I] 6= ⊥; the same remark holds also for the other elements
of C to follow. Observe that if t[I ′] constructs G[I ′], then ti,u constructs G[I].

Then, for every vertex v ∈ Z we consider the possibility that v has just been forgotten. Formally,
for each v ∈ Z and each label i ∈ [k′] \ λ(B), we add to C the following term:

tf,v,i := fi(ei,j1(ei,j2(. . . ei,jq(break[I ′]) . . .))), (3)

where I ′ = (B ∪ {v}, λ[v → i], Z \ v) and j1 < j2 < . . . < jq are labels in λ of neighbors of v in B
in the graph G. Again, if break[·] cannot be applied to I ′ or if break[I ′] = ⊥, then we do not add
this candidate. Observe that if break[I ′] constructs G[I ′], then tf,v,i constructs G[I].

This concludes the definition of the term t[I]; observe that the definition depends only on the
definitions for states with strictly smaller potential, as was promised. It can be easily seen by
induction that the definition is invariant with respect to isomorphisms of the structure (G,G[I]),
due to taking the E-minimum from an invariant family of candidates. The following claim shows
that, in the end, we obtain a meaningful term provided that tw(G) < k.

Claim 6.3. If tw(G) < k then t[∅, ∅, V (G)] 6= ⊥.

Proof. We proceed by a bottom-up induction on the decomposition (T, β). For any t ∈ V (T) and
any injective labelling λ : σ(t) → [k′], define It,λ := (σ(t), λ, α(t)). Observe that It,λ ∈ S, since
σ(t) ⊆ β(t) ∈ B and B is closed under taking subsets, and G[α(t)] is connected since (T, β) is
connectivity-sensitive. We prove inductively the following statement:

For each t ∈ V (T) and any injective labelling λ : σ(t)→ [k′],we have t[It,λ] 6= ⊥. (4)

Observe that if r is the root of T , then Ir,∅ = (∅, ∅, V (G)), so the statement (4) for r is equivalent
to the statement of the claim.

Let t1, t2, . . . , tp be the children of t in T (possibly p = 0). It is more convenient to prove an
even stronger statement:

For any X such that σ(t) ⊆ X ⊆ β(t), any labeling λX : X → [k′] that extends λ,
and any Z that is the vertex set of some connected component of G[γ(t)] \X, (5)
it holds that t[X,λX , Z] 6= ⊥.

21

Observe that, again, (X,λX , Z) ∈ S since X ⊆ β(t). Statement (4) for t, which we are trying to
prove, is equivalent to statement (5) for X = σ(t), λX = λ and Z = α(t). We prove statement (5)
for all choices of X,λX , Z by induction with respect to |Z ∩ β(t)|.

For the base of the induction, observe that if Z ∩ β(t) = ∅, then Z = α(ti) for some
i ∈ {1, 2, . . . , p}, since (T, β) is connectivity-sensitive. Moreover, since Z is a connected com-
ponent of G[γ(t)] \X, then X ⊇ N(Z) = σ(ti). By induction hypothesis for statement (4), we have
that t[σ(ti), λX |σ(ti), α(ti)] 6= ⊥. Then it follows that the term

iu1,λX(u1)(iu2,λX(u2)(. . . iuc,λX(uc)(t[σ(ti), λX |σ(ti), α(ti)]) . . .))

is among the candidates for t[X,λX , Z], where (u1, u2, . . . , uc) is an arbitrary enumeration of
X \ σ(ti). This proves that t[X,λX , Z] 6= ⊥.

Consider now the induction step when Z ∩ β(t) is non-empty. Let v be any vertex of
Z ∩ β(t), and let i be any label from [k′] \ λX(X); since X (β(t) and |β(t)| ≤ k′, such a la-
bel exists. Observe now that from the induction hypothesis for statement (5) it follows that
break[X ∪ {v}, λX [v → i], Z \ {v}] 6= ⊥, since in the definition of break[·] the set Z \ {v} can only
be partitioned into smaller connected components, each of them with a strictly smaller intersection
with β(t) than Z ∩ β(t). Therefore, the term tf,v,i defined as in (3) is among the candidates for the
value of t[X,λX , Z], which proves that t[X,λX , Z] 6= ⊥.

This concludes the inductive proof of statement (5) for all choices of X,λX , Z, which also
proves the induction step for statement (4) (both for leaf and non-leaf nodes). As explained earlier,
statement (4) for the root of the decomposition proves that the algorithm is correct, i.e., it outputs
some construction term providing that tw(G) < k. y

We are left with establishing the upper bound on the length of the output term, and analysing
the running time of the algorithm. To achieve this goal, we inductively bound the lengths of the
terms produced by the algorithm. For a state I = (B, λ, Z), define φ(I) as follows:

φ(I) = (k′ + 2) ·max(2|Z| − 1, 0) + |B|+ 2. (6)

Observe that if |Z| ≥ 1, then

φ(I) ≤ (k′ + 2) · 2|Z|. (7)

Claim 6.4. For any I ∈ S, if t[I] 6= ⊥ then |t[I]| ≤ φ(I).

Proof. We first verify the claim for states I where Z = ∅. Then it is easy to see that t[I] consists of
a sequence of introduce terms that introduce consecutive vertices, finished by a leaf term. Therefore
|t[I]| = |B| + 1 ≤ φ(I). In the sequel we assume that Z 6= ∅, and we proceed by induction with
respect to the potential Φ(I).

Assume now that Z 6= ∅ and that t[B, λ, Z] = ti,u = iλ(u)(t[I ′]) for some vertex u ∈ B, where
I ′ = (B \ u, λ[u→ ⊥], Z). Then, using the induction hypothesis we have that:

|t[I]| = 1 + |t[I ′]| ≤ 1 + φ(I) = 1 + (k′ + 2) · (2|Z| − 1) + (|B| − 1) + 2 = φ(I).

Finally, assume that t[B, λ, Z] = tf,v,i, where tf,v,i is defined as in (3). Then we have

|t[B, λ, Z]| ≤ 1 + |B|+ |break[B ∪ {v}, λ[v → i], Z \ {v}]|.

Let Z1, Z2, . . . , Zp be the vertex sets of the connected components of G[Z \ {v}] (possibly p = 0),
and let Ij = (B ∪ {v}, λ[v → i], Zj) for j = 1, 2, . . . , p.

22

Firstly, we consider the case when p = 0, or equivalently Z = {v}. Using our observations about
the case Z = ∅ we infer that |break[B ∪ {v}, λ[v → i], Z \ {v}]| = |B|+ 2. Then

|t[B, λ, Z]| ≤ 2|B|+ 3 ≤ (k′ + 2) + |B|+ 1 < φ(I).

Secondly, we consider the case when p > 0. Using inequality (7) and the fact that |Zj | ≥ 1 for
each j = 1, 2 . . . , p, we infer that

|break[B ∪{v}, λ[v → i], Z \ {v}]| ≤ 1 +
p∑
i=1

φ(Ip) ≤ 1 +
p∑
i=1

(k′+ 2) · 2|Zi| ≤ 1 + (k′+ 2) · 2(|Z| − 1).

Therefore, we obtain that

|t[B, λ, Z]| ≤ 1 + |B|+ 1 + (k′ + 2) · 2(|Z| − 1) ≤ φ(I),

which concludes the proof of the claim. y

Claim 6.4 implies that each term t[I] computed by the algorithm has length at most O(k′n),
which in particular proves the claimed upper bound on the length of the output term. For the
analysis of the running time of the algorithm, observe that for each state I ∈ S we consider O(k′n)
possible candidates for t[I]. Each of these candidates is constructed in O(kn) time, since we possibly
need to partition G[Z \ {v}] into connected components. Moreover, each of these candidates has
length at most O(k′n), by Claim 6.4. It follows that the E-minimum among these candidates can
be selected in O((k′n)2) time. Since |S| = 2O(k5 log k) · n3, we conclude that the whole algorithm
works in time 2O(k5 log k) · n5.

6.3 Corollaries of Theorem 1.3

We now show how Theorems 1.1 and 1.2 follow directly from Theorem 1.3.

Proof of Theorem 1.1. We run the algorithm of Theorem 6.2 on both G1 and G2. If for any of them
the algorithm concluded that the treewidth is at least k, then we output the appropriate answer.
Otherwise, the algorithm returned two terms t1, t2 that construct G1, G2, respectively. Since t1, t2

are isomorphism-invariant, to verify whether G1 and G2 are isomorphic it suffices to check whether
t1 = t2.

Proof of Theorem 1.2. Given a graph G, we compute the canonical term t constructing G, construct
an ordering φ : V (G)→ [n] of the vertices of G according to pre-order in term t of operations when
they become forgotten, and output the graph G[t] on the vertex set [n] together with the mapping
φ. If the computation of t returned that the treewidth of G is at least k, then we return the same
answer.

7 Conclusions

In this paper we have developed the first fixed-parameter tractable algorithm for Graph Isomor-
phism parameterized by treewidth. The obvious open question is to improve the running time of
our algorithm.

In this work we focused on keeping the presentation as clear as possible, while targeting at a
2poly(k) FPT algorithm at the same time — but without any attempt of optimizing the poly(k)
factor in the exponent, nor the polynomial factor in n. Although it is reasonable to suspect that

23

the polynomial factor in n in the running time of our algorithm can be reduced to n4, or even n3,
by a more careful analysis, we consider such an improvement of minor importance, and the more
challenging question would be to make the whole algorithm run in quadratic, or even linear time.
Recall that isomorphism of trees can be verified in linear time [1], so there is no reason why such
a running time should not be achieved also for graphs of bounded treewidth.

A possible route to improving the polynomial factor could be the alternative approach proposed
by Otachi and Schweitzer [31]. In essence, Otachi and Schweitzer show that once an isomorphism-
invariant family of potential bags of size f(k) · nc is constructed, then an FPT isomorphism test
can be performed using a variant of the Weisfeiler-Lehman algorithm, which thus can serve as
an alternative to our dynamic programming procedure of Section 6. Since the Weisfeiler-Lehman
algorithm is very simple, it is possible that the combination of our enumeration algorithm and the
techniques of Otachi and Schweitzer can lead to improving the polynomial factor.

For the parametric dependence, we also believe that the factor 2O(k5 log k) is suboptimal. A
challenging question would be to improve it to 2O(k log k) or even 2O(k). In the current approach,
the most significant reason for such a high polynomial in the exponent is the way we handle small
sets S in the proof of Lemma 3.3.

It is also interesting to investigate whether the results of our work can be used to prove canonical
or almost canonical variants of other graph decompositions. Actually, many structural theorems for
graphs follow the general approach proposed by Robertson and Seymour in their approximation algo-
rithm for treewidth [33]. In particular, the step of breaking the top adhesion S using a small separator
has been used multiple times in various works. Since our work provides a canonical way of performing
this step (encompassed in Lemmas 3.2 and Lemma 3.3), it might serve as a solid foundation for making
other graph decompositions canonical. For concrete decomposition theorems where we hope that our
approach could be applicable, let us name (a) the H-minor-free structural theorem of Robertson and
Seymour [34], (b) the H-topological-minor-free structural theorem of Grohe and Marx [18, 19], and
(c) the decomposition theorem with unbreakable parts given by a superset of the current authors [13].

Acknowledgements. We are grateful to Yota Otachi and Pascal Schweitzer for sharing with us
their manuscript [31] and helpful comments on our work. Furthermore, we thank an anonymous
reviewer for extensive comments.

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.

[2] S. Arnborg and A. Proskurowski. Canonical representations of partial 2- and 3-trees. BIT, 32(2):197–214,
1992.

[3] L. Babai and E. M. Luks. Canonical labeling of graphs. In STOC, pages 171–183, 1983.
[4] A. Berry, R. Pogorelcnik, and G. Simonet. An introduction to clique minimal separator decomposition.

Algorithms, 3(2):197–215, 2010.
[5] H. L. Bodlaender. Polynomial algorithms for Graph Isomorphism and Chromatic Index on partial

k-trees. J. Algorithms, 11(4):631–643, 1990.
[6] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM

J. Comput., 25(6):1305–1317, 1996.
[7] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci.,

209(1-2):1–45, 1998.
[8] H. L. Bodlaender. Necessary edges in k-chordalisations of graphs. J. Comb. Optim., 7(3):283–290, 2003.

24

[9] H. L. Bodlaender, E. D. Demaine, M. R. Fellows, J. Guo, D. Hermelin, D. Lokshtanov, M. Müller,
V. Raman, J. M. M. van Rooij, and F. A. Rosamond. Open problems in parameterized and exact
computation — IWPEC 2008. Technical Report UU-CS-2008-017, Department of Information and
Computing Sciences, Utrecht University, 2008.

[10] A. Bouland, A. Dawar, and E. Kopczyński. On tractable parameterizations of Graph Isomorphism.
In IPEC, pages 218–230, 2012.

[11] F. Clautiaux, J. Carlier, A. Moukrim, and S. Nègre. New lower and upper bounds for graph treewidth.
In Experimental and Efficient Algorithms, Second International Workshop, WEA 2003, Ascona,
Switzerland, May 26-28, 2003, Proceedings, volume 2647 of Lecture Notes in Computer Science, pages
70–80. Springer, 2003.

[12] B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic — A Language-
Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications. Cambridge
University Press, 2012.

[13] M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Minimum bisection is fixed
parameter tractable. In STOC, pages 323–332, 2014.

[14] R. Diestel. Graph Theory. Springer, 2005.
[15] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Texts in Computer

Science. Springer, 2013.
[16] I. S. Filotti and J. N. Mayer. A polynomial-time algorithm for determining the isomorphism of graphs

of fixed genus (working paper). In STOC, pages 236–243, 1980.
[17] J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical Computer Science.

An EATCS Series. Springer-Verlag, Berlin, 2006.
[18] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded topological

subgraphs. CoRR, abs/1111.1109, 2011.
[19] M. Grohe and D. Marx. Structure theorem and isomorphism test for graphs with excluded topological

subgraphs. In STOC, pages 173–192, 2012.
[20] G. Z. Gutin, K. Iwama, and D. M. Thilikos. Parameterized complexity and the understanding, design,

and analysis of heuristics. NII Shonan Meeting Report, 2013-2, 2013.
[21] J. E. Hopcroft and R. E. Tarjan. Isomorphism of planar graphs. In Complexity of Computer

Computations, pages 131–152, 1972.
[22] J. E. Hopcroft and R. E. Tarjan. A v log v algorithm for isomorphism of triconnected planar graphs.

J. Comput. Syst. Sci., 7(3):323–331, 1973.
[23] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs (preliminary

report). In STOC, pages 172–184, 1974.
[24] K. Kawarabayashi and B. Mohar. Graph and map isomorphism and all polyhedral embeddings in linear

time. In STOC, pages 471–480, 2008.
[25] J. M. Kleinberg and É. Tardos. Algorithm design. Addison-Wesley, 2006.
[26] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer

Science. Springer, 1994.
[27] S. Kratsch and P. Schweitzer. Isomorphism for graphs of bounded feedback vertex set number. In

SWAT, pages 81–92, 2010.
[28] E. M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comput.

Syst. Sci., 25(1):42–65, 1982.
[29] G. L. Miller. Isomorphism testing for graphs of bounded genus. In STOC, pages 225–235, 1980.
[30] Y. Otachi. Isomorphism for graphs of bounded connected-path-distance-width. In ISAAC, pages

455–464, 2012.
[31] Y. Otachi and P. Schweitzer. Reduction techniques for Graph Isomorphism in the context of width

parameters. CoRR, abs/1403.7238, 2014.
[32] I. Ponomarenko. The isomorphism problem for classes of graphs closed under contraction. Journal

of Soviet Mathematics, 55(2):1621–1643, 1991.
[33] N. Robertson and P. D. Seymour. Graph Minors XIII. The Disjoint Paths problem. J. Comb. Theory,

Ser. B, 63(1):65–110, 1995.

25

[34] N. Robertson and P. D. Seymour. Graph Minors XVI. Excluding a non-planar graph. J. Comb. Theory,
Ser. B, 89(1):43–76, 2003.

[35] U. Schöning. Graph Isomorphism is in the low hierarchy. J. Comput. Syst. Sci., 37(3):312–323, 1988.
[36] R. E. Tarjan. Decomposition by clique separators. Discrete Mathematics, 55(2):221–232, 1985.
[37] R. van Bevern, M. R. Fellows, S. Gaspers, and F. A. Rosamond. Myhill-nerode methods for hypergraphs.

In ISAAC, volume 8283 of Lecture Notes in Computer Science, pages 372–382, 2013.
[38] H. Weinberg. A simple and efficient algorithm for determining isomorphism of planar triply connected

graphs. Circuit Theory, 13:142–148, 1966.
[39] K. Yamazaki, H. L. Bodlaender, B. de Fluiter, and D. M. Thilikos. Isomorphism for graphs of bounded

distance width. Algorithmica, 24(2):105–127, 1999.

26

Appendix

Proof of Lemma 2.5. Let H = G〈k〉. Take any x, y ∈ V (G) and assume that xy /∈ E(H), so in
particular xy /∈ E(G). Then by the definition of H = G〈k〉, we have that the maximum vertex flow
between x and y in G has size less than k. By Menger’s theorem this means that there exists a
separation (A,B) of G that has order less than k, and such that x ∈ A \B and y ∈ B \A. We claim
that (A,B) is also a separation of H. Indeed, for any pair of vertices u ∈ A \B and v ∈ B \A, the
fact that |A ∩ B| < k certifies that µG(u, v) < k, which means that uv /∈ E(H) by the definition
of H. Since x ∈ A \B, y ∈ B \ A, and (A,B) is a separation of order less than k in H, then this
certifies that µH(x, y) < k. As x, y were chosen arbitrarily, it follows that H is k-complemented.

Proof of Lemma 2.6. Let (T, β) be a tree decomposition of G of width less than k. In order to show
that (T, β) is also a tree decomposition of H := G〈k〉, it suffices to show that for any xy ∈ E(H)\E(G)
there exists some t ∈ T such that x, y ∈ β(t).

For the sake of contradiction assume that no such t exists. Let T 0
x and T 0

y be the subtrees of
T induced by the nodes whose bags contain x and y, respectively. We know that T 0

x and T 0
y are

connected and vertex-disjoint. Let Ty be the connected component of T \V (T 0
x) that contains T 0

y as a
subgraph, and let Tx = T \V (Ty); note that Tx is connected and contains T 0

x as a subgraph. Observe
that (V (Tx), V (Ty)) forms a partition of V (T). Let A =

⋃
t∈V (Tx)

β(t) and B =
⋃
t∈V (Ty)

β(t); note
that x ∈ A \ B and y ∈ B \ A. Observe that since T is a tree, there exists only one edge txty
of T that connects a node from V (Tx) with a node from V (Ty). From the properties of a tree
decomposition it follows that A ∩B = β(tx) ∩ β(ty). Moreover, observe that x ∈ β(tx) \ β(ty), thus
|A ∩B| = |β(tx) ∩ β(ty)| < |β(tx)| ≤ k. As every vertex of G is contained in some bag of (T, β), it
follows that (A,B) is a separation of order less than k that separates x and y. This proves that
µG(x, y) < k, contradicting the assumption that xy ∈ E(H).

Proof of Lemma 2.7. If |E(G)| > (k − 1)n, then we can output that tw(G) ≥ k, since a graph of
treewidth less than k is (k − 1)-degenerate. Hence assume that |E(G)| ≤ (k − 1)n. We perform
a brute-force algorithm that follows immediately from the definition: For every pair of vertices,
we compute the maximum flow between them using the Ford-Fulkerson algorithm, stopping the
computation if the size of the flow exceeded k − 1. Thus we run at most k iterations of the
Ford-Fulkerson algorithm, and each iteration takes O(|V (G)|+ |E(G)|) = O(kn) time. Since we
perform this procedure for every pair of vertices, the running time of O(k2n3) follows.

Proof of Lemma 5.4. Let (T, β) be a tree decomposition of G of width k and adhesion width `. We
prove the following statement by a bottom-up induction on (T, β): For every t ∈ V (T) and every
vertex set Z of a connected component of G[α(t)], there exists a tree decomposition (Tt,Z , βt,Z) of
G[N [Z]] such that:

(a) (Tt,Z , βt,Z) is connectivity-sensitive,

(b) (Tt,Z , βt,Z) has width at most k and adhesion width at most `,

(c) every bag of (Tt,Z , βt,Z) is a subset of some bag of (T, β), and

(d) N(Z) is contained in the root bag of (Tt,Z , βt,Z).

Observe that in this definition it holds that N(Z) ⊆ σ(t). Since G is connected, for the final
decomposition (T ′, β′) we may take (Tr,V (G), βr,V (G)), where r is the root of (T, β).

Let us focus on one choice of t, Z. Let t1, t2, . . . , tp be the children of t in T (possibly p = 0).
For i = 1, 2, . . . , p, let Zi = Z ∩ α(ti), and let Z1

i , Z
2
i , . . . , Z

qi
i be the vertex sets of the connected

27

components of G[Zi]. For i = 1, 2, . . . , p and j = 1, 2, . . . , qi, let (T
ti,Z

j
i
, β
ti,Z

j
i
) be the decomposition

of G[N [Zji]] that satisfies properties (a), (b), (c), (d); existence of this decomposition is asserted
by the induction hypothesis. We construct the decomposition (Tt,Z , βt,Z) by creating one bag
β(t) ∩N [Z], and attaching all the decompositions (T

ti,Z
j
i
, β
ti,Z

j
i
) below it as subtrees. Let tji be the

root node of the attached decomposition (T
ti,Z

j
i
, β
ti,Z

j
i
). It is straightforward to verify that (Tt,Z , βt,Z)

is indeed a tree decomposition of G[N [Z]]. We now verify that the requested properties are satisfied.

• For property (a), the only checks not implied by the induction hypothesis are as follows:

– We need to verify that G[N [Z]] is connected, but this follows from the fact that G[Z]
is connected.

– We need to verify that G[αt,Z(tji)] is connected and that N(αt,Z(tji)) = σt,Z(tji). However,
we have that αt,Z(tji) = Zji , which induces a connected graph by its definition, and that
σt,Z(tji) = N(Zji) by the definition of (T

ti,Z
j
i
, β
ti,Z

j
i
) and property (d) for it.

• For properties (b) and (c), it suffices to observe that β(t) ∩N [Z] ⊆ β(t) and that σt,Z(tji) ⊆
σ(ti).

• Property (d) follows directly from the definition of Z and of the top bag of (Tt,Z , βt,Z).

This concludes the step of the induction.

Proof of Lemma 6.1. From right to left, let t be a term that constructs G and uses at most k labels.
For each subterm t′ of t, create one node tt′ with associated bag β(tt′) being the domain of λ[t′].
Since t uses at most k labels, it follows that |β(tt′)| ≤ k. Now connect nodes tt′ into a tree using
the structure inherited from the term t: for any two subterms t′, t′′, connect tt′ and tt′′ if and only
if t′′ appears as an argument of the top-most operation in t′, or vice-versa. Let T be the obtained
tree. It is straightforward to verify that the (T, β) is a tree decomposition of G, and we already
verified that it has width less than k.

From left to right, let (T, β) be a tree decomposition of G of width less than k. We apply a
bottom-up induction on (T, β). More precisely, for every t ∈ V (T) and every injective labeling
λ : σ(t) → [k] we construct a term tt,λ that constructs (G[γ(t)] \

(
σ(t)
2

)
, λ), i.e., the graph G[γ(t)]

with all the edges inside σ(t) cleared, and with labeling λ on σ(t). The final term t will be just
tr,∅, where r is the root of the tree T .

Let us take any t ∈ V (T), and let t1, t2, . . . , tp be the children of t in T (possibly p = 0). Let
λ′ be any injective extension of λ onto β(t); such an extension exists since |β(t)| ≤ k. We first
construct an auxiliary term t′, which will construct (G[γ(t)] \

(
β(t)
2

)
, λ′). The construction of t′

distinguishes two cases: either p = 0 or p > 0.
Consider first the case when p = 0, i.e., t is a leaf node. Then we can take

t′ = iλ′(u1)(iλ′(u2)(. . . iλ′(u|β(t)|)(l) . . .)),

where (u1, u2, . . . , u|β(t)|) is an arbitrary ordering of the vertices of β(t).
Consider now the case when p > 0. For i = 1, 2, . . . , p, let ti be equal to tti,λi , where λi = λ′|σ(ti).

Existence of ti is asserted by the induction hypothesis for the node ti. Construct t′i from ti by
applying i operation for all the labels that are used in λ′, but not in λi. Then we can take

t′ :=

{
t′1 if p = 1,
j(t′1, t

′
2, . . . , t

′
p) if p > 1.

28

It is straightforward to see that in both cases t′ constructs (G[γ(t)] \
(
β(t)
2

)
, λ′), as claimed.

Now we need to show how to obtain tt,λ from t′. Let L be the set of labels used in λ′ and let
Lσ ⊆ L be the set of labels used in λ. To obtain tt,λ from t′, we perform the following two operations:

• Apply e operations to all the pairs of labels {j1, j2} ∈
(
L
2

)
\
(
Lσ
2

)
such that λ′−1(j1)λ′−1(j2) ∈

E(G), in any order.

• Apply f operations to all the labels of L \ Lσ, in any order.

It is straightforward to see that tt,λ constructs (G[γ(t)] \
(
σ(t)
2

)
, λ), as claimed. This concludes the

inductive proof.

29

