20 research outputs found

    Two-mode overconstrained three-DOFs rotational-translational linear-motor-based parallel-kinematics mechanism for machine tool applications

    Full text link
    The paper introduces a family of three-DOFs translational-rotational Parallel-Kinematics Mechanisms (PKMs) as well as the mobility analysis of such family using Lie-group theory. Each member of this family has two-rotational one-translational DOFs. A novel mechanism is presented and analyzed as a representative of that family. The use and the practical value of that modular mechanism are emphasized.<br /

    A way of relating instantaneous and finite screws based on the screw triangle product

    Get PDF
    It has been a desire to unify the models for structural and parametric analyses and design in the field of robotic mechanisms. This requires a mathematical tool that enables analytical description, formulation and operation possible for both finite and instantaneous motions. This paper presents a method to investigate the algebraic structures of finite screws represented in a quasi-vector form and instantaneous screws represented in a vector form. By revisiting algebraic operations of screw compositions, this paper examines associativity and derivative properties of the screw triangle product of finite screws and produces a vigorous proof that a derivative of a screw triangle product can be expressed as a linear combination of instantaneous screws. It is proved that the entire set of finite screws forms an algebraic structure as Lie group under the screw triangle product and its time derivative at the initial pose forms the corresponding Lie algebra under the screw cross product, allowing the algebraic structures of finite screws in quasi-vector form and instantaneous screws in vector form to be revealed.

    Singularity Analysis for a 5-DoF FullySymmetrical Parallel Manipulator 5-RRR (RR

    Get PDF
    Abstract-A 5-DoF 3R2T (three dimensional rotation and two dimensional translation degrees of freedom) fully-symmetrical parallel manipulator can be adopted in many applications such as simulating the motion of spinal column. However, kinematics of this type parallel manipulator has not been studied enough because of short history. The study of kinematics of the manipulators leads inevitably to the problem of singular configuration. Singularity of a 5-DoF 3R2T fully-symmetrical parallel manipulator, 5-RRR(RR), is illustrated in this study. According to the singularity classification by Fang and Tsai, both limb singularity and actuation singularity are illustrated by screw theory and Grassmann geometry. The result of this study will be helpful for singularity analysis of 5-DoF 3R2T fully-symmetrical parallel manipulators because of their similar constraint property

    Parallel Manipulators with Lower Mobility

    Get PDF
    A review of the criteria to be used for designing parallel manipulators with lower mobility (LM-PMs) is presented. This chapter attempts to provide a unified frame for the study of this type of machines together with a critical analysis of the vast literature about them. The chapter starts with the classification of the LM-PMs, and, then, analyzes the specific subjects involved in the functional design of these machines. Special attention is paid to the definition of the limb topology, the singularity analysis and the discussion of the characteristics of some machines

    A simple and visually orientated approach for type synthesis of overconstrained 1T2R parallel mechanisms

    Get PDF
    This paper presents a simple and highly visual approach for the type synthesis of a family of overconstrained parallel mechanisms that have one translational and two rotational movement capabilities. It considers, especially, mechanisms offering the accuracy and dynamic response needed for machining applications. This family features a spatial limb plus a member of a class of planar symmetrical linkages, the latter connected by a revolute joint either to the machine frame at its base link or to the platform at its output link. Criteria for selecting suitable structures from among numerous candidates are proposed by considering the realistic practical requirements for reconfigurability, movement capability, rational component design and so on. It concludes that a few can simultaneously fulfil the proposed criteria, even though a variety of structures have been presented in the literature. Exploitation of the proposed structures and evaluation criteria then leads to a novel five degrees of freedom hybrid module named TriMule. A significant potential advantage of the TriMule over the Tricept arises because all the joints connecting the base link and the machine frame can be integrated into one single, compact part, leading to a lightweight, cost effective and flexible design particularly suitable for configuring various robotized manufacturing cells

    Appropriate Design of Parallel Manipulators

    Get PDF
    International audienceAlthough parallel structures have found a niche market in many applications such as machine tools, telescope positioning or food packaging, they are not as successful as expected. The main reason of this relative lack of success is that the study and hardware of parallel structures have clearly not reached the same level of completeness than the one of serial structures. Among the main issues that have to be addressed, the design problem is crucial. Indeed, the performances that can be expected from a parallel robot are heavily dependent upon the choice of the mechanical structure and even more from its dimensioning. In this chapter, we show that classical design methodologies are not appropriate for such closed-loop mechanism and examine what alternatives are possible

    Symmetric Subspace Motion Generators

    Get PDF
    When moving an object endowed with continuous symmetry, an ambiguity arises in its underlying rigid body transformation, induced by the arbitrariness of the portion of motion that does not change the overall body shape. The functional redundancy caused by continuous symmetry is ubiquitously present in a broad range of robotic applications, including robot machining and haptic interface (revolute symmetry), remote center of motion devices for minimal invasive surgery (line symmetry), and motion modules for hyperredundant robots (plane symmetry). In this paper, we argue that such functional redundancy can be systematically resolved by resorting to symmetric subspaces (SSs) of the special Euclidean group SE(3), which motivates us to systematically investigate the structural synthesis of SS motion generators. In particular, we develop a general synthesis procedure that allows us to generate a wide spectrum of novel mechanisms for use in the applications mentioned

    The Geometric Design of Spherical Mechanical Linkages with Differential Task Specifications: Experimental Set Up and Applications

    Get PDF
    The thesis focuses on the development of an experimental set up for a recently developed failure recovery technique of spatial robot manipulators. Assuming a general configuration of the spatial robot arm, a task is specified. This task contains constraints on position, velocity and acceleration to be satisfied. These constraints are derived from contact and curvature specifications. The technique synthesizes the serial chain and tests if the task can be satisfied in case of a joint failure. An experimental set up was developed in order to validate the failure recovery technique. It includes a robot arm mounted on a movable platform. The arm and platform are controlled by NI sbRIO board and are programmed in LabVIEW. The experimental results of the failure recovery technique were obtained for the case of Elbow failure in robot manipulators. The thesis considers two applications of the synthesis of spherical five –degree-of-freedom serial chains: Power assist for human therapeutic movement and Synthesis of Parallel Mechanical Linkages. A spherical TS chain has been synthesized for these two applications using the Mathematica software
    corecore