
 
 

 

  

Abstract—A 5-DoF 3R2T (three dimensional rotation and two 
dimensional translation degrees of freedom) fully-symmetrical 
parallel manipulator can be adopted in many applications such 
as simulating the motion of spinal column. However, kinematics 
of this type parallel manipulator has not been studied enough 
because of short history. The study of kinematics of the 
manipulators leads inevitably to the problem of singular 
configuration. Singularity of a 5-DoF 3R2T fully-symmetrical 
parallel manipulator, 5-RRR(RR), is illustrated in this study. 
According to the singularity classification by Fang and Tsai, 
both limb singularity and actuation singularity are illustrated 
by screw theory and Grassmann geometry. The result of this 
study will be helpful for singularity analysis of 5-DoF 3R2T 
fully-symmetrical parallel manipulators because of their similar 
constraint property. 

Keywords: singularity analysis, 5-DoF, fully-symmetrical, 
parallel manipulator 

I. INTRODUCTION 
HE history for 5-DoF fully-symmetrical[1] parallel 
manipulator is not very long[2], thereby kinematics of 

these manipulators have not been studied enough. Most of 
existent fully-symmetrical parallel manipulators are 3R2T 
type[3;4], namely the end-effector has three dimensional 
rotation and two dimensional independent translation 
motions. Such a mechanism can be used to simulate the 
motion of a spinal column. The translation along the axis of 
spinal column for the top relative to the bottom is very small 
and consequently can be ignored. So the top of the spinal 
column has three rotational and two translation freedoms 
relative to the bottom.  

The study of the kinematics of the mechanisms leads 
inevitably to the problem of singular configuration. The 
singular configuration for a parallel manipulator is more 
complex than a serial one. Sometimes, the end-effector of 
parallel manipulator may lose one or more DoF similar to the 
case of a serial manipulator. In the other cases, one or more 
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DoF of end-effector of a parallel manipulator may be 
uncontrollable.  

In recent twenty years, many researchers had studied the 
singularity of parallel manipulators. Different methods for 
singularity classification are proposed:  
With Grassmann geometry, Merlet[5] studied singularity 
configuration of Gough-Stewart manipulator and defined 
three types of singularities based on the constrained motions. 
Huang et al.[6] proposed a geometry sufficiency and 
necessary condition to analyze singularity configurations of 
Stewart manipulator.  
Gosselin and Angeles[7] studied the general singularity for 
closed-loop kinematic chains. Three types of singularities are 
defined based on the property of Jacobian matrices of the 
chain. Ma and Angeles[8] pointed out that the third type 
singularity in ref. [7] is a subset of architecture singularity. 
Tsai named the singularity classification in ref. [7] as inverse 
kinematic, direct kinematic, and combined singularity 
respectively[9].  
Zlatanov et al. pointed out that the approach in ref. [7] may 
fail to detect certain singularities in the general closed-loop 
case[10]. They also proposed six fundamental singularity 
types (RI, RO, II, IO, RPM, IIM) and 21 combination cases 
of six ones above. After that, Bonev et al.[11] and Merlet[12] 
discussed the puzzling singularity of translational parallel 
robot prototype built at Seoul National University, 
respectively.  
Park and Kim[13] studied the singularity of parallel 
manipulators with differential geometry in a Euclidean space 
for the first time.  
Fang and Tsai[14] identified the singularity configuration of 
parallel manipulator with three types: limb singularity, 
platform singularity and actuation singularity. 

In this paper, singularity of a fully-symmetrical 5-DoF 
3R2T 5-RRR(RR) parallel manipulator is studied. Both screw 
theory[15,16], Grassmann Geometry and singularity 
classification defined by Fang and Tsai[14] are adopted in the 
singularity analysis since they are convenient for 
comprehension of singular configuration. The result of this 
study will be helpful for singularity analysis of 5-DoF 3R2T 
fully-symmetrical parallel manipulators because of their 
similar constraint relationship. 

The paper was arranged as follows, at first, screw theory 
are recalled briefly. Second, the mobility of this manipulator 
is analyzed with screw theory. Third, according to singularity 
classification by Fang and Tsai[14], both limb singularity and 
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actuation singularity for the mechanism 5-RRR(RR) are 
illustrated. Moreover, methods to avoid actuation 
singularities are also presented. 

II. BASIC SCREW THEORY 
The singularity analysis in this study is mainly based on the 

screw theory.  Hereby, some basic screw concepts are 
recalled here briefly. 

In the screw theory[15;16], a unit screw is given by a dual 
vector. 

$=[ST; S0
T]=[ST; (r × S + hS)T ]T= [ l m n ; p q r ]T   (1) 

where $ denotes a unit screw; S=[l, m, n] the unit vector along 
the screw axis; S0 = r × S + hS=[p, q, r] the dual part of the 
screw; r the position vector of any point on the screw axis; h 
the pitch of the screw.  

Kinematical screw for a revolute joint is a linear vector 
whose h=0,  

$revolute=[ST; S0
T]T =[S ; r×S]T                   (2) 

where $revolute denotes a kinematic screw for a revolute joint.  
Kinematic screw for a prismatic pair is a couple vector 

whose h=∞, 
$prismatic=[0T; ST]T                          (3) 

where $prismatic denotes a kinematic screw for a prismatic pair; 
0 is a 3×1 zero-vector.  

Two screws ($A and $B) are reciprocal to each other if they 
satisfy[15;16] 

SA · S0B + S0A·SB 

=(lA·pB+mA·qB+nA·rB)+(pA·lB+qA·mB+rA·nB) = 0         (4) 
where $A=[SA

T;S0A
T]=[lA mA nA ; pA qA rA]T, $B=[SB

T;S0B
T]T = 

[lB mB nB ; pB qB rB ]T. 
According to Eq. (4), two coplanar linear vectors $A and $B 

are reciprocal to each other. 

III. MANIPULATOR DESCRIPTION AND MOTION ANALYSIS 
As shown in Fig. 1, a movable platform (end-effector) and 

base are connected by five identical limbs each with five 
joints Ri, i=1,2,3,4,5. Axes of R1, R2, R3 are perpendicular to 
the base plane and the parallel structure is denoted with 
underline RRR. The other two joints, R4 and R5, intersect at a 
common point called rotation center. The intersection 
structure is denoted with parentheses (RR). Five R1 are 
chosen as actuators.   

The kinematical screw system[15;16] for one RRR(RR) limb 
consists of five joint screws ($i, i=1,2,3,4,5) corresponding to 
five joints, respectively. Since the rank of kinematical screw 
system is independent to the reference frame, we here assume 
Z-axis of the reference frame parallel the axis of R1, origin O 
locate at the rotation center for convenience, as shown in Fig. 
2. Then, the kinematical screw system for one limb is 

$1=[0, 0, 1; y1, -x1, 0]T 
$2=[0, 0, 1; y2, -x2, 0]T 
$3=[0, 0, 1; y3, -x3, 0]T 
$4=[l4, m4, n4; 0, 0, 0]T 
$5=[l5, m5, n5; 0, 0, 0]T                     (5) 

where [x1, y1, 0], [x2, y2, 0] and [x3, y3, 0] are the coordinate of 
intersection points of axes of R1, R2, R3 with O-XY plane, 
respectively; [l4, m4, n4], [l5, m5, n5] denotes the direction 
cosine for axes of R4, R5. 

 
Fig. 1. Sketch of 5-RRR(RR) 

 
Fig. 2. Twists and wrenches of a RRR(RR) limb 

According to the screw theory[15;16], the constraint wrench 
of the limb is a screw which is reciprocal to the kinematical 
screw system in Eq.(5), namely  

$r1=[0, 0, 1; 0, 0, 0]T                          (6) 
where $r1 denotes a constraint force along Z-axis.  

Similarly, $r1 of five limbs are the same, and they form a 
common constraint force which constrains the translation of 
the end along Z-axis. As a result, the movable platform has 
three dimensional rotation freedoms and two dimensional 
translational freedoms which parallel to O-XY plane. 

In another way, according to the modified 
Kutzbach-Grüble formula[17] 

ς−++−−= ∑
=

vfgndM
g

i
i

1

)1(              (7) 

where M denotes the number of DoF; d=6-λ, λ denotes the 
number of the common constraint; n the number of links; g 
the number of pairs; fi the freedoms of the ith pair; v the 
number of redundant constraints not included in common 
constraint and ς denotes the local freedom. For the 

manipulator 5-RRR(RR), λ=1, n=22, g=25, 25
1

=∑
=

g

i
if , v=0, 

ς=0, so M=5, namely the movable platform of this 
manipulator has five DoF. 
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IV. SINGULARITY ANALYSIS 
In this study, the singularity of the manipulator will be 

discussed according to the classification defined by Fang and 
Tsai[14]. They classified the singularities for lower-mobility 
parallel manipulators into three types: limb singularity, 
platform singularity and actuation singularity.  

(a) Limb singularity is similar to the singularity of a serial 
manipulator. It occurs when the limb kinematical screw 
system degenerates. In such a condition, the joint screws in 
the kinematical screw system become linearly dependent and 
the number of independent wrenches reciprocal to the 
kinematical screw system increases accordingly. As a result, 
the movable platform loses one or more DoF.  

(b) Platform singularity occurs when the overall wrench 
system of the movable platform (which consists of wrenches 
from all limbs) degenerates. As a result, one or more DoF of 
movable platform are uncontrollable. For a 5-DoF 
fully-symmetrical parallel manipulator, wrenches from all 
limbs are always the same. Therefore, platform singularity is 
unlike to occur for a 5-DoF fully-symmetrical parallel 
manipulator. 

 (c) Actuation singularity occurs if the movable platform 
still possesses certain DoF after locking all actuators. Its 
another well-known name is self-motion[18]. In this case, the 
rank of wrench system is less than six after locking actuators. 
As a result, actuators can not fully control the movable 
platform in this configuration.  

Moreover, both limb singularity and platform singularity 
are independent of the input selection (the selection of 
actuated joints). They should be avoided in trajectory plan 
stage. However, different with them, actuation singularity 
depends on the input selection. It may be avoided by 
adjusting assembly configuration or changing actuated joints. 

Since the platform singularity for 5-RRR(RR) is unlikely 
occur, only limb singularity and actuation singularity are 
discussed in the following sections. 

A. Limb singularity 
Assume the coordinate for the intersection of O-XY 

plane and axis of ith kinematic pair is  
],,[ 0iii yx=C                               (8) 

Then the limb screw system is 
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where limb$  denotes kinematical screw system for a limb; 

nml ,,  is the direction cosines of the screw. Since the last 
column is a zero column, the rank of the screw system 
depends on the former five columns. Determination of the 

former five columns, )5:1(:,limb$ , is 

1 5

4 5 5 4 1 2 2 1

2 3 3 2 3 1 1 3

4 5 5 4 1 2 2 1

2 3 3 2 3 1 1 3 2 2 2 2

4 5 5 4 2 1 3 2 3 2 2 1

(:, : )

( )[( )
( ) ( )]
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( ) ( ) ( )]

( )[( )( ) ( )( )]

limb
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x y x y x y x y
l m l m x y x y

x y x y x y x y x y x y
l m l m x x y y x x y y

= − − +

− + −

= − − +

− + − + −

= − − − − − −

$

(10) 
Assume  

],,[ zyx NNN 4545455445 =×= SSN               (11) 

Then Eq.(10) can be rewritten as 

1 5

45 2 1 3 2 3 2 2 1

(:, : )

[( )( ) ( )( )]
limb

zN x x y y x x y y= − − − − −

$
 

(12) 
The sufficient and necessary condition for the limb 

singularity of RRR(RR) is Eq.(12) equals zero. According to 
Eq.(12), there are two special singular cases for a RRR(RR) 
limb listed in Table I. 

where ijP  denote the plane determined by axes of Ri and Rj, 

 
Fig. 3. The first case of limb singularity 

1) First case:  As shown in Fig.3, axes of R1, R2, R3 are 
coplanar, where P123 is the plane determined by the axes of R1, 
R2, R3; P45 is the plane determined by axes of R4, R5. 

Assume O-YZ plane of the reference frame be the same 
with plane P123, Z-axis be along the axis of R3 for 
convenience. Thus, the kinematical screw system for a limb is  

$1=[0, 0, 1; y1, 0, 0]T 
$2=[0, 0, 1; y2, 0, 0]T 
$3=[0, 0, 1; 0, 0, 0]T 

$4=[l4, m4 , n4; (x0, y0, z0)×(l4, m4 , n4)]T 
$5=[l5, m5 , n5; (x0, y0, z0)×(l5, m5 , n5)]T           (13) 

TABLE I  
GEOMETRY CONDITIONS FOR LIMB SINGULARITY OF 5-RRR(RR) 

Singular Cases Geometry Conditions 

)(
)(

)(
)(

12

12

23

23

xx
yy

xx
yy

−
−

=
−
−

Axes of R1, R2 and R3 are coplanar 

045 =zN  Axis of R1 parallels to 45P  
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where [x0, y0, z0] is the coordinate of the rotation center. 
In this case, $1, $2, $3 are dependent and the rank of 

kinematical screw system is four. There are two independent 
wrenches reciprocal to the kinematical screw system, 

$r1=[0, 0, 1; y0, -x0, 0]T                   (14) 

$r2=
1

1
2
2 +rm

[0, mr2, 1; pr2, 0, 0]T         (15) 

where pr2=(m4l5-l4m5)/( l5n4-l4n5);  
mr2=(-z0l4m5+l5m4z0+y0l4n5-l5n4y0+m4l5-l4m5)/(n5m4-m5n4). 

$ r2 in Eq. (15) is a constraint force along the intersection 
line of planes P123 and P45. Under the two constraint forces, $1 
and $2 , the end of the limb can not translate along their axes 
or any axis intersects with them, except the common vertical 
line of two axes. Furthermore, rotation of the movable 
platform is also limited[19]. It can only rotate around the axis 
intersects with both axes. 

By the way, a special case may occur if the lengths of links 
connected R1 with R2 and R2 with R3 are equal, R1, R3 are 
coaxial. Then, the limb will achieve a local rotational freedom, 
and infinite input will lead zero end-output. This case is the 
third type singularity in Ref. [7]. 

For the manipulator 5-RRR(RR), the first case of limb 
singularity may occurs simultaneously in three limbs. Then, 
four constraint force acts on the movable platform. The 
movable platform consequently has two independent DoF 
instead of five. 

2) Second case:  As shown in Fig.4, the plane P45 is 
perpendicular to the base plane.  

 
Fig. 4. The second limb singularity 

Assume O-XZ plane be the same with plane P45, Z-axis 
parallel to the axis of R1, origin O locate at the rotation center. 
Thus, the kinematical screw system will be  

$1=[0, 0, 1; y1, -x1, 0]T 
$2=[0, 0, 1; y2, -x2, 0]T 
$3=[0, 0, 1; y3, -x3, 0]T 
$4=[l4, 0, n4; 0, 0, 0]T 
$5=[l5, 0, n5; 0, 0, 0]T                         (16) 

where [x1, y1, 0], [x2, y2, 0] and [x3, y3, 0] are the intersection 
points of axes of R1, R2, R3 with O-XY plane, respectively; [l4, 
0, n4], [l5, 0, n5] denotes the direction cosine of axes of R4, R5. 

Then, there are two independent constraint wrenches 
$ r1=[0, 0, 1; 0, 0, 0]T                         (17) 
$ r2= [0, 0, 0; 0, 1, 0]T                        (18) 

where $ r2 in Eq. (18) is a constraint couple which constrains 
the rotation around Y-axis.  

Such a singularity configuration can occurs only in one 
limb simultaneously. In this case, the end of the limb can not 
translate along Z-axis or rotate around any axis parallels to 
Y-axis.  

B. Actuation singularity 
When the actuator fixed on the joint R1 is locked, the 

kinematical screw system under the frame in Fig. 2 is 
$2=[0, 0, 1; y2, -x2, 0]T 
$3=[0, 0, 1; y3, -x3, 0]T 
$4=[l4, 0, n4; 0, 0, 0]T 
$5=[l5, 0, n5; 0, 0, 0]T                         (19) 

There are two independent wrenches, $r1 and $r2, at general 
configuration for a limb R2R3R4R5. The axis of $r2 for a limb 
is the intersection line of planes P23 and P45, shown in Fig. 2.  

In another way, according to screw theory[15;16],  
$r2=[lr2, mr2, nr2, pr2, qr2, rr2]T                 (20) 

where lr2= (1/λ) (x3-x2)/(x2y3- x3y2);  
          mr2= (1/λ) (y3-y2)/(x2y3- x3y2);  
          nr2= 0; 

pr2= (1/λ) (m4n5-m5n4)/(l4m5-l5m4);  
qr2= (1/λ) (l5n4-l4n5) /(l4m5-l5m4);  
rr2= (1/λ); 

2
2

2
2 rr ml +=λ ;  

Assume the unit direction of normal vector for plane P45 is 
n45=[n45x,n45y,n45z] = [m4n5-m5n4, l5n4-l4n5, l4m5-l5m4], then  

pr2= (1/λ) n45x / n45z                          (21) 
qr2= (1/λ) n45y / n45z                          (22) 

$ r2=(1/(λn45z))[n45zlr2,n45zmr2,n45znr2, n45x,n45y,n45z]T (23) 
Thus, wrench system $r of the movable platform consists of 

six wrenches, $ r2 of five limbs and $r1, 
T)5(

2
)4(

2
)3(

2
)2(

2
)1(

21 ],,,,,[ rrrrrrr $$$$$$$ =                 (24) 

where )(
2
i

r$  denotes the $r2 of the ith limb, i=1,2,3,4,5. 
At general configuration, the rank of the wrench system in 

Eq.(18) is usually six and hence the movable platform can be 
controlled by five actuators. However, if wrench system 
degenerates at some special configuration, the actuation 
singularity occurs. There are three cases of actuation 
singularities for the manipulator 5-RRR(RR). 

1) First case:   As shown in Fig.5, rotation center locates in 
P23 of five limbs. Let origin O of reference frame locate at the 
rotation center, and Z-axis be perpendicular to the base plane. 

In this case, rotation center is on the intersection line of P23 
and P45 since it is always in P45, namely the axis of $r2. 
Moreover, $r1 also passes through the rotation center. Then 
six constraint wrenches shown in Eq. (24) intersect at the 
rotation center. According to the Grassmann geometry[5], 
there are only three linear independence vectors in the spatial 
intersection case.  
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Based on screw theory, from Eq.(19), x2y3- x3y2=0. So,  

 
Fig. 5. The first case of actuation singularity 

T
222

)(
2 ]0,0,0,,,[ i

r
i
r

i
r

i
r nml=$                       (25) 

namely,  
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where ],,[ 222
i
r

i
r

i
r nml  denotes the direction cosine of axis )(

2
i

r$ , 
i=1,2,3,4,5. Obviously, rank of wrench system, $r is three. 

In this case, the movable platform can still rotate about the 
rotation center even after locking five actuators. In other 
words, there are three uncontrollable rotation DoF.  

This actuation singularity can be passed by choosing 
different joints as actuators. For example, six wrenches in 
Eq.(24) are not dependent if choosing three R1 and two R2 as 
actuators.  

 
Fig. 6. The second case of actuation singularity 

2) Second case:  As shown in Fig.6, the plane P45 of five 
limbs parallel to the base plane. Let the reference frame be the 
same with Fig. 5. 

In this case, P45 of five limbs will be the same plane. And 
$r2 of five limbs will be also in the plane. According to 
Grassmann geometry[5], the rank of coplanar linear vectors 
(five $r2) is three. Thus, the number of linear independent 
constraint wrenches (five $r2 and $r1) is four.  

According to screw theory, from Eq.(23), the last three 
entries of the $ r2 are the direction cosine of the normal vector 
for P45. When the movable platform parallel to the base plane, 
the five P45 planes are the same. Then, their normal vectors 
parallel to each other, namely 

T
222
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2 ]1,0,0,,,)[λ/1( i

r
i
r

i
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i
r nml=$               (27) 

Then 
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Obviously, rank of the wrench system, $r is four. 
In this case, there are two uncontrollable freedoms for the 

movable platform. The movable platform can instantaneously 
rotate around any axis in plane O-XY even after locking five 
actuators.  

One of input selections to avoid this singular configuration 
is choosing three R1 and two R4 as actuators. 

3) Third case:  Configurations of five limbs are 
symmetrical about Z-axis. Let the reference frame be the 
same with Fig. 5. 

In this case, five $r2 will also be symmetrical about Z-axis. 
One $r2 can be achieved by transforming another by a rotation 
around Z-axis.  

Based on the screw theory, assume O-YZ plane of 
reference frame parallel )1(

2r$ , and )1(
2r$  intersect with X-axis at 

[x, 0, 0], namely  
T)1(

2 ]00[ xmxnnmr −=$              (29) 

Since any )(
2
i

r$  can be achieved by transforming )1(
2r$  after a 

rotation around Z-axis, then )(
2
i

r$  can be expressed as  
T)(

2 ][ xmxncxnsnmcms iiii
i

r αααα −−=$   (30) 
where αi is the angle between the first limb and ith limb; sαi, cαi 
denote sin(αi) and cos(αi), respectively.  

Given )1(
2r$ , )2(

2r$ , )3(
2r$ , any )(

2
i

r$  can be expressed as 
)(

23
)(

22
)(

21
)(

2
i

r
i

r
i

r
i

r kkk $$$$ ++=                  (31) 
where  

k1=(sα3cαi-sαicα3+cα2sαi-cαisα2-sα3cα2+cα3sα2)/t; 
k2= (sα3-sα3cαi-sαi+sαicα3)/ t; 
k3= (sαi-sα2-cα2sαi+cαisα2)/ t; 
t= sα3-sα2-sα3cα2+cα3sα2. 
Thus, the max linear independent number of five $r2 is 

three. Hence, only four of six wrenches work efficiently. In 
other words, there are two uncontrollable DoF. 

Moreover, this type of actuation singularity can be avoided 
by arranging three limbs with clockwise and the other two 
with counter-clockwise at assembly configuration. As shown 
in Fig. 7, limbs 1, 3, 5 are assembled with one current and the 
other two with contrary current.  

Furthermore, for all existent 5-DoF 3R2T 
fully-symmetrical parallel manipulators, it is always a 
common constraint force is acted on the movable platform at 
general configurations. Singularity analysis for them is 
similar because of their similar constraint property. Hence, 
this study is helpful for singularity analysis of other 5-DoF 
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3R2T fully-symmetrical parallel manipulators. For example, 
actuation singularity of manipulator 5-PRR(RR)[3] is the same 
with 5-RRR(RR).  

 
Fig. 7. Assembly configuration to avoid the third case of actuation singularity 

V. CONCLUSIONS 
Based on the singularity classification by Fang and Tsai, 

this paper studied the singularity configurations of a 5-DoF 
3R2T fully-symmetrical parallel manipulator, 5-RRR(RR). 
Both limb singularity and actuation singularity are illustrated 
with screw theory and Grassmann geometry. The influence of 
these singularities and methods to avoid them are also 
presented. The result of this study is helpful for singularity 
analysis of other 5-DoF 3R2T fully-symmetrical parallel 
manipulators. 
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