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Abstract: It has been a desire to unify the models for structural and parametric analyses and design in the field of robotic mechanisms. 

This requires a mathematical tool that enables analytical description, formulation and operation possible for both finite and 

instantaneous motions. This paper presents a method to investigate the algebraic structures of finite screws represented in a quasi-

vector form and instantaneous screws represented in a vector form. By revisiting algebraic operations of screw compositions, this paper 

examines associativity and derivative properties of the screw triangle product of finite screws and produces a vigorous proof that a 

derivative of a screw triangle product can be expressed as a linear combination of instantaneous screws. It is proved that the entire set 

of finite screws forms an algebraic structure as Lie group under the screw triangle product and its time derivative at the initial pose 

forms the corresponding Lie algebra under the screw cross product, allowing the algebraic structures of finite screws in quasi-vector 

form and instantaneous screws in vector form to be revealed. 
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1. Introduction 

The instantaneous screw [1] has been considered as a powerful tool and extensively applied in analysis and design of 

serial and parallel mechanisms. By taking twist of an end link as a linear combination of instantaneous screws produced 

by joints, Hunt [2] and Duffy [3] developed a method to formulate Jacobian matrix. Angeles [4] presented an alternative 

way to do so by taking all actuation wrenches as instantaneous screws. These works were extended by Joshi and Tsai [5], 

Huang and Liu [6] in dealing with lower mobility serial and parallel mechanisms, resulting in the overall Jacobian and 

generalized Jacobian matrix that allow velocity, force, stiffness and rigid body dynamic analyses to be unified using 

instantaneous screw theory. Another use of screw theory in analysis and synthesis of robotic mechanisms is mobility 

analysis and type synthesis. Regarding small and finite displacements or velocities and constraint forces of a mechanism 

in a systematic frame of a screw system and its reciprocal system, Dai and Rees Jones [7] revealed the interrelationship 

and intersection of all screw systems and their reciprocal systems by introducing set theory in screw theory. In the 

meantime, they [8] developed a linear algebraic procedure to obtain a reciprocal screw system and its basis in a null space 

construction using cofactors from a screw algebra context. These theories were directly used in mobility analysis of 

different types of parallel mechanisms, including those having overconstraints [9]. Utilizing annihilator property between 

a screw system and its reciprocal system, Huang and Li [10], Fang [11], Kong [12] and colleagues proposed a number of 

simple and effective approaches for type synthesis of various parallel mechanisms. However, since instantaneous screws 

are not valid to represent finite motions, final verification is required to ensure consistency between finite and 

instantaneous motions [13-15]. 
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In order to describe finite motions precisely, the finite screw was proposed. Investigation into finite screws can be 

traced back to the pioneering work of Dimentberg [16-17] and Roth [18] in dealing with composition of finite motions of 

a rigid body, leading to development of the screw triangle product that provides a sound geometric interpretation to the 

Rodrigues formula with dual angles [17]. Investigations into finite screws were developed by Roth [18], Parkin [19], 

Huang [20-21] and Dai [22-23]. They proposed a simple and widely accepted form of finite screws that can be analogously 

expressed as a quasi-vector with six algebraic entries. A finite screw in this form looks extraordinarily similar to an 

instantaneous one even if it is nonlinear in nature. This form allows the linear format of a screw triangle to be made in 

such a way that the composition of two finite screws can be expressed as the sum of five meaningful terms [21, 24]. Based 

upon the algebraic characteristic of finite screws, Dai, Holland and Kerr [22] and Dai [25-26] revealed the relationship 

between finite screws and instantaneous screws through solving the eigenscrew and derivative of the finite displacement 

screw matrix [25]. Utilizing finite screw theory, finite motion analyses of different geometrical elements, such as points, 

lines and planes, as well as simple open loop and closed loop mechanisms are carried out by Huang [20, 27], Hunt [28]. 

It has been a desire to develop a theoretical package that enables analysis and synthesis of robotic mechanisms to be 

integrated into a unified and consistent process [29]. This issue needs to relate nonlinear finite to linearized instantaneous 

motions of rigid body systems. Hence, a preliminary and essential step to achieve the aforementioned goal is to develop 

a general and effective method that enables the description, formulation and operation of finite and instantaneous motions 

to be implemented under a consistent and unified mathematical tool, a fundamental and challenging issue in the field of 

mechanisms and robotics. The methods available at hand can be roughly divided into three categories, i.e. matrix group 

based method, dual quaternion based method and screw theory based method. 

The matrix group based method can be traced back to the Erlangen program proposed by Klein [30]. By utilizing 

matrix groups to describe finite motions of rigid body systems, Brockett [31] applied the exponential map between Lie 

group SE(3) and Lie algebra se(3) to relating models for finite motions to that for instantaneous motions [32]. However, 

two barriers are encountered in the use of matrix groups for finite motion composition. The first barrier arises from 

implementation of matrix groups for affine transformations where finite motions of a rigid body cannot be directly 

represented by Chasles’ axis [17] as well as by the angular and/or linear displacement about the axis, leading to a 

complicated description of rigid body motion. The second barrier comes from that the finite motion composition cannot 

be algebraically derived by Baker-Campbell-Hausdorff formula [33]. Consequently, motion patterns of a number of 

parallel mechanisms cannot precisely be described using the existing matrix group based method since they can no longer 

be represented by products of several Lie subgroups [34]. 

The dual quaternion based method can be traced back to description of rotations of a rigid body by means of Euler’s 

four-square identity, Euler-Rodrigues parameters [23, 35] and Hamilton quaternions [36]. Perez and McCarthy [37] seem 

to be the first to use the dual quaternions to do analyses for finite and instantaneous motions of serial kinematic chains. 

In their work, unit dual quaternions and unit pure dual quaternions were used for describing finite and instantaneous 

motions, for the algebraic structure of the former is a double cover of Lie group SE(3) whose Lie algebra in turn constitutes 

the latter as by Selig [38]. With the aid of group theory, Selig [39-40] and Dai [26, 35] investigated the algebraic properties 

of the exponential and Cayley maps between unit dual quaternions and unit pure dual quaternions. By introducing the 

notation of high-dimensional Clifford algebra, Selig [40] and Featherstone [41] extended the dual quaternions 

representation to deal with rigid body dynamics. However, a unit dual quaternion is not the simplest form of a rigid body 

motion. The redundancy in dual quaternion representation may cause complexity in analytical expressions of the finite 

motion operations. In addition, the Rodrigues formula with dual angles is not the simplest form of the Baker-Campbell-

Hausdorff formula when it is applied to composition of finite motions of a rigid body [42]. 

The screw theory based method depends on the development of instantaneous screws and finite screws. Considering 



the algebraic characteristic of finite screws, Dai [22] demonstrated the relationship between finite displacement screw 

operation and the different matrix representations of SE(3) elements as well as quaternions [25, 35]. By solving the 

eigenscrew and derivative of finite displacement screw matrix, Dai [25] formulated the eigen and differential mappings 

between finite screws and instantaneous screws. Meanwhile, the consistency between these mappings and the exponential 

mapping of matrix Lie group/Lie algebra or the Euler-Rodrigues formula was revealed [25-26, 35]. The correspondence 

between vector subspaces and screw systems was discussed by Huang, Sugimoto and Parkin [43] to differentiate finite 

screw systems from screw systems arising from instantaneous kinematics and statics. Although the composition of finite 

motions can be expressed as a screw triangle product of finite screws in quasi-vector form [21, 24], and that of 

instantaneous motions as the linear combination of instantaneous screws in vector form, the algebraic structures of two 

kinds of screws remain an open issue to be investigated. 

Addressing on the need to integrate models for analysis and synthesis of robotic mechanisms in a unified mathematic 

framework, this paper intends to reveal algebraic structures of finite screws in a quasi-vector form and instantaneous 

screws in a vector form. The paper is organized as follows. Having a brief review of the state-of-the-art of finite and 

instantaneous screw theory in Section 1, Section 2 presents the derivation of finite screws from dual quaternions and 

addresses the description of finite screws in quasi-vector form and instantaneous screws in vector form. Section 3 explores 

the associativity and derivative properties of the screw triangle product, resulting in that the set of finite screws is an 

associative and differentiable algebraic structure. This leads to a vigorous proof in Section 4 that the entire set of finite 

screws forms a Lie group under the screw triangle product and its time derivative at the identity forms the corresponding 

Lie algebra under the screw cross product before the conclusions are drawn in Section 5. 

 

2. The Description of Finite and Instantaneous Screws 

2.1 The derivation of finite screws from dual quaternions 

The finite motion of a body from its initial pose to an arbitrary pose can be parameterized as a unit dual quaternion 

[26, 36] 

ˆ ˆ
cos sin
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 D S                                       (1) 

where  f f f  S s r s  is the dual vector describing the finite motion axis (the Chasles’ axis), fs  is the unit vector 

of this axis, fr  is the position vector pointing from the fixed reference point to an arbitrary point on the axis,   is 

defined as the dual unit with the property 2 0  ; ˆ t     is the dual angle,   and t  are the angular displacement 

about and linear displacement along the Chasles’ axis with respect to the initial pose. 

The linearization of sine and cosine of ̂  allows D  to be expressed as the sum of a dual scalar and a dual vector 
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It is easy to see that the dual vector contains all the elements, i.e. the Chasles’ axis, the angular and linear displacement 

necessary to describe a finite motion. Thus, dividing the dual vector by  0.5cos 2  leads to a finite displacement screw 

(or finite screw for simplicity) in six-dimensional quasi-vector form, which can be considered as the non-redundant 

minimal description of finite motion. 
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2.2 The relationship between a finite screw and an instantaneous screw 

In this section, we develop the relationship between a single finite screw in quasi-vector form and a single 

instantaneous screw in vector form. Assuming that the arbitrary pose of a body varies with time, the time derivative of 

fS  gives 
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where   and t  are the angular velocity about and linear velocity along the screw axis at the instant considered. Note 

that at the initial pose where 0   and 0t  , the finite displacement axis (the Chasles’s axis) is coincident with the 

instantaneous velocity axis (the instantaneous screw axis or the Mozzi’s axis) at the instant. Thus, Eq. (4) can be rewritten 

as 
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This means that the time derivative of fS  at the initial pose is exactly the instantaneous screw (or twist) tS  at the same 

pose 
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where ts  denotes the unit vector of the instantaneous screw axis, tr  denotes the position vector pointing from the fixed 

reference point to an arbitrary point on the axis. ω  and v  should be understood as the angular velocity of the body 

and the linear velocity of the point instantaneously coincident with the fixed reference point at the initial pose, and ts , 

tr ,   and t  appearing in Eq. (5) should be understood as the corresponding quantities at the same pose. 

 

3. Associativity and Derivative Laws of Screw Triangle Products 

Lie group theory [44-45] shows that a representation of a group should be a subgroup of a general linear group acting 

on a vector space. In this sense, the entire set of finite screws in 6×1 quasi-vector form is neither SE(3) nor its 

representation because a finite screw is not a linear transformation acting on any point or line coordinate systems. 

Therefore, unlike matrix or dual quaternion representations of SE(3) or its double cover, the set of finite screws cannot 

simply inherit all the properties of SE(3). Thus, the algebraic structure of this set under screw triangle product needs to 

be revealed. For a given set and a product, four check points must be examined to show that this is a group, i.e. closure, 

associativity, existence of an identity, and existence of inverses. In addition, differentiability should be ensured to prove 

it is a Lie group. In this section, we firstly investigate closure and associativity of finite screws under the screw triangle 

product. Then, we will investigate the relationship between finite motions generated by a number of finite screws and 



instantaneous motions produced by the same number of instantaneous screws. The outcomes are useful for revealing 

algebraic structures of finite screws in quasi-vector form and instantaneous screws in vector form. 

Assume that the finite motion of a rigid body is generated by a number of successive one-parameter finite screws (1-

DOF finite motion). Each has the form given in Eq. (3) 

,

,

, , ,

2 tan
2
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where 0j   for pure translation, otherwise the ratio j j jt h   is set to be a constant for screw motion. Note that 

,f js  and ,f jr  are constant vectors since the finite motion is accounted from the initial pose where , ,f j t js s  and 

, ,f j t jr r . 

The composition of two successive finite screws can be derived from the algebraic product of two dual quaternions 

1D  and 2D  which have the form given in Eq. (1) [26, 36] 
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Linearizing sine and cosine of the dual angles, and equating the real and dual parts on both sides of Eq. (10), gives 
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Dividing both sides of Eqs. (11)-(12) by  120.5cos 2 , respectively, and rewriting them into a finite screw form, finally 

results in 
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where symbol “ ” is referred to as screw triangle product [21], and ,1 ,2f fS S  is defined as the screw cross product of 

,1fS  and ,2fS  
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Obviously, ,12fS  satisfies the closure of finite motion composition since it can be rewritten into the standard form given 

by Eq. (3) via adequate algebraic operation. 

 

3.1 The associativity law of successive screw triangle products 

The associativity law of composition of finite screws can directly be proved using Eq. (13). Consider the composition 

of three arbitrary finite screws 

,123 ,1 ,2 ,3f f f fS S S S                                     (15) 

By assuming that ,12 ,1 ,2f f fS S S  is the screw triangle product of the first two, the composition of ,12fS  and ,3fS  

yields 

  ,12 ,3, 12 3 f ff
S S S                                      (16) 

Hence, visualizing ,12fS  as the first finite screw given in Eq. (13), leads to 
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or 
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where 
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Similarly, assuming that ,23 ,2 ,3f f fS S S  is the screw triangle product of the last two finite screws in Eq. (15), and 

replacing the subscripts ‘ (12)’ by ‘1’ and ‘3’ by ‘(23)’ in Eq. (17), yields 
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It is easy to prove that the following identity holds 
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Thus 

   ,123 , 12 3 ,1 23f f f
 S S S                                      (21) 

This means that the screw triangle product satisfies the associativity, i.e. in the composition of a set of successive finite 

screws, they can be divided into a number of groups first so long as their sequences within and amongst groups are 

unchanged. In this way, we can prove that the entire set of finite screws under the screw triangle product is of a closed 

and associative algebraic structure. 

 

3.2 The derivative law of screw triangle product 

In order to investigate the differential property of screw triangle product, let the screw triangle product of two finite 

screws be written as 
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Taking time derivative of Eq. (22) and noting that ,f js  and ,f jr  ( 1,2j  ) are constant vectors, leads to 
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At the initial pose where 0j   and 0jt  , we have 
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Note that 
,12fS  can also be rewritten into the standard form given in Eq. (6), it thereby satisfies the closure of 

instantaneous motion composition. Hence, the property given in Eq. (24) can be extended to a general form for the system 

composed of n 1-DOF motion generators 
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It is clear that any curve in the entire set of finite screws is continuous and differentiable, and its time derivative forms 

an instantaneous screw system. The foregoing associativity and derivative properties allow the algebraic structures of 

finite and instantaneous screws as addressed in what follows. 

 

4. Algebraic Structures of Finite and Instantaneous Screws 

On the basis of Sections 2 and 3, we intend to reveal the specific algebra structures of finite and instantaneous screws. 

Let  fS  be the entire set of finite screws in the form given by Eq. (3) 
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In the above sections, the closure of this set under screw triangle product and the associativity and derivative properties 

of this product are proved. And let  0f fS S  at 0   and 0t   be the identity element of  fS , i.e. 

,0f
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Note that  f f S S  for  f f S S  such that 

,0 ,0f f f f f S S S S S , 
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This means that there exists a unique inverse for each finite screw. 

Building upon the above proofs and analyses, we can conclude that the algebraic structure of  fS  is a Lie group 



under the screw triangle product according to the Lie group theory [44-45]. Here, we refer  fS  to as Lie group of finite 

screws. Obviously, a set of one-parameter finite screws given by Eq. (7) forms a subgroup of this Lie group. 
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S S  be the entire set of instantaneous screws given in Eq. (6) 
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This set spans a vector space having the following properties under screw cross product: bilinear (Eqs. (30) and (31)), 

noncommutative (Eq. (32)) and Jocobi identity (Eq. (33)) 
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Thus,  tS  is a Lie algebra under the screw cross product in the light of [44-45]. So, we refer  tS  to as Lie algebra 

of instantaneous screws. 

Finally, consider a continuous curve    
C

f fS S  composed by n Lie subgroups of one-parameter finite screws, 

i.e. 
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Note that the time derivative of  ,12
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f n fS S  at the neighborhood of the identity element has the form (see Eq. (25)) 
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Thus, the tangent space of  
C

fS  in the neighborhood of the identity element forms an instantaneous screw sub-system 

of  tS . So, we conclude that  tS  is the corresponding Lie algebra of Lie group  fS . 

 

5. Conclusions 

This paper presents a way of relating instantaneous and finite screws based on screw triangle product. The following 

conclusions are drawn. 

1) The screw triangle product of a number of one-parameter finite screws in 6×1 quasi-vector form satisfies the 

associativity, and its time derivative at initial pose can be expressed as a linear combination of instantaneous screws in 

6×1 vector form. 

2) By examining the closure, associativity, existence of an identity, and existence of inverses of the entire set of finite 



screws under screw triangle product, we have proven that the algebraic structure of the set forms a Lie group, and its time 

derivative at the identity forms the corresponding Lie algebra of instantaneous screws under the screw cross product. 

3) The revealed relationship between finite and instantaneous screws provides a possibility to model finite and 

instantaneous motions in a consistent manner, allowing type synthesis and performance analysis of robotic mechanisms 

to be unified into the concise framework of screw theory. 
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