19,615 research outputs found

    Structural resolution for abstract compilation of object-oriented languages

    Get PDF
    We propose abstract compilation for precise static type analysis of object-oriented languages based on coinductive logic programming. Source code is translated to a logic program, then type-checking and inference problems amount to queries to be solved with respect to the resulting logic program. We exploit a coinductive semantics to deal with infinite terms and proofs produced by recursive types and methods. Thanks to the recent notion of structural resolution for coinductive logic programming, we are able to infer very precise type information, including a class of irrational recursive types causing non-termination for previously considered coinductive semantics. We also show how to transform logic programs to make them satisfy the preconditions for the operational semantics of structural resolution, and we prove this step does not affect the semantics of the logic program.Comment: In Proceedings CoALP-Ty'16, arXiv:1709.0419

    The C++0x "Concepts" Effort

    Full text link
    C++0x is the working title for the revision of the ISO standard of the C++ programming language that was originally planned for release in 2009 but that was delayed to 2011. The largest language extension in C++0x was "concepts", that is, a collection of features for constraining template parameters. In September of 2008, the C++ standards committee voted the concepts extension into C++0x, but then in July of 2009, the committee voted the concepts extension back out of C++0x. This article is my account of the technical challenges and debates within the "concepts" effort in the years 2003 to 2009. To provide some background, the article also describes the design space for constrained parametric polymorphism, or what is colloquially know as constrained generics. While this article is meant to be generally accessible, the writing is aimed toward readers with background in functional programming and programming language theory. This article grew out of a lecture at the Spring School on Generic and Indexed Programming at the University of Oxford, March 2010

    Dynamically typed languages

    Get PDF
    Dynamically typed languages such as Python and Ruby have experienced a rapid grown in popularity in recent times. However, there is much confusion as to what makes these languages interesting relative to statically typed languages, and little knowledge of their rich history. In this chapter I explore the general topic of dynamically typed languages, how they differ from statically typed languages, their history, and their defining features

    Reify Your Collection Queries for Modularity and Speed!

    Full text link
    Modularity and efficiency are often contradicting requirements, such that programers have to trade one for the other. We analyze this dilemma in the context of programs operating on collections. Performance-critical code using collections need often to be hand-optimized, leading to non-modular, brittle, and redundant code. In principle, this dilemma could be avoided by automatic collection-specific optimizations, such as fusion of collection traversals, usage of indexing, or reordering of filters. Unfortunately, it is not obvious how to encode such optimizations in terms of ordinary collection APIs, because the program operating on the collections is not reified and hence cannot be analyzed. We propose SQuOpt, the Scala Query Optimizer--a deep embedding of the Scala collections API that allows such analyses and optimizations to be defined and executed within Scala, without relying on external tools or compiler extensions. SQuOpt provides the same "look and feel" (syntax and static typing guarantees) as the standard collections API. We evaluate SQuOpt by re-implementing several code analyses of the Findbugs tool using SQuOpt, show average speedups of 12x with a maximum of 12800x and hence demonstrate that SQuOpt can reconcile modularity and efficiency in real-world applications.Comment: 20 page

    Object linking in repositories

    Get PDF
    This topic is covered in three sections. The first section explores some of the architectural ramifications of extending the Eichmann/Atkins lattice-based classification scheme to encompass the assets of the full life cycle of software development. A model is considered that provides explicit links between objects in addition to the edges connecting classification vertices in the standard lattice. The second section gives a description of the efforts to implement the repository architecture using a commercially available object-oriented database management system. Some of the features of this implementation are described, and some of the next steps to be taken to produce a working prototype of the repository are pointed out. In the final section, it is argued that design and instantiation of reusable components have competing criteria (design-for-reuse strives for generality, design-with-reuse strives for specificity) and that providing mechanisms for each can be complementary rather than antagonistic. In particular, it is demonstrated how program slicing techniques can be applied to customization of reusable components

    PCG: A prototype incremental compilation facility for the SAGA environment, appendix F

    Get PDF
    A programming environment supports the activity of developing and maintaining software. New environments provide language-oriented tools such as syntax-directed editors, whose usefulness is enhanced because they embody language-specific knowledge. When syntactic and semantic analysis occur early in the cycle of program production, that is, during editing, the use of a standard compiler is inefficient, for it must re-analyze the program before generating code. Likewise, it is inefficient to recompile an entire file, when the editor can determine that only portions of it need updating. The pcg, or Pascal code generation, facility described here generates code directly from the syntax trees produced by the SAGA syntax directed Pascal editor. By preserving the intermediate code used in the previous compilation, it can limit recompilation to the routines actually modified by editing

    Linguistic Reflection in Java

    Get PDF
    Reflective systems allow their own structures to be altered from within. Here we are concerned with a style of reflection, called linguistic reflection, which is the ability of a running program to generate new program fragments and to integrate these into its own execution. In particular we describe how this kind of reflection may be provided in the compiler-based, strongly typed object-oriented programming language Java. The advantages of the programming technique include attaining high levels of genericity and accommodating system evolution. These advantages are illustrated by an example taken from persistent programming which shows how linguistic reflection allows functionality (program code) to be generated on demand (Just-In-Time) from a generic specification and integrated into the evolving running program. The technique is evaluated against alternative implementation approaches with respect to efficiency, safety and ease of use.Comment: 25 pages. Source code for examples at http://www-ppg.dcs.st-and.ac.uk/Java/ReflectionExample/ Dynamic compilation package at http://www-ppg.dcs.st-and.ac.uk/Java/DynamicCompilation
    • …
    corecore