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We propose abstract compilation for precise static type analysis of object-oriented languages based on
coinductive logic programming. Source code is translated to a logic program, then type-checking and
inference problems amount to queries to be solved with respect to the resulting logic program. We
exploit a coinductive semantics to deal with infinite terms and proofs produced by recursive types and
methods. Thanks to the recent notion of structural resolution for coinductive logic programming, we
are able to infer very precise type information, including a class of irrational recursive types causing
non-termination for previously considered coinductive semantics. We also show how to transform
logic programs to make them satisfy the preconditions for the operational semantics of structural
resolution, and we prove this step does not affect the semantics of the logic program.

1 Introduction

Object-oriented programming is the most widespread computational paradigm in programming lan-
guages1. Statically typed languages like Java, C#, and C++ are heavily employed for large scale software
development in several domains; however, for implementing applications based on Web or scientific pro-
gramming, where often less skilled developers are involved, dynamically typed object-oriented languages
like JavaScript and Python have gained more popularity for their gentler learning curve, flexibility and
ease of use.

Although such languages favour rapid development, and dynamic software adaptation, they also lack
the benefits of a static type system: since all errors are detected only at runtime, programs are less reliable,
and debugging and testing are more challenging; furthermore, the absence of type information is a severe
obstacle to more efficient implementations, and more effective IDE tools.

Static typing needs more effort and knowledge from the programmer, who is burdened by the task
of annotating code with types; this load is bearable for simple nominal type systems, but when more
accurate type analysis is required, one has to resort to structural type systems, which are more verbose,
complex, and, thus, less intuitive to grasp; for instance, Java wildcards are a form of structural type, though
integrated with the nominal type system, which cannot be tamed so simply by ordinary programmers.

From the considerations above we can draw the conclusion that there exists a fundamental trade-off
between the benefits of static typing, and those of dynamic typing. In order to reduce this “gap”, type
inference, and, more in general, any static type analysis which does not require type annotations, is a viable
solution; programmers are relieved from declaring types, and still have all benefits of a dynamic language,
but also an effective analysis tool to develop more reliable, and maintainable software. Unfortunately,
depending on the language in use and on the expressive power of the type system, type analysis of a
dynamic language can become quite hard (or even impossible, i.e., undecidable) to solve.

1See for instance Tiobe index at http://www.tiobe.com/tiobe-index/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/287498972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4204/EPTCS.258.2
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/
http://www.tiobe.com/tiobe-index/


20 Structural Resolution for Abstract Compilation of Object-Oriented Languages

Consider the following program implementing linked lists, written in a hypothetical dynamic object-
oriented language; for simplicity we adopt a Java-like syntax, but the program contains no type annotations.

class EList extends Object {

EList() {

super();

}

addLast(elem) {

new NEList(elem, this)

}

}

class NEList extends Object {

head;

tail;

NEList(head, tail) {

super();

this.head = head;

this.tail = tail;

}

addLast(elem) {

new NEList(this.head, this.tail.addLast(elem))

}

}

Listing 1: Untyped linked lists. EList.addLast simply creates a new list with (only) the given element,
while NEList.addLast recursively reach the end of the list to add the element, and returns the new list.

Depending on the expressive power of the underlying type system, a static analysis tool could be able
or not to successfully analyze the expression

new EList().addLast(42).addLast(false).head

and compute its expected type int; however, in a dynamically typed language a tool rejecting such an
expression would not be considered very useful, since it should be quite natural for a dynamic language
to allow manipulation of lists of heterogeneous elements. Therefore, dynamic languages call for more
precise type analysis able to support both parametric and data polymorphism; the former is the ability
to pass arguments of unrelated types to the same parameter, the latter allows assignment of values of
unrelated types to the same class field. Correct type analysis of the expression above requires parametric
polymorphism because the same method addLast of class NEList is invoked twice with the first argument
of type int and boolean, respectively, but also data polymorphism is needed, because the two invocations
of addLast assign to the field head values of type int and boolean, respectively.

Supporting parametric and data polymorphism requires the use of advanced structural types, and
ensuring termination of the analysis in presence of recursive types and methods can be challenging. In
this paper we investigate an improvement of abstract compilation [5] to get more precise type analysis of
object-oriented code involving recursive method invocations.

Abstract compilation is a modular approach to type analysis that exploits logic programming; programs
under analysis are abstractly compiled to logic programs, and then analysis is performed through goal
resolution.

For instance, in order to infer the type of the last expression about list classes we considered, a goal
clause similar to the following one could be used:

new(elist, [],E), invoke(E,addLast, [int],R), invoke(R,addLast, [int],R′)

The three atoms encode the calls to the constructor and to the addLast method (twice), respectively.
Variables E,R,R′ are the types resulting from the operation. After formulating the goal query, it has to be
resolved with respect to the logic program generated by abstract compilation of the original one, as it will
be shown in Section 3. Finally, the computed substitutions will give terms encoding types, thus effectively
solving the inference problem.
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To support parametric and data polymorphism in the presence of recursion, the resolution method
has to support the coinductive interpretation of the generated logic program [22] based on the greatest
complete Herbrand model. However, implementation of the operational semantics of coinductive logic
programming (Co-LP for short) fails to successfully analyze some kinds of recursion.

In this paper we show how this drawback can be overcome by adopting structural resolution [17] for
the inference engine used for abstract compilation; thanks to the notion of productivity, structural resolution
allows an operational semantics which is more expressive than Co-LP (under certain assumptions that
will be discussed).

The rest of the paper is organized as follows. Section 2 introduces the necessary background on
coinductive logic programming and presents structural resolution, while Section 3 is a detailed introduction
to abstract compilation. Section 4 motivates the usefulness of structural resolution for abstract compilation
and shows how it can improve previous results, which is the main contribution of this work. Section 5 is
devoted to the notion of productivity, and shows a transformation technique that guarantees productivity
for abstract compilation. Section 6 contains some concluding remarks and future work directions.

2 (Coinductive) Logic Programming

2.1 Logic Programming Preliminaries

Given a first-order signature consisting of variables, function and predicate symbols, we define terms
inductively as is standard: they can be either variables or function symbols of arity n applied to n terms
( f (t1, . . . , tn)). Constants are function symbols of arity 0. Atoms or atomic formulas have the shape
p(t1, . . . , tn), where p is a predicate symbol of arity n and t1, . . . , tn are terms. Logic programs are finite
sets of definite Horn clauses (clauses for short) A ← B1∧ ·· · ∧Bn, where A,B1, . . .Bn are atoms. A is
called the head of the clause and B1∧·· ·∧Bn is called the body of the clause. When the body is empty
the head is considered to be true. A goal clause has the shape A1∧·· ·∧An.

A substitution is a finite (partial) mapping from variables to terms, where all variables are simulta-
neously substituted. Two terms t1 and t2 are unifiable by substitution σ if σ(t1) = σ(t2); t1 matches t2
by σ if σ(t1) = t2. If in these two cases, σ is additionally the most general substitution, we say it is the
most general unifier (mgu) or most general matcher (mgm) respectively. Terms are said to be ground if
they contain no variables. Given a term t, a substitution σ is grounding for t if σ(t) is ground. All these
definitions can be extended to atoms and clauses in the standard way.

Traditionally, the inductive semantics of logic programs is given by Herbrand models. The Herbrand
base BP of a logic program P is the set of all ground atoms built from function and predicate symbols in
P. The least Herbrand model MP is the smallest subset of BP that is also a model for each clause in P. An
atom A is logically entailed from P if σ(A) ∈MP, for some grounding substitution σ for A.

Given a logic program P and a goal clause A1∧·· ·∧An, SLD resolution is a semi-decision procedure
to check whether A1, . . . ,An are logically entailed from P and, if so, to compute a substitution σ such
that σ ′(σ(Ai)) ∈MP for every Ai in the goal, and for all substitutions σ ′ grounding for σ(A1∧·· ·∧An).
Thus, goal clauses can be seen as queries to be solved with respect to a logic program, and the computed
substitution encodes the answer (if any).
Definition 1 (SLD-resolution reduction). If P is a logic program and A1∧ ·· ·∧An is a goal clause, the
SLD-resolution reduction (with respect to P) is given by (A1 ∧ ·· · ∧An) P (σ(A1)∧ ·· · ∧σ(Ai−1)∧
σ(B0)∧·· ·∧σ(Bm)∧σ(Ai+1)∧·· ·∧σ(tn)) if A ← B0∧·· ·∧Bm ∈ P and σ is the mgu of Ai and A.

A more constructive definition of the least Herbrand models can be given in terms of fixed points of a
suitable function. Given a logic program P, the immediate consequence operator TP : P(BP)→P(BP) is
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a function defined on the powerset of the Herbrand base as follows:

TP(S) = {A | A ← B1∧·· ·∧Bn ground instance of a clause in P,{B1, . . . ,Bn} ⊆ S}

Since TP is monotonic for any logic program P, by the Knaster-Tarski theorem it has a least fixed point,
which is precisely the least Herbrand model MP.

For the rest of the paper, we use the following syntactic conventions: function and predicate symbols
start with a lowercase letter, and constants are sometimes numbers; variables start with an uppercase letter;
atoms, clauses and logic programs are written as single uppercase letters.

2.2 Coinduction in Logic Programming

In inductive logic programming, only terminating SLD derivations are meaningful. However, there are
logic programs for which there are no terminating derivations and there is no natural inductive semantics,
yet they can still be understood coinductively.
Example 2. The following logic program Pzeros defines the infinite list of zeros:

zeros(cons(0,X)) ← zeros(X)

Starting from the goal zeros(X), SLD resolution does not terminate. Indeed, the program above has
no inductive meaning, and its least Herbrand model is empty. Still, its clause has a clear meaning.

Recall that in the inductive interpretation, models contain only finite terms. Coinductive interpretation
admits both finite and infinite terms. Given a logic program P, Bco

P is the complete Herbrand base
containing all finite and infinite atoms built on the top of function and predicate symbols in P. For the
coinductive interpretation, the greatest complete Herbrand model Mco

P is considered, that is, the greatest
subset of Bco

P that is also a model for P. In example 2, MP = /0 but Mco
P = {zeros(cons(0,cons(0, . . .))}.

The duality between the inductive and the coinductive interpretation extends to the fixed point
semantics: inductive models are the least fixed point of the immediate consequence operator while
coinductive models are the greatest fixed point of the operator (extended to possibly infinite terms). The
existence of the greatest fixed point is again ensured by the Knaster-Tarski theorem.

In the 80s, the notion of formulas computable at infinity was introduced [21]. An infinite formula
A is computable at infinity, if there exists a finite formula A′ such that A′ has an infinite (and fair) SLD-
derivation, and substitutions σ0,σ1, . . . computed in the course of this derivation yield σ0(σ1(. . .(A′) . . .))
= A. For example, zeros(cons(0,cons(0, . . .)) is computable at infinity for the program Pzeros and the
query zeros(X). In such cases we also say that the infinite SLD-derivation for zeros(X) is globally
productive, in a sense of producing an infinite term as a substitution.

Operationally, dealing with infinite terms and non-terminating derivations is a challenge. Co-LP [22]
extends SLD resolution with a cycle detection mechanism that allows the derivation to be concluded
when a goal unifies with a previously encountered one. Considering again Example 2, the reduction
zeros(X) Pzeros zeros(X ′) holds with the computed substitution {X 7→ cons(0,X ′)}. At this point, Co-LP
checks if the two goals unify, and indeed they do: the computed answer is {X 7→ cons(0,X)}2 which corre-
sponds to the infinite term specified by the recursive equation X = cons(0,X), that is cons(0,cons(0, . . .)).

Note that the recursive term cons(0,cons(0, . . .)) is regular [9] (a.k.a rational or cyclic) since it has
a finite number of subterms, namely 0 and itself. Because Co-LP’s algorithm relies on unification of
the looping coinductive goals, it can only handle regular terms and derivations. As a result, it does not
terminate on irregular derivations, thus it is only sound but not complete w.r.t the greatest complete
Herbrand model.

2In the coinductive setting the occurs check needs to be removed.
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2.3 Structural Resolution

Structural resolution [19, 16, 11] (or S-resolution for short) proposes a solution for cases when formulas
computable at infinity are not regular. Consider the following example.

Example 3. The coinductive program Pfrom below has the following single clause:

from(X ,scons(X ,Y )) ← from(s(X),Y )

Given the query from(0,X), and writing [ | ] as an abbreviation for the stream constructor scons, here we
have that the infinite atom a = from(0, [0|[s(0)|[s(s(0))|. . . ]]]) is computable at infinity by Pfrom and it is
also contained in the greatest complete Herbrand model of Pfrom. Coinductive reasoning on this query
cannot be handled by the loop detection mechanism of Co-LP because the atom a is irrational and the
looping subgoals will fail to unify.

In such cases, it may still be possible to automatically prove that the SLD-derivation for the query
from(0,X) will be infinite, non-failing, and moreover will compute an infinite term at infinity, even if we
cannot generate its closed form, as for Pzeros. In the core of this new argument is the detection of a regular
pattern – a constructor – that works as a building block of the infinite term computed at infinity; in Pf rom

this constructor is scons. We now explain the method that detects such patterns in S-resolution.
S-resolution [19, 16, 11] stratifies the SLD-derivation steps into those done by term-matching and those

requiring full unification. Term-matching in this case plays a role that pattern-matching on constructors of
data structures plays in functional programming.

Definition 2. [13] If P is a logic program and and A1∧·· ·∧An is a goal clause, then:

• rewriting reduction: (A1∧ ·· · ∧Ai∧ ·· · ∧An)→P (A1∧ ·· · ∧Ai−1∧σ(B0)∧ ·· · ∧σ(Bm)∧Ai+1∧
·· ·∧An) if A ← B0∧·· ·∧Bm ∈ P and σ is the mgm for A against Ai (σ(A) = Ai);

• substitution reduction: (A1 ∧ ·· · ∧Ai ∧ ·· · ∧An) ↪→P (σ(A1)∧ ·· · ∧σ(Ai)∧ ·· · ∧σ(An)) if A ←
B0∧·· ·∧Bm ∈ P and Ai and A are unifiable via mgu σ .

The S-resolution reduction with respect to P is ↪→P ◦ →µ

P . We write A1 ∧ ·· · ∧An →µ

P to indicate the
reduction of A1∧·· ·∧An to its→-normal form with respect to P if this normal form exists, and to indicate
an infinite reduction of A1∧·· ·∧An with respect to P otherwise.

One can show that under certain conditions, SLD-resolution reductions and structural resolution reduc-
tions are equivalent, see [13, 17]; but S-resolution has one advantage: it helps to detect the constructors
from which the infinite data structure is built.

Firstly, we represent the structural resolution reductions as tree rewriting: the figure below shows how
rewriting reduction steps can be represented as rewriting trees and substitution reduction steps shown
horizontally as rewriting tree transitions. This separation makes it easy to see that in this derivation, the
same pattern [ | ] gets consumed by rewriting steps and gets added, or produced, in the substitution steps:

from(0,X)

{X 7→[0|X ′]}
↪→

from(0, [0|X ′])

from(s(0),X ′)

{X ′ 7→[s(0)|X ′′]}
↪→

from(0, [0|[s(0)|X ′′]])

from(s(0), [s(0)|X ′′])

from(s(s(0)),X ′′)

{X ′′ 7→[s(s(0))|X ′′′]}
↪→

We can only detect this pattern if rewriting trees are finite, i.e. all rewriting reductions are normalising.
By definition, observational productivity of an S-resolution reduction for a program P and a query A is in
fact a conjunction of two properties [11]:
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• universal observability: normalisation of all rewriting reductions in this S-resolution reduction, and

• existential liveness: non-termination of this S-resolution reduction.

S-resolution terminates when these two properties are satisfied. Otherwise, S-resolution generates infi-
nite derivations lazily, showing only partial answers. For example, S-resolution will terminate lazily after
the three substitution steps shown above, and will output the partial answer: X = [0|[s(0)|[s(s(0))|X ′′′]]].

One can show that observational productivity implies global productivity [17, 11]. Note that universal
observability is thus a formal pre-condition for reasoning about observational productivity of S-resolution.
Not every non-terminating program is globally and observationally productive.

Example 4. Consider the following logic program P:

p( f (X)) ← p(X)

q(X) ← q(X)

The two goal clauses p(X) and q(X) lead to the following non-terminating SLD derivations, respectively:

p(X)  X= f (X ′)
P p(X ′)  X ′= f (X ′′)

P p(X ′′)  X ′′= f (X ′′′)
P · · ·

q(X)  P q(X)  P q(X)  P · · ·

In the first derivation, each derivation step gives a better approximation of the rational term f ( f (. . .))
by incrementally instantiating free variables X , X ′, X ′′, . . . . In the second one, the goal never changes, and
there is no “real” progress. Nevertheless, both the rational atoms p( f ( f (. . .))) and q( f ( f (. . .))) belong
to the greatest complete Herbrand model of the program above.

Following the idea of computations at infinity [12, 21], only the first derivation actually computes
an infinite term after an infinite number of steps and only the first derivation is globally productive. To
see what happens with observational productivity, note that the clause q(X) ← q(X) makes the program
break this requirement: q(X)→ q(X)→ ·· · . On the other hand, S-resolution reductions for p(X) will
be productive (again note that the constructor f gets added in substitution reductions and consumed in
rewriting reductions):

p(X) ↪→X= f (X ′) p( f (X ′)) → p(X ′) ↪→X ′= f (X ′′) p( f (X ′′)) → p(X ′′) · · ·

Thus, S-resolution will work for queries on p(X) but not q(X). For the above derivation for p(X), it
will detect that f plays a role of an infinite data structure constructor.

3 Abstract Compilation

Abstract compilation [5, 8] is a technique developed in the context of object-oriented programming to
exploit the potentialities of logic programming for supporting advanced static type analysis, as investigated
also by other authors [23, 1].

In a nutshell, the approach consists in translating the program under analysis into a logic program
which abstracts the semantics of the source program; then, performing static type analysis on the program
amounts to solving a goal w.r.t. the obtained logic program.

Abstraction is mainly obtained by structural types which represent set of values, following the semantic
subtyping approach [2, 4]; boolean type constructors, as union types, and record types allow quite precise
analysis if employed in conjunction with abstract compilation; in particular, both parametric and data



L. Franceschini, D. Ancona & E. Komendantskaya 25

polymorphism are supported. Solving a goal corresponds to symbolically executing the original source
program with types representing set of values.

Abstract compilation strives to reconcile compositional and global analysis, because once the program
under analysis has been abstractly compiled, its source code is no longer needed, as long as it remains
unmodified, and classes can be abstractly compiled separately. Since analysis corresponds to goal solving,
it can only be performed when the whole relevant program has been compiled; this limitation is also a
feature, because it promotes precise analysis through context sensitive data and parametric polymorphism.

Finally, abstract compilation offers interesting opportunities to fruitfully exploit compiler technology
[6, 7, 3] for more precise and efficient analysis.

3.1 Abstract Compilation at Work

Let us consider the two classes implementing linked lists defined in listing 1 and show how they could be
translated into a logic program to perform type analysis on them.

The translation depends on the way values are abstracted, that is, the underlying type system. In this
particular case we may use the primitive types null, int, and bool to represent the singleton value null,
and the sets of integer and boolean values, respectively; then, obj(c, [ f1:τ1, . . . , fn:τn]) represents the set of
all instances created from class c having at least fields f1, . . . , fn associated with values of types τ1, . . . ,τn,
respectively. To make the type system more expressive, we also introduce union types, corresponding to
logical disjunction: τ1∨ τ2 represents the set of all values which have type τ1 or τ2.

Types represent sets of values and are the terms manipulated by the generated logic programs; for in-
stance, referring to the classes of listing 1, the type obj(elist, [ ])∨obj(nelist, [head:int, tail:obj(elist, [ ])])
represents all objects implementing integer linked lists of length ≤ 1.

Predicates are introduced for representing the different kinds of declarations and constructs of the
source language. For instance, predicates new and invoke abstract object creation, and method in-
vocation, respectively, while predicate hasmeth represents method declarations. Consequently, the
atom new(nelist, [int,null],obj(nelist, [head:int, tail:null])) formally states that the invocation of the con-
structor of class NEList with arguments of type int and null, respectively, returns a value of type
obj(nelist, [head:int, tail:null]). As another example,

invoke(obj(elist, [ ]),addlast, [int],obj(nelist, [head:int, tail:obj(elist, [ ])]))

formally states that the invocation of method addLast on an object of type obj(elist, [ ]), and argument of
type int, returns an object of type obj(nelist, [head:int, tail:obj(elist, [ ])]).

There exist two separate kinds of Horn clauses3 that are generated by the translation: those encoding
the abstract semantics of the source programming languages, which are independent of any analyzed
program, and those which are directly derived from the code under analysis. For instance, the clause

invoke(obj(C,F),M,A,R) ← hasmeth(C,M, [obj(C,F)|A],R)

partly specifies4 the abstract semantics of method invocation; it states that the invocation of method
M on an object of type obj(C,F) with arguments of type A returns a value of type R, if the class C of
the receiver object has a method M returning a value of type R when invoked on object this of type
obj(C,F) with arguments of type A. Thus, the semantics of hasmeth depends on the code of the declared

3We use Prolog syntactic conventions: variables start with an upper case letter, constants starts with a lower case letter and
[a,b,c, . . . ] denotes a list. Moreover, we use the infix notation for the binary function symbol ∨.

4Two more clauses are needed to deal with union types, and with inherited methods.
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methods. Indeed, for each method declaration, a corresponding clause for predicate hasmeth is generated;
for instance, the following clause is derived from the declaration of method addLast in class EList:

hasmeth(elist,addlast, [This,Elem],R) ← new(nelist, [Elem,This],R)

It states that class EList has method addLast that, when invoked on the object this of type This with
argument of type Elem, returns a value of type R, providing that constructor of class NEList returns a
value of type R when invoked on arguments of type Elem, and This, respectively.

Analogously, the following clause is generated from the declaration of method addLast in class
NEList, where predicate fieldacc abstracts the semantics of field access:

hasmeth(nelist,addlast, [This,Elem],R) ← fieldacc(This,head,H) ∧ fieldacc(This, tail,T )
∧ invoke(T,addlast, [Elem],N) ∧ new(nelist, [H,N],R)

3.2 Examples of Queries and Recursive Types

We start by showing a simple goal to typecheck expression new EList().addLast(i), under the
assumption that i has type int. This can be achieved by solving the goal

new(elist, [ ],R)∧ invoke(R,addlast, [int],T )

which succeeds, as expected, with answer:

R = obj(elist, [ ])

T = obj(nelist, [head:int, tail:obj(elist, [ ])])

As a more elaborated example, let us consider the expression new NEList(b,l).addLast(i), under the
assumption that b, l, and i have type bool, obj(elist, [ ]), and int, respectively; typechecking this expression
corresponds to solving the goal

new(nelist, [bool,obj(elist, [ ])],R)∧ invoke(R,addlast, [int],T )

which succeeds for

R = obj(nelist, [head:bool, tail:obj(elist, [ ])])

T = obj(nelist, [head:bool, tail:obj(nelist, [head:int, tail:obj(elist, [ ])])]).

This example shows that typechecking can succeed also for expressions which build heterogeneous lists.
For a simple example of type inference, let us consider the problem of finding a valid type assignment

for variables x and y to make the expression x.addLast(y) well-typed; this corresponds to the goal

invoke(X ,addlast, [Y ],T )

which, for instance, succeeds for

X = obj(elist,F)

T = obj(nelist, [head:Y, tail:obj(elist, [F ])])

The fact that the logical variable Y is not in the domain of the computed substitution means that any type
can be safely assigned to y.
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In the previous examples we have only considered types specifying linked lists of fixed length, but for
building more interesting types, recursion is needed; this is achieved by considering rational terms (a.k.a.
regular or cyclic). For instance, the unique term defined by the solution of the unification problem

T = obj(elist, [ ]) ∨ obj(nelist, [head:int, tail:T ])

corresponds to the recursive type specifying the set of all integer linked lists of arbitrary length.
All example queries considered so far can be solved w.r.t. the standard inductive interpretation of Horn

clauses, that is, the least Herbrand model, even though method addLast is recursive in class NEList;
however, if recursive types are involved in queries, then the least Herbrand model is no longer sufficient to
capture their intended meaning, as shown in Section 4.

4 Coinduction and Structural Resolution in Abstract Compilation

4.1 The Need for Coinduction

As already mentioned in the previous section, the intended meaning of goals and logic programs does
not always coincide with the least Herbrand model. When recursive types and methods are involved, the
coinductive interpretation is needed, i.e., the greatest complete Herbrand model has to be considered [21].

Let us consider the recursive method replicate from listing 5: if n is not positive, then the method
returns an empty list, otherwise it recursively builds a list of n-1 occurrences of x, and then returns
the (newly created) list where element x has been added at the beginning. We refer to listing 1 for the
definitions of the classes EList and NEList.

class ListFact extends Object {

ListFact() { super(); }

replicate(n, x) {

if (n ≤ 0) new EList()

else new NEList(x, this.replicate(n-1, x))

}

}

Listing 5: Given an integer n and an element x, replicate returns a list containing n occurrences of x.

By means of abstract compilation, method replicate would be translated5 to the following clause:

hasmeth(listfact,replicate, [This, int,X ],E ∨ NE) ← new(elist, [ ],E)∧ invoke(This,replicate, [int,X ],R)
∧ new(nelist, [X ,R],NE)

The first atom of the body corresponds to the invocation of the constructor of EList, while the other two
atoms are generated from the recursive invocation, and from the invocation of the constructor of NEList,
respectively. Finally, the use of the conditional expression is reflected in the term E ∨NE. Note that the
Horn clause above is the only clause generated by abstract compilation for method replicate.

Let us now consider the expression new ListFact().replicate(10, 42). To infer the type T of
the expression above (w.r.t. the classes in listings 1 and 5), the following goal is generated:

new(listfact, [ ],L)∧ invoke(L,replicate, [int, int],T )

5For the sake of readability, we have applied some simplifications to the resulting clause; however, such changes do not affect
its semantics.
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However, such a goal fails to succeed if the inductive interpretation is considered; indeed, the SLD
derivation6 is non-terminating:

new(listfact, [ ],L)∧ invoke(L,replicate, [int, int],T ) ∗

invoke(obj(listfact, [ ]),replicate, [int, int],T ) ∗

hasmeth(listfact,replicate, [obj(listfact, [ ]), int, int],T ) ∗

hasmeth(listfact,replicate, [obj(listfact, [ ]), int, int],obj(elist, [ ])∨obj(nelist, [head: int, tail:T ′])) · · ·

In the derivation above, every new atom for predicate hasmeth yields a better approximation for T , but
unfortunately the derivation never terminates. If we interpret coinductively the logic program obtained by
abstract compilation, thus considering its greatest complete Herbrand model rather than its least one, the
goal above is actually entailed by the program with a substitution instantiating T with the following type:

obj(elist, [ ])∨obj(nelist, [head: int, tail:(obj(elist, [ ])∨obj(nelist, [head: int, . . . ]))])

The type above represents all integer lists of arbitrary length; however, such a type corresponds to an
infinite term. Fortunately, there exists an equivalent type corresponding to the rational term [9] specified
by the following recursive equation:

T = obj(elist, [ ])∨obj(nelist, [head: int, tail:T ])

This example shows that goals involving recursive types and methods require a coinductive interpretation
of the logic program obtained by abstract compilation, in order to make static type analysis more precise.

As already illustrated in Section 2, answer substitutions with rational terms can be computed by
extending SLD resolution with cycle-detection techniques [22], as proposed with Co-LP; hence, an
inference engine based on Co-LP improves the result of static analysis performed with abstract compilation
[5]. The Co-LP inference engine is however limited, since it succeeds with rational terms, and derivations,
but it cannot handle more complex scenarios.

4.2 Structural Resolution for Abstract Compilation

Listing 6 shows a slightly more involved example. Suppose we add to ListFact a method buildList

that, given an integer n, builds the list of integers 1,2, . . . ,n with an auxiliary method buildList which
exploits tail recursion with an accumulator parameter acc; a more realistic Java implementation would of
course avoid recursion, and use instead a simpler and more efficient loop, for which static type analysis
for abstract compilation is less problematic if one exploits SSA intermediate form [6, 7, 3] during the
compilation phase; however, in the past years object-oriented languages have begun to exploit more and
more patterns based on functional style programming, possibly with recursion and accumulators.

Abstract compilation of buildList would yield7 the following Horn clause:

hasmeth(listfact,buildlist, [This, int,A],A∨R) ← new(nelist, [int,A],A′)∧ invoke(This,buildlist, [int,A′],R)

Suppose we want to infer the type T0 of the expression new List().buildList(42, new EList()).
Such an expression is abstractly compiled to the following goal:

new(listfact, [ ],L)∧new(elist, [ ],A0)∧ invoke(L,buildlist, [int,A0],T0)

6Colours enlighten the substitution computed by unification along the way.
7Again, for readability we are simplifying the clause that would be automatically generated.
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buildList(n, acc) {

if (n ≤ 0) acc

else this.buildList(n-1, new NEList(n, acc))

}

Listing 6: Given an integer n, buildList returns the list of integers 1,2, . . . ,n followed by acc, which is
used as an accumulating parameter.

The derivation for such a goal is again infinite, hence the coinductive interpretation is needed again:

new(listfact, [ ],L)∧new(elist, [ ],A0)∧ invoke(L,buildlist, [int,A0],T0) 
∗

new(elist, [ ],A0)∧ invoke(obj(listfact, [ ]),buildlist, [int,A0],T0) 
∗

invoke(obj(listfact, [ ]),buildlist, [int,A0],T0) 
∗

invoke(obj(listfact, [ ]),buildlist, [int,A1],T1) 
∗

invoke(obj(listfact, [ ]),buildlist, [int,Ai],Ti) · · ·

However, as opposed to the previous example, in this case the derivation is not rational. Indeed, at
each step of the derivation a non-equivalent type is computed both for the accumulator and the returned
value, since lists of different lengths have non-equivalent types. The following countably infinite set of
equations defines the computed answer substitution associated with the whole derivation:

A0 = obj(elist, [ ]) T0 = A0∨T1

A1 = obj(nelist, [head: int, tail:A0]) T1 = A1∨T2

...
...

Ai = obj(nelist, [head: int, tail:Ai−1]) Ti = Ai∨Ti+1

...
...

After a closer look at the set above, we can deduce that the considered non rational derivation succeeds
because the set of equations above admits a solution, although such a solution involves non rational
terms; in particular, the type T0 of the expression new List().buildList(42, new EList()) is
non-rational; as a consequence, an inference engine based on Co-LP [22] would fail to compute a type,
because no cycle can be detected in the derivation.

In order to solve this problem, we propose to use structural resolution [17] as inference engine for
abstract compilation. This new resolution method relies on a productivity notion which is not limited
to rational trees, thus it offers the possibility to exploit a more flexible inference engine to allow more
expressive static type analysis through abstract compilation.

Starting from the goal above, after a finite number of derivation steps, structural resolution is able
to compute the substitution8 T0 = obj(elist, [ ])∨T1, effectively solving the task of determining the type
of the expression new List().buildList(42, new EList()). It works by noticing that the pattern
∨ is consumed by the terminating rewriting reductions, and is also infinitely produced in a chain of

substitution reductions. Hence, ∨ serves as a constructor of the infinite data structure produced at infinity.

8Depending on the implementation of structural resolution, the computed answer can be more or less precise, since type T0
could be “unfolded” more than once before the (first) answer is returned.
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The computed answer T0 = obj(elist, [ ])∨T1 is only partial, since variable T1 is still “unresolved”.
However, structural resolution ensures that the non-rational term corresponding to the computed type T0
can be incrementally unfolded for an arbitrary number of steps: if needed, the substitution for T1 can
be computed in a finite number of derivation steps, thus providing a better approximation of the type
associated with T0. In this sense, the use of structural resolution in conjunction with abstract compilation
gives rise to the implementation of a lazy type inference procedure.

5 Ensuring Universal Observability of Coinductive Logic Programming

5.1 Universal Observability and Program Transformation

In the previous section we discussed how structural resolution can be useful to handle (a class of) non-
terminating derivations in finite time, when derivations compute an infinite irrational term. However, this
new resolution method can be successfully employed only if logic programs are universally observable.

Logic programs resulting from abstract compilation are not universally observable in the general case.
Example 7. Consider for instance abstract compilation for an object-oriented language supporting
nominal subtyping; the following three clauses should be generated for all source programs:

subclass(X ,X) ← class(X)

subclass(X ,object) ← class(X)

subclass(X ,Z) ← extends(X ,Y )∧ subclass(Y,Z)

The following infinite derivation shows that some logic programs obtained by abstract compilation are not
universally observable:

subclass(A,B)→ extends(A,X) ∧ subclass(X ,B)
→ extends(A,X) ∧ extends(X ,X ′) ∧ subclass(X ′,B)
→ ···

Note that SLD-resolution would be able to find finite (i.e. inductive) proof for this query by unifying
with the first or the second clause, whereas S-resolution’s rewriting reductions get caught in an infinite
loop by rewriting on the third clause. Thus for this example, S-resolution is also incomplete.

In order to fully exploit S-resolution, we present and formalise a transformation of logic programs that
ensures universal observability of S-resolution reductions. Additionally, it ensures inductive completeness
for inductive fragments of programs and observational productivity for coinductive fragments of programs.
An extended version of this transformation has first been presented in [13]. Informally, given a clause
p(t) ← q1(t1)∧·· ·∧qn(tn), the transformation adds extra argument to all atoms, in such a way that the
extra arguments reflect the clause structure: p(t,κ(χ1, . . . ,χn)) ← q1(t1,χ1)∧·· ·∧qn(tn,χn). Note that
the extra term κ(χ1, . . . ,χn) can be intuitively read as: program clause κ has n atoms in its body.

The following definition formalises this translation for arbitrary logic programs. We use Greek letters
for those parts of the logic program that are added in the transformation.
Definition 3 (Productivity transformation). Given a logic program P we assume two sets {κ1,κ2, . . .}
and {χ1,χ2, . . .} of distinct and fresh function symbols and variables, respectively. Then, Π(P) is a new
logic program defined by the following equations (for programs, clauses and atoms, respectively):

Π(P) = Π({C1, . . . ,Cn}) = {Πκ1(C1), . . . ,Πκn(Cn)}
Πκi(Ci) = Πκi(A ← B1∧·· ·∧Bn) = Πκi(χ1,...,χn)(A) ← Πχ1(B1)∧·· ·∧Πχn(Bn)

Πτ(A) = Πτ(p(t1, . . . , tn)) = p(t1, . . . , tn,τ)
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Goal clauses have to be transformed as well in order to be resolved w.r.t. the transformed logic program:

Π(G) = Π(A1∧·· ·∧An) = Πχ1(A1)∧·· ·∧Πχn(An)

Example 8. Consider the modified version of the program from example 7, where κi are distinct new
function symbols and χ is a new variable:

subclass(X ,X ,κ1(χ1)) ← class(X ,χ1)

subclass(X ,object,κ2(χ1)) ← class(X ,χ1)

subclass(X ,Z,κ3(χ1,χ2)) ← extends(X ,Y,χ1)∧ subclass(Y,Z,χ2)

It can be easily proved that this new version of the program is universally observable, and the last argument
provides the termination measure for rewriting reductions. In particular, subclass(A,B,χ) 6→. Now we
can have a one step substitution reduction to subclass(A,A,κ1(χ1)), and this subgoal will have one step
(terminating) rewriting reduction to class(A,χ), just as with SLD-resolution.

As the above example shows, the program transformation guarantees that all rewriting reductions
terminate. It additionally has two different implications for inductive and coinductive programs. For
inductive programs like the one from example 7, it allows completeness of derivations; and for coinductive
programs it allows lazy execution of S-resolution.

Example 9. Consider this modified version of example 4:

p( f (X),κ1(χ)) ← p(X ,χ)

q(X ,κ2(χ)) ← q(X ,χ)

The infinite S-resolution reductions for q(X) now become both universally observable (all rewriting
derivations terminate) and observationally productive:

q(X ,χ) ↪→χ=κ1(χ
′) q(X ,κ1(χ

′)) → q(X ,χ ′) ↪→χ ′=κ1(χ
′′) q(X ,κ1(χ

′′)) → q(X ,χ ′′) · · ·

The S-resolution can now detect that the above reduction is productive in its second argument, i.e. an
infinite term κ1(κ1 . . .)) will be computed at infinity as a substitution to χ in the query q(X ,χ).

The transformation above has a clear proof-relevant interpretation [13]. Each rule gets a unique extra
argument, and when a rule is applied, the instantiation of the last term of an atom can be understood as
recording a proof evidence. In the end, the last term of each atom in the goal will be instantiated with a
term encoding a proof for the original atom A in the given program. For this reason, when we consider
programs resulting from this transformation, we call terms in the last position inside atoms proof terms.

We now present our original results showing that the productivity transformation of programs does
not change their declarative – inductive or coinductive – semantics.

Theorem 4. For any given logic program P, Π(P) is productive.

Proof. In order to show that Π(P) is strongly normalizing, a decreasing measure on goal clauses needs to
be established. Such a measure is the total number of function symbols in all the proof terms of the goal.
It is easy to see that each clause reduces this number by at least 1, since all the clauses in Π(P) have the
following shape:

p(. . . ,κi(χ1, . . . ,χm)) ← p1(. . . ,χ1)∧·· ·∧ pm(. . . ,χm)
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In light of its proof-relevant interpretation, the productivity transformation is expected not to change
the intended meaning of the program since what it does is basically recording proof evidences. Indeed,
we prove that Π does not affect the declarative semantics of logic programs: the following result states
that the transformation is sound and complete with respect to both the inductive and coinductive models.

Theorem 5 (Soundness and completeness of the productivity transformation). Given a logic program P
and an atom A, each of the following implications hold for some proof term π:

A ∈MP ⇐⇒ Ππ(A) ∈MΠ(P) (inductive soundness and completeness)

A ∈Mco
P ⇐⇒ Ππ(A) ∈Mco

Π(P) (coinductive soundness and completeness)

Proof. The full proof can be found in the Appendix A, and exploits the well-known identities MP = TP ↑ω ,
and Mco

P = TP ↓ ω that hold for any logic program P when the complete Herbrand base9 is considered
[21], and the two lemmas stating the following claims:

A ∈ TP ↑ n ⇐⇒ Ππ(A) ∈ TΠ(P) ↑ n for some proof term π ∈ Bco
Π(P)

A ∈ TP ↓ n ⇐⇒ Ππ(A) ∈ TΠ(P) ↓ n for some proof term π ∈ Bco
Π(P).

Both lemmas are proved by induction over n; incidentally, the proofs show that π actually coincides with
a proof tree for A ∈MP and A ∈Mco

P , respectively.

In light of the results above, we can safely apply the transformation Π to ensure productivity without
changing the inductive and coinductive semantics of logic programs. This allows us to fruitfully exploit
structural resolution as an inference engine together with abstract compilation.

6 Conclusions

Abstract compilation is a technique which uses logic programming for advanced static type analysis
of object-oriented programs. To support analysis involving recursive types and programs, abstract
compilation requires to consider the coinductive interpretation of the generated logic programs. We have
identified a class of recursive methods for which the implementation of the inference engine based on
Co-LP [22] does not work. We overcome this limitation by considering an inference engine based on
structural resolution [19, 11]. S-resolution can only work if logic programs are universally observable;
this property can be achieved by means of program transformation. We have proposed a new translation
scheme for abstract compilation based on this transformation. We have proved that such a transformation
preserves the semantics of the programs generated by abstract compilation.

While these results show that there are cases where S-resolution works better than Co-LP as inference
engine for abstract compilation, we leave for further development the possibility of extending such a
claim to prove that structural resolution always leads to analysis results which, if not improved, are
at least comparable to those obtained with Co-LP as inference engine of abstract compilation. In
particular, the recent results [20, 18] show that it is possible to integrate Co-LP loop detection into
S-resolution, and thus to identify regular patterns and infer regular terms like Co-LP does. For example, it
is possible to infer the answer X = cons(0,X) for a query of Example 2 rather than giving a lazy answer
(X = cons(0,X ′),X ′ = cons(0,X ′′), . . .). A potential use of coinductive proofs has been investigated for
type class inference in Haskell [14], where irregular patterns arising in rewriting reductions (in the sense

9For the first identity the standard inductive Herbrand base could be equivalently considered.
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of Definition 2) were considered. Future work will include investigation on the existence of a unifying
approach to different coinductive methods in logic programming, type inference and abstract compilation.

We are developing a prototype implementation [10] based on a productivity checker for Logic
Programming which provides an effective procedure for semi-deciding coinductive soundness of infinite
S-resolution derivations, and, hence will result in a better assessment of the scalability of our proposed
approach.

Another interesting direction for further development is the study of the “completeness” of our
approach with respect to type inference problems. This would allow us to better understand for which
classes of programs the resolution (successfully) terminates in case of type inference queries; our prototype
implementation could help us identify classes of real programs, by conducting experiments on, possibly
simplified, code taken from widely available open source projects.
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A Proofs of Soundness and Completeness of the Productivity Translation

Definition 6. Given a logic program P, we use the following notations [21] for iterative application of the
immediate consequence operator TP:

TP ↑ 0 = /0 TP ↓ 0 = Bco
P

TP ↑ n+1 = TP(TP ↑ n) TP ↓ n+1 = TP(TP ↓ n)

Lemma 7 (Inductive soundness and completeness of Π). Given a logic program P, a (ground) atom
A ∈ BP and a number n ∈ N, the following implication holds for some proof term π ∈ BΠ(P):

A ∈ TP ↑ n ⇐⇒ Ππ(A) ∈ TΠ(P) ↑ n

Proof. The proof goes by induction over n. The base case is trivial since TP ↑ 0 = /0. When n > 0 we
prove the two implications as follows.

Case ( =⇒ ). If n > 0, since TP ↑ n = TP(TP ↑ n−1), from the definition of TP there must be a clause C =
A′ ← B1∧·· ·∧Bm in P and a (grounding) substitution σ such that A = σ(A′) and {σ(B1), . . . ,σ(Bm)} ⊆
TP ↑ n−1. Since such a clause is in P, its translation Πκ(C) must be in Π(P) for some constant κ:

Πκ(C) = Πκ(A′ ← B1∧·· ·∧Bm) = Πκ(χ1,...,χm)(A
′) ← Πχ1(B1)∧·· ·∧Πχm(Bm)

By inductive hypothesis, for some proof terms π1, . . . ,πm:

{σ(B1), . . . ,σ(Bm)} ⊆ TP ↑ n−1 =⇒ {Ππ1(σ(B1)), . . . ,Ππm(σ(Bm))} ⊆ TΠ(P) ↑ n−1

Since σ is computed with respect to the original program P it does not change the proof terms πi, thus the
substitution can be pushed out of the transformation:

{σ(Ππ1(B1)), . . . ,σ(Ππm(Bm))} ⊆ TΠ(P) ↑ n−1
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Through one application of TΠ(P) we can apply the clause Πκ(C) to the atoms above with the substitution
mapping every variable χi to the proof term πi:

σ(Πκ(π1,...,πm)(A
′)) ∈ TΠ(P) ↑ n

Finally, we conclude by moving the substitution σ again, recalling that σ(A′) = A and κ(π1, . . . ,πm) is
ground:

σ(Πκ(π1,...,πm)(A
′)) = Πσ(κ(π1,...,πm))(σ(A′)) = Πκ(π1,...,πm)(A) ∈ TΠ(P) ↑ n

Case (⇐= ). The opposite implication can be proved in quite a similar way. From the definitions of TP

and TP ↑ n we know the two following clauses are in P and Π(P), respectively:

Ci = A′ ← B1∧·· ·∧Bm ∈ P

Πκi(Ci) = Πκi(χ1,...,χm)(A
′) ← Πχ1(B1)∧·· ·∧Πχm(Bm) ∈Π(P)

and, also, there is a substitution σ such that A = σ(A′) and, for i = 1, . . . ,n:

σ(Πχi(Bi)) = Πσ(χi)(σ(Bi)) ∈ TΠ(P) ↑ n−1

Then, by inductive hypothesis:
σ(Bi) ∈ TP ↑ n−1

Finally, applying TP to {B1, . . . ,Bm} with clause Ci and substitution σ , we can conclude that σ(A′) = A ∈
TP ↑ n.

Lemma 8 (Coinductive soundness and completeness of Π). Given a logic program P, a (ground) atom
A ∈ Bco

P and a number n ∈ N, the following implication holds for some proof term π ∈ Bco
Π(P):

A ∈ TP ↓ n ⇐⇒ Ππ(A) ∈ TΠ(P) ↓ n

(note that both A and π could be infinite)

Proof. The proof goes by induction over n. The base case is trivial since TP ↓ 0 = Bco
P by definition. The

inductive case is entirely similar to the proof of lemma 7, the only difference being the use of TP ↓ n rather
than TP ↑ n.

Proof of Theorem 5 (Soundness and completeness of the productivity transformation). The following
well-known results [21] about the least and greatest fixed points hold for any logic program P when the
complete Herbrand base is considered:

MP = TP ↑ ω

Mco
P = TP ↓ ω

The theorem therefore directly follows from lemmas 7 and 8, that proved the strict relation between TP

and TΠ(P).
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