14,255 research outputs found

    A systematic literature review on source code similarity measurement and clone detection: techniques, applications, and challenges

    Full text link
    Measuring and evaluating source code similarity is a fundamental software engineering activity that embraces a broad range of applications, including but not limited to code recommendation, duplicate code, plagiarism, malware, and smell detection. This paper proposes a systematic literature review and meta-analysis on code similarity measurement and evaluation techniques to shed light on the existing approaches and their characteristics in different applications. We initially found over 10000 articles by querying four digital libraries and ended up with 136 primary studies in the field. The studies were classified according to their methodology, programming languages, datasets, tools, and applications. A deep investigation reveals 80 software tools, working with eight different techniques on five application domains. Nearly 49% of the tools work on Java programs and 37% support C and C++, while there is no support for many programming languages. A noteworthy point was the existence of 12 datasets related to source code similarity measurement and duplicate codes, of which only eight datasets were publicly accessible. The lack of reliable datasets, empirical evaluations, hybrid methods, and focuses on multi-paradigm languages are the main challenges in the field. Emerging applications of code similarity measurement concentrate on the development phase in addition to the maintenance.Comment: 49 pages, 10 figures, 6 table

    An Empirical Study of a Hybrid Code Clone Detection Approach on Java Byte Code

    Get PDF
    Code clones increase the complexity of the system;therefore the software maintenance costs. Code clonedetection techniques have been proposed and evaluated basedon metric value and runtime evaluations. But in the existingmethods, many false positive clones are detected. In thispaper, we suggest a hybrid approach combining ProgramDependence Graph-based technique with Metric-basedtechnique to improve the precision of clone detection. Weconduct a case study on two open source code Java projectssuch as Eclipse-ant and Eclipse-JDT core to show the effectiveness of our tool. The application of this hybrid technique is then compared with the existing clone detection technique, CloneDR. The result shows that our tool increases the performance in precision, recall, false positive and false negative compared to CloneDR

    The Survey of the Code Clone Detection Techniques and Process with Types (I, II, III and IV)

    Get PDF
    In software upgradation code clones are regularly utilized. So, we can contemplate on code location strategies goes past introductory code. In condition of-craftsmanship on clone programming study, we perceived the absence of methodical overview. We clarified the earlier research-in view of deliberate and broad database find and the hole of research for additionally think about. Software support cost is more than outlining cost. Code cloning is useful in several areas like detecting library contents, understanding program, detecting malicious program, etc. and apart from pros several serious impact of code cloning on quality, reusability and continuity of software framework. In this paper, we have discussed the code clone and its evolution and classification of code clone. Code clone is classified into 4 types namely Type I, Type II, III and IV. The exact code as well as copied code is depicted in detail for each type of code clone. Several clone detection techniques such as: Text, token, metric, hybrid based techniques were studied comparatively. Comparison of detection tools such as: clone DR, covet, Duploc, CLAN, etc. based on different techniques used are highlighted and cloning process is also explained. Code clones are identical segment of source code which might be inserted intentionally or unintentionally. Reusing code snippets via copying and pasting with or without minor alterations is general task in software development. But the existence of code clones may reduce the design structure and quality of software like changeability, readability and maintainability and hence increase the continuation charges

    The zombies strike back: Towards client-side beef detection

    Get PDF
    A web browser is an application that comes bundled with every consumer operating system, including both desktop and mobile platforms. A modern web browser is complex software that has access to system-level features, includes various plugins and requires the availability of an Internet connection. Like any multifaceted software products, web browsers are prone to numerous vulnerabilities. Exploitation of these vulnerabilities can result in destructive consequences ranging from identity theft to network infrastructure damage. BeEF, the Browser Exploitation Framework, allows taking advantage of these vulnerabilities to launch a diverse range of readily available attacks from within the browser context. Existing defensive approaches aimed at hardening network perimeters and detecting common threats based on traffic analysis have not been found successful in the context of BeEF detection. This paper presents a proof-of-concept approach to BeEF detection in its own operating environment – the web browser – based on global context monitoring, abstract syntax tree fingerprinting and real-time network traffic analysis

    PDF-Malware Detection: A Survey and Taxonomy of Current Techniques

    Get PDF
    Portable Document Format, more commonly known as PDF, has become, in the last 20 years, a standard for document exchange and dissemination due its portable nature and widespread adoption. The flexibility and power of this format are not only leveraged by benign users, but from hackers as well who have been working to exploit various types of vulnerabilities, overcome security restrictions, and then transform the PDF format in one among the leading malicious code spread vectors. Analyzing the content of malicious PDF files to extract the main features that characterize the malware identity and behavior, is a fundamental task for modern threat intelligence platforms that need to learn how to automatically identify new attacks. This paper surveys existing state of the art about systems for the detection of malicious PDF files and organizes them in a taxonomy that separately considers the used approaches and the data analyzed to detect the presence of malicious code. © Springer International Publishing AG, part of Springer Nature 2018

    An Inclusive Report on Robust Malware Detection and Analysis for Cross-Version Binary Code Optimizations

    Get PDF
    Numerous practices exist for binary code similarity detection (BCSD), such as Control Flow Graph, Semantics Scrutiny, Code Obfuscation, Malware Detection and Analysis, vulnerability search, etc. On the basis of professional knowledge, existing solutions often compare particular syntactic aspects retrieved from binary code. They either have substantial performance overheads or have inaccurate detection. Furthermore, there aren't many tools available for comparing cross-version binaries, which may differ not only in programming with proper syntax but also marginally in semantics. This Binary code similarity detection is existing for past 10 years, but this research area is not yet systematically analysed. The paper presents a comprehensive analysis on existing Cross-version Binary Code Optimization techniques on four characteristics: 1. Structural analysis, 2. Semantic Analysis, 3. Syntactic Analysis, 4. Validation Metrics.  It helps the researchers to best select the suitable tool for their necessary implementation on binary code analysis. Furthermore, this paper presents scope of the area along with future directions of the research

    CroLSSim: Cross‐language software similarity detector using hybrid approach of LSA‐based AST‐MDrep features and CNN‐LSTM model

    Get PDF
    Software similarity in different programming codes is a rapidly evolving field because of its numerous applications in software development, software cloning, software plagiarism, and software forensics. Currently, software researchers and developers search cross-language open-source repositories for similar applications for a variety of reasons, such as reusing programming code, analyzing different implementations, and looking for a better application. However, it is a challenging task because each programming language has a unique syntax and semantic structure. In this paper, a novel tool called Cross-Language Software Similarity (CroLSSim) is designed to detect similar software applications written in different programming codes. First, the Abstract Syntax Tree (AST) features are collected from different programming codes. These are high-quality features that can show the abstract view of each program. Then, Methods Description (MDrep) in combination with AST is used to examine the relationship among different method calls. Second, the Term Frequency Inverse Document Frequency approach is used to retrieve the local and global weights from AST-MDrep features. Third, the Latent Semantic Analysis-based features extraction and selection method is proposed to extract the semantic anchors in reduced dimensional space. Fourth, the Convolution Neural Network (CNN)-based features extraction method is proposed to mine the deep features. Finally, a hybrid deep learning model of CNN-Long-Short-Term Memory is designed to detect semantically similar software applications from these latent variables. The data set contains approximately 9.5K Java, 8.8K C#, and 7.4K C++ software applications obtained from GitHub. The proposed approach outperforms as compared with the state-of-the-art methods

    Measuring Code Similarity in Large-scaled Code Corpora

    Get PDF
    Source code similarity measurement is a fundamental technique in software engineering research. Techniques to measure code similarity have been invented and applied to various research areas such as code clone detection, finding bug fixes, and software plagiarism detection. We perform an evaluation of 30 similarity analysers for source code. The results show that specialised tools including clone and plagiarism detectors, with proper parameter tuning, outperform general techniques such as string matching. Although these specialised tools can handle code similarity in local code bases, they fail to locate similar code artefacts from large-scaled corpora. This is increasingly important considering the rising amount of online code artefacts. We propose a scalable search system specifically designed for source code. It lays a foundation to discovering online code reuse, large-scale code clone detection, finding usage examples, detecting software plagiarism, and finding software licensing conflicts. Our proposed code search framework is a hybrid of information retrieval and code clone detection techniques. This framework will be able to locate similar code artefacts instantly. The search is not only based on textual similarity, but also syntactic and structural similarity. It is resilient to incomplete code fragments that are normally found on the Internet

    Dealing with clones in software : a practical approach from detection towards management

    Get PDF
    Despite the fact that duplicated fragments of code also called code clones are considered one of the prominent code smells that may exist in software, cloning is widely practiced in industrial development. The larger the system, the more people involved in its development and the more parts developed by different teams result in an increased possibility of having cloned code in the system. While there are particular benefits of code cloning in software development, research shows that it might be a source of various troubles in evolving software. Therefore, investigating and understanding clones in a software system is important to manage the clones efficiently. However, when the system is fairly large, it is challenging to identify and manage those clones properly. Among the various types of clones that may exist in software, research shows detection of near-miss clones where there might be minor to significant differences (e.g., renaming of identifiers and additions/deletions/modifications of statements) among the cloned fragments is costly in terms of time and memory. Thus, there is a great demand of state-of-the-art technologies in dealing with clones in software. Over the years, several tools have been developed to detect and visualize exact and similar clones. However, usually the tools are standalone and do not integrate well with a software developer's workflow. In this thesis, first, a study is presented on the effectiveness of a fingerprint based data similarity measurement technique named 'simhash' in detecting clones in large scale code-base. Based on the positive outcome of the study, a time efficient detection approach is proposed to find exact and near-miss clones in software, especially in large scale software systems. The novel detection approach has been made available as a highly configurable and fully fledged standalone clone detection tool named 'SimCad', which can be configured for detection of clones in both source code and non-source code based data. Second, we show a robust use of the clone detection approach studied earlier by assembling its detection service as a portable library named 'SimLib'. This library can provide tightly coupled (integrated) clone detection functionality to other applications as opposed to loosely coupled service provided by a typical standalone tool. Because of being highly configurable and easily extensible, this library allows the user to customize its clone detection process for detecting clones in data having diverse characteristics. We performed a user study to get some feedback on installation and use of the 'SimLib' API (Application Programming Interface) and to uncover its potential use as a third-party clone detection library. Third, we investigated on what tools and techniques are currently in use to detect and manage clones and understand their evolution. The goal was to find how those tools and techniques can be made available to a developer's own software development platform for convenient identification, tracking and management of clones in the software. Based on that, we developed a clone-aware software development platform named 'SimEclipse' to promote the practical use of code clone research and to provide better support for clone management in software. Finally, we evaluated 'SimEclipse' by conducting a user study on its effectiveness, usability and information management. We believe that both researchers and developers would enjoy and utilize the benefit of using these tools in different aspect of code clone research and manage cloned code in software systems
    • 

    corecore