
PDF-malware detection:

a survey and taxonomy of current techniques∗

Michele Elingiusti†1, Leonardo Aniello‡2, Leonardo Querzoni§1, and
Roberto Baldoni¶1

1CIS - Sapienza University of Rome, Italy
2Cyber Security Research Group - University of Southampton, UK

Abstract

Portable Document Format, more commonly known as PDF, has be-
come, in the last twenty years, a standard for document exchange and
dissemination due its portable nature and widespread adoption. The flex-
ibility and power of this format are not only leveraged by benign users,
but from hackers as well who have been working to exploit various types
of vulnerabilities, overcome security restrictions, and then transform the
PDF format in one among the leading malicious code spread vectors. An-
alyzing the content of malicious PDF files to extract the main features
that characterize the malware identity and behavior, is a fundamental
task for modern threat intelligence platforms that need to learn how to
automatically identify new attacks. This paper surveys existing state of
the art about systems for the detection of malicious PDF files and orga-
nizes them in a taxonomy that separately considers the used approaches
and the data analyzed to detect the presence of malicious code.

1 Introduction

Portable Document Format, commonly known as PDF, has become, since
its introduction in 1993, a de-facto standard for document exchange and
dissemination. The widespread adoption of this document format is due
to both its portable nature and its inherent flexibility. PDF files, in fact,
can contain a variety of media (text, pictures), but also embedded files

∗This is an author generated postprint of the article: Elingiusti M., Aniello L., Quer-
zoni L., Baldoni R. (2018) PDF-Malware Detection: A Survey and Taxonomy of Current
Techniques. In: Dehghantanha A., Conti M., Dargahi T. (eds) Cyber Threat Intelligence.
Advances in Information Security, vol 70. Springer, Cham
†elingiusti.1483347@studenti.uniroma1.it
‡l.aniello@soton.ac.uk
§querzoni@dis.uniroma1.it
¶baldoni@dis.uniroma1.it

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/188824539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

or code that will be interpreted and executed by the reading software.
This latter ability makes PDF adaptable to a large amount of extremely
different usage requirements.

Despite the complexity and the number of possibilities this file for-
mat offers, end users still treat PDF files as plain, static and immutable
documents, without understanding that what the reader software shows
them is the result of the execution of a potentially complex program.
While end users have become increasingly aware, year after year, about
the traps that other document formats may hide (mainly Microsoft Office
documents including macros), such awareness struggles to extend toward
PDF.

In the last ten years malicious actors have exploited this lack of aware-
ness, together with the presence of vulnerabilities in mainstream PDF
readers, to make PDF become an extremely successful vector for mal-
ware diffusion. In 2010 Symantec [20] already reported a large rise in
PDF-driven attacks, mainly justifying it with a corresponding rise in vul-
nerabilities identified in the Adobe Reader software. More recently, Ke
Liu reported [8] about its discovery since December 2015 of more than
150 vulnerabilities in the most common PDF reader software products.
This latter news shows how, even today, PDF is an important infection
vector that provides a large unsecured attack surface.

Malware developers typically use the possibility to supply Javascript
to the PDF reader interpretation engine to execute their code. Such
code is usually sandboxed1 for execution, but it may still exploit un-
patched vulnerabilities to escape the environment boundaries and execute
shellcode at the user level. Complex payloads can be included in the PDF
as obfuscated text to evade inspection techniques, or can be downloaded
from the internet as soon as the attacker takes control of the user shell.
Malicious PDF files are then delivered through different methods [20]:
from drive-by downloads, to targeted attacks or mass mailing approaches.

To counteract such growing phenomenon, the research community pro-
duced in the recent past several solutions for detecting malicious PDFs.
The most recent and promising solutions use a mix of techniques bor-
rowed by standard malware analysis best practices (like static and dy-
namic code analysis) and adapted to the specificities of the file format to
extract features that are then analyzed to identify malware. The analysis
is performed using several different approaches that range from simple
string matching through regular expressions to complex classifiers based
on machine learning techniques. In this corpus of solutions it is somewhat
difficult for the interested reader to identify which approaches are adopted
by a given solution and how they are related to competing solutions. Nev-
ertheless, such solutions represent an important building block for threat
intelligence platforms that need to automatically analyze incoming data
looking for suspicious infection vectors or indicators of compromise. Re-
cently, a survey from Nissim et al. [12] provided an overview of academic
contributions on this area, but limited its scope to systems leveraging
machine learning approaches.

1This feature is actually reader-dependent. As an example the Google Chrome PDF reader
executed embedded Javascript code within a Google Native Client sandbox.

2

This work proposes a survey of the existing techniques at the state
of the art for the detection of malicious PDF files. The main novelty
introduced in this survey lies in its analysis of the most relevant works
that tackles two orthogonal, but strictly related aspects: i) which features
are considered and how they derive from the analyzed PDF file, and ii)
which techniques are used to analyze such features and detect malicious
files. The taxonomy is completed by a global view that considers the
mix of these two aspects to correctly contextualize analyzed works and
propose possible gaps that could possibly pave the way for new research
initiatives. Comparing to [12], we believe that discussing features and
analysis techniques as orthogonal topics, helps in shedding further light on
available solutions and identifying new directions for additional research.

The text is organized as follows: after this introduction, the next Sec-
tion 2 provides a basic background on the Portable Document Format
and some information about obfuscation techniques that can be used to
conceal malicious code in PDF files, with the aim of making the detec-
tion process less effective. Section 3 gives an overview of the study we
conducted on the state of the art, describes the rationale that drives our
taxonomy and details the taxonomy itself. Section 4 puts the pieces to-
gether and provides the reader with a unified view with a clear reference
to existing works. Finally, Section 5 concludes the paper.

2 Background on malicious PDF files

This section introduces some basic concepts that are fundamental to un-
derstand how PDF malware detection solutions treat the internals of a
PDF and how they extract features for further analysis. In addition, we
briefly discuss obfuscation techniques that can be adopted by malware
developers to hide malicious code with the aim of evading detection.

2.1 The Portable Document Format

The Portable Document Format is the world’s leading language for de-
scribing the printed page, and the first one equally suitable for paper and
online use. It is basically a file format defined in 1993 by Adobe Systems
and used until today to exchange and represent documents reliably, inde-
pendently from the available hardware, software, and operating system.
This means that this is a format intended to display content identically
in all platforms and media. In 2008 it became an open standard released
as ISO 32000-1.

A PDF file may contain a mix of textual and binary data and is com-
posed by different abstraction layers. The layers define the flow by which a
PDF viewer application reads the contents in a sequence and draws them
on the screen. According to the PDF Reference [3], the internal structure
of a PDF file is made up of the elements depicted in Figure 1.

Metadata — All the data that can be extracted by exploring the “raw”
PDF file, i.e. from its internal structure, as it is detailed below. Metadata
includes elements such as embedded keywords, “EOF” characters located
after the trailer, author field, creation data, etc.

3

Header

▪ Version number

Body

▪ Page objects
▪ Image objects
▪ Font objects
▪ Bookmark objects
▪ …

Cross-reference
Table

▪ Object locations
within the file

Trailer

▪ Location of special
objects within the
Body (e.g. Catalog)
▪ Location of the
cross-reference table

Figure 1: Internal structure of a PDF file.

Objects — The basic content of a PDF document is represented by a
collection of Objects. Each object can contain a different element that
will be used to render the file content, e.g., a page, a picture, a form, a
portion of JavaScript code. Objects are the basic building blocks that
collectively form the data structure of a PDF document.

An explicit definition is prefixed with a text label “1 0 obj”. This
kind of object is defined indirect, or also labeled, as it can be referenced by
another object using the first number of its definition, 1 in this example,
also known as its object reference. Conversely, direct objects are those that
can not be referenced and do not contain any reference prefix, implying
that they will always be embedded in other objects. The syntax used by
a container object to refer to an indirect object follows the pattern “1 0
R”. PDF only supports eight basic types of objects:

• Boolean values

• Integer and real numbers

• Strings: sequences of bytes. PDF strings have bounded length and
can be represented in two distinct formats, namely as a sequence of
literal characters enclosed in rounded parentheses, or as hexadecimal
dump embedded in angle brackets.

• Names: atomic symbols uniquely defined by a character sequence.

• Null value: there exist only one object of type null represented by
the corresponding keyword “null”. If the null object is specified
to be the value of a dictionary entry, it is like the entry did not
exist. When an object references an indirect object that does not
exist within the structure of the PDF, then this indirect reference is
interpreted as a null object.

• Arrays: one-dimensional ordered collections of PDF objects en-
closed in square brackets.

• Dictionaries: unordered sets of key-value pairs enclosed between
the symbols “〈〈” and “〉〉”, where each pair constitutes a dictionary’s
entry. Keys must be name objects and must be unique within a
dictionary. The values may be any kind of PDF object, including
nested dictionaries.

4

• Streams: sequences of bytes. Note that, while string objects must
be read by a PDF viewer completely in their length, streams can
undergo an incremental reading process. Furthermore, stream length
is not bounded. This is the reason way large amount of data like
images or JavaScript code are represented as streams.

File Structure — This layer refers to how objects are organized in a
PDF file, and later accessed or updated. A PDF file structure consists of
the following four parts:

• Header: represents the single first line of the PDF file. It has the
format “%PDF-a.b”, where a.b denotes the version of the PDF
standard specification to which the file conforms.

• Body: this is the section which defines the content of the PDF
document containing the objects.

• Cross-reference table: specifies the byte offset of every object
contained in the Body starting from the top of the file.

• Trailer: a dictionary consisting of the “trailer” keyword followed
by a set of key-value pairs enclosed in double angle brackets. It pro-
vides the location of the cross-reference table and of certain special
objects within the body of the file, like the root object called Cat-
alog. A PDF viewer conforming to the standard should read the
file starting from this section in order to locate the cross-reference
table and navigate to each object of the physical PDF structure.
Within the trailer we can also find other relevant information like
the number of revisions made to the document.

Document Structure — This layer describes the semantics of the com-
ponents of the PDF file. This is a hierarchical structure that defines the
relationships linking the various objects, i.e., how two object are con-
nected. Decoupling the document structure from the file structure means
that, given a document structure, it is possible to build different equiva-
lent PDF files by simply shuffling objects order in the body. As long as
the document structure does not change, the file rendering will not change
as well.

At the root of the objects hierarchy there is the document’s Catalog
dictionary. A few of the nodes in the Catalog are scalar nodes, but many
other nodes are the root for higher level objects. There are a lot of objects,
but a minimal PDF Document will at least contain Page objects. Such
objects are tied together in a logical structure called page tree, whose root
is the first page object, which in turn is an indirect object referenced in
the Catalog dictionary by using the entry having “/pages” as key.

Content Streams — These are PDF stream objects whose data consists
of a sequence of instructions describing the appearance of any graphical
entity that has to be rendered on a page. These objects are distinct from
the basic types of data objects. The instructions can also refer to other
indirect objects which contain information about resources adopted by
the stream.

5

2.2 PDF Document Obfuscation techniques

Obfuscation is a well-known approach leveraged by malware coders to hide
malicious code from inspection efforts. Code obfuscation is, in general, a
legitimate technique that is widely used to protect proprietary code, how-
ever it is also one of the best evasion techniques used by malicious coders
to fool malware detection systems (especially those based on signature
matching) or to make the work of an expert analyst more complex and
time consuming. Kittilsen listed several techniques [5] that, by mixing
with the inherent complexity of the PDF format, are usually employed to
hide JavaScript code in PDF files.

• Separating Malicious Code over Multiple Objects: the code
embedded in the PDF document is fragmented among several objects
and reassembled upon execution. This technique is made possible
by exploiting the reference feature that is relevant to the indirect
objects.

• Applying Filters: filters are used to compress and encode object
streams of a PDF file. The parser of a detection software must be
aware of the filter used, otherwise it will not even detect the presence
of malicious code.

• White Space Randomization: randomly placed whitespace char-
acters can be inserted in order to defeat very simple signature match-
ing systems, like the ones based on calculating the hash sum of the
whole document. This technique can be easily applied to JavaScript
code, whose syntax is space-agnostic. Some of the solutions surveyed
in the next sections (e.g. [4]) preprocess the code with a normaliza-
tion phase in order to overcome this kind of obfuscation.

• Comment Randomization: similarly to space randomization, com-
ments can be inserted at random to change the code without modi-
fying its functioning.

• Variable Name Randomization: variable names are changed
in order to overcome signature based detection systems which, for
example, during a static analysis, look at the extracted code for
suspicious variable names such as “heapspray”, “shellcode”,
“exploit”, etc.

• String Obfuscation: string manipulation is an obfuscation tech-
nique to fool and hinder security analysts and anti-malware software.
This can be achieved in different ways. One of the most widely
used techniques is to split a string in several substrings, and then
merge them back at runtime.String format representation can be
easily changed by employing different schemes, like the hexadecimal
representation, unicode, base64 etc. An attacker can also use dif-
ferent formats and build hybrid representations. Another commonly
used string obfuscation technique is the application of de-obfuscation
functions upon strings at runtime, like substitution or XOR. Obfus-
cated code can be placed in any object and then deobfuscated only
at runtime [13]. This kind of approach is extremely powerful against
static analysis, while it is potentially subject to detection with dy-
namic analysis approaches.

6

• Function Name Obfuscation: this technique can be applied by
creating pointers to functions using arbitrary names, like “eval”or
“unescape”.

• Integer Obfuscation: numbers can be obfuscated by representing
them in a different way, like for example a mathematical expression.
This is used in order to hide a specific hardcoded memory address
or other kind of numbers, such as addresses related to ROP gadgets
that are packaged in the code and used to exploit different versions
of a reader software.

• Block Randomization: this involves modifying the embedded
JavaScript code syntax and structure, while preserving its global
behavior.

• Dead code and Pointless code: as a further element of obfusca-
tion, real code can be augmented with dead code (routines that will
never be executed) o pointless blocks (whose result do not impact
the execution of the real malicious code).

3 Taxonomy of PDF Malware Detection
Approaches

The approaches used in the state of the art to identify malicious PDF files
vary widely from solution to solution. However it is possible to identify a
general pattern that, with some specific variations, is commonly adopted:

• feature extraction;

• feature analysis and decision.

In the feature extraction phase the PDF file is analyzed to extract
various features. Features can be extracted through an analysis of the
PDF characteristics, or from the code that the file embeds. In this case
standard static or dynamic techniques are leveraged to analyze and char-
acterize the code behavior. Features are then analyzed in the feature
analysis phase where several metrics of interest can be calculated. A dis-
criminant function is then applied to decide if the input must be classified
as malware or benign.

In order to conceptually organize the current state of the art in the
field of PDF malware detection, we considered appropriate to apply this
two-phases approach as the basis to build a taxonomy. In particular, we
consider a taxonomy of the existing works with respect to two different
aspects: considered features, and approaches used to analyze them. These
two aspects provide orthogonal information about how the existing solu-
tions tackle the problem of identifying malicious PDF files. In the next
two sections we will detail these two taxonomies with more details.

7

metadata

javascript JS code

in-memory
data

PDF structural
analysis

embedded
keywords

structural paths

metafeatures

lexical
analysis

formatting and
normalization

code
analysis

opcode
extraction

string
extraction

JS tokens

code
syntactic units

API
access patterns

heap looping
operations

opcode
sequences

string
entropy

string
length

whole file correctness
analysis

malformed
objects

TF/IDF on
2-gram words

n-gram
extraction

file
entropy

DATA TYPE PREPROCESSING FEATURES

Figure 2: Taxonomy of features used in literature for PDF malware detection.

8

3.1 Features

This section describes which features have been proposed for PDF mal-
ware detection, and organizes them in a multi-level taxonomy (see Fig-
ure 2). The first level is the leftmost depicted in Figure 2 and represents
what type of data is is extracted from the PDF document. The second
level shows the preprocessing techniques used on these data to obtain the
actual features used for PDF malware detection; these features are then
reported in the third level.

This section is organized according to the data types identified at
the first level: metadata, javascript, and whole file. A final subsection
discusses feature selection techniques used by some solutions to improve
detection performance.

3.1.1 Metadata

Some works focus on the metadata of a PDF (see Section 2.1) to determine
its maliciousness [14, 11, 10, 24, 21]. They all perform structural analyses
of the documents to extract the features they need.

Embedded keywords — A PDF reader uses the keywords embedded in
the document to understand what actions to execute; therefore, the set
of keywords embedded in a PDF file can be an effective indicator of its
high-level behaviour. Pareek et al. [14] proposed a fixed reference set of
keywords to look for in a document, while PDF Malware Slayer [11] and
Slayer Neo [10] identify sets of most characteristic keywords by examining
the occurrences of keywords in either benign and malicious PDFs included
in the training set.

Structural paths — As detailed in Section 2.1, the internal structure of
a PDF is organized hierarchically in a tree-like fashion. Investigating
how objects are arranged in such a structure can unveil valuable clues
to recognize malicious documents. Hidost [24] considers the structural
paths of leaves in the analyzed documents as representing features. The
obtained feature set is then processed through a technique called structural
path consolidation(SPC) to merge together similar features. In this way
the semantic of the document structure is better preserved reducing the
dependency of the feature set from the specific dataset.

Metafeatures — Other works look at more general characteristics of a
PDF, which we refer to as metafeatures. We want to stress the fact that
metafeatures are different from embedded keywords. Indeed, some works
[11] use a set of specific keywords as they are, simply extracting them
from the structure of the file (this may imply that some keywords are
closely associated to some vulnerability or malicious behavior). Con-
versely, metafeatures are features that somewhat reflect the properties
of the metadata, like “the count of some keywords”, or “the ratio of the
number of pages to the size of the whole document”, or “the number of
uppercase characters in the author field” or other similar properties that
parametrize the metadata and the file structure as much as possible. As
an example, Slayer Neo [10] considers a number of statistics about the
structure of a document, such as its size and the number of contained

9

streams. Similarly, PDFrate [21] gathers many numeric data representing
aspects such as the occurrences of specific strings or the length and po-
sition of particular sections. Also Pareek [14] consider the frequency of
some specific keywords, like /js (i.e. the number of launched javascript)
or /JavaScript (i.e. the number of embedded javascript).

Despite systems relying on these kind of features are both efficient
and effective, they are possibly subject to two kinds of evasion, namely
mimicry and reverse mimicry attacks. The first attack has been demon-
strated in a more systematic way by [21] and [10], and more theoretically
by [6] and [23]. The second attack has been widely addressed by [10].

The peculiarity of these attacks reside in the way they prepare the ma-
licious PDF file. In particular, the mimicry attack adds benign metadata-
based attributes to malicious samples, while the reverse mimicry attack
starts instead from a sample classified as benign and renders it malicious
in an incremental fashion by trying to not cross the boundary line that
divides the goodness and maliciousness of the file form the metafeatures
standpoint.

3.1.2 JavaScript

The most common attack vector for malicious PDFs derives from embed-
ded JavaScript code that can be executed by the PDF reader software.
Indeed, many surveyed papers consider features derived in different ways
from embedded JavaScript code [26, 7, 4, 25, 19, 9, 2]. As Figure 2 shows,
features linked to JavaScript can be extracted from two distinct sources:
the JavaScript code itself, that is actually executed when the PDF file is
opened, and the in-memory data that is generated during code execution.

JavaScript code can be extracted from the PDF either statically or dy-
namically. In the former case, the code is directly extracted from the file,
while in the latter the PDF is opened and parsed through a reader software
to observe which code is actually executed. The dynamic approach is gen-
erally more robust against obfuscation techniques (see Section 2.2), but
requires a secure sandboxed environment for execution and is, in general,
more resource demanding.

In-memory data is generated by the execution of the embedded JavaScript
code and can thus be observed only by running the code through dynamic
analysis. Features extracted from in-memory analysis can unveil malicious
activities such as the preparation of memory areas (e.g. heap spray) to
use for buffer overflow attacks.

Different preprocessing techniques have been proposed on either JavaScript
code and in-memory data to compute the required features: lexical anal-
ysis, formatting and normalization, runtime analysis, code method extrac-
tion, opcode extraction and string extraction.

Differently from previous surveys [12], our taxonomy assumes that
data from which features are derived have been extracted from the analysis
target with either a static or dynamic analysis process. Depending on the
sample under analysis, the choice of the right tool for data extraction is
either implicit in the taxonomy (i.e. in-memory data can be obtained
through dynamic analysis only), or is left to the analyst (i.e. JavaScript

10

code extraction may be performed statically or dynamically, depending
on the nature of the analyzed sample.)

Lexical Analysis — Examining possibly complex and obfuscated JavaScript
codes calls for some form of abstraction to get rid of unnecessary details
and isolate what is actually relevant for the detection. A lexical analysis
of the code can support the automation of such an abstraction process.

Both the approaches proposed by Vatamanu et al. [26], i.e., Hierar-
chical Bottom-up Clustering and Hash Table Clustering, use PDF finger-
prints as features, where a fingerprint is the set of pairs 〈token, frequency〉
obtained from a lexical analysis of JavaScript code extracted statically
from a document. They consider JavaScript tokens identified using a
grammar for ECMA Script.

Also PJScan [7] performs lexical analysis on JavaScript code extracted
in a static way. It relies on SpiderMonkey 2 to extract JavaScript tokens,
and also recognizes further tokens on the basis of their length and whether
they represent invocations of suspicious functions, such as eval() and
unescape().

Formatting and Normalization — In case some kind of comparison
between JavaScript code fragments is required to decide on the malicious-
ness of a document, a conversion to some canonical form is usually needed
to enable the evaluation of possible similarities or differences.

Karademir et al. [4] use code syntactic units as features. As syntac-
tic unit they consider a block or a function in JavaScript code. Code is
extracted statically from a document, then it is parsed to identify syn-
tactic units. These are extracted and encapsulated in a XML file with
additional metadata, such as start and end line of each syntactic unit
with respect to the original file (formatting phase). A later normalization
phase includes three types of transformations aimed at abstracting the
actual structure of the unit, i.e., control and assignment statements: (i)
renaming of identifiers (to remove any reliance of naming conventions),
(ii) filtering of undistinguishable elements, such as variable declarations,
and (iii) replacing elements by their abstract name (e.g., replacing any
expression with a unique symbol).

Code Analysis — The extracted JavaScript code can be either anal-
ysed or executed in a real or virtual environment, to understand in details
which APIs are invoked and with which parameters. The execution envi-
ronment can be instrumented to capture relevant events and information,
depending on the specific desired features. PDF Scrutinizer [19] looks at
runtime for operations that add elements to an array to verify whether
many identical and large data blocks are inserted, which can be seen as
an attempt of heap spraying. It also inspects the code statically to find
any match with known signatures of malicious vulnerable method calls
and parameters. Lux0R [2] uses PhoneyPDF 3 for executing both static
and dynamic analyses to extract all the API references that appear in the
considered JavaScript code (i.e., API access patters).

2https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey

3https://github.com/smthmlk/phoneypdf

11

Opcode Extraction — A common practice for malicious PDFs is to
build the shellcode at runtime by copying the correspondent sequence of
opcodes in some variable. Therefore, some detection approaches execute
dynamic analysis to identify variables that possibly contain malicious or
suspicious opcode sequences. PDF Scrutinizer [19] employs a dedicated
heuristic to properly choose which values to analyze, for example by fo-
cussing on the output of unescape method invocations, or on strings
“with length between reasonable lower and upper bounds” or having many
occurrences of the pattern “%u”. Indeed, the unescape method can be
used to decode previously encoded strings where the malicious opcode
sequence was stored, while shellcode is usually encoded using the “%u”
pattern. MDScan [25] chooses the strings where to look for shellcode by
observing that such strings are commonly built at runtime, for example
by decoding or deciphering other strings. This kind of transformations
requires new strings to be allocated, because strings are immutable ob-
jects in JavaScript. Hence, MDScan scans memory areas of newly allo-
cated strings. In a similar way, also MPScan [9] identifies new strings by
hooking where they are created, and subsequently examines them to spot
shellcodes. Furthermore, it hooks the JavaScript engine of Adobe Reader
where opcodes are actually executed, so as to reconstruct the real opcode
flow.

String Extraction — Besides being analyzed to identify sequences of
opcodes that may correspond to known shellcodes, strings can be also ex-
tracted for other types of analyses, for example for heap spray detection.
MPScan [9] computes the entropy of strings to verify whether they can
be used for heap spraying. Indeed, since a memory area to be used for
heap spraying mostly contains NOP opcodes, its entropy should result
relevantly lower compared to any other string. Conversely, PDF Scruti-
nizer [19] looks at the length of used strings; by relying on the observation
that strings prepared for heap spraying are likely to have significant di-
mensions, it verifies whether their length is greater than 100000 bytes.

3.1.3 Whole File

In addition to inspecting document metadata or contained/executed Java-
Script code, other approaches look at the PDF file as a whole, i.e. with-
out considering its internal structure. The underlying rationale is that
a malicious PDF holds somewhere inside specific elements designated to
run some exploits and deliver a desired payload, which makes the doc-
ument as a whole have some distinguishing traits overall. Thus the key
idea is analyzing the entire PDF with the aim of catching any feature
possibly attributable to malware. Slayer Neo [10] employs two distinct
tools, PeePDF 4 and Origami 5, to parse PDF documents and observe
whether any malformed object is found. The presence of malformed ob-
jects, streams, actions, code or filters is a valuable information to eval-
uate the maliciousness of a PDF. Pareek et al. [15] computes the byte-
level entropy of the entire file to obtain a representative data to recognize

4https://github.com/jesparza/peepdf
5http://esec-lab.sogeti.com/pages/origami.html

12

malware. They also extract word-level 2-grams from the hexadecimal
dump of a PDF, and apply a term frequency-inverse document frequency
(TF/IDF) analysis on the obtained 2-grams.

3.1.4 Feature selection

Feature extraction is often followed by a technique called Feature selection
(sometimes also known as attribute selection). It is an automatic selection
of attributes that are most relevant to the predictive modeling problem
under consideration.

What is worth mentioning is that some works employ this technique
with widely different approaches. PDFMS [11] and SlayerNeo [10] use a
clustering approach in order to reduce the number of features to those
appearing in the higher frequency cluster. Conversely, Luxor [2] uses a
specifically crafted function to select a set of features, which in this case
are represented by API references, that specifically characterize malicious
samples. In particular, it checks the result of the function against a prede-
fined threshold t, where t must be chosen in order to reflect a good tradeoff
between classification accuracy and robustness against possible evasion.
Hidost [24] performs feature selection in order to find the minimum set
of features required for a successful machine learning application. Specif-
ically the huge extracted feature set passes through a technique called
structural path consolidation (SPC) with the aim of merging similar fea-
tures. In this way the semantic of the document structure is better pre-
served reducing the dependency of the feature set on the specific dataset.

3.2 Detection approaches

The features extracted according to the techniques described in Section 3.1
are then used to determine whether a specific PDF is malicious or not.
This section reports on the approaches used in the literature to elaborate
available features for malware detection. We grouped existing approaches
in four macro-classes (see Figure 3): Statistical analysis, Machine learning
classification, Clustering (for family identification) and Signature match-
ing. A subsection is dedicated for each macro-class.

3.2.1 Statistical Analysis

A common way to study a dataset of interest consists in employing well-
known statistical analysis tools; indeed, they allow to easily find trends
and relationships that otherwise would remain hidden and unexploited.

Pareek et al. [15] extract the byte-level entropy on the entire file for
a set of PDFs including both benign and malicious PDFs, then calculate
the confidence interval for the entropy of malevolent documents A new
document to analyze is recognized as malicious if the entropy of its content
is within such interval. As underlined by the authors, using the entropy
only does not lead to acceptable detection accuracy.

13

statistical analysis
entropy

confidence
interval

machine learning
classification

support vector
machine

decision trees

random forests

clustering
(family identification) hash-based

distance-based family
membership

signature
matching

regular
expresssion

matching

deterministic
automaton

threshold-based

naive bayes

bayes network

logistic
regression

LMT

DETECTION APPROACH DISCRIMINANT FUNCTION

Figure 3: Taxonomy of approaches used in literature for PDF malware detection.

14

3.2.2 Machine Learning Classification

A natural and nowadays really widespread approach to malware detection
consists in extracting a set of features from a training set, balanced be-
tween benign and malevolent samples, and training a binary classifier to
detect new malicious samples with the highest possible accuracy. Several
machine learning classification techniques are used in the literature for
malware detection in PDF files. Often, reviewed papers report evaluation
results on employing distinct classification algorithms and discuss which
one performs best.

Two-class Support Vector Machines (SVM) are used by PDF Malware
Slayer [11], PDFRate [21] and Lux0R [2]. PJScan [7] uses instead a one-
class SVM, trained with a set of malicious PDFs only.

Decision Tree algorithms are the most widely employed; they are used,
in fact, by Slayer Neo [10], Pareek et al. [14, 15], PDF Malware Slayer [11],
Hidost [24] and Lux0R [2].

A Random Forest is an ensemble of decision trees, which usually pro-
vides better accuracy than single decision trees. PDF Malware Slayer [11],
PDFRate [21] and Lux0R [2] feed their features to a Random Forest.
Naive Bayes classifiers are utilized by Pareek et al. [14], PDF Malware
Slayer [11] and PDFRate [21]. Pareek et al. [14] also employ other clas-
sifiers, i.e., Bayesian Networks, Logistic Regression and Logistic Model
Tree (LMT).

3.2.3 Clustering

An interesting goal, within the general field of malware analysis, is group-
ing together samples that behave similarly or that share strong common-
alities among each other. Analyzing new unknown or suspicious samples
by understanding how much it behaves similarly to known malware is fun-
damental task to simplify the security analyst job. Indeed, this quickly
gives to analysts many relevant information about analyzed samples, e.g.,
what actions we can expect they execute, and how to neutralize them. A
group of similar malware is usually referred to as malware family. Given
a set of malicious samples, each represented by a feature vector, it is pos-
sible to group them on the basis of the similarities they have on those
features. Clustering algorithms are usually employed at this regard, and
also some surveyed papers use them.

Vatamanu et al. [26] propose two approaches to cluster malware with
the aim of understanding what families can be identified in the consid-
ered dataset of malicious PDFs. The first approach is hash-based and
is called Hash Table Clustering, where for each document of the dataset
the hash of the PDF fingerprint is computed, and two PDF files are con-
sidered in the same family if their hashes are in the same bucket, i.e.,
each bucket represents a malware family. Since this approach does not
allow the detection malware (i.e. only knwon malware is categorized in
families), the hash-based block in Figure 3 is not linked to any block of
the Discriminant Function level of the taxonomy. The second approach
is distance-based, the Hierarchical Bottom-up Clustering, where clusters
are built iteratively in a bottom-up fashion, starting from one cluster for

15

each sample and then gradually merging clusters having higher similarity.
Such similarity is measured using a distance metric computed on token
frequencies.

Karademir et al. [4] also use a distance-based approach and compute a
similarity metric between two samples by using the NiCad clone detection
tool [18]. Each sample is represented by its code syntactic units, and, if
two samples result less than 30% different from each other, then they
are considered in the same family. Rather than using such clustering
methodology only for family identification, they take one step further by
realizing a malware detection method based on family membership. After
a training phase where available malicious PDFs are clustered in families,
when a new sample has to be analyzed, its similarity is computed with
respect to identified families and, if the most similar family results less
than 30% different, then the new sample is assigned to that family and
hence considered as malicious.

3.2.4 Signature Matching

One among the oldest but still widely employed approaches for malware
detection is signature matching. A knowledge base is maintained where
distinguishing signatures of known malware are stored. When a new sam-
ple needs to be analyzed, it is verified against these signatures and, if
any match is found, the sample is marked as malicious. We recognize
three distinct classes of approaches based on signature matching: regular
expression matching, deterministic automation and threshold-based.

Regular Expression Matching — Rather than relying on a fixed and
un-flexible signature, approaches based on regular expression matching re-
sult more powerful and effective in identifying variants of a same malware.

PDF Scrutinizer [19] matches signatures against patterns specified
with regular expressions. In particular, JavaScript code is checked for
occurrences of the signatures, represented by vulnerable method calls and
including parameters often used in known exploits. It also employs an-
other kind of regular expression, consisting in the set of words more com-
monly used by known malicious JavaScript code, such as suspicious vari-
able names (e.g., “shellcode”, “heapspray”, “exploit”). Vulnerable
API methods calls are checked against crafted regular expression. Fur-
thermore, it executes the code in an emulated environment and uses a
basic endless loop detection mechanism to recognize situations where a
malicious PDF realizes it is being executed in some analysis environment
and reacts by not executing its malicious payload.

PDF Scrutinizer [19], MPScan [9] and MDScan [25] use external tools
such as Nemu [16] and libemu to perform a pattern matching of extracted
opcode sequences against signatures of known shellcodes.

Deterministic Automation — When a signature represents specific
patterns of opcodes which denote known malicious activities, it can be
useful to model such patterns by using finite state machines (FSM). MP-
Scan [9] adopts this approach and relies on a knowledge base of signatures,
each of them being an FSM instance modelling a malicious pattern of op-
codes. To verify whether a specific opcode sequence extracted from a

16

PDF matches a particular signature, the correspondent FSM instance is
used to check the feasibility to obtain the opcode sequence according to
the allowed transitions. If the sequence can be exactly rebuilt, and the
FSM instance terminates in a final state, then a matching is found and
the sequence is considered malicious.

Threshold-based — A particular type of signature can consist in a
threshold value, to be used to determine if a document contains malware.
Its simplicity of use usually comes at the cost of limited effectiveness in
terms of achievable accuracy.

PDF Scrutinizer [19] puts in place a threshold-based mechanism on
string lengths. If the length of a variable string value exceeds a prede-
fined threshold, the document is marked as malicious. This is because
long strings in a malicious JavaScript code are usually instantiated for
the construction of NOP-sleds, to be used in heap spray exploitations.
MPScan [9] selects all the strings longer than a certain threshold, under
the assumption that very long strings are likely linked to heap spray ac-
tivities. The entropy of these long strings is then computed and, because
heap spray mostly includes repeated characters, the result should be much
lower with respect to normal and harmless strings. Hence, a maximum
threshold value (1, in this case) is chosen, to determine whether the string
should be considered suspicious.

4 State of the art discussion

In the previous sections we described a taxonomy that explores two as-
pects separately, namely features and detection approaches. For each
aspect we detailed several building blocks, grouped in conceptually ho-
mogeneous families and organized in a hierarchical structure. This tax-
onomy helped us in clearly defining how each specific building block is
considered by the works that use it. However, considering these building
blocks separately does not provide the reader with a global view about
how each work in the state of the art analyzes a given set of feature.

Figure 4 provides a cross-reference matrix where the two aspects of this
taxonomy are represented as different axes. At the intersection of features
with detection approaches within this matrix we reported references to the
systems where that specific combination is used. This global view allows
the reader to appreciate two details that are evident. Firstly, some works
mixes the usage of different detection approaches with several distinct
features. This is a common solution to improve the overall detection
effectiveness of a system. The second details that is worth noticing is that
several systems share similar approaches or work on the same feature sets.
This is an important information as it may indicate that these features
or approaches have been found to be particularly effective in detecting
malware by independent researchers.

We want also to point out how Pareek et al. developed two systems,
both introduced in [15], that focus on the whole file as a data extraction
mean, with the difference that one is based on entropy measure while the
second is n-gram-based.

17

Le
xi
ca
l	

An
al
ys
is

Fo
rm

at
tin

g	
an

d	
N
or
m
al
iz
at
io
n

O
pc
od

e	
Ex
tr
ac
tio

n
Co

rr
ec
tn
es
s	

An
al
ys
is

N
-G
ra
m
	

Ex
tr
ac
tio

n

Em
be

dd
ed

	
Ke

yw
or
ds

St
ru
ct
ur
al
	

Pa
th
s

M
et
af
ea
tu
re
s

JS
	T
ok

en
s

Co
de

	
Sy
nt
ac
tin

c	
U
ni
ts

AP
I	A

cc
es
s	

Pa
tt
er
ns

He
ap

	L
oo

pi
ng
	

O
pe

ra
tio

ns
O
pc
od

e	
Se
qu

en
ce
s

St
rin

g	
En

tr
op

y
St
rin

g	
Le
ng
th

M
al
fo
rm

ed
	

O
bj
ec
ts

TF
/I
DF

	o
n	

2-
G
ra
m
	

W
or
ds

Fi
le
	E
nt
ro
py

St
at
is
tic
al
	

An
al
ys
ys

En
tr
op

y	
Co

nf
id
en

ce
	

In
te
rv
al

[1
5]

Su
pp

or
t	V

ec
to
r	

M
ac
hi
ne

s
[1
1]

[2
1]

[7
]

[2
]

De
ci
si
on

	T
re
es

[1
0,
11
,1
4]

[2
4]

[1
0,
14
]

[2
]

[1
0]

[1
5]

[1
4]

Ra
nd

om
	F
or
es
ts

[1
1]

[2
1]

[2
]

N
aï
ve
	B
ay
es

[1
1,
14
]

[1
4,
21
]

[1
4]

Ba
ye
s	N

et
w
or
ks

[1
4]

[1
4]

[1
4]

Lo
gi
st
ic
	R
eg
re
ss
io
n

[1
4]

[1
4]

[1
4]

LM
T

[1
4]

[1
4]

[1
4]

Cl
us
te
rin

g
Fa
m
ily
	M

em
be

rs
hi
p

[4
]

Re
gu
la
r	E

xp
re
ss
io
n	

M
at
ch
in
g

[1
9]

[9
,1
9,
25
]

De
te
rm

in
is
tic
	

Au
to
m
at
on

[9
]

Th
re
sh
ol
d-
ba

se
d

[1
9]

[9
]

[1
9]

M
ac
hi
ne

	
Le
ar
ni
ng
	

Cl
as
si
fic
at
io
n

Si
gn
at
ur
e	

M
at
ch
in
g

Detection	Approaches																			

PD
F	
St
ru
ct
ur
al
	A
na

ly
si
s

W
ho

le
	F
ile

Fe
at
ur
es

Co
de

	A
na

ly
si
s

JS
	C
od

e

St
rin

g	
Ex
tr
ac
tio

n

JS
	C
od

e	
or
	In

-M
em

or
y	
Da

ta
Ja
va
sc
rip

t
M
et
ad

at
a

F
ig

u
re

4
:

C
ro

ss
-r

ef
er

en
ce

m
a
tr

ix

18

Furthermore, the two systems introduced by Vatamanu et al.[26] have
not been included in the matrix as they mainly propose a method for
malware family identification and do not explicitly define a discriminant
function to identify benign/malicious input (they assume that all input is
malicious).

The matrix shows that most detection systems take advantage of ma-
chine learning techniques for file classification. What is worth mentioning
is how all of them, but [7] [10] and [15], exploit more than just one clas-
sification algorithm to train several models and select the ones providing
the best accuracy on the available training datasets. By a quick visual
inspection of the matrix, it seems apparent that no system has explored,
so far, the power of machine learning classification techniques in com-
bination with OpCode sequences as possible features vector, whereas all
the systems that use them take advantage of an instrumented javascript
interpreter which keeps track of runtime operations and variable values
together with specific dynamic heuristics monitoring the control flow for
malicious operations (e.g. shellcode detection using GetPC heuristics).
In general, three broad groups are present in the matrix, two in the upper
extremities and one on the lower middle part of the matrix. The empty
parts of this matrix could possibly provide hints for future research direc-
tions.

4.1 Related works

This section briefly reports other solutions that are strictly related to the
analysis performed in this survey, but don’t fit adequately the proposed
taxonomy. This may happen because these works focus on specific so-
lutions that per-se do not constitute a fully fledged malware detection
system. In some other cases, it is possible that the proposed work pro-
vides a fundamental building block that can be used to build a malware
detection system. In any case, we think a survey like this one could not
be considered complete without briefly citing these solutions.
NOZZLE — Ratanaworabhan et al. [17] presented a runtime heap-
spraying detector which examines individual objects in the heap, inter-
preting them as code and performing a static analysis on that code to
detect malicious intent. In particular the NOZZLE lightweight emulator
scans heap objects to identify valid x86 code sequences, disassembling the
code and building a control flow graph. This analysis technique is mainly
focussed on the detection of NOP sleds. Through the development of an
attack surface metric they try to figure out the likelihood that a random
jump on an object allocated in the heap would end up executing a possible
shellcode. As we know, in the heap spray technique, any jump that lands
in the NOP sled will eventually transfer control to the shellcode. Through
the development of a control flow graph, made of blocks with disassembled
code, NOZZLE calculates the reachability of the various blocks. If one
of them contains the shellcode, most likely, by jumping randomly on a
different block (containing arbitrary instructions or NOP instructions), it
will be eventually reached. The heap spray technique is widely employed
within malicious PDF files to give exploits a higher chance of success. For
this reason, blocking a part of the attack, the heap spray in this case, It

19

would mean stopping the attack itself.
ShellOS — Presented by Snow et al. [22], ShellOS is an open source
framework that leverages hardware virtualization to better enable the de-
tection of code injection attacks with respect to software-based emulation
techniques. It is based on code analysis at runtime. The framework uses
hardware virtualization to execute instruction sequences directly on the
CPU, significantly improving the speed of code analysis and the execution
efficiency. ShellOS kernel, runs as a guest OS using Kernel-based Virtual
MAchine (KVM). It communicates with the host operating system by
mean of shared memory address space regions, through witch it receives
the stream of code to analyze and writes back the results
Active Learning Framework — Nissim et al. [13] proposed an Ac-
tive Learning (AL) based framework, specifically designed to efficiently
assist anti-virus vendors focussing their analytical efforts aimed at acquir-
ing novel malicious content. The objective is to identify and acquire both
new PDF files that are most likely malicious and informative benign PDF
documents. These files are used for retraining and enhancing the knowl-
edge bases of both the detection model and anti-virus. The model is built
by employing a SVM classifier on the same features used by [24], namely
the structural paths.
Advanced parsers — Carmony et al. [1] highlight how all existing
detection techniques rely on the PDF parser to a certain extent. The
problem is mainly due to the complexity of the PDF format specification.
Parser implementations, built ad-hoc by anti-virus software developers
are often limited in functionality, are less precise that other full-fledged
parsers, and are often vulnerable to possible evasion. In order to prove
that this problem is actually compelling in the field of malware detection,
they implemented a javascript reference extractor which directly taps into
Adobe Reader, and compared it with publicly available parsers, showing
their inability at extracting malicious javascript code from several sam-
ples.

5 Conclusions

In this work we presented a comprehensive overview of existing solutions
for PDF malware detection. We conveniently organized reviewed solu-
tions along two orthogonal axes: one for the considered features, and one
for the approach used to analyze these features to decide whether a PDF
is malicious or benign. By structuring in this way the surveyed solutions,
we provided a general taxonomy which can be used by practitioners to
identify the best solutions for their needs. Furthermore, the same tax-
onomy may be of interest for researchers as it hints at clear gaps in the
current state of the art that may pave the way for new interesting re-
search directions. More in general, PDF malware analysis represents a
fundamental building block for threat intelligence platforms that aim at
protecting systems from diverse attacks.

20

Acknowledgments

This present work has been partially supported by a grant of the Italian
Presidency of Ministry Council, and by CINI Cybersecurity National Lab-
oratory within the project FilieraSicura: Securing the Supply Chain of Do-
mestic Critical Infrastructures from Cyber Attacks (www.filierasicura.
it) funded by CISCO Systems Inc. and Leonardo SpA.

References

[1] C. Carmony, M. Zhang, X. Hu, A. V. Bhaskar, and H. Yin. Extract
me if you can: Abusing pdf parsers in malware detectors. 2016.

[2] I. Corona, D. Maiorca, D. Ariu, and G. Giacinto. Lux0r: Detection of
malicious pdf-embedded javascript code through discriminant analy-
sis of api references. In Proceedings of the 2014 Workshop on Artificial
Intelligent and Security Workshop, pages 47–57. ACM, 2014.

[3] Document management – portable document format – part 1:
Pdf 1.7. Standard, International Organization for Standardization,
Geneva, CH, Mar. 2008.

[4] S. Karademir, T. Dean, and S. Leblanc. Using clone detection to
find malware in acrobat files. In Proceedings of the 2013 Conference
of the Center for Advanced Studies on Collaborative Research, pages
70–80. IBM Corp., 2013.

[5] J. Kittilsen. Detecting malicious pdf documents. Master’s thesis,
2011.

[6] P. Laskov et al. Practical evasion of a learning-based classifier: A
case study. In Security and Privacy (SP), 2014 IEEE Symposium
on, pages 197–211. IEEE, 2014.

[7] P. Laskov and N. Šrndić. Static detection of malicious javascript-
bearing pdf documents. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 373–382. ACM, 2011.

[8] K. Liu. Dig into the attack surface of pdf and gain 100+ cves in 1
year. White paper at Black Hat Asia 2016, 2017.

[9] X. Lu, J. Zhuge, R. Wang, Y. Cao, and Y. Chen. De-obfuscation and
detection of malicious pdf files with high accuracy. In System sciences
(HICSS), 2013 46th Hawaii international conference on, pages 4890–
4899. IEEE, 2013.

[10] D. Maiorca, D. Ariu, I. Corona, and G. Giacinto. A Structural and
Content-based Approach for a Precise and Robust Detection of Ma-
licious PDF Files. In Proceedings of the 1st International Conference
on Information Systems Security and Privacy (ICISSP 2015), pages
27–36, 2015.

21

[11] D. Maiorca, G. Giacinto, and I. Corona. A Pattern Recognition
System for Malicious PDF Files Detection. In P. Perner, editor,
MLDM, volume 7376 of Lecture Notes in Computer Science, pages
510–524. Springer, 2012.

[12] N. Nissim, A. Cohen, C. Glezer, and Y. Elovici. Detection of ma-
licious pdf files and directions for enhancements: a state-of-the art
survey. Computers & Security, 48:246–266, 2015.

[13] N. Nissim, A. Cohen, R. Moskovitch, A. Shabtai, M. Edri, O. BarAd,
and Y. Elovici. Keeping pace with the creation of new malicious pdf
files using an active-learning based detection framework. Security
Informatics, 5(1):1, 2016.

[14] H. Pareek, P. Eswari, and N. S. C. Babu. Malicious PDF Document
Detection Based on Feature Extraction and Entropy. International
Journal Journal of Security, Privacy and Trust Management, 2(5),
2013.

[15] H. Pareek, P. Eswari, N. S. C. Babu, and C. Bangalore. Entropy and
n-gram analysis of malicious pdf documents. International Journal
of Engineering, 2(2), 2013.

[16] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos. Compre-
hensive shellcode detection using runtime heuristics. In Proceedings
of the 26th Annual Computer Security Applications Conference, AC-
SAC ’10, pages 287–296, New York, NY, USA, 2010. ACM.

[17] P. Ratanaworabhan, V. B. Livshits, and B. G. Zorn. Nozzle: A
defense against heap-spraying code injection attacks. In USENIX
Security Symposium, pages 169–186, 2009.

[18] C. K. Roy and J. R. Cordy. Nicad: Accurate detection of near-
miss intentional clones using flexible pretty-printing and code nor-
malization. In Proceedings of the 2008 The 16th IEEE International
Conference on Program Comprehension, ICPC ’08, pages 172–181,
Washington, DC, USA, 2008. IEEE Computer Society.

[19] F. Schmitt, J. Gassen, and E. Gerhards-Padilla. Pdf scrutinizer de-
tecting javascript-based attacks in pdf documents. In Privacy, Secu-
rity and Trust (PST), 2012 Tenth Annual International Conference
on, pages 104–111. IEEE, 2012.

[20] K. Selvaraj and N. F. Gutierrez. The rise of pdf malware. Symantec
Security Response, 2010.

[21] C. Smutz and A. Stavrou. Malicious PDF detection using metadata
and structural features. In Proceedings of the 28th Annual Computer
Security Applications Conference, pages 239–248. ACM, 2012.

[22] K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos. Shellos: En-
abling fast detection and forensic analysis of code injection attacks.
In USENIX Security Symposium, pages 183–200, 2011.

22

[23] N. Šrndic and P. Laskov. Detection of malicious pdf files based on
hierarchical document structure. In Proceedings of the 20th Annual
Network & Distributed System Security Symposium, 2013.

[24] N. Šrndić and P. Laskov. Hidost: a static machine-learning-based de-
tector of malicious files. EURASIP Journal on Information Security,
2016(1):22, 2016.

[25] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos.
Combining static and dynamic analysis for the detection of mali-
cious documents. In Proceedings of the Fourth European Workshop
on System Security, page 4. ACM, 2011.

[26] C. Vatamanu, D. Gavriluţ, and R. Benchea. A practical approach on
clustering malicious pdf documents. Journal in Computer Virology,
8(4):151–163, 2012.

23

