
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 927
IJRITCC | September 2023, Available @ http://www.ijritcc.org

An Inclusive Report on Robust Malware Detection

and Analysis for Cross-Version Binary Code

Optimizations

S. Poornima1, R. Mahalakshmi2
1Department of CSE, Presidency University, Bangalore

Email: poornima.s@presidencyuniversity.in
2Professor, Department of CSE, Presidency University, Bangalore

Email: mahalakshmi@presidencyuniversity.in

Abstract: Numerous practices exist for binary code similarity detection (BCSD), such as Control Flow Graph, Semantics Scrutiny, Code

Obfuscation, Malware Detection and Analysis, vulnerability search, etc. On the basis of professional knowledge, existing solutions often

compare particular syntactic aspects retrieved from binary code. They either have substantial performance overheads or have inaccurate

detection. Furthermore, there aren't many tools available for comparing cross-version binaries, which may differ not only in programming with

proper syntax but also marginally in semantics. This Binary code similarity detection is existing for past 10 years, but this research area is not

yet systematically analysed. The paper presents a comprehensive analysis on existing Cross-version Binary Code Optimization techniques on

four characteristics: 1. Structural analysis, 2. Semantic Analysis, 3. Syntactic Analysis, 4. Validation Metrics. It helps the researchers to best

select the suitable tool for their necessary implementation on binary code analysis. Furthermore, this paper presents scope of the area along

with future directions of the research.

Keywords: Binary code analysis, Cross version Optimization, Anti-Malware Systems.

I. Introduction:

To create new software, programmers reuse existing code.

Finding the source code from another project and using it for

their own purposes is a widespread practise among them [1].

In order to speed up the development process, inexperienced

developers will even copy and paste code examples from the

Internet. Deep consequences for software security and

privacy result from this trend. When a developer copies a

problematic function from an already-existing project, the

problem will persist even after the original developer fixes it.

The corporation may also be charged with infringing an open-

source licence, such as the GNU General Public Licence

(GPL), if a developer for a commercial software company

unintentionally uses library code from an open-source project

[2].

Unfortunately, employing a similarity analysis to identify

such issues in binary code is not always easy, especially when

the source code is not accessible. This is due to the absence

of high-level abstractions in binary code, such as data types

and functions. Determining whether a memory cell represents

an integer, a text, or another data type, for instance, cannot be

done just by looking at the binary code. Furthermore, [3], [4]

it is extremely difficult to pinpoint exact function boundaries

in the first place. Binary code similarity detection (BCSD) is

the process of determining whether two binary functions are

similar. Code plagiarism detection [32, 33, 43], malware

family and lineage analysis [2, 26, 28] are only a few of the

numerous applications in which it is crucial. When using

BCSD on pre-patch and post-patch binaries, further

applications include the analysis of 1-day (i.e., patched)

vulnerabilities [5] and the summary of vulnerability patterns

[53]. Additionally, it might be applied to cross-architecture

bug finding [16, 17, 52] when BCSD is applied to known

bugs and target applications. However, BCSD confronts a

number of difficulties.

Security practitioners face an increasing need to quickly

detect similar functions directly in binaries across multiple

platforms, e.g., x86, ARM, or MIPS. Only recently,

researchers have started to tackle the problem of cross-

platform binary code similarity detection [16, 18, 31]. These

efforts propose to extract directly from binary code various

robust platform-independent features for each node in the

control flow graph to represent a function.Cross-optimization

binaries are produced by several compiler optimisations first.

Second, cross compiler binaries are produced by compilers

using various strategies (such as register allocation). Third,

cross-architecture binaries are produced when source code is

generated on various platforms (e.g., using various instruction

sets). Despite having differing grammatical patterns, these

binaries are semantically similar. On the other side, cross-

version binaries may result from the source code itself

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 928
IJRITCC | September 2023, Available @ http://www.ijritcc.org

changing over time (such as through patches). These binaries

are similar by nature since they share a common root.

However, their semantics and syntactic structures differ

slightly. Existing solutions could somewhat handle these

BCSD issues, but they struggle with cross-version binaries.

II. Related Works:

A Traditional binary code similarity detection

Many methods that are similar to binary coding have been

developed, taking into account its applications and

difficulties. Traditional techniques typically use Binhunt8

and iBinHunt9. Multi_MH11, discovRE12, BinClone10, etc.

To find the semantic differences, BinHunt used a novel graph

isomorphism technique, symbolic execution, and theorem

proving. Deep taint was used by iBinHunt to spot semantic

differences in control flow between programmes, however it

was inefficient and had high overhead. BinClone represents a

chunk of binary code as a bit-vector and uses hashing to

extract a fixed-length value from a variable-length instruction

sequence in order to compute similarity. The first cross-

architecture binary code search technique was Multi_MH. It

used input and output semantics to index functions.

DiscovRE employs a backtracking approach to fix inaccurate

matches and used the basic block's call and arithmetic

instruction counts as features. These techniques, however,

take a lot of time and are challenging to use with numerous

function pairings. A tool named Esh13 and its sequel GitZ14

were created by David et al. This has a high degree of

accuracy for large-scale detection. Bingo, a scalable and

reliable binary search engine described by Chandramohan et

al.15, caught the whole function semantics by inlining

relevant libraries and user-defined functions. They have the

drawback that dynamic analysis must work in conjunction

with static analysis and that the cross-optimization option

scenario has a high false positive rate.

B Deep Learning based cross-version Binary Code

Similarity Detection

End-to-end detection methods and multi-stage detection

methods are two categories of deep learning-based

methodologies. The primary techniques for end-to-end

detection include Dif16, Asm2vec17, CodeCMR18, etc.

These techniques use instructions or raw bytes to directly

extract features, avoiding manually chosen features. The

features of the multi-stage detection techniques include both

feature selection and encoding. Tey confirmed that

SimInspector's similarity detection accuracy rate is roughly

6% higher than Gemini's. A prototype system called

INNEREYE was put into use by Zuo et al.22 for extensive

binary code analysis.Tey encoded categorical features using

embeddings for natural language processing (NLP). A hybrid

model called BinDeep was proposed by Tian et al.23.

BinDeep employed RNN to determine the specific categories

of two functions and siamese neural networks to determine

how similar two functions were to one another. Even though

embedding has the ability to learn features automatically, it

offers no information regarding the learning content. A bug

search method called Genius was proposed by Feng et al.19,

which initially employed embedding vectors for feature

selection. Gemini is a cutting-edge neural network-based

method for similarity identification that was put forth by Xu

et al. Gemini embeds a function's control flow graph (CFG)

using a graph embedding paradigm. SimInspector, a similar

detection technique put forth by Zhu et al.21, is based on

neural machine translation (NMT) and graph embedding.

Massarelli et al.24 proposed the SAFE architecture, a

revolutionary design that delivers great performance by

directly extracting function characteristics from assembly

instructions. Based on this article, Tey added several

application scenarios and published it in 2021. Due to the fact

that SAFE architecture does not have to worry about the

computational costs associated with creating or modifying

control flow graphs, it has a significant speed advantage.

Numerous architectures and stripped binaries. However, there

are still some areas that want improvement. According to

their model, the latter terms have a bigger influence on the

outcomes than the former ones. It will be less effective and

have a negative effect when used to capture the semantics of

the entire function. Figure.1 Demonstrates the malware

classification approaches available and can be utilized.

Fig.1 Malware Classification Approaches

C. Cross Version Binary Code Optimization: Overview

Many studies have been conducted recently that have two

primary orientations and focus on cross-platform BCSD. The

intersection of two given programmes' associated strand sets

(such as code slices tracelets, tokens, and expressions) can be

used to compare two programmes by representing them with

various platform-independent strands and measuring how

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 929
IJRITCC | September 2023, Available @ http://www.ijritcc.org

similar they are. Another approach is to extract various robust

platform-independent properties from the control flow graph

(CFG) vertices and compare them using graph matching. The

most common scenario is detecting the similarity of a pair of

binary functions coming from different platforms (such as

x86, ARM, or MIPS).

Identifying if any two binary blocks are the same, similar, or

equivalent is the goal of binary code similarity detection

(BCSD). For malware detection [1] and vulnerability hunting,

BCSD approaches are employed. The main challenge with

BCSD concerns is that binary codes can be produced using

various compilers, architectures, and versions of codes. When

source code is compiled using various compiler algorithms,

cross-compiler binaries are created. Cross-platform binaries

are created by combining source codes with multiple

instruction sets. When the source codes are updated and

patched over time, cross-version binaries are produced [2]. If

the functionality of cross-platform and cross-compiler

binaries is the same but their syntactic features differ, then

they are considered to be semantically similar. As they are

compiled on the same platforms with the same root, the cross

version binaries are comparable. Contrasting syntactic and

semantic characteristics may still be present in the cross-

version binaries. The methods for solving BCSD issues that

are currently accessible rely on binary functions.

Fig.2 Cross version Binary Code Similarity Detection

Asm2Vec [18], INNEREYE [19] and SAFE [20] explore

many new methods to compute the embedding vector of

binary functions. Asm2Vec [18] employs representation

learning to construct a feature vector for assembly code and

provides more robustness to code obfuscation and compiler

optimizations. INNEREYE [19] utilizes word embedding

and LSTM to automatically capture the semantics and

dependencies of instructions and solves the BCSD problem

among basic blocks. SAFE [20] proposes a new architecture

for computing binary function embedding from disassembled

binaries and get better performance. Besides, Alpha-

Diff [21], which is one of the state-of-the-art solutions to

solve cross-version BCSD problems, represents the raw bytes

of functions as images and uses the Siamese convolutional

neural network to compute the similarity of functions.

III. Binary Analysis Approached in Cross – Versions

BCSA:

The main challenge of cross-platform binary code similarity

detection is choosing a proper code representation that not

only can eliminate the influence of different instruction sets

under different platforms to ensure the detection accuracy,

but also facilitates efficient detection. According to code

representations and matching algorithms, the existing BCSD

methods can be classified into three categories: Structural

level embedding, syntactic level embedding, semantic level

embedding.

Figure.3 Binary Code Analysis Approaches

At a high level, CV-BCSA performs four major steps as

described below:

(S1) Syntactic Analysis. Given a piece of binary code, one

can parse it to produce an abstract syntax tree (AST) or

disassembly of the code, often known as an intermediate

representation (IR) [36]. This stage involves parsing source

code into an AST, which is equivalent to the syntax analysis

in conventional compiler theory. If the input code is a

complete binary file, we first divide it into pieces based on

the file type.

(S2) Structural Analysis. The control structures built into the

binary code that were not immediately accessible from the

syntactic analysis phase (S1) are analysed and recovered in

this step. This stage specifically entails recovering the call

graphs (CGs) and control-flow graphs (CFGs) in the binary

code [37], [38]. Any property of these control structures can

be used as a feature once the control-structural information

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 930
IJRITCC | September 2023, Available @ http://www.ijritcc.org

has been collected. This process is distinguished from

semantic analysis.

 (S3) Semantic Analysis. The underlying semantics of the

binary can be determined using conventional programme

analyses, such as data-flow analysis and symbolic analysis,

on the binary using the control-structural knowledge received

from S2. This step allows for the generation of features that

describe complex programme semantics, such as the flow of

register values into different programme points. Along with

the semantic data, the features acquired from S1–S2 can also

be improved.

A. SCOPE & PAPER SELECTION

The scope of our assessment of the state-of-the-art must be

clearly defined in order to keep it focused and manageable.

Overall, the biggest limitation is that we only concentrate on

binary code comparisons. The following four restrictions are

then introduced by this restriction:

1. Source-to-source and source-to-binary similarity

techniques, as those in [43] and [44], are not

included since they call for access to the source code.

2. Avoided behavioural comparisons based only on

how a programme interacts with its surroundings via

system calls or OS API calls.

3. Excluded techniques like file hashes (e.g., [51]),

fuzzy hashes (e.g., [52], [53]), and signature-based

approaches (e.g., [54], [55]) that treat binary code as

a series of raw bytes with no structure.

4. Papers that merely use commercial binary code

similarity tools as a first step towards their goal is

considered in priority.

Paper selection. First, all papers published in the last 20

years at 14 of the top conferences for software engineering

and computer security—IEEE S&P, ACM CCS, USENIX

Security, NDSS, ACSAC, RAID, ESORICS, ASIACCS,

DIMVA, ICSE, FSE, ISSTA, ASE, and MSR—were

thoroughly reviewed to find candidate papers. Not all

pertinent binary code similarity techniques, particularly early

ones, have been published in those forums. We performed

comprehensive searches in specialised search engines, such

as Google Scholar, using terms related to binary code

similarity and its applications, such as code search, binary

diffing, and bug search, in order to find potential candidate

articles in other venues. Additionally, we carefully looked

over the candidate papers' references to look for any

additional papers we could have overlooked. More than one

hundred candidate papers were found throughout this

exploration. The next step was to study each potential article

to see if it presented a binary code similarity approach that

complied with the aforementioned scope restrictions. In the

end, we identified the 61 binary code similarity research

works, whose approaches are systematized.

B Key Assumptions from Past Research: Analysis

When reviewing the literature, it was discovered that the

majority of methods heavily rely on the semantic properties

gleaned from (S3), presuming that these features shouldn't

vary between compilers or target architectures. But none of

them explicitly explains why such intricate semantics-based

analyses are required. They ignore the specific justifications

for their tactics and only concentrate on the final outcomes.

In fact, this serves as the primary driving force behind our

investigation. There might be basic aspects that we have

missed, despite the fact that the majority of existing

approaches concentrate on complicated studies. Depending

on the target architecture and compiler, effective presemantic

features, for instance, could be able to outperform semantic

features. Due to the lack of a full investigation on these well-

known qualities, it is possible that they have not been

properly evaluated against the appropriate benchmark.

Additionally, current research presupposes the accuracy of

the underlying binary analysis framework, such as IDA Pro

[95], which is in fact the most widely used tool, as displayed

in the rightmost column of Table 2. CFGs generated using

those technologies, nevertheless, might be fundamentally

flawed. For instance, they could omit some crucial basic

building components, which would have a negative impact on

the accuracy of BCSA features.

There have been several attempts to increase the accuracy of

both analyses, which makes (S1) and (S2) demanding

research challenges in and of themselves. For instance,

deconstructing binary code is an intractable task [96], and

developing a practical binary lifter that is both accurate and

efficient is extremely difficult. Recovering control-flow

edges for indirect branches [102] and identifying functions

from binaries [3], [4], [96], [98], [99], [100], [101] are

continuing active study areas.

IV. Experimental Setup:

Binary code similarity detection was experimented on a

system with 128 GB SSD hard discs and 32 GB of RAM.

Additionally, our token-level embedding generation method,

Asm2Vec model, Gemini model, Safe model, and

DeepBinDiff model are employed in the comparative studies

on a server with two 3.2 GHz CPUs and two NVIDIA

GeForce GTX rtx5000 graphics cards.

The statistics for our datasets show that 97% of assembly

functions have fewer than 200 basic blocks, and 98.8% of

basic blocks have fewer than 30 instructions. Most CFGs in

our data sets are small graphs with a few nodes, as opposed

to other big networks with millions of nodes, like the social

network. Because the lengths of basic blocks in CFGs are also

brief, we embed a basic block as

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 931
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Tabel.2: Summary of related works

Year
Prior

Works

Binari

es

Datas

et

Used

Architectu

re
Compiler Optimization

X
6

8

X
8

6

A
R

M

M
IP

S

G
C

C
9

.5

G
C

C

0
.4

G
C

C
1

.4

G
C

C
 1

2

G
C

C
 1

3

C
la

n
g

 4

C
la

n
g

 5

C
la

n
g

 6

O
0

O
1

O
2

O
3

2016

Genius 7,848 ∙ ∙ √ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ Ο ∙ Ο ∙

Bingo 5,145 ο ∙ ∙ √ ∙ √ √ ∙ √ ∙ √ ∙ ∙ ∙ Ο Ο ∙

Mocki-

ngbird

80 ● √ ∙ √ ∙ ∙ ∙ ∙ √ ∙ ∙ √ ∙ Ο ∙ ∙ Ο

BinDNN 2,072 ο √ √ √ ∙ ∙ ∙ √ √ ∙ ∙ √ ∙ ∙ Ο ∙ ∙

2017

Binsign 31 ● √ √ √ ∙ √ √ √ ∙ √ ∙ ∙ √ Ο ∙ Ο ∙

Gemini 18,269 ο √ ∙ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ Ο Ο ∙ ∙

BinSim 1,062 ο ∙ √ ∙ ∙ √ ∙ √

√

∙ ∙ √ √ ∙ Ο Ο ∙ ∙

BinSequen

ce

1,718 ● √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ ∙ Ο ∙ Ο ∙

2018

BinGo 5,145 ο √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ Ο Ο Ο ∙

BinMatch 82 ο √ √ v ∙ ∙ √ ∙ √ ∙ √ √ √ Ο ∙ Ο Ο

BinArm 2,628 ο √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ √ ∙ Ο ∙ ∙

αDiff 69,989 ο ∙ √ ∙ √ ∙ √ √ ∙ √ ∙ ∙ ∙ Ο Ο Ο ∙

VulSeeker 10,513 ∙ √ ∙ √ ∙ ∙ √ ∙ ∙ √ ∙ √ √ Ο Ο ∙ ∙

2019

Asm2Vec 68 ● √ √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ Ο ∙ Ο ∙

SAFE 5,001 ∙ √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ ∙ ∙ Ο Ο ∙

InnerEye 844 ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ √ Ο ∙ ∙ Ο

FuncNet 180 ● √ √ v ∙ ∙ √ ∙ √ ∙ √ √ √ ∙ Ο ∙ ∙

2020

DeepBinDi

ff

2,206 ο √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ √ Ο ∙ Ο ∙

Patchek 2,108 ∙ √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ ∙ Ο Ο Ο ∙

BinKit 2,42,87

6

● ∙ ∙ √ ∙ √ √ ∙ √ ∙ √ ∙ √ Ο ∙ Ο ∙

Deep Dual

SD

4,132 ● √ ∙ √ ∙ ∙ ∙ ∙ √ ∙ ∙ √ √ ∙ Ο Ο ∙

Trex 2,172 ο √ √ √ ∙ ∙ ∙ √ √ ∙ ∙ √ √ Ο ∙ ∙ Ο

FastSpec 1,098 ● √ √ √ ∙ √ √ √ ∙ √ ∙ ∙ √ ∙ Ο ∙ ∙

2021

EnBinDiff 28,093 ο √ ∙ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ Ο Ο Ο Ο

BinDiffNN 79 ο √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ √ Ο Ο

Codee 1,534 ο √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ √ Ο Ο Ο Ο

Asteria 2,098 ο √ √ v ∙ ∙ √ ∙ √ ∙ √ √ √ Ο Ο Ο Ο

PalmTree 987 ● √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ √ ∙ Ο ∙ ∙

2022
JTrans 2,167 ο ∙ ∙ √ ∙ √ √ ∙ √ ∙ √ ∙ √ Ο ∙ Ο Ο

XBA 4,324 ο √ ∙ √ ∙ √ ∙ √ √ ∙ √ √ √ Ο Ο ∙ Ο

Ο – Indicates partial dataset available ● –Dataset Not

Available ∙ - Not supportable and available

√ - Models supporting defined architecture and compiler

 Ο – Optimizations availability

a value in the basic block embedding procedure, setting d =

1. By vectorising the fundamental block embedding matrix

by columns—we set n1 = 200 with a function feature vector

is produced. We build n2 = 1, 333 binary libraries for our data

sets, and a binary file can only have n3 = 1000 assembly

functions.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 932
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Table.2 Benchmark Works utilized for BCSA

Related

Works

Binarie

s

Source Embedding Architectur

e

Asm2Vec 1,209 API calls,

memory

objects

One hot

Encoding

Siamese

αDiff 3,087 Dissemble

d Text

Word2Vec RNN

Vulseeker 10,512 Control

Flow

Graph

(ACFG)

Structure2Ve

c

Feed

Forward

Genius 7,848 Bytes Word2Vec CNN

BinDiff 876 Dissemble

d Text

Context

Vectors

LSTM

Gemini 18,269 Control

Flow

Graph

(ACFG)

Structure2Ve

c

CNN+LST

M

Safe 5,001 Dissemble

d Text

Word2Vec BiRNN,

Siamese

DeepBinDif

f

2,206 Instruction

metadata

Word2Vec ANN

A. Dataset:

We constructed our evaluation on datasets created for earlier

binary analysis evaluations to support reproducibility. We

specifically started with the BinKit corpus [36], which is

based on all GNU software packages that are readily

available. 53 software packages are included in BinKit, which

was built using five different GCC versions (v4.9.4, v5.5.0,

v6.4.0, v7.3.0, and v8.2.0) and four different clang versions

(v1.0, v2.0, v3.0). The original corpus is made up of various

separate datasets that use the -fno-inline, -fPIE, -Os, and -flto

compiler options. We included new datasets (CFI) and more

latest GCC and Clang versions (GCC v.9.4.0, GCC v11.2.0,

Clang v9.0, Clang v13.0) to the corpus.

Figure.4 Dataset gathered

B. Evaluation Criteria’s:

The following five parameters are used as evaluation

indicators in this article to quantitatively evaluate the

effectiveness of the detection model network. The calculation

formula is shown below:

1. PSNR

In image analysis, Peak Signal-to-Noise Ratio (PSNR) is the

maximum value between the power of a signal and corrupting

noise. In our case, this ratio measures how close an estimator

image is to the estimated image. It is expressed in terms of the

logarithmic decibel scale:

Where C 2 is the largest possible value of individual pixels

(the difference between the foreground and background), and

the mean square error (MSE) is defined by the equation

below:

Where 𝐴 ̅is the mean value of one array and 𝐵̅ is the mean of

another, and M and N are the dimensions of the arrays.

2. NRM

The relationship between elements that have been incorrectly

classified and all other elements in the class is represented

numerically by the Negative Rate Metric (NRM). It is the

average of two false negative rates (NRFN, false negative

rate) and false positive rates (NRFP, false positive rate).

A higher NRM indicates a worse mismatch between two

classifiers.

NCC:

Normalized Cross Correlation is often used for comparing

multidimensional arrays and is defined by the following

equation:

Where M and N are the arrays' dimensions, 𝐴̅ represents one

array's mean value and 𝐵̅ represents another.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 933
IJRITCC | September 2023, Available @ http://www.ijritcc.org

V. Discussions:

We now briefly discuss a number of significant issues

identified in the prior literature and present exploration

stemming from these issues. The issues to be considered are

1. Not any study employs the same standard of

measurement for evaluation, and the methods used

to assess the effectiveness of the strategies used in

the papers are very different.

2. Only a handful of the research make their source

code and data available, which makes it extremely

challenging to duplicate or improve on previous

findings. In addition, the majority of articles employ

manually selected and error-prone ground truth data

for their evaluation.

3. Finally, state-of-the-art methods for BCSA currently

emphasise the extraction of semantic information

using sophisticated analysis methods.

The Discussions listed below are logical extensions of these

issue identifications. Notably, we only partially address

several of the open-ended questions.

OB1: Inconvenient Truths of Ground Truth for Binary

Analysis

Binary analysis research involves automatic analysis of

executable binaries and a transformation of those binaries into

some intermediate representation that allows for complex

analysis. How successfully binary analysis tools and

approaches map to a ground truth is frequently used to gauge

their efficiency. From the literature survey, it was found that

not all ground facts are created equally. In order to evaluate

tools and procedures with confidence, there must be surety

that agreement on definitions of ground truth is in

conformance. This study challenges the binary analytic

community to examine the concept of ground truth carefully.

Since there is a transition to train deep learning models, which

are only as valuable as the accuracy of the ground truth

throughout the training, this becomes even more crucial.

OB2: Basic BCSD not focusing on Cross Architectural

features

The task of finding similarities between binary functions that

are not present in the corresponding source code is known as

binary code similarity detection (BCSD). It has been

extensively applied to make key security analyses of many

kinds in software engineering easier. The method of

identifying binary code similarity is difficult due to the

intricacy of programme compilation. A solid vector

representation of binary code serves as the foundation for the

most logical binary similarity detector. Few BCSD methods,

though, are appropriate for constructing vector

representations for comparing the similarities between

binaries, which may differ not only in semantics but also in

structures. Additionally, the current methods, which

primarily rely on manual feature engineering to create feature

vectors, do not account for the connections between

instructions, Since it fails to consider cross optimization,

cross compiler and cross architectural features.

OB3: Newer BCSD architectures can be developed by

analysing failure instances of traditional BCSD

Since most current works rely on opaque machine learning

algorithms, they rarely analyse their failure instances.

However, our objective is to adopt a straightforward and

understandable model to learn from mistakes and collect

knowledge for future study. As a result, we carefully

reviewed failure cases using our interpretable method and

discovered three prevalent failure causes that the prior

literature had mostly missed. First, it is true that traditional

binary analysis techniques produce inaccurate results.

Second, various compiler backend for the same architecture

may differ greatly from one another. Third, the same function

has code fragments that are particular to different

architectures. The above mentioned views can be interpreted

to develop effective BCSD system.

VI. An Inclusive report on Binary Code Similarity

Detection:

We concentrate on malware attacks in our assessment of

neural function boundary detection. The name of these

attacks comes from the fact that no knowledge of the model-

under-test's (MUT's) internal weights or structural details is

assumed. Because malware attacks are dynamic, they have

the advantage of not requiring a thorough knowledge of

MUTs; rather, all that is required is the capacity to execute

queries and track the outcomes. Malware detection

techniques may, however, miss latent vulnerabilities that a

white-box adversarial search like projected gradient descent

(PGD) [44] may otherwise find because the search process is

unguided by model knowledge. In this regard, the outcomes

of our research ought to be seen as a lower constraint on the

MUTs' susceptibility. To find and take advantage of function

boundary misclassifications when inferring from binary

programmes, we build a universal malware vulnerability

search approach. Input generation, ground truth creation,

training and inference, and misclassification analysis are the

first four stages of the search process.

Generate Input: We compile a corpus of benchmark

programme source code S in the first stage. A variety of

compiler toolchains T are used to compile each benchmark,

and each one has an attack configuration C that consists of a

number of compiler flags and code changes. We obtain a

benchmark binary corpus B made up of n distinct compiles of

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 934
IJRITCC | September 2023, Available @ http://www.ijritcc.org

S using each toolchain and attack configuration tuple (T,C),

given n = |T | compilers.

Generation of Ground Truth: Each option makes sure that

debugging information is produced while also guarding

against the removal of symbol information from compiled

binaries. In order to create a ground truth mapping F (1), or a

function that labels each byte of code in each binary as either

a function start, a function end, or neither, we can post-

process each binary and use the information from these

sources.

Misclassification Analysis: In the last phase, for each MUT

we process its misclassification sets 𝐸 + 𝑚, 𝐸− 𝑚 to identify

attack inputs 𝐴𝑚 that can reliably produce function boundary

misclassifications in arbitrary binary programs. For each

model, we rank-order misclassifications from highest to

lowest incidence in order to achieve this. As seeds for an

adversarial search, the ranked attack inputs are then each

successively injected into specific functions of B to create a

mutant corpus B m. The MUT m is then used to perform

inference on B m in a second attack validation cycle to make

sure the targeted functions duplicate the intended

misclassifications.

A. Limitations and future work:

The Binary Code Similarity Detections frameworks

experimented still has certain drawbacks in addition to all of

its benefits. First, function-level presemantic features are

extracted in this research using the disassembly tool IDA;

thus, the accuracy of the IDA analysis findings determines the

dependability of function-level presemantic features. IDA,

however, has the potential to produce inaccurate outcomes,

such as incomplete CFG generation and wrong function

border division. The error analysis is left as presemantic

features extracted by disassembly tools for future research,

given that IDA is extensively used in related work and the

aim of this thesis is to employ the attention mechanism to fuse

presemantic information to yield functional semantic

features.

Second, Experiments shows the performance (TOP-1 =

0.1614, the lowest of all testing scenarios) will be greatly

impacted by the wide variation between optimisation levels

(O0-O3). This is due to the fact that high optimisation level

intra- and inter-procedural structures differ greatly from low

optimisation level structures. However, note that no related

study achieves higher performance that depends on function

structural information.

Third, only intra-procedural techniques like BCF, FLA, and

SUB are taken into consideration; the LLVM is used in this

research to test the experimental performance under cross-

obfuscation. These techniques barely affect CG features,

while they significantly influence CFG features. On the other

hand, the obfuscation technique is more intricate in real-

world situations and involves altering the function call

relationship through inter-procedural Malware detection. We

leave the investigation of Cross Version Binary Code

Similarity detection techniques for future research because

the majority of current studies do not support Cross-Platform

programs.

VII. Conclusion and Future Work:

In this study, traditional BCSA techniques are explained by

integrating the attention mechanism with interpretable

features. To acquire semantic features of functions (i.e.

features with attention information), we first extract the

presemantic features of binary functions and then use the

attention method for feature fusion. Lastly, the model is

trained on these semantic features using the Siamese network.

Using two datasets, we train distinct models for various

compilation parameters in order to identify commonalities

between function pairs and evaluate function search

efficiency. Interestingly, we explored that frameworks has to

generate semantic features which can withstand changes in

architecture, optimisation level, obfuscation, and compiler,

and can even surpass cutting-edge techniques. The main

challenge of cross-platform binary code similarity detection

is choosing a proper code representation that not only can

eliminate the influence of different instruction sets under

different platforms to ensure the detection accuracy but also

facilitates efficient detection.

REFERENCES:

[1] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar,

Farooque Azam, and Bilal Maqbool. 2019. A Systematic Review

on Code Clone Detection. IEEE Access 7 (2019), 86121–86144.

[2] Gogul Balakrishnan and Thomas Reps. 2004. Analyzing

Memory Accesses in x86 Executables. In Compiler Construction,

Evelyn Duesterwald (Ed.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 5–23.

[3] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner,

and David Brumley. 2014. BYTEWEIGHT: Learning to

recognize functions in binary code. In 23rd USENIX Security

Symposium (USENIX Security 14). 845–860.

[4] Oren Barkan, Edan Hauon, Avi Caciularu, Ori Katz, Itzik Malkiel,

Omri Armstrong, and Noam Koenigstein. 2021. Grad-sam:

Explaining transformers via gradient self-attention maps. In

Proceedings of the 30th ACM International Conference on

Information & Knowledge Management. 2882–2887.

[5] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. 1998.

Clone detection using abstract syntax trees. In Proceedings.

International Conference on Software Maintenance (Cat. No.

98CB36272). 368–377.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 935
IJRITCC | September 2023, Available @ http://www.ijritcc.org

[6] Leyla Bilge, Davide Balzarotti, William Robertson, Engin Kirda,

and Christopher Kruegel. 2012. Disclosure: detecting botnet

command and control servers through large-scale netflow analysis.

In Proceedings of the 28th Annual Computer Security Applications

Conference. ACM.

[7] BinDiff 2022. zynamics BinDiff.

https://www.zynamics.com/bindiff.html

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, et al. 2020. Language models are

few-shot learners. Advances in neural information processing

systems 33 (2020), 1877–1901.

[9] Dong-Kyu Chae, Jiwoon Ha, Sang-Wook Kim, BooJoong Kang,

and Eul Gyu Im. 2013. Software plagiarism detection: a graph-

based approach. In Proceedings of the 22nd ACM international

conference on Information & Knowledge Management. 1577–

1580.

[10] Mahinthan Chandramohan, Yinxing Xue, Zhengzi Xu, Yang Liu,

Chia Yuan Cho, and Hee Beng Kuan Tan. 2016. BinGo: Cross-

Architecture Cross-OS Binary Search (FSE 2016). Association for

Computing Machinery, New York, NY, USA, 678–689.

https://doi.org/10.1145/2950290.2950350

[11] Hila Chefer, Shir Gur, and Lior Wolf. 2021. Transformer

interpretability beyond attention visualization. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 782–791.

[12] Coreutils 2022. Coreutils - GNU core utilities.

[13] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical

Similarity of Binaries. In Proceedings of the 37th ACM SIGPLAN

Conference on Programming Language Design and

Implementation (Santa Barbara, CA, USA) (PLDI

’16). Association for Computing Machinery, New York, NY, USA,

266–280.

[14] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland.

2019. Asm2Vec: Boosting Static Representation Robustness for

Binary Clone Search against Code Obfuscation and Compiler

Optimization. In 2019 IEEE Symposium on Security and Privacy

(SP). 472–489.

[15] Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. 2020.

DeepBinDiff: Learning Program-Wide Code Representations for

Binary Diffing.

[16] S. Ducasse, M. Rieger, and S. Demeyer. 1999. A language

independent approach for detecting duplicated code. In

Proceedings IEEE International Conference on Software

Maintenance - 1999 (ICSM’99). ’Software Maintenance for

Business Change’ (Cat. No.99CB36360). 109–118.

[17] Manuel Egele, Maverick Woo, Peter Chapman, and David

Brumley. 2014. Blanket Execution: Dynamic Similarity Testing

for Program Binaries and Components. In Proceedings of the 23rd

USENIX Conference on Security Symposium (San Diego, CA)

(SEC’14). USENIX Association, USA, 303–317.

[18] A. Jayachandran and R. Dhanasekaran, Brain tumor detection

using fuzzy support vector machine classification based on a texton

co-occurrence matrix, Journal of imaging Science and Technology

57(1) (2013), 10507-1–10507-7(7).

.

[19] Jian Gao, Xin Yang, Ying Fu, Yu Jiang, and Jiaguang Sun. 2018.

VulSeeker: A Semantic Learning Based Vulnerability Seeker for

Cross-Platform Binary. Association for Computing Machinery,

New York, NY, USA, 896–899.

[20] GNU. 2022. gcc-9. Retrieved Feb 16, 2023.

[21] Yikun Hu, Hui Wang, Yuanyuan Zhang, Bodong Li, and Dawu

Gu. 2021. A Semantics-Based Hybrid Approach on Binary Code

Similarity Comparison. IEEE Transactions on Software

Engineering (TSE) 47, 6 (June 2021), 1241–1258.

[22] Y. Hu, Y. Zhang, J. Li, H. Wang, B. Li, and D. Gu. 2018.

BinMatch: A SemanticsBased Hybrid Approach on Binary Code

Clone Analysis. In 2018 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE Computer

Society, Los Alamitos, CA, USA, 104–114.

[23] IDA Pro 2022. A powerful disassembler and a versatile debugger.

[24] Alexandros Kapravelos, Chris Grier, Neha Chachra, Christopher

Kruegel, Giovanni Vigna, and Vern Paxson. 2014. Hulk: Eliciting

malicious behavior in browser extensions. In 23rd USENIX

Security Symposium (USENIX Security 14).

[25] Chariton Karamitas and Athanasios Kehagias. 2018. Efficient

features for function matching between binary executables. In

2018 IEEE 25th International Conference on Software Analysis,

Evolution and Reengineering (SANER). 335–345.

[26] Amin Kharraz, William Robertson, Davide Balzarotti, Leyla

Bilge, and Engin Kirda. 2015. Cutting the gordian knot: A look

under the hood of ransomware attacks. In International Conference

on Detection of Intrusions and Malware, and Vulnerability

Assessment. Springer.

[27] Dongkwan Kim, Eunsoo Kim, Sang Kil Cha, Sooel Son, and

Yongdae Kim. 2022. Revisiting Binary Code Similarity Analysis

using Interpretable Feature Engineering and Lessons Learned.

IEEE Transactions on Software Engineering (2022), 1–23.

[28] Raghavan Komondoor and Susan Horwitz. 2001. Using Slicing to

Identify Duplication in Source Code. In Static Analysis, Patrick

Cousot (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 40–

56.

[29] J. Krinke. 2001. Identifying similar code with program

dependence graphs. In Proceedings Eighth Working Conference

on Reverse Engineering. 301–309.

 [30] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li,

Aihua Piao, and Wei Zou. 2018. aDiff: Cross-Version Binary Code

Similarity Detection with DNN. Association for Computing

Machinery, New York, NY, USA, 667–678.

 [31] Shengzhong Liu, Franck Le, Supriyo Chakraborty, and Tarek

Abdelzaher. 2021. On exploring attention-based explanation for

transformer models in text classification. In 2021 IEEE

International Conference on Big Data (Big Data). IEEE, 1193–

1203.

[32 A. Jayachandran and R. Dhanasekaran, Automatic detection of

brain tumor in magnetic resonance images using multi texton

histogram and support vector machine, International Journal of

Imaging Systems and Technology 23(2) (2013), 97–103..

[33] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun

Zhu. 2017.Semantics-Based Obfuscation-Resilient Binary Code

Similarity Comparison with Applications to Software and

Algorithm Plagiarism Detection. IEEE Transactions on Software

Engineering 43, 12 (2017), 1157–1177. [34] Shiqing Ma, Yingqi

Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama.2018.

MODE: Automated Neural Network Model Debugging via State

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 936
IJRITCC | September 2023, Available @ http://www.ijritcc.org

Differential Analysis and Input Selection. In Proceedings of the

2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018).

Association for Computing Machinery, New York, NY, USA,

175–186.

[35] Andrea Marcelli, Mariano Graziano, Xabier Ugarte-Pedrero,

Yanick Fratantonio,Mohamad Mansouri, and Davide Balzarotti.

2022. How machine learning is solving the binary function

similarity problem. In USENIX 2022, 31st USENIX Security

Symposium, 10-12 August 2022, Boston, MA, USA, Usenix (Ed.).

Boston.

[36] Ehsan Mashhadi and Hadi Hemmati. 2021. Applying CodeBERT

for Automated Program Repair of Java Simple Bugs. CoRR

abs/2103.11626 (2021).arXiv:2103.11626 .

[37] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni,

Leonardo Querzoni, and Roberto Baldoni. 2018. SAFE: Self-

Attentive Function Embeddings for Binary Similarity.

[38] Tomás Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and

Jeffrey Dean. 2013. Distributed Representations of Words and

Phrases and their Compositionality. CoRR abs/1310.4546 (2013).

arXiv:1310.4546 http://arxiv.org/abs/1310.4546

[39] Kenneth Miller, Yonghwi Kwon, Yi Sun, Zhuo Zhang, Xiangyu

Zhang, and Zhiqiang Lin. 2019. Probabilistic Disassembly. In

2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). 1187–1198.

[40] Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu. 2017.

BinSim: Tracebased Semantic Binary Diffing via System Call

Sliced Segment Equivalence Checking. In 26th USENIX Security

Symposium (USENIX Security 17). USENIX Association,

Vancouver, BC, 253–270.

[41] Augustus Odena, Catherine Olsson, David Andersen, and Ian

Goodfellow. 2019.TensorFuzz: Debugging Neural Networks with

Coverage-Guided Fuzzing. In Proceedings of the 36th

International Conference on Machine Learning (Proceedings of

Machine Learning Research, Vol. 97), Kamalika Chaudhuri and

Ruslan Salakhutdinov (Eds.). PMLR, 4901–4911.

[42] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Koskinen,

Georgios Portokalidis, Bing Mao, and Jun Xu. 2021. Sok: All you

ever wanted to know about x86/x64binary disassembly but were

afraid to ask. In SP. IEEE, 833–851.

[43] Kexin Pei, Jonas Guan, David Williams-King, Junfeng Yang, and

Suman Jana. 2021. Xda: Accurate, robust disassembly with

transfer learning. In NDSS. The 1117 Improving Binary Code

Similarity Transformer Models by Semantics-Driven Instruction

Deemphasis ISSTA ’23, July 17–21, 2023, Seale, WA, USA

Internet Society.

[44] Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi

Ray. 2020. Trex: Learning Execution Semantics from Micro-

Traces for Binary Similarity.

[45].Jesu Prabhu A and Jayachandran, A, “Mixture Model

Segmentation System for Parasagittal Meningioma Brain Tumor

Classification based on Hybrid Feature Vector‟ Journal of

Medical System, vol 42, issues 12, 2018.

[46]. Jayachandran, A and R.Dhanasekaran ,(2017) ‘Multi Class

Brain Tumor Classification of MRI Images using Hybrid

Structure Descriptor and Fuzzy Logic Based RBF Kernel SVM’

, Iranian Journal of Fuzzy system , Volume 14, Issue 3, pp 41-

54 , 2017.

 [47] Nina Poerner, Hinrich Schütze, and Benjamin Roth. 2018.

Evaluating neural network explanation methods using hybrid

documents and morphosyntactic agreement. In Proceedings of the

56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers). 340–350.

[48] PyTorch 2023. An open source machine learning framework that

accelerates the path from research prototyping to production

deployment. https://pytorch.org

[49] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever,

et al. 2018. Improving language understanding by generative pre-

training. (2018).

[50] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, Ilya Sutskever, et al. 2019. Language models are

unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.

[51] rev.ng. 2023. Rethink Binary Analysis. Retrieved Feb 16, 2023

from https://rev.ng

[52] Hitesh Sajnani, Vaibhav Saini, Jeffrey Svajlenko, Chanchal K.

Roy, and Cristina V. Lopes. 2016. SourcererCC: Scaling Code

Clone Detection to Big-Code. In 2016 IEEE/ACM 38th

International Conference on Software Engineering (ICSE). 1157–

1168.

[53] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,

Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. 2017.

Grad-cam: Visual explanations from deep networks via gradient-

based localization. In Proceedings of the IEEE international

conference on computer vision. 618–626.

[54] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019.

Security Analysis of Processor Instruction Set Architecture for

Enforcing Control-Flow Integrity. In Proceedings of the 8th

International Workshop on Hardware and Architectural Support

for Security and Privacy (Phoenix, AZ, USA) (HASP ’19).

Association for Computing Machinery, New York, NY, USA,

Article 8, 11 pages.

[55] Ridwan Salihin Shariffdeen, Shin Hwei Tan, Mingyuan Gao, and

Abhik Roychoudhury. 2021. Automated Patch Transplantation.

ACM Trans. Softw. Eng.Methodol. 30, 1, Article 6 (dec 2021), 36

pages.

[56] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015.

Recognizing functions in binaries with neural networks. In 24th

USENIX Security Symposium (USENIX Security 15). 611–626.

[57] Guanhong Tao, Shiqing Ma, Yingqi Liu, Qiuling Xu, and Xiangyu

Zhang. 2020. TRADER: trace divergence analysis and embedding

regulation for debugging recurrent neural networks. In ICSE ’20:

42nd International Conference on Software Engineering, Seoul,

South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-

Hwan Bae (Eds.). ACM, 986–998.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,

Llion Jones,Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin.

2017. Attention Is All You Need. CoRR abs/1706.03762 (2017).

arXiv:1706.03762 .

[59] Jesse Vig. 2019. A Multiscale Visualization of Attention in the

Transformer Model. In Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics: System

Demonstrations. 37–42.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 9

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023

 937
IJRITCC | September 2023, Available @ http://www.ijritcc.org

[60] Andrew Walker, Tomas Cerny, and Eungee Song. 2020. Open-

Source Tools and Benchmarks for Code-Clone Detection: Past,

Present, and Future Trends. SIGAPP Appl. Comput. Rev. 19, 4

(jan 2020), 28–39.

[61] Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han

Qiu, Jianwei Zhuge, and Chao Zhang. 2022. JTrans: Jump-Aware

Transformer for Binary Code Similarity Detection. In Proceedings

of the 31st ACM SIGSOFT International Symposium on Software

Testing and Analysis (Virtual, South Korea) (ISSTA 2022).

Association for Computing Machinery, New York, NY, USA, 1–

13.

[62] Shuai Wang and Dinghao Wu. 2017. In-Memory Fuzzing for

Binary Code Similarity Analysis. In Proceedings of the 32nd

IEEE/ACM International Conference on Automated Software

Engineering (Urbana-Champaign, IL, USA) (ASE 2017). IEEE

Press, 319–330.

[63] Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An Abstract

Stack Based Approach to Verified Compositional Compilation to

Machine Code. Proc. ACM Program. Lang. 3, POPL, Article 62

(jan 2019), 30 pages. https://doi.org/10.1145/3290375

[64] Yuting Wang, Xiangzhe Xu, Pierre Wilke, and Zhong Shao. 2020.

CompCertELF: Verified Separate Compilation of C Programs into

ELF Object Files. Proc. ACM Program. Lang. 4, OOPSLA, Article

197 (nov 2020), 28 pages

 [65] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su,

Siyuan Cheng, Guanhong Tao, Qingkai Shi, Zhuo Zhang, and

Xiangyu Zhang. 2023. Artifact for DiEmph.

[66] Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su,

Siyuan Cheng, Guanhong Tao, Qingkai Shi, Zhuo Zhang, and

Xiangyu Zhang. 2023. Supplementary Material. Retrieved May

27, 2023

[67] Xi Xu, Qinghua Zheng, Zheng Yan, Ming Fan, Ang Jia, and Ting

Liu. 2021. Interpretation-Enabled Software Reuse Detection Based

on a Multi-level Birthmark Model. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE). 873–

884.

[68] Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu,

and Fu Song. 2017. SPAIN: Security Patch Analysis for Binaries

towards Understanding the Pain and Pills. In 2017 IEEE/ACM

39th International Conference on Software Engineering (ICSE).

462–472.

[69] Yapeng Ye, Zhuo Zhang, Qingkai Shi, Yousra Aafer, and

Xiangyu Zhang. 2022. D-ARM: Disassembling ARM Binaries by

Lightweight Superset Instruction Interpretation and Graph

Modeling. In 2023 IEEE Symposium on Security and Privacy (SP).

IEEE Computer Society, 728–745.

[70] Wei You, Zhuo Zhang, Yonghwi Kwon, Yousra Aafer, Fei Peng,

Yu Shi, Carson Harmon, and Xiangyu Zhang. 2020. PMP: Cost-

effective Forced Execution with Probabilistic Memory Pre-

planning. In 2020 IEEE Symposium on Security and Privacy (SP).

1121–1138.

[71] Zeping Yu, Rui Cao, Qiyi Tang, Sen Nie, Junzhou Huang, and Shi

Wu. 2020. Order Matters: Semantic-Aware Neural Networks for

Binary Code Similarity Detection. Proceedings of the AAAI

Conference on Artificial Intelligence 34, 01 (Apr. 2020), 1145–

1152.

http://www.ijritcc.org/

