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Abstract: Numerous practices exist for binary code similarity detection (BCSD), such as Control Flow Graph, Semantics Scrutiny, Code 

Obfuscation, Malware Detection and Analysis, vulnerability search, etc. On the basis of professional knowledge, existing solutions often 

compare particular syntactic aspects retrieved from binary code. They either have substantial performance overheads or have inaccurate 

detection. Furthermore, there aren't many tools available for comparing cross-version binaries, which may differ not only in programming with 

proper syntax but also marginally in semantics. This Binary code similarity detection is existing for past 10 years, but this research area is not 

yet systematically analysed. The paper presents a comprehensive analysis on existing Cross-version Binary Code Optimization techniques on 

four characteristics: 1. Structural analysis, 2. Semantic Analysis, 3. Syntactic Analysis, 4. Validation Metrics.  It helps the researchers to best 

select the suitable tool for their necessary implementation on binary code analysis. Furthermore, this paper presents scope of the area along 

with future directions of the research. 
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I. Introduction: 

To create new software, programmers reuse existing code. 

Finding the source code from another project and using it for 

their own purposes is a widespread practise among them [1]. 

In order to speed up the development process, inexperienced 

developers will even copy and paste code examples from the 

Internet. Deep consequences for software security and 

privacy result from this trend. When a developer copies a 

problematic function from an already-existing project, the 

problem will persist even after the original developer fixes it. 

The corporation may also be charged with infringing an open-

source licence, such as the GNU General Public Licence 

(GPL), if a developer for a commercial software company 

unintentionally uses library code from an open-source project 

[2]. 

 

Unfortunately, employing a similarity analysis to identify 

such issues in binary code is not always easy, especially when 

the source code is not accessible. This is due to the absence 

of high-level abstractions in binary code, such as data types 

and functions. Determining whether a memory cell represents 

an integer, a text, or another data type, for instance, cannot be 

done just by looking at the binary code. Furthermore, [3], [4] 

it is extremely difficult to pinpoint exact function boundaries 

in the first place. Binary code similarity detection (BCSD) is 

the process of determining whether two binary functions are 

similar. Code plagiarism detection [32, 33, 43], malware 

family and lineage analysis [2, 26, 28] are only a few of the 

numerous applications in which it is crucial. When using 

BCSD on pre-patch and post-patch binaries, further 

applications include the analysis of 1-day (i.e., patched) 

vulnerabilities [5] and the summary of vulnerability patterns 

[53]. Additionally, it might be applied to cross-architecture 

bug finding [16, 17, 52] when BCSD is applied to known 

bugs and target applications. However, BCSD confronts a 

number of difficulties. 

  

Security practitioners face an increasing need to quickly 

detect similar functions directly in binaries across multiple 

platforms, e.g., x86, ARM, or MIPS. Only recently, 

researchers have started to tackle the problem of cross-

platform binary code similarity detection [16, 18, 31]. These 

efforts propose to extract directly from binary code various 

robust platform-independent features for each node in the 

control flow graph to represent a function.Cross-optimization 

binaries are produced by several compiler optimisations first. 

Second, cross compiler binaries are produced by compilers 

using various strategies (such as register allocation). Third, 

cross-architecture binaries are produced when source code is 

generated on various platforms (e.g., using various instruction 

sets). Despite having differing grammatical patterns, these 

binaries are semantically similar. On the other side, cross-

version binaries may result from the source code itself 
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changing over time (such as through patches). These binaries 

are similar by nature since they share a common root. 

However, their semantics and syntactic structures differ 

slightly. Existing solutions could somewhat handle these 

BCSD issues, but they struggle with cross-version binaries. 

 

II. Related Works: 

A Traditional binary code similarity detection  

Many methods that are similar to binary coding have been 

developed, taking into account its applications and 

difficulties. Traditional techniques typically use Binhunt8 

and iBinHunt9. Multi_MH11, discovRE12, BinClone10, etc. 

To find the semantic differences, BinHunt used a novel graph 

isomorphism technique, symbolic execution, and theorem 

proving. Deep taint was used by iBinHunt to spot semantic 

differences in control flow between programmes, however it 

was inefficient and had high overhead. BinClone represents a 

chunk of binary code as a bit-vector and uses hashing to 

extract a fixed-length value from a variable-length instruction 

sequence in order to compute similarity. The first cross-

architecture binary code search technique was Multi_MH. It 

used input and output semantics to index functions. 

DiscovRE employs a backtracking approach to fix inaccurate 

matches and used the basic block's call and arithmetic 

instruction counts as features. These techniques, however, 

take a lot of time and are challenging to use with numerous 

function pairings. A tool named Esh13 and its sequel GitZ14 

were created by David et al. This has a high degree of 

accuracy for large-scale detection. Bingo, a scalable and 

reliable binary search engine described by Chandramohan et 

al.15, caught the whole function semantics by inlining 

relevant libraries and user-defined functions. They have the 

drawback that dynamic analysis must work in conjunction 

with static analysis and that the cross-optimization option 

scenario has a high false positive rate. 

 

B Deep Learning based cross-version Binary Code 

Similarity Detection 

End-to-end detection methods and multi-stage detection 

methods are two categories of deep learning-based 

methodologies. The primary techniques for end-to-end 

detection include Dif16, Asm2vec17, CodeCMR18, etc. 

These techniques use instructions or raw bytes to directly 

extract features, avoiding manually chosen features. The 

features of the multi-stage detection techniques include both 

feature selection and encoding. Tey confirmed that 

SimInspector's similarity detection accuracy rate is roughly 

6% higher than Gemini's. A prototype system called 

INNEREYE was put into use by Zuo et al.22 for extensive 

binary code analysis.Tey encoded categorical features using 

embeddings for natural language processing (NLP). A hybrid 

model called BinDeep was proposed by Tian et al.23. 

BinDeep employed RNN to determine the specific categories 

of two functions and siamese neural networks to determine 

how similar two functions were to one another. Even though 

embedding has the ability to learn features automatically, it 

offers no information regarding the learning content. A bug 

search method called Genius was proposed by Feng et al.19, 

which initially employed embedding vectors for feature 

selection. Gemini is a cutting-edge neural network-based 

method for similarity identification that was put forth by Xu 

et al. Gemini embeds a function's control flow graph (CFG) 

using a graph embedding paradigm. SimInspector, a similar 

detection technique put forth by Zhu et al.21, is based on 

neural machine translation (NMT) and graph embedding. 

Massarelli et al.24 proposed the SAFE architecture, a 

revolutionary design that delivers great performance by 

directly extracting function characteristics from assembly 

instructions. Based on this article, Tey added several 

application scenarios and published it in 2021. Due to the fact 

that SAFE architecture does not have to worry about the 

computational costs associated with creating or modifying 

control flow graphs, it has a significant speed advantage. 

Numerous architectures and stripped binaries. However, there 

are still some areas that want improvement. According to 

their model, the latter terms have a bigger influence on the 

outcomes than the former ones. It will be less effective and 

have a negative effect when used to capture the semantics of 

the entire function. Figure.1 Demonstrates the malware 

classification approaches available and can be utilized. 

 
Fig.1 Malware Classification Approaches 

C. Cross Version Binary Code Optimization: Overview 

Many studies have been conducted recently that have two 

primary orientations and focus on cross-platform BCSD. The 

intersection of two given programmes' associated strand sets 

(such as code slices tracelets, tokens, and expressions) can be 

used to compare two programmes by representing them with 

various platform-independent strands and measuring how 
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similar they are. Another approach is to extract various robust 

platform-independent properties from the control flow graph 

(CFG) vertices and compare them using graph matching.  The 

most common scenario is detecting the similarity of a pair of 

binary functions coming from different platforms (such as 

x86, ARM, or MIPS). 

 

Identifying if any two binary blocks are the same, similar, or 

equivalent is the goal of binary code similarity detection 

(BCSD). For malware detection [1] and vulnerability hunting, 

BCSD approaches are employed. The main challenge with 

BCSD concerns is that binary codes can be produced using 

various compilers, architectures, and versions of codes. When 

source code is compiled using various compiler algorithms, 

cross-compiler binaries are created. Cross-platform binaries 

are created by combining source codes with multiple 

instruction sets. When the source codes are updated and 

patched over time, cross-version binaries are produced [2]. If 

the functionality of cross-platform and cross-compiler 

binaries is the same but their syntactic features differ, then 

they are considered to be semantically similar. As they are 

compiled on the same platforms with the same root, the cross 

version binaries are comparable. Contrasting syntactic and 

semantic characteristics may still be present in the cross-

version binaries. The methods for solving BCSD issues that 

are currently accessible rely on binary functions.  

 
Fig.2 Cross version Binary Code Similarity Detection 

Asm2Vec [18], INNEREYE [19] and SAFE [20] explore 

many new methods to compute the embedding vector of 

binary functions. Asm2Vec [18] employs representation 

learning to construct a feature vector for assembly code and 

provides more robustness to code obfuscation and compiler 

optimizations. INNEREYE [19] utilizes word embedding 

and LSTM to automatically capture the semantics and 

dependencies of instructions and solves the BCSD problem 

among basic blocks. SAFE [20] proposes a new architecture 

for computing binary function embedding from disassembled 

binaries and get better performance. Besides, Alpha-

Diff [21], which is one of the state-of-the-art solutions to 

solve cross-version BCSD problems, represents the raw bytes 

of functions as images and uses the Siamese convolutional 

neural network to compute the similarity of functions. 

 

III. Binary Analysis Approached in Cross – Versions 

BCSA: 

The main challenge of cross-platform binary code similarity 

detection is choosing a proper code representation that not 

only can eliminate the influence of different instruction sets 

under different platforms to ensure the detection accuracy, 

but also facilitates efficient detection. According to code 

representations and matching algorithms, the existing BCSD 

methods can be classified into three categories:  Structural 

level embedding, syntactic level embedding, semantic level 

embedding. 

 

Figure.3 Binary Code Analysis Approaches 

At a high level, CV-BCSA performs four major steps as 

described below: 

(S1) Syntactic Analysis. Given a piece of binary code, one 

can parse it to produce an abstract syntax tree (AST) or 

disassembly of the code, often known as an intermediate 

representation (IR) [36]. This stage involves parsing source 

code into an AST, which is equivalent to the syntax analysis 

in conventional compiler theory. If the input code is a 

complete binary file, we first divide it into pieces based on 

the file type.  

 

(S2) Structural Analysis. The control structures built into the 

binary code that were not immediately accessible from the 

syntactic analysis phase (S1) are analysed and recovered in 

this step. This stage specifically entails recovering the call 

graphs (CGs) and control-flow graphs (CFGs) in the binary 

code [37], [38]. Any property of these control structures can 

be used as a feature once the control-structural information 
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has been collected. This process is distinguished from 

semantic analysis.  

 (S3) Semantic Analysis. The underlying semantics of the 

binary can be determined using conventional programme 

analyses, such as data-flow analysis and symbolic analysis, 

on the binary using the control-structural knowledge received 

from S2. This step allows for the generation of features that 

describe complex programme semantics, such as the flow of 

register values into different programme points. Along with 

the semantic data, the features acquired from S1–S2 can also 

be improved. 

A. SCOPE & PAPER SELECTION 

The scope of our assessment of the state-of-the-art must be 

clearly defined in order to keep it focused and manageable. 

Overall, the biggest limitation is that we only concentrate on 

binary code comparisons. The following four restrictions are 

then introduced by this restriction: 

1. Source-to-source and source-to-binary similarity 

techniques, as those in [43] and [44], are not 

included since they call for access to the source code. 

2. Avoided behavioural comparisons based only on 

how a programme interacts with its surroundings via 

system calls or OS API calls. 

3. Excluded techniques like file hashes (e.g., [51]), 

fuzzy hashes (e.g., [52], [53]), and signature-based 

approaches (e.g., [54], [55]) that treat binary code as 

a series of raw bytes with no structure. 

4. Papers that merely use commercial binary code 

similarity tools as a first step towards their goal is 

considered in priority. 

 

Paper selection. First, all papers published in the last 20 

years at 14 of the top conferences for software engineering 

and computer security—IEEE S&P, ACM CCS, USENIX 

Security, NDSS, ACSAC, RAID, ESORICS, ASIACCS, 

DIMVA, ICSE, FSE, ISSTA, ASE, and MSR—were 

thoroughly reviewed to find candidate papers. Not all 

pertinent binary code similarity techniques, particularly early 

ones, have been published in those forums. We performed 

comprehensive searches in specialised search engines, such 

as Google Scholar, using terms related to binary code 

similarity and its applications, such as code search, binary 

diffing, and bug search, in order to find potential candidate 

articles in other venues. Additionally, we carefully looked 

over the candidate papers' references to look for any 

additional papers we could have overlooked. More than one 

hundred candidate papers were found throughout this 

exploration. The next step was to study each potential article 

to see if it presented a binary code similarity approach that 

complied with the aforementioned scope restrictions. In the 

end, we identified the 61 binary code similarity research 

works, whose approaches are systematized. 

 

B Key Assumptions from Past Research: Analysis 

When reviewing the literature, it was discovered that the 

majority of methods heavily rely on the semantic properties 

gleaned from (S3), presuming that these features shouldn't 

vary between compilers or target architectures. But none of 

them explicitly explains why such intricate semantics-based 

analyses are required. They ignore the specific justifications 

for their tactics and only concentrate on the final outcomes. 

In fact, this serves as the primary driving force behind our 

investigation. There might be basic aspects that we have 

missed, despite the fact that the majority of existing 

approaches concentrate on complicated studies. Depending 

on the target architecture and compiler, effective presemantic 

features, for instance, could be able to outperform semantic 

features. Due to the lack of a full investigation on these well-

known qualities, it is possible that they have not been 

properly evaluated against the appropriate benchmark. 

Additionally, current research presupposes the accuracy of 

the underlying binary analysis framework, such as IDA Pro 

[95], which is in fact the most widely used tool, as displayed 

in the rightmost column of Table 2. CFGs generated using 

those technologies, nevertheless, might be fundamentally 

flawed. For instance, they could omit some crucial basic 

building components, which would have a negative impact on 

the accuracy of BCSA features. 

There have been several attempts to increase the accuracy of 

both analyses, which makes (S1) and (S2) demanding 

research challenges in and of themselves. For instance, 

deconstructing binary code is an intractable task [96], and 

developing a practical binary lifter that is both accurate and 

efficient is extremely difficult. Recovering control-flow 

edges for indirect branches [102] and identifying functions 

from binaries [3], [4], [96], [98], [99], [100], [101] are 

continuing active study areas. 

 

IV. Experimental Setup: 

Binary code similarity detection was experimented on a 

system with 128 GB SSD hard discs and 32 GB of RAM. 

Additionally, our token-level embedding generation method, 

Asm2Vec model, Gemini model, Safe model, and 

DeepBinDiff model are employed in the comparative studies 

on a server with two 3.2 GHz CPUs and two NVIDIA 

GeForce GTX rtx5000 graphics cards. 

The statistics for our datasets show that 97% of assembly 

functions have fewer than 200 basic blocks, and 98.8% of 

basic blocks have fewer than 30 instructions. Most CFGs in 

our data sets are small graphs with a few nodes, as opposed 

to other big networks with millions of nodes, like the social 

network. Because the lengths of basic blocks in CFGs are also 

brief, we embed a basic block as 
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Tabel.2: Summary of related works 
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O
0
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O
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O
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2016 

Genius 7,848 ∙ ∙ √ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ ∙ Ο ∙ Ο ∙ 

Bingo 5,145 ο ∙ ∙ √ ∙ √ √ ∙ √ ∙ √ ∙ ∙ ∙ Ο Ο ∙ 

Mocki-

ngbird 

80 ● √ ∙ √ ∙ ∙ ∙ ∙ √ ∙ ∙ √ ∙ Ο ∙ ∙ Ο 

BinDNN 2,072 ο √ √ √ ∙ ∙ ∙ √ √ ∙ ∙ √ ∙ ∙ Ο ∙ ∙ 

2017 

Binsign 31 ● √ √ √ ∙ √ √ √ ∙ √ ∙ ∙ √ Ο ∙ Ο ∙ 

Gemini 18,269 ο √ ∙ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ Ο Ο ∙ ∙ 

BinSim 1,062 ο ∙ √ ∙ ∙ √ ∙ √

√ 

∙ ∙ √ √ ∙ Ο Ο ∙ ∙ 

BinSequen

ce 

1,718 ● √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ ∙ Ο ∙ Ο ∙ 

2018 

BinGo 5,145 ο √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ Ο Ο Ο ∙ 

BinMatch 82 ο √ √ v ∙ ∙ √ ∙ √ ∙ √ √ √ Ο ∙ Ο Ο 

BinArm 2,628 ο √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ √ ∙ Ο ∙ ∙ 

αDiff 69,989 ο ∙ √ ∙ √ ∙ √ √ ∙ √ ∙ ∙ ∙ Ο Ο Ο ∙ 

VulSeeker 10,513 ∙ √ ∙ √ ∙ ∙ √ ∙ ∙ √ ∙ √ √ Ο Ο ∙ ∙ 

2019 

Asm2Vec 68 ● √ √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ Ο ∙ Ο ∙ 

SAFE 5,001 ∙ √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ ∙ ∙ Ο Ο ∙ 

InnerEye 844 ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ √ Ο ∙ ∙ Ο 

FuncNet 180 ● √ √ v ∙ ∙ √ ∙ √ ∙ √ √ √ ∙ Ο ∙ ∙ 

2020 

DeepBinDi

ff 

2,206 ο √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ √ Ο ∙ Ο ∙ 

Patchek 2,108 ∙ √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ ∙ Ο Ο Ο ∙ 

BinKit 2,42,87

6 

● ∙ ∙ √ ∙ √ √ ∙ √ ∙ √ ∙ √ Ο ∙ Ο ∙ 

Deep Dual 

SD 

4,132 ● √ ∙ √ ∙ ∙ ∙ ∙ √ ∙ ∙ √ √ ∙ Ο Ο ∙ 

Trex 2,172 ο √ √ √ ∙ ∙ ∙ √ √ ∙ ∙ √ √ Ο ∙ ∙ Ο 

FastSpec 1,098 ● √ √ √ ∙ √ √ √ ∙ √ ∙ ∙ √ ∙ Ο ∙ ∙ 

2021 

EnBinDiff 28,093 ο √ ∙ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ Ο Ο Ο Ο 

BinDiffNN 79 ο √ √ ∙ √ ∙ √ √ ∙ ∙ √ √ √ Ο  Ο  

Codee 1,534 ο √ ∙ √ ∙ √ ∙ √ ∙ √ ∙ √ √ Ο Ο Ο Ο 

Asteria 2,098 ο √ √ v ∙ ∙ √ ∙ √ ∙ √ √ √ Ο Ο Ο Ο 

PalmTree 987 ● √ ∙ √ ∙ ∙ √ ∙ √ ∙ √ √ √ ∙ Ο ∙ ∙ 

2022 
JTrans 2,167 ο ∙ ∙ √ ∙ √ √ ∙ √ ∙ √ ∙ √ Ο ∙ Ο Ο 

XBA 4,324 ο √ ∙ √ ∙ √ ∙ √ √ ∙ √ √ √ Ο Ο ∙ Ο 

Ο – Indicates partial dataset available   ● –Dataset Not 

Available  ∙ - Not supportable and available 

√ -  Models supporting defined architecture and compiler            

  Ο – Optimizations availability 

 

a value in the basic block embedding procedure, setting d = 

1. By vectorising the fundamental block embedding matrix 

by columns—we set n1 = 200 with a function feature vector 

is produced. We build n2 = 1, 333 binary libraries for our data 

sets, and a binary file can only have n3 = 1000 assembly 

functions. 
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Table.2 Benchmark Works utilized for BCSA 

Related 

Works 

Binarie

s 

Source Embedding Architectur

e 

Asm2Vec 1,209 API calls, 

memory 

objects 

One hot 

Encoding 

Siamese 

αDiff 3,087 Dissemble

d Text 

Word2Vec RNN 

Vulseeker 10,512 Control 

Flow 

Graph 

(ACFG) 

Structure2Ve

c 

Feed 

Forward 

Genius 7,848 Bytes Word2Vec CNN 

BinDiff 876 Dissemble

d Text 

Context 

Vectors 

LSTM 

Gemini  18,269 Control 

Flow 

Graph 

(ACFG) 

Structure2Ve

c 

CNN+LST

M 

Safe  5,001 Dissemble

d Text 

Word2Vec BiRNN, 

Siamese 

DeepBinDif

f 

2,206 Instruction 

metadata 

Word2Vec ANN 

 

A. Dataset: 

We constructed our evaluation on datasets created for earlier 

binary analysis evaluations to support reproducibility. We 

specifically started with the BinKit corpus [36], which is 

based on all GNU software packages that are readily 

available. 53 software packages are included in BinKit, which 

was built using five different GCC versions (v4.9.4, v5.5.0, 

v6.4.0, v7.3.0, and v8.2.0) and four different clang versions 

(v1.0, v2.0, v3.0). The original corpus is made up of various 

separate datasets that use the -fno-inline, -fPIE, -Os, and -flto 

compiler options. We included new datasets (CFI) and more 

latest GCC and Clang versions (GCC v.9.4.0, GCC v11.2.0, 

Clang v9.0, Clang v13.0) to the corpus. 

 
Figure.4 Dataset gathered 

B. Evaluation Criteria’s: 

The following five parameters are used as evaluation 

indicators in this article to quantitatively evaluate the 

effectiveness of the detection model network. The calculation 

formula is shown below: 

1. PSNR 

In image analysis, Peak Signal-to-Noise Ratio (PSNR) is the 

maximum value between the power of a signal and corrupting 

noise. In our case, this ratio measures how close an estimator 

image is to the estimated image. It is expressed in terms of the 

logarithmic decibel scale: 

 
Where C 2 is the largest possible value of individual pixels 

(the difference between the foreground and background), and 

the mean square error (MSE) is defined by the equation 

below: 

 
Where 𝐴 ̅is the mean value of one array and 𝐵̅ is the mean of 

another, and M and N are the dimensions of the arrays. 

 

2. NRM 

The relationship between elements that have been incorrectly 

classified and all other elements in the class is represented 

numerically by the Negative Rate Metric (NRM). It is the 

average of two false negative rates (NRFN, false negative 

rate) and false positive rates (NRFP, false positive rate). 

 
A higher NRM indicates a worse mismatch between two 

classifiers. 

NCC: 

Normalized Cross Correlation is often used for comparing 

multidimensional arrays and is defined by the following 

equation: 

 

Where M and N are the arrays' dimensions, 𝐴̅ represents one 

array's mean value and 𝐵̅ represents another. 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 9 

Article Received: 25 July 2023 Revised: 12 September 2023 Accepted: 30 September 2023 

___________________________________________________________________________________________________________________ 

 
    933 
IJRITCC | September 2023, Available @ http://www.ijritcc.org 

V. Discussions: 

We now briefly discuss a number of significant issues 

identified in the prior literature and present exploration 

stemming from these issues. The issues to be considered are 

1. Not any study employs the same standard of 

measurement for evaluation, and the methods used 

to assess the effectiveness of the strategies used in 

the papers are very different.  

2. Only a handful of the research make their source 

code and data available, which makes it extremely 

challenging to duplicate or improve on previous 

findings. In addition, the majority of articles employ 

manually selected and error-prone ground truth data 

for their evaluation.  

3. Finally, state-of-the-art methods for BCSA currently 

emphasise the extraction of semantic information 

using sophisticated analysis methods.  

The Discussions listed below are logical extensions of these 

issue identifications. Notably, we only partially address 

several of the open-ended questions. 

 

OB1: Inconvenient Truths of Ground Truth for Binary 

Analysis 

Binary analysis research involves automatic analysis of 

executable binaries and a transformation of those binaries into 

some intermediate representation that allows for complex 

analysis. How successfully binary analysis tools and 

approaches map to a ground truth is frequently used to gauge 

their efficiency. From the literature survey, it was found that 

not all ground facts are created equally. In order to evaluate 

tools and procedures with confidence, there must be surety 

that agreement on definitions of ground truth is in 

conformance. This study challenges the binary analytic 

community to examine the concept of ground truth carefully. 

Since there is a transition to train deep learning models, which 

are only as valuable as the accuracy of the ground truth 

throughout the training, this becomes even more crucial. 

 

OB2: Basic BCSD not focusing on Cross Architectural 

features 

The task of finding similarities between binary functions that 

are not present in the corresponding source code is known as 

binary code similarity detection (BCSD). It has been 

extensively applied to make key security analyses of many 

kinds in software engineering easier. The method of 

identifying binary code similarity is difficult due to the 

intricacy of programme compilation. A solid vector 

representation of binary code serves as the foundation for the 

most logical binary similarity detector. Few BCSD methods, 

though, are appropriate for constructing vector 

representations for comparing the similarities between 

binaries, which may differ not only in semantics but also in 

structures. Additionally, the current methods, which 

primarily rely on manual feature engineering to create feature 

vectors, do not account for the connections between 

instructions, Since it fails to consider cross optimization, 

cross compiler and cross architectural features. 

OB3: Newer BCSD architectures can be developed by 

analysing failure instances of traditional BCSD  

Since most current works rely on opaque machine learning 

algorithms, they rarely analyse their failure instances. 

However, our objective is to adopt a straightforward and 

understandable model to learn from mistakes and collect 

knowledge for future study. As a result, we carefully 

reviewed failure cases using our interpretable method and 

discovered three prevalent failure causes that the prior 

literature had mostly missed. First, it is true that traditional 

binary analysis techniques produce inaccurate results. 

Second, various compiler backend for the same architecture 

may differ greatly from one another. Third, the same function 

has code fragments that are particular to different 

architectures.  The above mentioned views can be interpreted 

to develop effective BCSD system. 

 

VI. An Inclusive report on Binary Code Similarity 

Detection: 

We concentrate on malware attacks in our assessment of 

neural function boundary detection. The name of these 

attacks comes from the fact that no knowledge of the model-

under-test's (MUT's) internal weights or structural details is 

assumed. Because malware attacks are dynamic, they have 

the advantage of not requiring a thorough knowledge of 

MUTs; rather, all that is required is the capacity to execute 

queries and track the outcomes. Malware detection 

techniques may, however, miss latent vulnerabilities that a 

white-box adversarial search like projected gradient descent 

(PGD) [44] may otherwise find because the search process is 

unguided by model knowledge. In this regard, the outcomes 

of our research ought to be seen as a lower constraint on the 

MUTs' susceptibility. To find and take advantage of function 

boundary misclassifications when inferring from binary 

programmes, we build a universal malware vulnerability 

search approach. Input generation, ground truth creation, 

training and inference, and misclassification analysis are the 

first four stages of the search process. 

 

Generate Input: We compile a corpus of benchmark 

programme source code S in the first stage. A variety of 

compiler toolchains T are used to compile each benchmark, 

and each one has an attack configuration C that consists of a 

number of compiler flags and code changes. We obtain a 

benchmark binary corpus B made up of n distinct compiles of 
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S using each toolchain and attack configuration tuple (T,C), 

given n = |T | compilers. 

 

Generation of Ground Truth: Each option makes sure that 

debugging information is produced while also guarding 

against the removal of symbol information from compiled 

binaries. In order to create a ground truth mapping F (1), or a 

function that labels each byte of code in each binary as either 

a function start, a function end, or neither, we can post-

process each binary and use the information from these 

sources. 

Misclassification Analysis: In the last phase, for each MUT 

we process its misclassification sets 𝐸 + 𝑚, 𝐸− 𝑚 to identify 

attack inputs 𝐴𝑚 that can reliably produce function boundary 

misclassifications in arbitrary binary programs. For each 

model, we rank-order misclassifications from highest to 

lowest incidence in order to achieve this. As seeds for an 

adversarial search, the ranked attack inputs are then each 

successively injected into specific functions of B to create a 

mutant corpus B m. The MUT m is then used to perform 

inference on B m in a second attack validation cycle to make 

sure the targeted functions duplicate the intended 

misclassifications. 

 

A. Limitations and future work: 

The Binary Code Similarity Detections frameworks 

experimented still has certain drawbacks in addition to all of 

its benefits. First, function-level presemantic features are 

extracted in this research using the disassembly tool IDA; 

thus, the accuracy of the IDA analysis findings determines the 

dependability of function-level presemantic features. IDA, 

however, has the potential to produce inaccurate outcomes, 

such as incomplete CFG generation and wrong function 

border division. The error analysis is left as presemantic 

features extracted by disassembly tools for future research, 

given that IDA is extensively used in related work and the 

aim of this thesis is to employ the attention mechanism to fuse 

presemantic information to yield functional semantic 

features. 

 

Second, Experiments shows the performance (TOP-1 = 

0.1614, the lowest of all testing scenarios) will be greatly 

impacted by the wide variation between optimisation levels 

(O0-O3). This is due to the fact that high optimisation level 

intra- and inter-procedural structures differ greatly from low 

optimisation level structures. However, note that no related 

study achieves higher performance that depends on function 

structural information. 

  

Third, only intra-procedural techniques like BCF, FLA, and 

SUB are taken into consideration; the LLVM is used in this 

research to test the experimental performance under cross-

obfuscation. These techniques barely affect CG features, 

while they significantly influence CFG features. On the other 

hand, the obfuscation technique is more intricate in real-

world situations and involves altering the function call 

relationship through inter-procedural Malware detection. We 

leave the investigation of Cross Version Binary Code 

Similarity detection techniques for future research because 

the majority of current studies do not support Cross-Platform 

programs. 

 

VII. Conclusion and Future Work: 

In this study, traditional BCSA techniques are explained by 

integrating the attention mechanism with interpretable 

features. To acquire semantic features of functions (i.e. 

features with attention information), we first extract the 

presemantic features of binary functions and then use the 

attention method for feature fusion. Lastly, the model is 

trained on these semantic features using the Siamese network. 

Using two datasets, we train distinct models for various 

compilation parameters in order to identify commonalities 

between function pairs and evaluate function search 

efficiency. Interestingly, we explored that frameworks has to 

generate semantic features which can withstand changes in 

architecture, optimisation level, obfuscation, and compiler, 

and can even surpass cutting-edge techniques. The main 

challenge of cross-platform binary code similarity detection 

is choosing a proper code representation that not only can 

eliminate the influence of different instruction sets under 

different platforms to ensure the detection accuracy but also 

facilitates efficient detection. 
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