
Dealing with Clones in Software : A Practical

Approach from Detection towards Management

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Md. Sharif Uddin

c©Md. Sharif Uddin, Feb/2014. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Despite the fact that duplicated fragments of code also called code clones are considered one of the

prominent code smells that may exist in software, cloning is widely practiced in industrial development. The

larger the system, the more people involved in its development and the more parts developed by different

teams result in an increased possibility of having cloned code in the system. While there are particular

benefits of code cloning in software development, research shows that it might be a source of various troubles

in evolving software. Therefore, investigating and understanding clones in a software system is important

to manage the clones efficiently. However, when the system is fairly large, it is challenging to identify and

manage those clones properly. Among the various types of clones that may exist in software, research shows

detection of near-miss clones where there might be minor to significant differences (e.g., renaming of identifiers

and additions/deletions/modifications of statements) among the cloned fragments is costly in terms of time

and memory. Thus, there is a great demand of state-of-the-art technologies in dealing with clones in software.

Over the years, several tools have been developed to detect and visualize exact and similar clones. How-

ever, usually the tools are standalone and do not integrate well with a software developer’s workflow. In

this thesis, first, a study is presented on the effectiveness of a fingerprint based data similarity measurement

technique named ‘simhash’ in detecting clones in large scale code-base. Based on the positive outcome of

the study, a time efficient detection approach is proposed to find exact and near-miss clones in software,

especially in large scale software systems. The novel detection approach has been made available as a highly

configurable and fully fledged standalone clone detection tool named ‘SimCad’, which can be configured for

detection of clones in both source code and non-source code based data. Second, we show a robust use of

the clone detection approach studied earlier by assembling its detection service as a portable library named

‘SimLib’. This library can provide tightly coupled (integrated) clone detection functionality to other appli-

cations as opposed to loosely coupled service provided by a typical standalone tool. Because of being highly

configurable and easily extensible, this library allows the user to customize its clone detection process for

detecting clones in data having diverse characteristics. We performed a user study to get some feedback on

installation and use of the ‘SimLib’ API (Application Programming Interface) and to uncover its potential

use as a third-party clone detection library. Third, we investigated on what tools and techniques are currently

in use to detect and manage clones and understand their evolution. The goal was to find how those tools

and techniques can be made available to a developer’s own software development platform for convenient

identification, tracking and management of clones in the software. Based on that, we developed a clone-aware

software development platform named ‘SimEclipse’ to promote the practical use of code clone research and

to provide better support for clone management in software. Finally, we performed an evaluation on ‘SimE-

clipse’ by conducting a user study on its effectiveness, usability and information management. We believe

that both researchers and developers would enjoy and utilize the benefit of using these tools in different

aspect of code clone research and manage cloned code in software systems.

ii

Acknowledgements

First of all, I would like to express my heart-felt and most sincere gratitude to my respected supervisors

Dr. Chanchal K. Roy and Dr. Kevin A. Schneider for their constant guidance, advice, encouragement and

extraordinary patience during this thesis work. Without them, this work would have been impossible.

I would like to thank Dr. Carl Gutwin, Dr. Nadeem Jamali and Dr. Aryan Saadt-Mehr for their

willingness to take part in the advisement and evaluation of my thesis work.

Thanks to all of the members of the Software Research Lab with whom I have had the opportunity to grow

as a researcher. In particular, I would like to thank Minhaz Fahim Zibran, Muhammad Asaduzzaman, Ripon

Saha, Mohammad Asif Ashraf Khan, Md. Saidur Rahman, Masud Rahman, Shamima Yeasmin, Manishankar

Mondal and Jeff Svajlenko.

I am grateful to Department of Computer Science, the University of Saskatchewan for their generous

financial support through scholarships, awards and bursaries that helped me to concentrate more deeply on

my thesis work.

I thank Dr. Abram Hindle for being involved in one of my study and the anonymous reviewers for their

valuable comments and suggestions in improving the papers produced from this thesis.

I would like to thank all of my friends and other staff members of the Department of Computer Science

who have helped me in one way or another along the way. In particular I would like to thank Gwen Lancaster,

Janice Thompson, Maureen Desjardins, and Heather Webb.

Finally, I would like to express my deepest affection and gratefulness to my my mother Jahanara Begum

and my father Md Kutub Uddin for the unconditional love and support throughout this period.

Invariably, acknowledgements always miss someone important. For those that I have not listed explicitly,

thank you for being a part of this thesis and helping me grow as a person and a researcher

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vii

List of Figures viii

List of Abbreviations x

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 1
1.3 Contributions of the Thesis . 3
1.4 Related Publications . 4
1.5 Outline of the Thesis . 4

2 Background and Related Work 6
2.1 Software Code Clones . 6
2.2 Clone Types . 6
2.3 Clone Granularity . 8
2.4 Cloning Relations and Grouping . 9
2.5 Reasons for clones in Software . 9
2.6 Negative Impacts of clones in Software . 11
2.7 Clone Detection . 13

2.7.1 Anatomy of code clone detection . 13
2.7.2 Existing clone detection techniques and tools . 16

2.8 Clone Visualization . 22
2.9 Clone Evolution . 23

2.9.1 Clone Genealogy . 24
2.9.2 Clone Evolution Visualization . 26

2.10 Clone Management . 27

3 On the Effectiveness of Simhash for Detecting Near-Miss Clones in Large Scale Soft-
ware Systems 28
3.1 Introduction . 28
3.2 General Terms and Definitions . 30

3.2.1 Software Clone and Clone Detection . 30
3.2.2 Clone Types and Clone Groups . 30

3.3 Proposed Technique . 31
3.3.1 Pre-processing . 31
3.3.2 Clone Detection . 34
3.3.3 Output Generation . 37

3.4 Runtime Complexity of the Process . 37
3.5 Implementation, Analysis and Evaluation . 38

3.5.1 Detecting different types of clones using SimCad . 38

iv

3.5.2 Finding the optimal value for SimThreshold . 39
3.5.3 Measurement of correctness in clone detection . 40
3.5.4 Finding detection threshold equivalency between NiCad and SimCad 41
3.5.5 SimCad vs. NiCad: head-to-head comparison . 42
3.5.6 Analyzing the unique clones . 44
3.5.7 Time performance gain from multi-indexing . 46
3.5.8 Addressing the research questions . 47

3.6 Related Work . 48
3.7 Summary . 49

4 SimCad: A Highly Scalable and Configurable Clone Detection Tool 50
4.1 Introduction . 50
4.2 Motivation . 50
4.3 The SimCad Clone Detector . 51

4.3.1 Command-line User Interface (CUI) of SimCad . 53
4.3.2 Graphical User Interface (GUI) for SimCad . 56

4.4 SimCad Usages . 56
4.5 Summary . 58

5 SimLib: A Customizable API for Portable Code Clone Detection Service 59
5.1 Introduction . 59
5.2 Motivation . 59
5.3 Existing clone detrection API . 60
5.4 SimLib Architecture . 60

5.4.1 Pre-processing . 61
5.4.2 Detection . 63
5.4.3 Post-processing . 64

5.5 SimLib Modification and Extension . 65
5.5.1 Extension Points . 65
5.5.2 Programatic Manipulation . 66

5.6 Target Use . 67
5.7 Evaluation on SimLib Installation, Integration and Use . 68

5.7.1 Study Design . 69
5.7.2 Summary of Findings . 70

5.8 Summary . 71

6 SimEclipse: Towards Managing Code Clones in Software Development and Evolution 73
6.1 Introduction . 73
6.2 Motivation . 74
6.3 Clone Management . 75

6.3.1 Management Strategy . 75
6.3.2 Dimensions of Clone Management . 77
6.3.3 Implementation options for a Clone Management System 78

6.4 Existing work on IDE based clone management . 79
6.5 SimEclipse: The plug-in for clone-aware software development 80

6.5.1 Startup and Configuration . 81
6.5.2 Just-in-time Clone Detection . 82
6.5.3 Clone Visualization . 82
6.5.4 Clone Analysis . 84
6.5.5 Clone Tracking . 85

6.6 Scenario Based Study for Identifying Effectiveness of Integrated Clone Technologies 87
6.6.1 Experimental Setup . 90
6.6.2 Summary of Findings . 93
6.6.3 Threats to Validity of the Experiment . 97

6.7 Scenario Based Feature Evaluation of SimEclipse . 98

v

6.7.1 Study Motivation . 98
6.7.2 Study Design . 99
6.7.3 Summary of Findings . 100

6.8 SimEclipse Feature Comparison . 103
6.9 Addressing Research Questions . 103
6.10 Summary . 105

7 Conclusion and Future Work 107

References 109

A Sample Appendix 118

B Another Sample Appendix 119

vi

List of Tables

3.1 Subject Systems Used in Our Experiment . 38
3.2 Summary of Clone Detection Setup for SimCad . 39
3.3 Mutation-based Effectiveness of SimCad . 41
3.4 SimCad vs. NiCad function clone detection time (ms) . 43
3.5 SimCad vs. NiCad block clone detection time (ms) . 43
3.6 SimCad vs. NiCad function clone fragment count . 43
3.7 SimCad vs. NiCad block clone fragment count . 43
3.8 Common and unique clones in NiCad vs. SimCad . 44
3.9 Unique clone fragments in SimCad with different UPI-Thresholds 46
3.10 Unique clone fragments in NiCad with different SimThreshold 46
3.11 Time (ms) comparison of SimCad including diff with others in Type-3 function clone detection 47
3.12 Time (ms) comparison for different indexing strategies . 47

5.1 Database selections for DbOutputProcessor . 65

6.1 Time Point scale for task completion time analysis . 95
6.2 Correctness Point scale for task correctness analysis . 95
6.3 Difficulty Point scale for task difficulty analysis . 96
6.4 Feature based tasks on SimEclipse for user study . 101
6.5 Feature Comparison of SimEclipse with other tools/plug-ins 105

vii

List of Figures

2.1 Types of Code Clone . 7
2.2 Reasons for cloning (adapted from [146]) . 10
2.3 Generic clone detection process (adapted from [151]) . 15
2.4 An example of a code clone genealogy (adapted from [7]) . 24

3.1 Clone detection process in SimCad . 29
3.2 simhash algorithm . 32
3.3 Distance based similarity detection . 34
3.4 Indexing strategy used in SimCad . 35
3.5 DBSCAN (from [48]) algorithm . 36
3.6 Relation between fragment sizes vs. SimThreshold . 40

4.1 SimCad : Clone Detection Workflow . 51
4.2 Sample Clone detection result in XML . 52
4.3 Visualization of clones detected by SimCad in HTML5 compatible browser 53
4.4 SimCad command line intefaces . 54
4.5 Input XML file format for command simcad2xml . 55
4.6 GUI corresponds to the command simcad2 . 56
4.7 GUI corresponds to the command simcad2xml . 57

5.1 Architecture of SimLib . 61
5.2 Clone Detection Summary . 64
5.3 Example execution of IProcessors in post-processing. 67
5.4 Different uses of SimLib . 67
5.5 Consolidated user feedback on SimLib API use . 71
5.6 Distribution of top three target uses for SimLib API chosen by the study participants 72

6.1 Clone management workflow . 76
6.2 Enable/Disable SimEclipse . 81
6.3 SimEclipse Views . 82
6.4 SimEclipse Views and Actions . 83
6.5 SimEclipse Settings . 83
6.6 Navigation of source in SimEclipse Navigator View . 84
6.7 Search for Clones From Editor . 84
6.8 SimEclipse Clones View for display clone detection result . 85
6.9 Inspect Clone Code in SimEclipse Clones View . 86
6.10 Text compare between two clone fragments . 86
6.11 Clone Genealogy Viewer in SimEclipse . 87
6.12 SimEclipse Code History Explorer . 88
6.13 Mark Location of Clones in Editor . 88
6.14 Information of Other Clones in Marked Location . 88
6.15 Clone Tracking Service in SimEclipse . 89
6.16 Notification of newly introduced clone . 89
6.17 User performance in completion of task in different environments 94
6.18 Comparison on completion time of tasks taken by users in different environment 95
6.19 Comparison on correctness of the tasks performed by the users in different environment . . . 96
6.20 Comparison on difficulty of performing the tasks by the users in different environment 97
6.21 User performence in supplementary study . 98
6.22 User opinion on Usability, Operability and Presentation for the features of SimEclipse 102
6.23 Consolidated feedback on all the features of SimEclipse . 103

viii

6.24 Overall user evaluation of SimEclipse . 104

ix

List of Abbreviations

AST Abstract Syntax Tree
API Application Program Interface
DPM Dynamic Pattern Matching
IDE Integrated Development
PDG Program Dependency Graphs
IR Information Retrival
LSH Locality Sensitive Hashing

x

Chapter 1

Introduction

1.1 Motivation

Software that is useful and successful in practice is almost always needs to be maintained through continual

change and improvements. This maintenance phase is one of the most important parts of the Software Devel-

opment Life Cycle as it consumes a large part of the overall life-cycle costs. Studies show that up to 80% of

total effort on software is spent on its maintenance [4]. Besides, potential business opportunities are lost if the

changes in the software are not done quickly and reliably. There are several reasons that might cause changes

in software including fixing errors, adding or enhancing features, or improving performance. Throughout this

changing life-cycle, multiple copies of similar code fragments or artifacts also known as software clones or code

clones in a software system can be modified by various development activities performed by the developer.

These activities collectively control the evolution of code clones in the life-cycle of a software system.

Software systems can contain cloned code in amounts ranging from 5-15% of the code-base [146] to as high

as 50% [144]. Thus, the effects of clones in software maintenance and evolution have become one of the prime

concerns of the software engineering community [57, 71, 77, 86, 118, 128, 140, 154, 159, 168]. While there are

some notable benefits of code cloning including faster development and the reduction of maintenance effort

and costs as revealed in a number of studies [9, 26, 71, 77, 95, 106, 140, 154], it comes with some bad side

effects as well. For example, studies [130, 13, 17, 70, 118, 119, 129] show concrete empirical evidence of a

clone’s harmful impacts (e.g.: bug propagation, inconsistent code change, increased instability of code) on

software maintenance. Therefore, arguably it is inconclusive whether clones are harmful or not. However,

researchers commonly agreed that in order to make best use of the good aspects of code cloning as well as

reduce the possible harmful effects, an efficient and cost-effective way is needed to manage the clones.

1.2 Problem Statement

Cloning can be a substantial problem during development and maintenance unless special care is taken to

find and track existing clones and their evolution [6]. Source code clone detection has been greatly studied

over the past decade. A number of state of the art clone detection tools [147, 78, 88, 91, 30, 20, 25] are

in use in software clone research. In recent times, clone detection research focuses on faster, more robust,

1

incremental and semantic clone detection approaches. The research trend in the area also covers the study

in determining what to do with the clones when they are detected. A significant portion of the research

includes but is not limited to finding ways to manage clones, gaining more control of their generation and

studying clone evolution and their effects on the evolution of software.

This thesis covers some areas of the current software code clone based research, which can be defined as

the following research problems:

1. Fast and scalable detection of near-miss clones: One major problem for clone detection on large corpora

is the performance of querying and retrieving possible clones. Existing popular techniques [23, 88, 113]

have several deficiencies, such as not supporting the detection of Type-3 near-miss clones where lines

could be modified, added and/or deleted in the copied fragments, and not scaling adequately to handle

clone detection in large systems [78]. Therefore, a fast and highly scalable near-miss clone detection

technique would be a useful addition to the clone detection based study.

2. Highly customizable and portable clone detection service: Most of the popular clone detection tools

currently being used in practice are standalone. One major usability issue is that the detection service

of those tools are not very portable to other applications (clone visualization, analysis, etc.), where

clone detection is a prerequisite. Manual feeding of pre-detected clones into those applications adds

an external tool dependency on those applications, which sometimes raise various compatibility issues.

Besides, limited tailorability restricts the use of existing standalone clone detection tools on data having

diverse characteristics. Therefore, there is demand to have a highly customizable and portable clone

detection service/API. Such an API can easily be plugged into a clone processing application to have

the clones in a system detected on the fly and processed in an organized and efficient way.

3. Managing clones in a software development environment: Convenient access to clone information from

within the development environment is a key factor in managing clones in software. Usually, it is the

developer’s activities that directly (e.g., by copying, pasting or modifying code) or indirectly (e.g., by

using code generation programs or tools) introduce cloned code in a system. Manual tracking of those

activities whether they unknowingly cause clones in the system might be inconvenient for developers,

especially in large systems. Besides, without an effective use of clone information, it is also hard for

a developer to manage clones efficiently in the system (e.g., refactoring and removing cloned code) or

to reduce their negative effects during software evolution. Even if the knowledge of clones in a system

is available (for example, by using a standalone clone detection tool), in most cases, a developer needs

to apply that knowledge by manual investigation and identification inside the working code-base to

locate the clone and possibly take some actions on them. The bottom line, however, is that the lack of

availability state of the art clone detection and management features in a developer’s working platform

could make clone management in software a challenging and potentially error prone task.

2

1.3 Contributions of the Thesis

In this thesis, a fast and scalable near-miss structural software clone detection process is presented. The

process has been made available for practical use in the form of a standalone clone detection tool as well as

a portable clone detection library/API. A clone-aware software development platform is also proposed here.

The idea is to make the stat-of-the-art clone based technologies available to the developer on top of a single

platform for convenient clone management in software. The overall contributions of the thesis are three-fold,

as follows:

• First, a study is done on the effectiveness of simhash [33], a state of the art fingerprint based data

similarity measurement technique for detecting the syntactic code clones (textually similar code) in

large scale software systems. ‘simhash’ is indeed found effective in the experiment in identifying various

types of clones in a software system and enables faster near-miss clone detection in large corpora. In

the experiment, a novel approach is developed for structural clone detection based on fingerprinting

of source code using simhash. A multi-level indexing scheme on simhash values is also proposed to

organize the pre-processed codebase on which the clone detection algorithm is applied. The indexing

scheme speeds up the potential clone search and allows the approach to be scalable by maintaining

the indices in persistent storage. Finally, SimCad is developed to make the structural clone detection

approach usable in practice. As a highly configurable and scalable standalone clone detection tool,

SimCad can be configured and used for detecting clones in both source and non-source code data.

• Second, the challenges in using standalone clone detection tools in other clone based research is studied.

Based on the study, a clone detection API SimLib is developed to serve as an off-the-shelf library to

make the SimCad ’s clone detection service more portable and thus overcome some of the usability

issues of a typical standalone clone detection tool. This library can be integrated easily into other

compatible applications to provide on-demand clone detection service from within the host application;

a practical example of which has been shown later in the final part of the thesis. Besides, the modular

architecture makes SimLib a highly configurable and extensible API that can be tailored with minimal

effort to build a fully customized clone detection tool for target data. At the end, a user study has

been performed to get some user feedback on installation and use of the API towards clone detection

needs in various forms.

• Finally, we conducted a user study in order to answer three research questions on finding a viable

platform for managing clones by the developers. The developer centric study is performed to find some

efficient way to provide tool support for dealing with clones in the software within a platform where

clone management activities can easily be integrated into software developers’ development workflow.

Based on that study, SimEclipse is developed as an IDE (Integrated development Environment) plugin

for detection, visualization and managing clones in software. This plugin stands as a practical example

3

for a successful use of SimLib API for providing clone detection service to another tool. It provides a

clone detection friendly and clone-aware software development environment that provides a basis for

developing IDE based tools for managing clones. By using the clone tracking feature of SimEclipse a

developer can gain more control of the generation and evolution of clones in project. Since clones are

evolved during various development activity performed by the developer, a clone-aware development

environment could be the place where evolution of clones can be managed more easily and conveniently.

1.4 Related Publications

A couple of parts of this thesis have been previously published. This section lists these publications. I was

the primary author and conducted the research under the supervision of Chanchal K. Roy and Kevin A.

Schneider.

• Chapter 3 has been published in Proceedings of the 18th IEEE Working Conference on Reverse Engi-

neering (WCRE 2011) co-authored with Chanchal K. Roy, Kevin A. Schneider and Abram Hindle [172].

• Chapter 4 has been published in Proceedings of the Tool Demonstration Track of the 21st IEEE

International Conference on Program Comprehension (ICPC 2013) co-authored with Chanchal K. Roy,

and Kevin A. Schneider [171].

1.5 Outline of the Thesis

In this chapter, motivation toward the thesis is discussed in terms of software clone detection and clone

management and described the contributions of the thesis. The rest of the thesis is organized as follows:

Chapter 2 presents relevant terminology and outlines the related research which will form the foundation

we build upon in this thesis.

Chapter 3 presents a study on finding the effectiveness of simhash based fingerprinting in software code

clone detection.

In Chapter 4, SimCad is introduced as a highly configurable and scalable clone detection tool developed

based on an earlier study.

Chapter 5 presents an overview of usability issues of typical standalone clone detection tools in clone

based research and clone management. It demonstrates SimLib, a portable clone detection library available

to be used as a clone detection service provider to a host application along with a small scale user study on

the installation and target use of the API.

Chapter 6 presents a user study in order to answer three research questions on finding a way to provide

efficient clone management support to the developers. It covers the integration of state of the art clone

detection and analysis techniques into software developer’s development workflow so that clones in software

can be managed more conveniently from the environment were they evolve. It demonstrates SimEclipse, an

4

IDE plug-in that provides a clone-aware software development environment along with a number of clone

based technologies that would help developers in managing clones in software.

Finally, Chapter 7 concludes the thesis along with some directions for future research.

5

Chapter 2

Background and Related Work

This chapter presents background information related to the research area of this thesis along with previous

studies done in those areas. Since this thesis primarily focuses on dealing with clones in software, from

detection to manage, it will cover the description of code clones, reasons for cloning, effects of clones in

software, approaches for clone detection, clone evolution and clone management.

2.1 Software Code Clones

The definition of a code clone is still more or less vague. Usually, it is described as portions of source code

or code fragments at different locations in a software project/program that are identical or very similar. The

similarity here may also be defined in various ways and can refer to textual, structural or semantic aspects

of the source code. Selim et al. [160] defined code clones as sets of syntactically or semantically similar code

segments residing at different locations in the source code. In the words of Baxter et al. [23], “Clones are

segments of code that are similar according to some definition of similarity”. Symbolically, a clone fragment

can be represented as a tuple with three variables (f, s, l), where f denotes the file location, s denotes start

line of the clone fragment and l denotes the length of the fragment starting from s.

There is also no precise minimum size for a code clone. Clone studies define this size differently in

terms of number of lines, tokens or AST (Abstract Syntax Tree)/PDG (Program Dependency Graph) nodes

with respect to their experimental context [151]. Besides, a pair of clone fragments can either partially

overlap to each other or one of them can be located completely within another. Let, CF1 = (f, s1, l1)

and CF2 = (f, s2, l2) be two clone fragments. Then the length of the shared region can be measured

as: min(s1 + l1, s2 + l2)−max(s1, s2). Given that a negative length means no overlap.

2.2 Clone Types

Types of clones are defined based on the degree of similarity among the clone fragments. The following

categorization of clone types has widely been accepted in the literature [101, 143, 146].

Type-1 (Exact Clones): Identical code fragments without considering the variations in white-space

and comments (Figure 2.1a).

6

int sum (int num[], int len) {
int total = 0;

for(int i=0; i < len; i++) {
total += num[i];

}
return total;

}

Code Fragment: A

int sum (int num[], int len) {
int total = 0;

for(int i=0; i < len; i++) {
total += num[i];

}
return total;

}

Code Fragment: B

(a) Type-1 Clone

int sum (int num[], int len) {
int total = 0;

for(int i=0; i < len; i++) {
total += num[i];

}
return total;

}

Code Fragment: A

int sum (int num[], int size) {
int result = 0;
for(int i=0; i < size; i++) {
result += num[i];

}
return result;

}

Code Fragment: B

(b) Type-2 Clone

int sum (int num[], int len) {
int total = 0;

for(int i=0; i < len; i++) {
total += num[i];

}
return total;

}

Code Fragment: A

int sum (int num[]) {
int result = 0;
int len = num.length;
for (int i = 0; i < len; i++) {
result += num[i];

}
return result;

}

Code Fragment: B

(c) Type-3 Clone

int sum (int num[], int len) {
int total = 0;

for(int i=0; i < len; i++) {
total += num[i];

}
return total;

}

Code Fragment: A

int sum (int num[], int len) {
int total = 0;

int i = 0;

while(i < len) {
total += num[i++];

}
return total;

}

Code Fragment: B

(d) Type-4 Clone

Figure 2.1: Types of Code Clone

7

Type-2 (Renamed/Parameterized Clones) : Code fragments that are structurally/syntactically sim-

ilar but may contain variations in identifiers, literals, types, layouts and comments (Figure 2.1b).

Type-3 (Gapped Clones): Code fragments with modifications in addition to those defined for Type-2

clones, such as insertion, deletion or modification of statements (Figure 2.1c). Type-2 and Type-3 clones

are collectively termed as near-miss clones in literature [146].

Type-4 (Semantic Clones): Code fragments with the same functionality with or without being textu-

ally similar(Figure 2.1d).

Although, the definition of Type-1 and Type-2 clones are somewhat specific, the definition of Type-3 clones

still remains vague [101]. This is because the definition does not precisely indicate how much differences in

terms of addition, modification, or deletion of statements are allowed in code segments to be regarded as a

Type-3 clone. For Type-3 clones, it may require setting up a boundary of acceptable differences (between two

Type-3 clone fragments) that occur for such modifications in terms of line numbers, token numbers, amount

of text and so on. Researchers commonly consider code segments as Type-3 clones when the difference in the

code components (lines, tokens etc.) remains below a self-defined dissimilarity threshold [12, 113, 147, 184].

However, a consensus on an appropriate threshold value for the definition of a Type-3 clone has yet to be

established [101].

2.3 Clone Granularity

The clone type definitions stated above are based on the notion of an arbitrary code segment. They do not

define how much of contiguous code can be considered a clone. Contiguous portions of source code at different

levels of granularity are used in the literature. The following are the most commonly used granularities, which

yield the notion of source code clones:

File clone: Two source files containing some good amount of similar source code.

Class clone: Two classes of source code written in an object-oriented language when the classes have

identical or near-identical code.

Function clone: Two functions are considered as clones when their bodies contain similar code to each

other.

Block clone: When the contents of two blocks of code (usually a collection of statements performing

a unit of work, marked bounded by some boundary marking character e.g., opening and closing braces,

brackets or indentation, or the like) are similar enough.

Arbitrary statements clone: When two groups of statements at arbitrary regions of the source file are

found to be similar enough, they are also regarded as clones (CCFinder [88] detects such clones).

8

Structural clone: Structural clones denote the design level similarities among the patterns of interre-

lated classes [19] emerging from design and analysis space at the architecture level.

Model based clone: Applications in some domain (e.g.: embedded systems, automobile/aviation de-

sign) are developed from a model designed with a domain specific modeling language. Unexpected overlaps

and duplications in such models [44] are termed as model based clones.

2.4 Cloning Relations and Grouping

A clone relationship exists between two code fragments that are clones of each other according to some

definition of similarity as stated earlier. Such a relationship is reflexive (i.e., if code segment X is a clone of

Y , then the reverse is also true). The transitive relationship also exists for Type-1 and Type-2 clones (i.e.,

if code segment X is a clone of Y , and Y is a clone of Z, then X is also a clone of Z). However, such a

transitive property may not exist for Type-3 clones [24]. The definition also imply that there exists a subset

relationship among the Type-1, Type-2, and Type-3 clones. Mathematically,

Type− i ⊆ Type− j (for i ∈ {1, 2} and j = i + 1) [96]. (2.1)

Researchers present clones in some groups that represent cloning relations among the related fragments.

This grouping leads to a better understanding of the cloning status of the system. The following clone

grouping is predominant in code clone literature.

Clone Pair: Two code fragments similar to each other form a Clone Pair.

Clone Class: A Clone Class is a group of clone fragments which are similar to each other. Therefore, a

Clone Class may have two or more code fragments where each pair of code fragments forms a Clone Pair.

Super Clone: The set of Clone Classes that belong to the same source code location form a Super Clone,

also known as Clone Class Family. Alternately, Super Clone is the aggregation of the Clone Classes that

cross-cut in the same source code region, e.g.: file, directory, function, class or package.

2.5 Reasons for clones in Software

Most software systems usually contain a significant amount of cloned code and the amount of cloning varies

depending on the domain and origin of the software system [146]. However, clones do not occur in software

systems by themselves, rather they evolve from various development activities performed by the developer

during the software’s development and maintenance phase. There are a number of factors that might force or

influence the developers and/or maintenance engineers making cloned code in the system [12, 23, 93, 99, 143].

Kapser et al. [90] identified a set of eight cloning patterns that explain the motivations of cloning with

9

Figure 2.2: Reasons for cloning (adapted from [146])

10

corresponding advantages and disadvantages. Toomim et al. [170] identified a set of cases that makes the

abstraction costly and leads programmers to leave the cloned code instead. A comprehensive list of factors

(as shown in Figure 2.2) that introduce clones in software can be found in the survey by Roy and Cordy [146],

where reasons for cloning are categorized as the following four groups:

Cloning by Accidents

Software developers may repeat common solution patterns for solving similar kinds of problems. Clones

can also be created by developers because of implementing the same logic while working independently or

following particular development restriction, e.g., coding under a programming language protocol or using a

particular set of APIs.

Development Strategy

Different reuse and programming approaches may introduce clones in software systems. Clones can be

created due to reuse of existing code, design, logic and functionality in the system. Developer’s copy-paste

programming practices is one of the most common forms of code cloning. Besides, merging of two software

systems (of similar functionality) to produce a new one may introduce clones in the final system.

Maintenance Benefits

Developers may create or keep clones intentionally to obtain development and maintenance benefits, such as

to cut the development cost off, to avoid the risk of developing new code that may introduce bugs or require

additional testing to meet required QoS [37]. Clones are sometime useful in speed-up development process

or keeping software architecture clean and understandable.

Overcoming Underlying Limitations

Because of having some limitations on both programming languages and programmer’s ability, clones might

be introduced in the system [22, 138]. Some programming languages may not have sufficient abstraction

mechanism or restriction for code reuse by design or convention. On the other hand, programmers may have

a lack of knowledge of the existing system, strict time constraint, lack of code ownership, lack of understanding

that may lead to the creation of duplicate code in the system.

2.6 Negative Impacts of clones in Software

Despite of having some notable advantages of clones (or practice of cloning) in software, they may cause

various issues in software maintenance phase. Following are a set of common impacts of clones that make

software maintenance challenging.

11

Bug propagation

Developers may duplicate a buggy code fragment unknowingly by copy-paste operation. In doing so, the

bug in the original segment may spread through all the pasted segments in the system even if the segments

are pasted with minor adaptations. Besides, lack of required consistent renaming of the variables in the

pasted code fragment might introduce new bug despite the fact that the original source code being bug free.

Therefore, the probability of new bug generation as well as bug propagation may increase significantly in the

system because of code duplication [81, 113].

Inconsistent change propagation

When removing bug in a clone fragment or making enhancement to a piece of code, a developer may forget

to do the same in the other copies of the fragment, may because s/he is not aware of the presence of those

similar fragments elsewhere in the system. Therefore, code clones may be one of the reasons for incomplete

bug removal or inconsistent change in the source code.

Difficulties in system modification

Clones can be anywhere in the system codebase and any amount. Maintenance engineers or developers need

additional time and effort in understanding the cloning status of the whole system for consistent system

modification. Therefore, system modifications or adding new functionalities require more time and become

more challenging when there are clones in the system [82, 126].

Software design issues

Cloning may introduce design fault in a software system, impose restrictions in software abstraction or end

up with bad inheritance structure. As a consequence, it could impact negatively on the maintainability of

the software [131]. Unreasonable code duplication may also yield hidden dependencies among the duplicated

parts, which in turn may hinder software re-usability.

Increase maintenance cost

If a cloned code segment is found to be contained a bug, all of the duplicate copies of the segment, if exist,

need to be identified and investigated for correcting the bug in question. Identification of similar fragments

and bug elimination from those incur additional software maintenance cost. Same problem happens when

maintaining or enhancing a piece of code, duplication multiplies the work to be done [126, 131].

Increase code comprehension effort

The presences of duplicate codes in system increase the cognitive effort by the developers to comprehend

a large program. Developers or maintenance engineers may have to spend a significant amount of time

12

analyzing each fragment separately to understand the differences between them [81].

Increase resource requirement

Code duplication necessarily increase the growth rate of system codebase size. Industries like automobile,

telecommunication, aviation and so on in general make heavy use of embedded devices. Increased system

size might be a concerning issue for them since increased code size may induce costly hardware upgrade with

a software upgrade. Johnson [82] described the overall effect of cloning as a form of software aging, where

small changes in the architectural level become very difficult to implement in the code level.

2.7 Clone Detection

2.7.1 Anatomy of code clone detection

Naively, a code clone detector should compare every possible fragment with every other fragment to identify

the level of similarity. The similarity level needs to be at least up to a pre-defined value to accept the

comparing fragments as clone to each other. However, in case of a medium to large scale system, such an

exhaustive comparison is computationally expensive. Thus, several measures are used to reduce either the

cost of individual comparison or the domain of comparison before performing the actual comparisons. A

number of clone detection techniques has been proposed in literature over the past decades. Regardless of

the difference in similarity detection mechanism, from a high level perspective, they mostly follow the same

end-to-end processing workflow as shown in Figure 2.3. Considering raw source code as input, a typical code

clone detector may perform the following steps (usually most of them if not all) to detect clones in the input

source code.

Source Pre-processing

This is the very first step of a detection approach where various uninteresting parts (e.g., embedded source

code of another language, auto generated source code, etc.) are filtered out from the input source. Then

the remaining source code is partitioned into a set of disjoint fragments called source units. These are the

largest source fragments that may form direct clone relations with each other. Source units can have different

level of granularity, for example, files, classes, functions/methods, beginend blocks, statements, or sequences

of source lines. Depending on the comparison technique used in the detection approach, source units may

be further subdivided into smaller comparison units represented as lines or even tokens. Comparison units

can also be derived from the syntactic structure of the source unit. Approaches like metrics-based does not

require this partitioning of source since metrics values can be computed from source units regardless of their

granularity.

13

Source Transformation

In textual detection approach, similarity detection is performed among the comparison units. However, for

non-textual approach, the source code of the comparison units is transformed to an appropriate intermediate

representation for comparison. Additional normalizing transformations may also be performed by some

approach in order to detect superficially different clones. These normalizations can vary from very simple

normalizations, such as removal of whitespace and comments [11], to complex normalizations, involving source

code transformations [147].

Extraction

Extraction transforms the source code to the form suitable as input to the actual comparison algorithm.

Depending on the tool, it typically involves one or more of the following steps. For token-based approaches,

each line of the source is divided into tokens according to the lexical rules of the programming language of

interest. The tokens of lines or files then form the token sequences to be compared. All whitespace (including

line breaks and tabs) and comments between tokens are removed from the token sequences. CCFinder [88]

and Dup [11] are the leading tools that use this tokenization approach on the source code. In syntactic

approaches, the entire source codebase is parsed to build a parse tree or abstract syntax tree (AST). Then

the comparison algorithms look for similar subtrees that are considered as clones [23, 174, 181]. Metrics-based

approaches may also use a parse tree representation to find clones based on metrics for subtrees [99, 126].

Some semantics-aware approaches generate program dependency graphs (PDGs) from the source code. To

find clones, the techniques then look for isomorphic subgraphs [98, 105].

Normalization

This optional step is intended to eliminate trivial differences in source comparison, such as, differences in

whitespace, commenting, formatting, identifier naming, etc. Almost all approaches disregard comments and

whitespace, although line-based approaches retain line breaks. However, some metrics-based approaches

use formatting and layout as part of their comparison. Identifier normalization is applied in most of the

approaches before comparison in order to identify parametric Type-2 clones. In such normalizations, usually

one single identifier replaces all the identifiers in the source code. However, Baker [11] uses an order-

sensitive indexing scheme to normalize for detection of consistently renamed Type-2 clones. In text-based

clone detection approaches, source codes may also pretty printed (white space formatting) to minimize the

differences in source layout and spacing. Cordy et al. [39] use an island grammar [132] to generate a separate

pretty- printed text file for each potentially cloned source unit. Some other transformations may be applied

to change the structure of the code so that minor variants of the same syntactic form can be treated as similar

[88, 135, 147].

14

Figure 2.3: Generic clone detection process (adapted from [151])

15

Similarity detection

A similarity detection algorithm is applied to the transformed comparison units to find potential matches

among them. Matches are recorded as a pair of comparison units. Similar units are often grouped together

to form a large cluster. All the comparison units of such a cluster are pairwise similar to each other under

the defined similarity measure by the algorithm. For detection output, the match records are represented

as matched pair or cluster of transformed code corresponds to the comparison units in the match record.

In addition to simple normalized text comparison, similarity matching algorithms used frequently in clone

detection include suffix-trees [11, 100, 127], dynamic pattern matching (DPM) [47, 99] and hash-value com-

parison [23, 126].

Code Formatting

In this phase, the transformed code in the matched clone pair or clone cluster found in the detection phase

are replaced by corresponding the original source code. Source coordinates (file path, start/end line number,

etc.) of each element in the clone cluster (or pair) are also mapped to their positions in the original source

files.

Clone Filtering/Post-processing

In this phase, filtered using automated or manual analysis where false positive clones or spurious clones

[103] are filtered out by a human expert. Besides, heuristics can often be defined based on length, diversity,

frequency, or other characteristics of clones in order to rank or filter out clone candidates automatically [88].

Aggregation

Most of the detection tools return only clone pairs as the detection result. Clones available in pairs may be

aggregated into clone classes by those tools in this step. Besides, some overview statistics or analytical result

can be obtained by doing subsequent analysis on the detection result, which can be presented as consolidated

detection summary.

2.7.2 Existing clone detection techniques and tools

Clone detection is a fundamental part of code clone research since all other clone related research areas

are dependent on the clone detection results, i.e., need to know which are the clones in a system. Besides,

developers or maintenance engineers need to know the exact location of the clone codes in the software

systems; otherwise it would be challenging to resolve the problems caused by the clones. Various clone

detection techniques are presented in the literature. Based on the level of analysis applied to the source code,

the techniques can roughly be classified into the following six categories:

16

Textual approaches

In this approach, the target source program is considered as a sequence of lines/strings. Two code fragments

are compared with each other to find sequences of same text/strings. Approaches in this category use little

or no transformation/normalization on the source code before the comparison, and in most cases raw source

code is used directly in the clone detection process. The pioneering text-based clone detection approach was

presented by Jonson [81] that uses fingerprints on substrings of the source code to find clones in source code.

However, one of the main drawbacks of textual approaches is that they do not work well when the same

syntactical structure is represented differently in different places by the developers. To identify similar source

files, Manber [122] also used fingerprints, based on subsequences marked by leading keywords.

Ducasse et al. [47] developed a language-independent technique that uses line based transformation along

with scatter plot visualization to detect duplication visually. Wettel and Marinescu [179] used an extension

of the Ducasse et al.’s approach to find near-miss clones using dot plots. Starting with lines having the same

hash value, the algorithm chains together neighboring lines to identify some kinds of Type-3 clones. Lee et

al. [112] developed an algorithm named SDD (Similar Data detection), another text based technique that

uses N − neighbor distance concept to detect similar code fragments. Marcus and Maletic [124] use latent

semantic indexing (LSI) to the source text in order to find high level concept clones (e.g., abstract data types

(ADTs)) in the source code. This IR approach limits its comparison to comments and identifiers, returning

two code fragments as potential clones or a cluster of potential clones when there is a high level of similarity

between their sets of identifiers and comments.

Text based clone detection tool Simian [63] can detect clones in different programming languages. If

Simian does not recognize programming language of the source file, then it treats it as a plain text file to

find clones. Barbour et al. [18] used the KnuthMorrisPratt string comparison algorithm to update the clone

information from the server incrementally in a client server setup. Later on, only relevant clones are retrieved

by individual developers. However, because of being string based technique, it fails to detect clones even

with minor changes [146].

In general, textual approaches are independent of programming languages and input source code does not

need to be syntactically correct. However, without having advanced normalization and filtering of differences

in layouts, textual approaches may susceptible to even minor changes in the source code [102].

Lexical approaches

This is also called token-based detection approach, where the entire source system is lexed/parsed/trans-

formed to a sequence of tokens. Detection algorithm then scan this this token sequence for finding duplicated

subsequences of tokens and finally, the original code portions representing the duplicated subsequences re-

turned as clones.

CCFinder [88] is one of the leading state of the art token-based techniques developed by Kamiya et

al. First, each line of source files is divided into tokens by a lexer and the tokens of all source files are

17

then concatenated into a single token sequence. The token sequence is then transformed based on the

transformation rules of the language of interest aiming at regularization of identifiers and identification of

structures. A suffix-tree based sub-string matching algorithm is then used to find the similar sub-sequences

on the transformed token sequence. The similar sub-sequence pairs are returned as clone pairs/clone classes.

Finally, a mapping is performed to obtain the clone pair/clone class information with respect to the original

source code. CCFinder is widely used in clone research community for code clone analysis, code clone

management, etc. VisCad [8] is a clone analysis and visualization tools that use output of CCFinder. Livieri et

al. [117] developed D-CCFinder, a distributed version of CCFinder for large systems by using 80 workstations

in master slave configuration. CCFinderX [87] was used to study code clone genealogies [95] in software at

release level.

Baker’s Dup [11] uses a lexer to tokenize the source code. A suffix-tree based algorithm is used to

compare the token sequences of each line from the source. However, unlike in CCFinder [88] where some

transformation rules are applied on the token sequence before matching, here parameterized token matching

is applied by a consistent renaming of the identifiers. Basit et al. [21] developed a token based detector RTF

that uses a suffix array based flexible tokenization strategy for efficient memory handling and allows the user

to tailor token strings for better clone detection. The user can suppress insignificant token classes (e.g., access

modifiers of Java) that may cause noise in detection, and there is an option for equating different types of

token by assigning same ID on them.

Another state of the art token-based clone detection technique CP-Miner [113]. CCFinder and Dup are

in general fragile to statement reordering and code insertion due to sequential analysis of tokens. These

limitations are overcome in CP-Miner that uses a frequent subsequence mining technique to determine the

similar sequence of tokenized statements. CP-Miner used an extended version of CloSpan [180] to support

gap constraints in frequent sub-sequences. This allowed CP-Miner to tolerate one to two statement insertions,

deletions, or modifications in copy-pasted code while ignoring arbitrarily long different copy-pasted segment

that is unlikely to be copy-pasted. Cordy et al. [39] also developed a token and line-based technique to detect

near-miss clones HTML web pages where an island grammar is used to identify and extract all structural

fragments and then Unix diff algorithm to assess similarity among the fragments. FCFinder is a new token

based tool developed by Sasaki et al. [158] to detect file clones using hashing. The study detected 68% of the

FreeBSD Ports collection as file clones.

The lexical approaches are in general more robust over minor code changes such as code spacing, re-

naming and formatting than textual techniques [151]. These techniques even can operate on incomplete

or syntactically incorrect program due to the use of lexical analysis. Clones found by token-based tech-

niques may overlap different syntactic units because the syntax is not taken into account. However, by

identifying the block delimiters or using lightweight syntactic analysis such as island parsing [132] in either

pre-processing [39, 54] or post-processing [68] step, clones corresponding to syntactic blocks can be identified

by a token-based detector.

18

PDG-based approaches

This is also called semantics-aware approaches that use static program analysis to provide more precise

information than simply measure syntactic similarity. Source code of a program in this approach is represented

as a program dependency graph (PDG). The nodes of this graph represent expressions and statements while

the edges represent control and data dependencies. Detection algorithm then looks for isomorphic subgraphs

(for which only approximate efficient algorithms exist) [98, 105, 115] to detect clones in the code.

Clone detection tools PGD-DUP [98] proposed by Komondoor and Horwitz is one of the leading PDG

based approach that looks for isomorphic PDG subgraphs using (backward) program slicing [178]. Their

approach groups identified clones together while preserving the semantics of the original code [97] that enables

support of clone refactoring. Krinke uses an iterative approach (k-length patch matching) in Duplix [105] for

detecting maximally similar subgraphs in the PDG. In a recent study, Gabel et al. [52] maps PDG subgraphs

to corresponding structured syntax for finding semantic clones in source code. Liu et al. [115] developed

GPLAG, a software plagiarism detection based on PDG. A statistical lossy lter is also proposed here to

prune the plagiarism search space to make GPLAG scalable to large programs.

Scorpio [67] is a recent PDG based tool developed by Higo and Kusumoto that applies two-way slicing to

detect clones. The tool is based on the number of PDG specializations for Java language and heuristics to

speed up the overall detection process and currently works for Java language only. Higo et al. also proposed

a PDG-based incremental clone detection technique in [69], where PDGs are generated from the analysis of

control and data dependencies in the program code. The PDGs are preserved in the database, and clone

detection is performed by approximate comparison of PDGs.

The primary limitations of PDG-based approaches are similar to those of tree-based approaches. Besides,

this approach is programming language dependent, requires syntactically correct program and has high time

complexity. Although, PDG-based approaches can partly handle statement reordering, insertion, deletion

and non-contiguous code, they are not much scalable to large size programs [95].

Tree-based approaches

Tree based approaches use a parser to convert source programs into parse trees or abstract syntax trees

(ASTs) where clones can be found by identifying similar subtrees. Variable names, literal values and other

tokens in the source can be abstracted in the tree representation that allows sophisticated detection of clones.

Yang [181] proposed one of the early approaches in this category that can find the syntactic differences

between two versions of the same program. The technique builds a variant of a parse tree for both versions

and looks for longest common subsequence between both the trees. Baxter et al.’s CloneDR [23] is another

pioneering tree matching approach that detects exact and near-miss clones using hashing and dynamic pro-

gramming. It uses a compiler to generate annotated parse trees from the input source. Subtrees are then

hashed into buckets. A tree matching algorithm compares subtrees with each other within the same bucket

to identify similar subtree and reports the matched subtrees as clones. The hashing drastically reduces the

19

number of necessary tree comparisons and enables parameterized matching to detect gapped clones and clones

with some reordered statements.

CloneDR has been adapted by the AST-based clone detector SimScan [29] that applies subtree comparison

on the parsed source code. Here, ANTLR parser is used to parse the source code. Tool ccdiml [142] is another

variant of CloneDR with some differences like the avoidance of the similarity metric, the handling of sequences

and the hashing. Unlike CloneDR, ccdiml represents ASTs in IML(Intermediate Language) [104] rather than

directly using those in the comparison. Both SimScan and ccdiml have been used in studying the evolution

of clones in programs written in Java and C language [168].

Deckard [78] and ClemanX [136] are novel approach based on computing characteristic vectors from

the AST to approximate the structure of ASTs in a Euclidean space. They use locality sensitive hashing

(LSH) [41] to cluster similar vectors using the Euclidean distance metric and thus finds corresponding clones.

Saebjornsen et al. [153] also used the same set of techniques to detect clones in assembly code. Deckard

has been used in detecting behaviorally similar code [85] and assessing the impact of clones in software

defects [140].

Recent tree-based approaches use alternative tree representations to avoid high computational cost for full

subtree comparison. Asta [49] works on the phenomenon of structural abstraction of arbitrary subtrees of an

AST and can detect exact and near-miss clones with gaps. Chilowicz et al. [34] used syntax tree fingerprinting

to detect exact clones only. Koschke et al.’s [50, 103] approach constructs a suffix tree using serialized AST

node sequences build from AST subtrees. This idea allows finding syntactic clones at the speed of token-based

techniques. Wahler et al. [176] proposed a tree based approach based on frequent itemset mining applied on

XML representation of source code. Anti-unification is used in [31] to discover common sub-expressions in

source code represented as a tree. CloneDigger [30] is a language independent tool in which anti-unification

is applied to XML representation of source code. Biegel and Diehl [27, 28] developed JCCD, a flexible and

customizable AST based clone detector using pipelines. JCCD API can parallelize the detection process

using multiple cores that significantly improves the total detection time.

The tree-based techniques suffer from the overhead of invoking a parser to generate parse tree. Again,

due to the parser dependency, these approaches are language dependent and require syntactically correct

program. In general, parser based syntax comparison techniques are very accurate in detecting clones that

have similar syntactic structure, but suffer from large execution times when analyzing a large source code

base. Since tree-based representations of programs are insensitive to formatting, and comparatively less

sensitive to programming style, tree based techniques can detect some clones that are not usually detected

by text-based or token-based methods.

Metric-based approaches

Techniques in this category detect similarity in code by comparing various software metrics vectors instead of

comparing the code directly. The idea is similar code fragments should yield similar values for metrics vectors

20

(e.g., token frequencies, hash fingerprint, cyclomatic complexity, fan- in, fan-out). Metrics are calculated for

one or more syntactic units such as a class, a function, or a method or even statement and then the metrics

values are compared to find clones over these syntactic units. The source code might be parsed to its

AST/PDG representation for calculating such metrics.

A widely used tool CLAN [126] developed by Mayrand et al. is one of the early approaches that compare

AST based metrics to identify function clones. Metrics are calculated from names, layout, expressions, and

control flow of functions. Kontogiannis et al. [99] have proposed two different ways of detecting clones.

One approach uses direct comparison of metrics values to identify similarity at the granularity of beginend

blocks. The second approach is applying dynamic programming (DP) on source code lines using minimum

edit distance. The assumption is that duplicate code fragments originated from cut-and-paste activities are

likely to have small pairwise edit distance.

Li and Sun [114] studied a novel approach by viewing the source code clones in the metric space. Here,

the measured distance between members across same metric space reflects similarity between code fragments.

Davey et al. [42] detects exact, parameterized, and near-miss clones by using neural networks based search

technique on extracted features from the source code blocks. Lavoie et al. [110] proposed a technique based on

graphics processing unit (GPU) algorithms to compute many instances of the longest common subsequence

(LCS) problem using classic dynamic pattern matching (DPM) on a generic GPU architecture. The study

recommends clone detection techniques using string matching with suffix trees could take advantage of the

GPU algorithm.

Metrics-based approaches have been applied in finding duplicate web pages and clones in web docu-

ments [32, 45]. They have also been used successfully in clone analysis [14], clone visualization [79], clone

evolution [5, 6], etc.

Hybrids approaches

In addition to the above, there are also clone detection techniques that use a combination of syntactic and

semantic characteristics.

Balazinska et al. [15] propose a hybrid approach of detection of method/function clones using characteri-

zation metrics and dynamic pattern matching (DPM). Characteristic metric values are computed for each of

the method bodies and compared to find a cluster of similar methods. In the approach proposed by Koschke

et al. [103], the AST nodes are serialized in preorder traversal, a suffix tree is created for these serialized

AST nodes. The approach compares the tokens of the AST nodes instead of the AST nodes using a suffix

tree-based algorithm in linear time and space.

Tairas and Gray [166] developed a function-level clone detector for Microsoft’s new Phoenix framework

that uses AST and suffix trees. AST nodes are used to generate a suffix tree, which allows analysis on the

nodes to be performed in linear time and space. This approach can find exact and a subset (with identifier

renaming, not type changes) of parameterized function clones. A novel hybrid approach is presented by Jiang

21

et al. [78] that combines tree and metric based approach. Here, a set of characteristic vectors is computed

from ASTs corresponding to the source code. A locality sensitive hashing (LSH) based similarity detection

is used to cluster similar vectors and thus, code clones.

Sutton et al. [163] applied an evolutionary algorithm to find clones in large code-bases. Detection algorithm

looks for longest common subsequence (represents clustering of similar code fragments) on a search space of

variable sized metric vector derived from the source code. Grant and Cordy [61] introduced a technique using

an existing information retrieval (IR) method, namely independent component analysis (ICA) to analyze some

characteristics vectors representing methods in software. The distance between any two vectors measures

code similarity between corresponding methods. Maeda [121] introduced a technique based on PALEX [120]

source code representation. The technique is language independent and uses a suffix tree for comparison.

Using frequent itemset mining, Basit and Jarzabek developed a hybrid clone detection tool Clone Miner [20]

that is a variant of token based detector RTF [21].

NICAD [147] is a text-based hybrid clone detection tool which can detect Type-3 clones efficiently. It is

based on a two-stage process, namely extracting and normalizing source code fragments using pretty printing

and source transformation, followed by code comparison using longest common subsequences. Uddin et al.

[172, 171] proposed a similar approach SimCad that uses a locality sensitive hashing (LSH) technique named

simhash [33] to generate hash fingerprint of source code. Similarity in code is measured by the pairwise

hamming distance of simhash fingerprints correspond to the source code. The approach includes a two-level

indexing scheme to organize the hash values for fast similarity detection. A popular data clustering algorithm

DBSCAN [48] is used to cluster similar simhash values into groups based on their pairwise distance. Each of

the groups having two or more members represents a clone group in the source code.

A hybrid incremental index-based clone detector proposed by Hummel et al. [73] takes input in the form

of token sequences and build a hash based index on a group of source lines. Source regions having maximal

continuous match of the corresponding indexed hash values are reported as clones. The index allows updating

on addition, deletion or modification of source.

Hybrid approaches usually exhibit fast execution time and wider detection coverage of clone types than

others.

2.8 Clone Visualization

The result of clone detection is essentially a large volume of textual information about the clones such as the

file name, line number, starting position, ending position, etc. Besides, depending on the detection techniques

used, the returned clones also differ in several contexts such as types of clones, degree of similarity, granularity

and size. Comprehending the clones or understanding the cloning status of the system by manually exploring

the detection result in textual form is rather difficult and error prone. For the proper use of the detected

clones, especially for clone management, the aid of a sound visualization tool is crucial. A number of

22

visualization techniques, filtering mechanisms and support environments are proposed in the literature.

Clone visualization tools like Gemini [173], VisCad [8], Aries [65] and CLICS [89] read the output of

CCFinder. These tools filter uninteresting clones and navigate to the clones having features the users are

interested in. One of the widely accepted formats for displaying code cloning relations is scatter-plot [8, 36,

38, 117]. Scatter-plots are useful to select and view clones, as well as zoom in on regions of the plot. However,

the scalability issue limits its applicability to visualize clones of many software units. Higo [66] proposed an

enhanced scatter plot to overcome the scalability issue and understand the state of the clones over different

versions of software.

Johnson [83] has applied Hasse diagrams for visualizing cloning relationships between files. The diagram

is consisted of nodes and edges, where the copied source text and the source files are shown as nodes and the

relation between clones are shown as edges. A HTML web page based approach proposed by Cordy et al. [39]

provides interactive presentation of clones with an overview of the clone classes. Although, the approach

offers quick navigation of clones among the clone classes through hyperlinks, it is unable reveal the high level

cloning relations in the system. Rieger et al. [144] incorporated polymetric views [109] in visualizing clones

that allow one to investigate the clones of a system at different levels of abstraction.

Using visualization of the clone relations in the architecture level, Jiang et al. [80] introduced the concept

of coupling and cohesion to clone code. The framework is useful in investigating and managing cloning

activities within and across subsystems. Adar and Kim [3] developed SoftGUESS that supports exploration

and visualization of code clones. It supports the analysis of code-clones over single and multiple version of

software in the context of system dependencies, authorship information, package structures and other system

features.

Jiang and Hassan [79] developed Clone System Hierarchical Graph using a data mining technique frame-

work that mines clone information from the clone candidates produced by CCFinder. An interactive graph is

used to select nodes to highlight how the clones are scattered at different levels of the source directory. Tairas

et al. developed an Eclipse plug-in CeDAR (Clone Detection, Analysis and Refactoring) [165] by extend-

ing the AspectJ Development Tool1 visualizer to display the results of CloneDR. In this plug-in, one clone

instance displays the properties of all the clones in the clone group, which greatly helps in clone refactoring.

2.9 Clone Evolution

Successful software systems in practice evolve over time. Evolution of software refers to the process of its

initial development, and then repeatedly updating it in its maintenance phase. Reasons for which software

needs to be updated includes but no limited to bug fixing, increase reliability, performance improvement,

and above all, addition of new features to meet the demands of the users. Therefore, during the evolution

of software, cloned codes inside the codebase also experience evolution from version to version. The study

1http://www.eclipse.org/ajdt

23

Figure 2.4: An example of a code clone genealogy (adapted from [7])

of evolution of clones is thus concerned with understanding the changes of clones, causes and the effects of

those changes. Understanding this evolution can help software developers to reason about cloning, improve

software processes for managing clones, support developers in copy-paste programming practices and allow

maintenance engineers to make expert decisions about removing or refactoring clones.

The study of clone evolution receives much attention in the software clone research community. Several

studies have been conducted to understanding the overall evolution of clones in software [55, 116, 185]. The

relation of clone evolution with software faults has been investigated in [17, 59, 159]. Studies in [57, 71,

106, 107, 128] explored the stability of cloned code throughout the lifecycle of the software. Pate et al. [137]

conduct a comprehensive study that provides a systematic literature review of the current state of knowledge

about code clone evolution.

2.9.1 Clone Genealogy

A clone genealogy defines how a clone group evolves during the evolution of a software system. The term

clone genealogy is first coined by Kim et al. [94] that refers to a non-empty set of clone lineage originating

from the same clone group. A clone lineage is a sequence of clone groups evolving over a series of versions of

a software system. Thus, a clone genealogy represents the evolution history of a clone group over subsequent

versions of software’s end-to-end lifecycle. Figure 2.4 shows an example of a clone genealogy consisting two

clone lineages.

24

Clone Change Patterns

In clone genealogy, the evolution of individual clone group is characterized with some change patterns. Recent

studies [95, 154] proposed following categories of clone change patterns.

• Same: A clone group in a version of software moves to the next version without any change in number

or contents of the clone fragments.

• Add: A clone group gets one or more new clone fragments in the next version.

• Delete/Subtract: One or more existing clone fragments get disappeared from a clone group in the next

version.

• Consistent Change(CC): Exactly same modifications are applied to each the clone fragments in a clone

group in the next version.

• Inconsistent Change(IC): At least one clone fragment in a clone group modified differently than other

fragments in the clone group’s next version.

Types of Genealogies

Clone genealogies can be categorized into the following groups based on the change patterns mentioned

previously:

• Static Genealogy(SG): A genealogy where the clone fragments in a clone group do not experience any

change throughout the evolution.

• Consistently Changed Genealogies(CCG): A non-static genealogy that exhibits one or more consistent

change pattern(s) and no inconsistent change pattern during the evolution.

• Inconsistently Changed Genealogies: A non-static genealogy that exhibits at least one inconsistent

change pattern anywhere during the evolution. This is further categorized as the following two:

- Independent Evolution(IE): A genealogy where the clone fragments of a clone group, once changed

inconsistently, evolve independently across versions. This may cause branching with multiple

lineages in a genealogy.

- Late Propagation(LP): A genealogy where one or more clone fragments in a clone group disappear

from a clone group in the next version (exhibiting inconsistent change pattern), but re-appear in

the same clone group in a later version.

• Dead Genealogy(DG): A genealogy that does not survive to the final version of software in the evolution.

• Alive Genealogy(AG): A genealogy that survives to the final version of software in the evolution.

25

Genealogy Construction/Extraction

Construction of clone genealogies involves mapping of clones across subsequent versions of a program. There

are four basic approaches as follows to constructing clone genealogies (or similarly, fragment traces).

• In the first approach [13, 95, 154], clone detection is performed for each of the versions of the target

program. Clone genealogies are then constructed by mapping the clones between consecutive versions.

This approach requires the use of a heuristic to determine whether a clone in version i is indeed the

modified version of a clone in the version i− 1.

• In the second approach [9, 106, 168], clones are detected in the first version of interest and then they are

tracked through the subsequent versions using change information mined from a repository or IDE. A

downside of this approach is that clones introduced in versions following the initial version are ignored.

• The third approach [26] combines the first and the second approaches. At first, clones are detected in

all source code versions of interest. Then the detected clones are transformed to clone region descriptors

(CRDs), which are traced across versions.

• Finally, in the fourth approach, clone fragments are mapped during clone detection using the changed

information between versions [55, 58]. The mapping is performed at the code fragment level, allowing

analysis of code fragment evolution patterns as well as analysis of clone group evolution patterns.

2.9.2 Clone Evolution Visualization

Similar to code clone visualization, evolutions of clone can be better understood through evolution visualiza-

tion tools. Such tools usually can provide a high level overview of evolution as well as the flexibility to focus

on a preferred area of the software with desired level of details. Following are some techniques and tools that

have been proposed for visualizing properties of clone evolution including the genealogy model.

SoftGuess [3] is a system for clone evolution exploration developed by Adar and Kim that supports

three different views. The evolution is modeled using a the graph exploration system named GUESS [2].

In SoftGuess, the genealogy browser offers a simple visualization of clone evolution. Here, nodes represent

clones are arranged from left to right, and the clones that belong to the same class are arranged vertically

in the same position. The dependency graph view shows how the nodes (package, class or method) within a

version are evolved from other nodes and how they evolve in the next version. In addition, SoftGUESS also

supports charting and filtering mechanisms based on a SQL type query language Gython.

Harder and Go de [62] developed CYCLONE, a multi-perspective tool for clone evolution analysis. It

offers five different views to analyze clone data stored in a RCF file. RCF is a binary format to encode

clone data including the evolutionary characteristics. The evolution view in CYCLONE visualizes clone

genealogies using simple rectangles and circles that represent software entities. Each row represents a version

of the software, and each circle arranged in a set of rows represents a clone fragments. A rectangle bounds the

26

clone fragments that belong to the same clone class. Finally, lines represent the evolution of a clone fragments.

In addition, the view employs colors to distinguish types and the changes of the clones. VisCad [8] offers a

similar visualization with additional flexibility of metric based genealogy filtering.

Saha et al. [156] proposed a visualization approach for clone evolution using the popular scatter plot. In

their approach, scatter plots show the clone pairs associated within a pair of software unit (file, directory

or package). Clone pairs are rendered with different colors based on associated clone genealogy type. User

can select a clone pair and see the associated genealogy in a genealogy browser. The proposal facilitates

developers or maintenance engineers to identify evolutionary change patterns of the clone classes in a version

and call genealogy browser to dig deeper down the evolution. However, the approach does not provide overall

characteristics of the genealogies. Besides, due to the large number of clone pairs, selection and useful pattern

identification in such a scatter plot can be difficult.

2.10 Clone Management

In order to facilitate the software maintenance activities, clones in software need to be managed efficiently.

The goal of clone management is to take the advantages of cloning as much as possible while overcoming the

threats posed by them. Clone management covers a broad set of activities including clone detection, tracking

of clone, clone evolution, and clone refactoring, etc. Various clone management approaches that proposed in

the literature can be categorized as follows.

Preventive Clone Management:

The objective of preventive clone management is to prevent the creation of new clones in the system rather

than detecting and removing them afterwards. Use of this approach suits best for a new system (from the

very beginning of its development) rather than for an already developed system.

Corrective Clone Management:

Corrective clone management aims for removal/refactorization of existing clones from the system. The

suspicious clones are refactored to reduce potential sources of errors resulting from duplicated code and

increase the understandability of software systems. Therefore, this approach may be effective for the software

systems where clones were not maintained from the beginning.

Compensative Clone management:

It might not be worthy or possible to refactor all the clones in a system. Compensatory clone management

deals with applying techniques (such as annotation, documentation) to minimize the negative impacts of

clones in the system staying for some valid reasons. This approach tries to facilitate a consistent evolution

of the clone groups, for example, use of simultaneous editing while changing any fragment in a clone group.

27

Chapter 3

On the Effectiveness of Simhash for Detecting Near-

Miss Clones in Large Scale Software Systems

3.1 Introduction

Cloning is a common phenomenon found in almost all kinds of software systems. The larger the system,

the more people involved in its development and the more parts developed by different teams result in an

increased possibility of having evolving clone code. Several studies suggest that as much as 7-23% of code

of a software system is cloned code [11, 126]. The presence of clones may lead to unresolved bug and/or

maintenance related problems by increasing the risk of update anomalies [146].

Existing popular techniques [23, 88, 113] have several deficiencies, such as not supporting the detection

of Type-3 near-miss clones where lines could be modified, added and/or deleted in the copied fragments,

and not scaling adequately to handle clone detection in large systems [78]. One significant problem for clone

detection on large corpora is the performance of querying and retrieving possible clones. One way to improve

this performance is to use near constant time techniques of querying a dataset for similar entities. For exact-

duplicate matching, a simple match of fingerprints suffices and a common hash function is suitable for that,

but it does not work that well for inexact matches. If one wants partial matches and yet wants a constant

time operation, the hash function has to map similar documents close together. Manku et al. [123] showed

that Charikar’s simhash [33] is a very efficient hashing technique for developing a near-duplicate detection

system for a multi-billion page repository. Simhash has been used successfully in different areas of research,

such as text retrieval, web mining and so on [60, 64, 139]. However, as of yet, no clone detection study has

been conducted using simhash. The objective of this study is to see how effective simhash is for software

clone detection, especially in detecting Type-3 near-miss clones from large scale software systems. Thus, the

research questions we would like to answer in this study are:

1) Is simhash feasible to be used in code clone detection, especially for Type-3 clones in large codebase?

2) Does a simhash-based technique yield faster detection of clones in large codebases?

3) What are the possible problems/limitations of using simhash in clone detection and how can we over-

come those limitations?

28

Figure 3.1: Clone detection process in SimCad

A simhash based clone detection approach is designed in this study. The performance evaluation of the

approach will in turn be a measure of the effectiveness of simhash in this area. To evaluate that effectiveness,

an existing clone detection tool NiCad [147] is chosen for comparative performance analysis. NiCad uses the

UNIX diff 1 algorithm to measure code similarity. NiCad is a state of the art clone detection tool that returns

structurally significant clone fragments (e.g., functions or blocks). It has powerful features for source code

pre-processing and normalization along with context sensitive transformations. Diff based comparison along

with these features enables NiCad to detect both exact (Type-1) and near-miss (Type-2 and Type-3) clones

with high precision and recall [149]. NiCad’s diff based detection engine is replaced with the simhash based

approach developed in this study (marked as a dashed rectangle in Figure 3.1. The new approach named

SimCad includes an indexing strategy and uses a data clustering algorithm to detect the clones. Using NiCad

as the benchmark, a comparative performance evaluation is done to measure the effectiveness of SimCad for

large scale clone detection in terms of detection time and the number of cloned fragments detected. This

evaluation provides some insight into the effectiveness of the simhash based technique for clone detection and

helps answer the research questions as stated above. Third party clone detectors were not used intentionally

since the primary objective of this study is to evaluate the feasibility of simhash the detection of structural

(such as functions or blocks) clones. The study compares SimCad with NiCad, not only because NiCad gives

high precision [150, 145] and recall [148, 164, 149] but also because both NiCad and SimCad use the same

pre-processed structural code fragments in the comparison phase and thus comparing the results of using the

simhash technique is straightforward, which is one of the major objectives of the study.

This paper presents a novel approach for structural clone detection based on fingerprinting of source

code using a hash technique called simhash. A multi-level indexing scheme is also proposed to organize the

pre-processed codebase on which the clone detection algorithm is applied. The indexing scheme speeds up

the potential clone search and allows the approach to be scalable by maintaining the indices in persistent

storage (e.g., a database). This makes the proposed approach capable of being used by an incremental clone

detection tool or a real-time code search engine. The experimental analysis shows the effectiveness of simhash

in clone detection and how it enables faster near-miss clone detection in large corpora.

The rest of this paper is organized as follows. Section 3.2 covers some general terms and definitions of

clones. Section 3.3 describes the proposed technique. Section 3.4 provides the complexity analysis of the

1http://en.wikipedia.org/wiki/Diff (accessed on August 3, 2013)

29

detection process. Section 3.5 presents the implementation and experimental results analysis. Section 3.6

covers some related work on the application of fingerprint based similarity and finally, Section 3.7 concludes

the study.

3.2 General Terms and Definitions

3.2.1 Software Clone and Clone Detection

There is as yet no universal definition for a software clone. It is usually described as portions of source

code or code fragments at different locations in a software project/program that are identical or very similar.

Being ‘similar’ may also be defined in various ways and can refer to textual, structural or semantic aspects

of the source code. Selim et al. [160] defined code clones as sets of syntactically or semantically similar code

segments residing at different locations in the source code. In the words of Baxter et al. [23]: Clones are

segments of code that are similar according to some definition of similarity.

There is also no precise minimum size for a code clone. Clone studies define this size differently in terms

of either number of lines, tokens or AST/PDG nodes with respect to their experimental context [151]. Thus,

given the various definitions of a software clone, defining and measuring code similarity is an important aspect

of any clone detection technique. That is, a key issue is the manifestation of source code similarity and the

success of such a tool mainly involves how efficiency and accurately it can perform the task of identifying

similar code fragments based on its self-defined similarity measurement.

3.2.2 Clone Types and Clone Groups

In recent literature, clones are broadly classified as one of the following four types.

Type-1 (Exact Clones): Code fragments, which are identical without considering the variations in

white space and comments.

Type-2 (Renamed/Parameterized Clone): Code fragments, which are structurally/syntactically

similar but may contain variations in identifiers, literals, types, layouts and comments.

Type-3 (Gapped Clones): Code fragments with modifications in addition to those defined for Type-2

clones, such as insertion, deletion or modification of a statement. Note that for Type-3 clones, the detection

tool may requires setting up a boundary of acceptable differences (between two fragments of a Type-3 clone

pair) that occur for such modifications in terms of line numbers, token numbers, amount of text and so on.

Type-4 (Semantic Clone): Code fragments with the same functionality with or without being textually

similar.

In this paper, by near-miss clones we mean both Type-2 and Type-3 clones with an emphasis on Type-3.

Detection of Type-4 clones is not within the scope of this paper. The output of a clone detection tool is

usually in terms of code fragment groupings, which is either by clone pair or clone cluster along with their

30

location information. A Clone Pair (CP) is a pair of code portions or fragments that are similar to each other

under a defined similarity measure. A Clone Cluster (CC) is a group of code portions or fragments which

are pair-wise similar (inside that group) under a defined similarity measure.

3.3 Proposed Technique

As noted in the introduction, we will evaluate the effectiveness of simhash by evaluating the performance of

SimCad compared to NiCad. Figure 3.1 gives an overview of end-to-end clone detection process in SimCad

which uses a distance based similarity detection mechanism developed by Manku et al. [123] based on the

fingerprinting technique called simhash. This mechanism has been proven effective in various domains such

as data mining and web engineering, where it usually requires dealing with billions of dataset records [123].

In the proposed approach, we tried to deal with the clone detection process from a data mining perspective.

We employ a data clustering algorithm with multi-level index based searching which enables fast detection

of clones. From the experimental results presented in Section 3.5, we see that SimCad is very effective

at fast clone detection in a large dataset. Running on a standard desktop computer, the experimental

implementation shows that the detection part of the process takes a fraction of a second (cf. Table 3.4) to

detect all the Type-1/Type-2 function/block clones in the Linux kernel v-2.6.38, which has 12.5 million lines

of code.

A clone detection tool may follow several phases in its detection process [151]. Similar to NiCad, SimCad

has three phases: pre-processing, detection and output generation (cf. Figure 3.1), which are discussed as

follows.

3.3.1 Pre-processing

The pre-processing step sets up the environment and organizes the data over which the detection algorithm

is applied. There are four sub-steps in pre-processing as shown in Figure 3.1 by solid rectangular boxes.

The first two sub-steps: fragment extraction with pretty printing and source transformation/normalization

(renaming the data-types and identifiers) are similar to those in NiCad, details of which are available in [147].

The remaining two sub-steps: simhash generation and indexing are new to this approach which are discussed

below in detail.

(i) Simhash generation:

The core idea of the proposed approach is to determine code similarity using fingerprinting. Finger-

printing is a well-known approach in data processing that maps an arbitrarily large data item to a

much shorter bit sequence (the fingerprint) that uniquely identifies the original data. A typical use is

to avoid the comparison or transmission of bulk data. For a large dataset, this technique reduces the

data comparison time and effectively decrease the overall running time of a clone detection process.

31

Algorithm simhash(doc, n)

doc: document for which simhash is computed
n: length of the desired hash size in bits

1. doc is split into tokens (words for example) or super-tokens (word tuples)
2. weights are associated with tokens (for example: frequency count)

3. v = vector of size n, initialized to 0
4. for each token t in doc
5. token hash = make n-bit simple hash (t)
6. for i = 1 to n do
7. if(i-th bit of token hash == 1)
8. v[i] = v[i] + weight(t)
9. else

10. v[i] = v[i] - weight(t)
11. bit vector = vector of size n, initialized to 0
12. for i = 1 to n do
13. if(v[i] > 0)

14. bit vector [i] = 1

Figure 3.2: simhash algorithm2

In the proposed approach, each code block will be transformed into an n-bit fingerprint, the simhash

value of that block.

Charikar’s simhash [33] is a dimensionality reduction technique that maps high-dimensional vectors to

small-sized fingerprints [123]. Apart from being an identifier of source data, this technique has the

property that fingerprints of near-duplicate data differ only in a small number of bit positions. As for a

simhash fingerprint f , Manku et al. [123] developed a technique for identifying whether an existing fin-

gerprint f ′ differs from f in at most k bits. Their experiment shows that for a repository of eight billion

pages, 64-bit simhash fingerprints and k = 3 are reasonable parameters. In the proposed technique, we

will refer this notion of bit difference (value of k) using a term called SimThreshold as a measurement

of similarity, i.e., the lower the value of SimThreshold, the more similar the code blocks are. Figure 3.2

shows the pseudocode of the simhash algorithm using which a hash fingerprint is generated for each of

the extracted code fragments. We have considered words (separated by whitespace) in pretty-printed

source as tokens. For generating an n-bit simple hash (Figure 3.2, line 5), we have used a 64-bit Jenkin

hash function3 (from a choice of several cryptographic and non-cryptographic hash functions) based

on an empirical observation that it yields better simhash values than others considering similarity pre-

serving nature (a small change in the source results in a small change in the simhash bits). This hash

value is then used in the detection algorithm to detect code similarity, thus saving significant time by

avoiding raw source string comparison.

2http://d3s.mff.cuni.cz/ holub/sw/shash (accessed on June 30, 2011)
3http://www.burtleburtle.net/bob/hash/doobs.html

32

(ii) Multi-level indexing:

In the proposed approach, a two-level indexing scheme has been introduced to organize the simhash

data generated in the previous step. The goal of the data organization is to speed up the neighbour

search query in the clone detection phase presented in the following section. The indexing is done first

by the size of the code fragment in terms of lines of code, and then by the number of 1-bits in the

binary representation of the simhash fingerprint. Thus, each of the first level indices points to a list of

second level indices. Each of the second level index in turn points to a list of simhash values having

the same number of 1-bits in its binary form (note, the position of the 1-bits might be different, which

is not considered for this count). These simhash values in the final list are corresponding to the code

fragments which are similar in size (lines of code). Figure 3.4 illustrates how the two-level indexing

scheme works.

At the first level (line based index), the size of a code fragment in lines of code is used as a key to

map the corresponding simhash data item. As mentioned earlier, the code has been pretty-printed in

the pre-processing phase before computation of simhash. This allows us to use a data indexing strategy

to store the simhash values and helps improve performance by avoiding computations that end up

being unsuccessful. Since the simhash values are indexed according to their actual line sizes, a search

for Type-1 and Type-2 clones does not require to compare the simhash of two fragments that have

different line sizes. That is, we only need to consider simhash data for potential candidates that are

computed from the code fragments having a line size that is the same as the new/unclassified simhash

data item for which a search is being made. However, for Type-3 clones, the algorithm neither uses

one particular size nor all sizes; instead it searches within a range of sizes. To limit the search, we put

a cap on the differences in number of lines between two code fragments of a Type-3 clone pair. Thus,

the neighbour search is limited to a window of indices having a range, for example, 30% of the line

size of the corresponding item for which a search is being made.

At the second level (bit based index), the count of 1-bits in the code fingerprint (simhash value) is

used as an index for ordering those fingerprints. Since we are using Hamming Distance [123] between

simhash values (equal to the number of bit positions at which the corresponding bits are different in

their binary form, i.e., the value of k as discussed in the previous section) as the distance measure, the

total count of the number of ‘1’ or ‘0’ bits in the simhash value can be a useful index. For example, if a

neighbour search is made for a simhash value having 10 1-bits in its binary representation, all the Type-

1 clones should have the same number of 1-bits in their fingerprint. Same applies for Type-2 clones

since when a transformation is applied in the pre-processing step, changes in identifier and function

names are eliminated. However, the fingerprint of some other dissimilar code fragments might have the

same number of 1-bits, but they would not be considered Type-1 clones because they might have those

bits in different bit positions, yielding a Hamming Distance greater than zero. For Type-3 clones, this

33

int sum (int num[], int len)

{

int total = 0;

for(int i=0; i < len; i++)

total += num[i];

return total;

}

(a) Code Fragment A

int sum (int num[], int len)

{

int total = 0;

for(int i=0; i < len; i++)

total += num[i];

return total;

}

(b) Code Fragment B

int sum (int num[], int size)
{
int result = 0;
for(int i=0; i < size; i++)
result += num[i];

return result;
}

(c) Code Fragment C

int sum (int num[])

{
int total = 0;

int len = sizeof(num) / sizeof(int);
for (int i = 0; i < len; i++)

total += num[i];

return total;

}

(d) Code Fragment D

void swap (int & a, int & b)

{
int temp = a;

a = b;

b = temp;

}

(e) Code Fragment E

Fragment 32-bit simhash Hamming Distance Clone Type

A 11111101001111011110101011101000 — —

B 11111101001111011110101011101000 sim (a, b) = 0 Type-1

C 11011101001111011010101011101010 sim (a, c) = 3 Type-2

D 11110101001111001010101011101100 sim (a, d) = 4 Type-3

E 10001011110111000101100101111011 sim (a, e) = 18 Not a clone

(f) Clone Types based on Hamming Distance of simhash

Figure 3.3: Distance based similarity detection

indexing scheme will also accelerate the searching by allowing a search window range (1-bit count in

search item SimThreshold). For example, when SimThreshold = 5 and the number of 1-bits in the

search item is 10, then the algorithm will consider comparing fingerprints having 1-bits within a range

from 5 to 15 and ignore others. In Section 3.5 we have shown how this indexing strategy improved the

runtime performance of the clone detection process.

3.3.2 Clone Detection

This phase is responsible for identifying and grouping similar code fragments into clusters, which are called

Clone Clusters. The grouping is done based on the Hamming Distance among the simhash values of code

fragments extracted from the codebase, and the value of SimThreshold controls the boundary of a Clone

Cluster. The process is similar to a typical data clustering algorithm that partitions the data based on the

34

(a) Final organization of simhash data

Fragment Lines No. of 1-Bit

A 7 21

B 7 21

C 7 20

D 8 19

E 6 19

(b) Indexing properties for frag-
ments A-E from Figure 3.3

Figure 3.4: Indexing strategy used in SimCad

similarity of individual records; the more similar the data, the more likely that they belong to the same

cluster. The main goal is to identify clusters that maximize the inter-cluster distance and minimize the

intra-cluster distance so that we obtain clearly distinct groups of similar entities. Therefore, in this case,

once the simhash values for all the code fragments are available, the problem of detecting code clones is

essentially clustering the simhash values so that, in a cluster, the pair-wise similarity distance remains below

to a pre-defined threshold value, SimThreshold, while restricting the cluster size to be no less than another

pre-defined value, MinClusterSize. Figure 3.3 represents an example scenario showing how the similarity

detection mechanism works in the proposed approach. Note that, the example scenario uses 32-bit hash

fingerprint. However, in the actual experiment we have used 64-bit hash. In summary, a simhash dataset S

of size N is defined as:

S = {si}Ni=1 (3.1)

where si is the simhash of a code fragment.

For any pair of simhash values in S, the pair-wise distance is:

Dij = hamming distance(si, sj) (3.2)

The output of the algorithm is a cluster set C of size R such that:

C = {ci}Ri=1 (3.3)

where cluster c is a subset of simhash data elements sj of size L (MinClusterSizeLN):

c = {sj}Lj=1 (3.4)

such that, for any pair of simhash values in cluster c,

∀ (i, j) ∈ (1 · · ·L) : Dij ≤ SimThreshold (3.5)

35

Algorithm DBSCAN(S, eps, minPts)

S: set of data item
eps: distance threshold
minPts: minimum cluster size

1. for each unvisited data s in dataset S
2. mark s visited
3. N = getNeighbours (s, eps)
4. if(sizeOf(N)) >= minPts
5. C = a new cluster
6. expandCluster(s,N,C, dt,minPts)

(a)

expandCluster(s, N, C, eps, minPts)

s: a data item
N: set of neighbors for s
C: data cluster
eps: distance threshold
minPts: minimum cluster size

1. add s to C
2. for each data s’ in N
3. if s’ is not visited

4. mark s’ visited

5. N’ = getNeighbours (s’, eps);
6. if(sizeOf(N’)) >= minPts

7. N = N joined with N’

8. if s’ is not yet member of any cluster

9. add s’ to cluster C

(b)

Figure 3.5: DBSCAN (from [48]) algorithm

Thus, the results of the clustering algorithm over simhash values imply that, similar code fragments are

grouped into the same cluster (or form their own cluster), which can be considered as a Clone Cluster/Clone

Group.

The value of MinClusterSize is set to 2 and the value of SimThreshold is varied as required. For example,

a SimThreshold = 0 identifies exact clones and a SimThreshold > 0 identifies renamed and near-miss

clones. Note that the higher the value of SimThreshold the higher the possibility of false positive results (i.e.,

not an actual clone pair/group). We can empirically determine a cap for SimThreshold by evaluating the

results at different increasing values until the presence of false positives in the detection result is acceptable.

Section 3.5 describes the details of this process.

In this experiment, a popular density based clustering algorithm named DBSCAN [48] is used. Here, the

formation of a cluster is based on the notion of density reachability. Basically, a point q is directly density-

reachable from a point p if their pair-wise distance is no greater than a given distance ε−neighborhood, and

if p is surrounded by sufficiently many points such that one may consider p and q to be part of a cluster.

Figure 3.5 shows the pseudo-code of the algorithm. It requires two parameters: ε−neighborhood (mentioned

as eps in Figure 3.5, which we call SimThreshold in the proposed approach) and a minimum cluster size in

number of points (mentioned as minPts in Figure 3.5, which we call MinClusterSize). The algorithm starts

with an arbitrary starting point that has not been visited. This point’s ε− neighborhood is searched, and if

it contains sufficiently many points, a cluster is started. Otherwise, the point is labeled as noise. This point

might later be found in a sufficiently sized cluster of a different point and hence is made part of that cluster.

In summary, the output of DBSCAN is some grouping of similar simhash values based on their Hamming

Distance. Therefore, using this grouping we will get all the groupings of similar code fragments, i.e., all the

Clone Clusters.

36

3.3.3 Output Generation

From the previous phase, we saw that the detection algorithm delivers clone detection output as lists of Clone

Clusters each containing more than one code fragment (in its original form from the source code and its start

and end line location in the file it is from along with the name of the file) which are pair-wise similar to each

other. Additional post-processing steps might be required in some cases to filter out some type of clones from

the output. The output is in XML format which is convenient for displaying as a webpage using XSLT4 or

for importing into a clone visualization tool.

3.4 Runtime Complexity of the Process

In this section, the runtime complexity of the overall process is discussed. As mentioned in the previous

section, the process includes three phases: pre-processing, detection and output generation. The source

code pre-processing and output generation time is linear to the size of the codebase. For the additional two

pre-processing operations (mentioned in Section 3.3), generation of simhash requires O(q) time where q is

the number of tokens in the code fragment for which simhash is being calculated and thus for the complete

codebase overall complexity would be O(n.q), where n is the number of code fragments extracted from the

codebase. The indexing setup complexity is O(n) since this step is also linear with respect to the input. The

detection time of SimCad depends on the DBSCAN algorithm that visits each of the n (to be more exact, the

remaining non-clustered) data points of the dataset, possibly multiple times (e.g., as candidates to different

clusters). However, the time complexity is mostly governed by the number of getNeighbours() queries (cf.

Figure 3.5(a) - line 3, Figure 3.5(b) - line 5) that is executed for each data point. If a binary search scheme

can be used that executes such a neighbourhood query in O(logn), an overall runtime complexity of O(nlogn)

is obtained [48]. In the proposed approach, the simhash values of the code blocks cannot be organized so

that a binary search can be applied; instead a two level indexing scheme has been introduced to speed up the

neighbour search query. First, by the size in lines of code and then by the number of 1-bits in the fingerprint;

details of which was discussed in the previous section. For Type-1 and Type-2 clones, the search query

requires O(1) for the 1st level index, O(1) for the 2nd level index and O(m max) for a linear search where

m is the number of elements/fragments that share the same number of 1-bits in their hashes. Therefore, the

overall runtime complexity is O(n ∗mmax). Here, the maximum value of m could be n but only when all the

code fragments have the same number of lines and all the corresponding simhash values contain the same

number of 1-bits, which is extremely rare. On average, m can take a value of (n/(avg (l) + 64)), where l is

the size of a code fragment in lines. For Type-3 clones, the search query requires O(l) for the 1st level index

where l is the size of a code fragment in lines (note: the value of l � n for a large system and typically has

a maximum value not exceeding a couple of hundreds), O(k) for the 2nd level index where k (0 ≤ k ≤ 64)

4http://www.w3.org/TR/xslt

37

Table 3.1: Subject Systems Used in Our Experiment

Subject Systems Version Language Physical-LOC URL

Eclipse-jdt 3.6.2 Java 289678 www.eclipse.org/jdt/core/

Jboss-AS 5.1.0 Java 563585 www.jboss.org/jbossas/

Firefox 2.0.0.4 C 2711444 ftp.mozilla.org/pub/mozilla.org/firefox

Linux 2.6.38 C 15720527 www.kernel.org

is the number of 1-bits in the hash and O(m max) for a linear search where m is the number of elements

that share the same number of 1-bits in the hash and thus the overall runtime complexity is the same as

O(n ∗m max).

3.5 Implementation, Analysis and Evaluation

This section summarizes the implementation and execution of SimCad, the correctness measure of the detec-

tion, the evaluation of the detection results over four open source projects (cf. Table 3.1), the performance

comparison with the original tool NiCad and finally some additional enhancements are suggested. The case

studies were performed on a Linux OS (Ubuntu 10.10), which is running on a desktop PC with an Intel Core

i7 3 GHz processor and 4 GB of RAM. We have implemented the proposed algorithm in Java. The size of

simhash we used was 64-bit. This is good enough to be represented by the Java long data type, which is also

a 64-bit, signed two’s complement integer. Using a 32-bit hash improves the pre-processing and detection

time to some extent. However, precision was found very low because of increased false positive detection

even with lower SimThreshold values. Granularity was chosen both at the function and block levels.

3.5.1 Detecting different types of clones using SimCad

The SimCad tool can be configured to detect different types of clones, individually or all at once. To detect

only Type-1 clones, the value for SimThreshold is set to 0, i.e., the Hamming Distance between two simhash

values is 0. Thus, simhash values of a potential Type-1 clone pair must be equal and only exact copies of code

fragments will have equal simhash values. No source normalization (identifier/variable renaming) is required

during the pre-processing phase for the detection of Type-1 clones except pretty-printing of the code. To

detect Type-2 clones, the SimThreshold is also set to 0, but additional source normalization [147] is required

over the pretty-printed source in the pre-processing phase in order to avoid the changes due to renaming of

identifiers and/or function names. Note that, in this case the output will also contain Type-1 clones. The

original, non-normalized source code is used to identify and filter out Type-1 clones and find the accurate

Type-2 clone count.

To detect Type-3 clones, SimThreshold is set to an optimum value called MaxSimThreshold, which has

been determined through an empirical process that will be described in the next subsection. Source normal-

38

Table 3.2: Summary of Clone Detection Setup for SimCad

Runtime Parameter Value Found Empirically

MinClusterSize 2 No

MinSimThreshold 0 No

MaxSimThreshold 12 Yes

Simhash size 64-bit Yes

Granularity fixed (function/block) No

(a)

Clone Type SimThreshold Source Normalization Post processing

Type-1 0 No No

Type-2 0 Yes Yes, removal of Type-1

Type-3 MaxSimThreshold Optional, yes will yield

better results

Yes, removal of clone class of

Type-1 and Type-2

All at once MaxSimThreshold Optional, yes will yield

better results

No

(b)

ization is optional during the pre-processing phase, but applying normalization will yield better detection

results. Clone clusters containing only Type-1 and Type-2 clones are filtered from the output to get the exact

count of Type-3 clones. Table 3.2b summarizes the complete setup for detecting different types of clones.

3.5.2 Finding the optimal value for SimThreshold

In the clustering algorithm, SimThreshold is used as a limit of acceptance for the neighbour search query (cf.

eps in Figure 3.5(a) - line 3, Figure 3.5(b) - line 5) that looks for similar code fragments with respect to a

candidate fragment (s in Figure 3.5(a) - line 3, Figure 3.5(b) - line 5). As noted earlier, the higher the value

of SimThreshold, the more Type-3 clones will be detected. But there is a limit to this value over which the

algorithm will start including false positive clones in the detection results (cf. Figure 3.6). So the optimal

value is a value that maximizes the detection of Type-3 clones and minimizes the presence of false positives

in the detection result. Another significant finding was that the optimum value for SimThreshold is not the

same for all candidate code fragments (the fragment for which a neighbour search query is performed in the

detection algorithm) of all sizes, i.e., it is size sensitive and choosing a larger value for smaller candidate

fragments will allow the algorithm to pick some totally dissimilar code fragments as a cluster member.

Figure 3.6 shows the distribution of the optimal threshold values for different size groups of fragments

based on the two smaller (to make manual verification easier) projects among the four test projects used

in this experiment. For each of the line size groups, we performed manual analysis to identify the presence

39

Figure 3.6: Relation between fragment sizes vs. SimThreshold

and count of false positives in the detection results. In an implementation of the proposed approach, the

maximum allowed value for SimThreshold was found to be 12. However, it is clear from the graph that for

smaller size code fragments the optimal threshold value is also smaller and for larger sizes it can have a larger

value. This dynamic nature of SimThreshold has been incorporated into the implementation of SimCad,

i.e., the threshold value for candidate code fragment is adjusted with respect to its size at runtime when it

searches for its neighbour code fragments. For example, when the algorithm executes the neighbour search

query using the instruction getNeighbours (s, eps) (cf. Figure 3.5), if the size of s, |s| is between 5-7 lines,

the value of eps is set to 7; if |s| is between 8-10 lines, eps is set to 8 and so on.

3.5.3 Measurement of correctness in clone detection

In this study, a measure of correctness of SimCad has been done on the detection result, which is an important

step for the reliability of any clone detection approach. The quantitative evaluation used here is based on

three criteria: precision, recall and f-measure. Precision is the measure of actual clones in the detection result,

recall is the measure of clones detected among the available clones and finally f-measure is the measure of a

test’s accuracy interpreted as a weighted average of precision and recall; for all the cases the score reaches its

best value at 1 and worst at 0. Following are the three equations for the measurement of correctness criteria.

precision =
reference ∩ detected

detected
(3.6)

recall =
reference ∩ detected

reference
(3.7)

f −measure =
2 ∗ precision ∗ recall
precision + recall

(3.8)

To evaluate the correctness of SimCad ’s detection result, we used a variant of the mutation/injection

framework for evaluating clone detection tools as proposed by Roy and Cordy [149]. Instead of completely

automating the framework, we followed a semi-automated approach and a test was carried out with function

40

Table 3.3: Mutation-based Effectiveness of SimCad

Type-1 Type-2 Type-3 Overall

clone

Reference 20 30 50 100

Detected 20 30 49 99

Missed 0 0 1 1

False positive 0 0 0 0

effectiveness

precision 1 1 1 1

recall 1 1 0.98 0.99

f-measure 1 1 0.989 0.99

clones only. We chose a small sized open source system (Apache-Ant) for this test. To create a mutated

codebase, some functions were arbitrarily selected from the original codebase and from those a total of 100

different types of reference clones (cf. Table 3.3) were created manually by copying and/or modifying the code

using diverse change patterns. These reference clones were then injected into original codebase at random

locations that yielded the mutated codebase for the test. The location information of the injected reference

clones was recorded for the future use for a validator program. After building the mutated codebase, we

applied SimCad on it and the clone detection results were analyzed by a validator program that looks for the

reference clones in the result and then measures the values of the correctness criteria defined by equations

1, 2 and 3. Table 3.3 shows the result of the output analysis and the measured values of the three criteria.

From the data, we can see that SimCad correctly detects all the Type-1 and Type-2 reference clones but

failed to detect one Type-3 clone among the 50 Type-3 reference clones. An investigation revealed that

the code modification done while building this reference clone was so much that it went beyond the chosen

maximum SimThreshold value of 12. Now that we know SimCad is working correctly according to this

mutation/injection based test, we next see how SimCad does in comparison with another tool. As we said

earlier, we will compare the performance of SimCad considering NiCad as a benchmark over the same subject

systems in order to find the answers to the research questions defined in Section 3.1. However, before doing

that, we need to come up with equivalent settings for both the tools to make the performance comparison

fair.

3.5.4 Finding detection threshold equivalency between NiCad and SimCad

Here the goal is to compare the performance of NiCad and SimCad with respect to time and the number of

cloned fragments detected. Each of the tools has its own definition of threshold for setting the boundary of

similarity. Similar to SimThreshold in SimCad, detection in NiCad is governed by a threshold value called

UPI-Threshold that puts a limit to the acceptable dissimilarity between two code fragments in a clone cluster.

The value ranges from 0 to 1, where 0 means exactly similar and 1 means totally dissimilar. For SimCad, it is

41

SimThreshold, the detail of which was given in Section 3.3. A value of 0 for both the thresholds means exact

similarity whereas a value greater than zero means some dissimilarity is acceptable; the larger the value the

more dissimilarity is acceptable for being a member of a clone cluster.

From Table 3.2b, we see that SimCad uses a threshold value 0 for both Type-1 and Type-2 clones, which

is the same for NiCad. Thus, comparing the results of NiCad and SimCad is easier in these two cases.

However, for Type-3 clones, both the tools use a threshold value greater than 0 and hence to conduct a fair

comparison in this case an equivalency between these two thresholds needs to be defined. To do that, we

first detect all the three types of function clones using SimCad with SimThreshold = 12, which we found

to be the highest optimum threshold value (cf. Figure 3.6). The output has been analyzed by a separate

program, which measures the coverage of the clones under the definition of NiCad’s UPI-Threshold with

increasing threshold values starting from 0. It has been found that, at UPI-Threshold = 0.4 almost all the

clones (detected by SimCad at SimThreshold = 12) are covered and hence in this experimental setup two

thresholds are considered as equivalent to each other. However, NiCad considers 0.3 as a standard value for

UPI-threshold in Type-3 clone detection and here we came up with an equivalent threshold value more than

that standard value. This is an important decision to make since this might be a threat to the validity of the

proposed approach. For the tool comparison, we have decided to go with the value 0.4 for obvious reasons.

Equivalency in the other direction could have used in this experiment, i.e., consider finding an equivalent

SimThreshold value corresponding to the standard UPI-Threshold value which is 0.3. However, in that case,

a lower or higher value than 12 for SimThreshold would make SimCad miss potential Type-3 clone or reduce

clone quality by including more false positives in detection result, and neither of which are expected. With

SimCad, the target is to get as many near-miss clones as possible while minimizing the presence of false

positives in the detection results since we are considering this approach to be effective for large scale Type-3

clone detection. Thus, we have decided to continue the comparison with the value 0.4 for the UPI-Threshold.

Below we will present the comparative performance analysis of both the tools running on these two equivalent

thresholds.

3.5.5 SimCad vs. NiCad: head-to-head comparison

The study examines the effectiveness of simhash by evaluating SimCad ’s detection capability. The perfor-

mance of SimCad in terms of detection time and number of clones has been compared with NiCad based on

four medium to large scale open source applications. The test data was taken with an equivalent similarity

measurement setting for both the tools defined in Section 3.5.4. Let us look at the detection time first.

Table 3.4 and Table 3.5 show the comparison on detection time between NiCad and SimCad for three types

of function and block clones respectively. Since we are trying to compare the efficiency of the detection

engine of both the tools, the time data presented here is for the detection process only (excluding any pre

or post processing time). The experimental outcome clearly shows that the proposed approach significantly

outperforms NiCad in detection time for all the three types of clones.

42

Table 3.4: SimCad vs. NiCad function clone detection time (ms)

Subject

Systems

No. of functions of

size 5 lines or more

Type-1 Type-2 Type-3

NiCad SimCad NiCad SimCad NiCad SimCad

Eclipse-jdt 9832 309 6 313 7 7592 655

Jboss-AS 17601 667 8 760 10 15102 2737

Firefox 15285 358 5 364 6 32324 2392

Linux 198146 13343 713 14319 720 7660091 625563

Table 3.5: SimCad vs. NiCad block clone detection time (ms)

Subject

Systems

No. of functions of

size 5 lines or more

Type-1 Type-2 Type-3

NiCad SimCad NiCad SimCad NiCad SimCad

Eclipse-jdt 10903 1383 8 389 8 15022 1255

Jboss-AS 31086 2213 10 2238 12 76022 5433

Firefox 39990 1972 9 1985 10 195215 11382

Linux 418605 250050 7851 256117 4865 20702947 2194557

Table 3.6: SimCad vs. NiCad function clone fragment count

Subject

Systems

Type-1 Type-2 Type-3 All at once

NiCad SimCad NiCad SimCad NiCad SimCad NiCad SimCad

Eclipse-jdt 555 555 1719 1719 3190 3319 3613 3802

Firefox 1273 1273 1679 1679 3593 3741 4317 4614

Jboss-AS 1463 1463 2102 2102 6780 6925 7806 7991

Linux 2860 2860 18230 18230 40150 41114 52970 54534

Table 3.7: SimCad vs. NiCad block clone fragment count

Subject

Systems

Type-1 Type-2 Type-3 All at once

NiCad SimCad NiCad SimCad NiCad SimCad NiCad SimCad

Eclipse-jdt 2002 2002 2863 2863 4054 4211 5749 5913

Firefox 5962 5962 7250 7250 12726 12996 14019 14318

Jboss-AS 5674 5674 6847 6847 10148 10353 10511 10957

Linux 53967 53967 63458 63458 142638 143479 160988 162043

43

Table 3.8: Common and unique clones in NiCad vs. SimCad

Subject

Systems

Function Clone Block Clone

Common Unique Common Unique

NiCad/SimCad NiCad SimCad NiCad/SimCad NiCad SimCad

Eclipse-jdt 2804 386 515 3795 259 416

Firefox 3233 360 498 12297 429 699

Jboss-AS 6494 286 431 9788 360 565

Linux 38740 1410 2374 141086 1522 2393

Note that, for a large scale system such as the Linux Kernel, SimCad is 19 times faster than NiCad for

Type-1/Type-2 clones and 12 times faster for Type-3 clones in case of functional clone detection. Similarly,

for block clone detection on Linux, SimCad is 31 times faster than NiCad for Type-1/Type-2 clones and 9

times faster for Type-3 clones.

Table 3.6 and Table 3.7 show the comparison in number of detected function and block clone fragments

respectively. We see that both the tools are equal for Type-1 and Type-2 clones but differ for Type-3 clones,

and again SimCad performs slightly better than NiCad in this case. Analyzing the outcome of Type-3 clones

for both the tools, we have identified that, although SimCad detects more Type-3 clones than NiCad, it does

not cover all the clones detected by NiCad. That means under the equivalent threshold setting, each of the

tools is detecting some unique clones that are undetected by the other tool. Common and unique Type-3

clone fragment count for both tools is shown in Table 3.8. We analyze the unique clone fragments for both

the tools and investigate the cause of why one tool detected some of the clones that the other tool failed.

3.5.6 Analyzing the unique clones

Table 3.9 presents the categorization of unique clone fragments detected by SimCad with different UPI-

Thresholds. The important observation from the data distribution presented here is that, NiCad should have

detected the clones falling under UPI-Thresholds from 0.1 to 0.4 since the UPI-Threshold for NiCad was set

to 0.4 for Type-3 clone detection. The likely reasons are summarized as follows:

i) Single data reference for cluster: NiCad uses a single data reference for cluster membership. Therefore,

it might miss those potential clones which fall under the UPI-Threshold in comparison to other members

of the cluster but not for the reference member.

ii) Coarse grain change detection: NiCad uses the UNIX Diff in the detection engine to measure the

dissimilarity between two code fragments. Diff works on line level changes, i.e., it does not care

whether the change in a line is small or significant. Thus if there are small changes in multiple lines

of a code fragment, the dissimilarity measure might go beyond the accepted threshold limit which will

cause the fragment to be undetected by NiCad.

44

iii) Sensitive to ordering of line: The Diff command puts another limitation on NiCad since it is sensitive

to line ordering. Therefore, re-ordering among the statements of a code fragment might result in a

high dissimilarity value that might cause the fragment to be undetected. In contrast to NiCad, SimCad

considers each of the cluster members as cluster references, uses fine grained (token level) change

detection and is insensitive to instruction reordering except for Type-1 clones. Thus, the proposed

approach overcomes some of the limitations in NiCad while taking much less time to detect the clones.

Table 3.10 shows the number of clones that are not detected in SimCad but detected in NiCad with

equivalent settings and categorized by different SimThresholds. These clones were detected in NiCad

with UPI-Threshold 0.4, but it is clear from the table that those were not detected in SimCad because

they were beyond the equivalent SimThreshold value 12. Note, for each of these clones, the minimum

distance with a cluster member was considered for categorization of that clone fragment. For example,

in a clone cluster, if the distance of a clone fragment x1 from other cluster members x2, x3, x4 and x5

are computed as 14, 13, 17 and 19 respectively, then x1 is categorized (in Table 3.10) under 13. From

Table 3.10, it is clear that the majority of the undetected clones are just above the SimThreshold value

of 12. Hence, by increasing the SimThreshold value those clones can be detected. However, according

to an earlier analysis (cf. Figure 3.6) a threshold value greater than 12 will increase the chances of

false positive detection. As a solution to this problem, we have implemented a couple of additional

techniques to assist the original detection process, which allow SimCad to use a high SimThreshold

value while minimizing the presence of false positives. Those are presented as follows.

(a) Multiple simhash: If we look at the simhash algorithm (Figure 3.2, line 5), it uses a simple hash

function to compute a hash for each token. In this study which was the Jenkin Hash Function. It

is possible to use another simple hash function here to generate a second simhash value for each

fragment. Note that the second simhash will also hold the basic principle of simhashing although

it might be a completely different hash value with respect to the first one and this second simhash

must be compared with the second simhash of another fragment and never with the first one.

Thus, a combination of these two simhash values will allow choosing a higher SimThreshold value

while minimizing the presence of false positives.

We have used a variant of the Jenkin hash in order to generate the second simhash and then

again gone through the procedure discussed in Section 3.5.2 to determine the optimum value for

SimThreshold. This time the highest value was found to be 16. Now, if we see the statistics in

Table 3.10, it is clear that with this SimThreshold value, SimCad does not cover 100% of the

unique clones detected by NiCad (it is still missing those at SimThreshold 17 and 18) but it does

cover most of them (95-98%). Detection with multiple-hash also costs additional processing time

in detection. From the experiment it has been found that this double simhash version requires 25-

30% more time than the original one. The detection time comparison among the single simhash

based SimCad, dual simhash based SimCad and NiCad is shown in the first four columns of

45

Table 3.9: Unique clone fragments in SimCad with different UPI-Thresholds

Subject
Systems

Function Clone Block Clone
UPI-Threshold UPI-Threshold

0.1 0.2 0.3 0.4 0.5 0.6 0.7 total 0.1 0.2 0.3 0.4 0.5 0.6 0.7 total

Eclipse-jdt 0 8 162 221 88 26 10 515 0 3 98 196 82 29 8 416
Firefox 0 6 113 250 86 29 14 498 0 4 185 351 97 48 14 699

Jboss-AS 0 2 125 208 58 26 12 431 0 3 134 248 124 39 17 565
Linux 0 16 576 1085 448 182 67 2374 0 22 671 992 587 72 49 2393

Table 3.10: Unique clone fragments in NiCad with different SimThreshold

Subject
Systems

Function Clone Block Clone
SimThreshold SimThreshold

13 14 15 16 17 18 total 13 14 15 16 17 18 total

Eclipse-jdt 164 96 68 42 14 2 386 108 65 46 28 10 2 259
Firefox 124 72 83 66 9 6 360 96 88 145 78 14 8 429

Jboss-AS 98 62 67 44 10 5 286 98 93 82 64 17 6 360
Linux 713 316 218 92 44 27 1410 713 348 266 114 49 32 1522

Table 3.11. We can see, despite additional processing, SimCad with dual simhash still performs

better than NiCad.

(b) Additional text-based comparison in the detection process: In the detection algorithm, distance-

based hash similarity comparison at higher thresholds can be assisted by some additional text-

based comparison (for example the diff algorithm) to detect some potential clones that are unde-

tected by SimCad with its current settings. This text- based comparison will be applied condi-

tionally. For example, with respect to the categorization presented in Table 3.10, the text-based

comparison will be applied to check similarity only when the distance between two simhash falls

between 13-18. We have integrated an implementation of Myer’s [134] diff algorithm in the de-

tection process of SimCad and used it to measure text similarity during the condition mentioned

above. With this approach, SimCad was successfully able to detect all the unique clones detected

in NiCad (cf. Table 3.10). Table 3.11 shows the time comparison of SimCad including diff (last

column) with the single and dual simhash based SimCad and NiCad. We see that the approach

takes 60-65% more time than the original version of SimCad. Although it requires a bit more time

than the multiple simhash based approach, it is still much faster than NiCad.

These workarounds can be seen as a trade-off between the time efficiency and detection accuracy

of the proposed approach for Type-3 clone detection, and can be applied as per the detection

requirement.

3.5.7 Time performance gain from multi-indexing

To measure the efficiency of our proposed multi-level indexing strategy we have implemented the following

four versions of SimCad with different indexing strategies:

46

Table 3.11: Time (ms) comparison of SimCad including diff with others in Type-3 function clone
detection

Subject

Systems

NiCad SimCad with

single-simhash

SimCad with

dual-simhash

SimCad with single-

simhash and diff

Eclipse-jdt 7592 655 845 1106

Firefox 32324 2392 3011 4075

Jboss-AS 15102 2737 3388 4642

Linux 7660091 625563 769432 1000846

Table 3.12: Time (ms) comparison for different indexing strategies

Subject Systems
Type 1 Function Clone Type 3 Function Clone

Naive L-index B-index M-index Naive L-index B-index M-index

Eclipse-jdt 2712 281 266 6 5564 4182 5041 655

Jboss-AS 4270 462 430 8 6419 5704 6235 2737

Firefox 6645 657 615 5 10153 7877 9532 2392

Linux 218761 28975 27537 713 2239618 1815249 2033079 625563

Naive: No indexing

L-index: Line based index only

B-index: Bit based index only

M-index: Multi (both line and bit based) index

Table 3.12 summarizes the detection time for these variants of SimCad based on the indexing strategies. It

is clear from the data that the multi-level indexing used in the proposed approach clearly sped the detection

proccess up to a notable extent.

3.5.8 Addressing the research questions

We see that the experimental results and analysis strongly supports the effectiveness of simhash’s use in the

detection of exact and near-miss clones in a software system. The proposed simhash based approach allowed

SimCad to work significantly faster than NiCad, which is a challenge for a large system such as the Linux

Kernel. SimCad also overcomes some of the shortcomings of NiCad that allowed SimCad to be able detect

some new potential Type-3 clones. On the other hand, SimCad has its own shortcomings for Type-3 clone

detection, which can be overcome with a couple of additional techniques. In summary, simhash:

1. is feasible to be used for software clone detection,

47

2. enables faster detection of clones in large software systems, and

3. has some limitations in detecting Type-3 clones that can be overcome with a few additional techniques.

3.6 Related Work

Fingerprinting techniques have been used in different areas of computing research. In software clone detection

research, a number of approaches used fingerprinting with normalized source code or Abstract Syntax Trees

(ASTs). Johnson [81] presents a detection mechanism that uses fingerprints to identify exact repetitions,

which is not applicable for near-miss clone detection. Chilowicz et al. [34] proposed an approach that uses

hash fingerprints on ASTs. State of the art approaches proposed by Hummel et al. [73] and Li et el. [113] are

also based on statement fingerprints and very good in detecting Type-1 and Type-2 clones. However, since

these techniques do not use a similarity preserving hash, Type-3 clone detection would be hard to support

or not possible at all. Smith and Horwitz [162] present a similarity preserving fingerprinting technique,

while Baxter et al. presents CloneDR [23] uses a hash based AST comparison, both having some success

in detecting Type-3 clones. However, the measure of effectiveness of their approaches in detecting Type-3

clones was not evident from the experimental results they provided. Jiang et al. [78] presents an approach

that uses matching of characteristic vectors on ASTs for identifying clones including Type-3. However, the

claim of the approach being scalable in the case of very large datasets was not clearly explained. In summary,

existing fingerprinting techniques are either incapable or have not been proven effective in the detection of

Type-3 clones and/or are not scalable to large datasets. Type-3 clone detection in large datasets is one of

the main concerns of the proposed approach since for Type-1 and Type-2 clones, there are a number of fast

and elegant solutions available [73, 88, 113], but for Type-3 clones success is limited [151, 151].

Recently, Yuan and Guo developed Boreas [182], a scalable token-based clone detector, especially designed

to detect those clones with swapped lines or added/removed tokens. They introduce a novel counting-based

method to define the characteristic matrices, which are able to describe the program segments distinctly and

effectively for the purpose of clone detection. A code clone detection approach based on formal methods

is proposed by Cuomo et al. [40], where Process Algebra 5 was used for equivalence checking to detect

whether two fragments of code are clones. Their approach can detect Type-1 and Type-2 clones only. Abd-

El-Hafiz [1] proposed a metrics-based data mining approach for clone detection. A data mining algorithm,

Fractal Clustering [16], is used on some metrics (collected for all functions in the software system) to partition

the software system into a relatively small number of clusters. Each of the resulting clusters encapsulates

functions that are within a specific proximity of each other in the metrics space from which clone classes,

rather than pairs, are extracted. When the methods or blocks in source code are partially duplicated,

existing metric-based techniques and text-based techniques using the LCS algorithm unable to detect code

5http://en.wikipedia.org/wiki/Process calculus

48

clones. Murakami et al. [133] proposes a new method that detects those gapped code clones using the Smith-

Waterman algorithm [161] that can identifying similar alignments between two sequences even if they include

some gaps.

Outside the area of clone detection, Google is using simhash for finding near duplicate webpages [64].

Gong et al. [60] presents an approach for detecting near-duplicates within a huge repository of short messages.

Similarly, SimFinder [139] is a fast algorithm proposed by Pi et al. to identify all near-duplicates in large-scale

short text databases. The experimental outcome in this study shows that the simhash based fingerprinting

has great potential for use in the area of clone detection.

3.7 Summary

Detection of clones provides several benefits in terms of maintenance, program understanding, reengineering

and reuse [108]. We took an existing code cloning system and improved the time performance by an order

of magnitude using simhash and demonstrated its feasibility for use with large systems such as the Linux

Kernel. As well, we adapted simhash to a code cloning framework and demonstrated its viability for the

clone detection of Type-1, Type-2 and Type-3 clones in large-scale systems. The experiment confirms that

diff-based comparison (as used in NiCad) works well for finding Type-3 clones, which was also observed by

Tiarks et al. [169]. However, this comes with both a cost in time complexity, and lower recall (for the possible

optimizations used in the comparison). On the other hand, simhash has significant potential for the fast and

large scale Type-3 clone detection but comes with the increased possibility of false positive clones. However,

we have shown that it is possible to overcome the limitations of simhash using techniques like multiple hashing

or a conditional diff-based comparison. We believe that this study supports a call for further research in

using/adapting simhash for clone detection research or similar studies.

49

Chapter 4

SimCad: A Highly Scalable and Configurable Clone

Detection Tool

4.1 Introduction

Are clones harmful in software development and evolution or are they not? Despite a decade of active

research in software clone, arguably there is no such conclusive finding that significantly favors one argument

over the other. However, researchers commonly agreed that in order to make best use of the good aspects

of code cloning and to reduce the possible harmful effects, we need an efficient and cost-effective way to

manage clones. Although, a number of clone detection tools have been proposed in past studies, only a few

of them can perform well against current diverse requirements such as fast detection of near-miss clones and

adaptation/integration of a third party clone detection tool to a clone management system. Thus the need

for designing better clone detection techniques is still considered an important problem. Considering that as

a motivation, SimCad is developed as a fast and scalable clone detection tool that works well in detecting

near-miss clones even for a large-scale dataset and non-source code data.

4.2 Motivation

Although there has been considerable research in the field of clone detection over the past years, detection

of Type-3 clones is still an open research issue due to the inherent vagueness in their definition [169]. A

recent study by Saha et. al [157] shows that Type-3 clones should be managed more carefully than Type-1

and Type-2 clones due to their more inconsistent nature.

Existing popular techniques [23, 88, 113] have several deficiencies. Although these tools are good in

detecting Type-1 and Type-2 clones, many of them do not support the detection of Type-3 near-miss clones,

or not scale adequately to handle clone detection in large systems [78]. Tools like CCFinder [88], Dup [11],

ConQAT [84] are frequently used in both academia and research. They showed the usefulness of the fast speed

with which suffix trees are used in detecting clones. Falke et al. [50] shows, suffix tree based tools can detect

type-1 and type-2 faster, but require additional post-processing step in detecting type-3 clones [169]. Other

approaches like CCDIML [142], CloneDR [23], SimScan [29] are in general computationally more expensive

50

Figure 4.1: SimCad : Clone Detection Workflow

due to syntax-tree comparison and thus exhibit poor runtime performance in case of large scale systems.

Recent AST based tool Asta [49] improved runtime performance by using structural abstraction of arbitrary

subtrees of an AST, while JCCD [28] use parallel detection process that significantly improves the total

detection time. Although, PDG-based approaches Scorpio [67], DUPLIX [105] can partly handle statement

reordering, insertion, deletion and non-contiguous code, there runtime performance is not not good [141],

and thus no scalable to large size programs [95].

In the previous study [172], simhash fingerprint based hybrid clone detection approach has been found

effective in detecting both exact and near miss clones, especially for fast detection of clones in large scale

project. Outcome of this study and the demand of having a fast & scalable near-miss clone detection tool

motivated us to build a fully fledged standalone clone detection tool from the research prototype. The tool

has been made highly configurable to be used for detecting clones in both source code and non-source code

based data.

4.3 The SimCad Clone Detector

SimCad features a standalone clone detection tool evolved from our earlier research [172] where effectiveness

of simhash (a similarity preserving data hashing technique) [33] has been studied for fast detection of clones

in source code. The prototype implementation was found effective especially for quick detection of near-

miss clones in large-scale software systems. Based on that prototype, a full-fledged clone detection tool has

51

<clone group groupid="21" nfragments="2">
<clone fragment startline="160" endline="164" file="/src/draw/util/StorableInput.java">
<![CDATA[

private void map (Storable storable) {
if (! fMap.contains (storable)) {
fMap.add (storable);

}
}
]]>

</clone fragment>
<clone fragment startline="42" endline="48" file="/src/draw/util/StorableOutput.java">
<![CDATA[

private void map (Storable storable) {
if (! fMap.contains (storable)) {
fMap.add (storable);

}
}
]]>

</clone fragment>
</clone group>

Figure 4.2: Sample Clone detection result in XML

been engineered that we present here as SimCad. It employs a data clustering algorithm with a multi-level

index based searching that enables fast detection of clones. Figure 4.1 gives an overview of end-to-end clone

detection process in SimCad. The whole process includes three phases named as: Pre-processing, Detection

and Output generation. The pre-processing phase again consists of the following four sub-process: Extraction,

Normalization, SimHash generation and Indexing; once done altogether, the result (index) can be reused as

many times as needed to perform clone detection operation. Technical details of all the steps can be found

in an earlier study [172].

SimCad is a structured clone detection tool. That is, it detects clones as code fragments (e.g., function

or code block), the boundary of which are predefined during the source code pre-processing step. The tool

provides both command-line and graphical user interface for its user. Detection outcome can be varied by

providing input to a number of parameters exposed through the user interface. There is also an external

configuration file named simcad.cfg.xml that provides more configurable parameters with their default values.

User can modify these parameter values in order to fine tune the overall clone detection process. The clone

detection result is exported as an XML file to a location specified by the user, otherwise to a system defined

location relative to the given source location. An sample content of such XML file is shown in Figure 4.2.

It also provides a XSLT1 (Extensible Stylesheet Language Transformations) based visualization of clones in

HTML5 compatible browser (Figure 4.3).

1http://www.w3.org/TR/xslt

52

Figure 4.3: Visualization of clones detected by SimCad in HTML5 compatible browser

4.3.1 Command-line User Interface (CUI) of SimCad

SimCad provides the following two commands for detecting clones in a target system: simcad2 (Figure 4.4a)

and simcad2xml (Figure 4.4b). The command simcad2 takes root folder of the subject system and source code

language name of that system as two mandatory inputs. The language parameter is required by SimCad to

use appropriate TXL2 scripts for extraction and normalization of code fragments from original source during

pre-processing step. Currently it supports four popular programming languages namely: C, Java, Python

and CSharp. An example of detecting clones using the command simcad2 is shown below for a project named

’dnsjava’:

2www.txl.ca

53

$./simcad2 -help

Usage: simcad2 [-version] [-v] [-f] [-help] [-gx] [-i item to search] -s source path -l language

[-g granularity] [-t clone type] [-c clone grouping] [-x source transform]

[-o output path]

-version : display simcad version
-v : verbose mode, shows the detection in progress
-f : force detection to discards previous pre-processed

resources if exist
-help : print this run instruction
-gx : display graphical user interface
language : name of the source language [c | java | cs | py]
granularity : source fragment type [(block | b) | (function | f) :

default = (function | f)]
clone type : types of clone to seek [1 | 2 | 3 | 12 | (23 | nearmiss)

| 13 | (123 | all) : default = (123 | all)]
clone grouping : grouping of clones [(group | cg) | (pair | cp) :

default = (group | cg)]
source transform : source transformation strategy [(generous | g) | (greedy

| G) : default = (generous | g)]
item to search : absolute path to file/folder contains search candidates
source path : absolute path to source folder
output path : absolute path to output folder [default =

{source path} simcad clones]

(a) Command simcad2

$./simcad2xml -help

Usage: simcad2xml [-version] [-v] [-f] [-help] [-gx] [-n] -s o source xml [-x t source xml]

[-t clone type] [-c clone grouping] [-o output path]

-version : display simcad version
-v : verbose mode, shows the detection in progress
-f : force detection to discards previous pre-processed

resources if exist
-help print this run instruction
-gx : display graphical user interface
-n : non-exclusive fragments, a fragment might contain in

another bigger fragment
o source xml : absolute path to xml file containing original source

fragments
t source xml : absolute path to xml file containing transformed source

fragments
clone type types of clone to seek [1 | 2 | 3 | 12 | (23 | nearmiss)

| 13 | (123 | all) : default = (123 | all)]
clone grouping : grouping of clones [(group | cg) | (pair | cp) :

default = (group | cg)]
output path : absolute path to output folder [default =

source path simcad clones]

(b) Command simcad2xml

Figure 4.4: SimCad command line intefaces

54

<source file=".../file-1.x" startline="x" endline="y">

fragment 1 text

</source>

...

<source file=".../file-n.x" startline="nx" endline="ny">

fragment n text

</source>

Figure 4.5: Input XML file format for command simcad2xml

$./simcad2 -s /TestSystems/dnsjava -l java

The command simcad2 has a special optional parameter item to search. This parameter takes a file or

folder that contains source code to be searched in a target project. That is, the parameter points to some

source code as search candidates and execution of the command goes for detecting codes similar to the search

candidates in the target project. This opens up a number of interesting possibilities in code and clone search.

For example, user might want to see if some arbitrary code (or anything similar) exists in a target project.

In such case, user needs to provide the arbitrary code location as input to the parameter item to search (i.e.,

the search candidates outside the target project location) and then execute the detection command after

setting the target project. So SimCad in such case essentially works as a source code search engine.

$./simcad2 -i /Documents/Snippet.java -s /TestSystems/dnsjava -l java

Another use case scenario for this command would be localized clone search. That is, detection is per-

formed into a specific region of a codebase to see if that region contains any clone code with respect to the

whole project. Using this command, user can get the service by proving the subset codebase location as an

input to the parameter item to search and choosing the whole project as the target project as follows:

$./simcad2 -i /TestSystems/dnsjava/org/xbill/DNS/utils -s /TestSystems/dnsjava -l java

In the same way, this command could also be used to detect inter-project clones in two difference projects.

In case the user ignores the parameter, detection will go for searching all possible clones inside the target

project.

The next command simcad2xml takes source input through the only required parameter o source xml as

an XML file of a pre-defined format [172] as shown in Figure 4.5. Optionally user can provide a similar XML

file (through parameter t source xml) that contains normalized/transformed version of the original source

data if available, which would yield better detection result for near-miss clones. This interface opens a great

opportunity for SimCad to perform clone detection on any kind of textual data since unlike the previous

command it is language independent.

55

Figure 4.6: GUI corresponds to the command simcad2

4.3.2 Graphical User Interface (GUI) for SimCad

SimCad also provides GUI as a convenient way of using the tool for clone detection. Figure 4.6 shows the

GUI corresponds to the command simcad2 that can be made available using the following command:

$./simcad2 -gx

User can provide the other arguments here as well, but those will be propagated to the GUI as appropriate.

Additionally, the GUI provides a simple clone explorer and clone code viewer (bottom part in Figure 4.6)

that user can choose to display clones (optionally) while performing a clone detection on a subject system.

Similar GUI is also available for the command simcad2xml as shown in Figure 4.7.

4.4 SimCad Usages

This study presents SimCad as a fully fledged hybrid clone detector for both source code and non-source

code based data. Following scenarios illustrate the multi-purpose use of SimCad :

1. Large Scale Clone Detection: SimCad can be used to detect both exact and near-miss (function and

block) clones from large systems of different languages. Currently, SimCad supports four languages

(namely C, Java, Python and CSharp) for its first interface (Figure 4.4a, 4.6) while the second interface

56

Figure 4.7: GUI corresponds to the command simcad2xml

(Figure 4.4b, 4.7) works language independently. For the second interface, input source code has to be

provided in a pre-defined XML format.

2. Random Code Search: SimCad can be used as a code search tool. Given a code fragment as search

candidate (Figure 4.4a, 4.6), SimCad can find all other similar fragments (including Type 3 fragments)

in a given system.

3. Localized/Focused Clone Search: SimCad can effectively be used to check whether a particular region

(e.g., a subfolder, file, a set of files and so on) contains any code clones with respect to the whole

project. In this case, the given region works as a search candidate.

4. Cross-project Clone Detection: It is possible to detect cross-project clones using SimCad. In this

scenario, one project is used as search candidate and the other project is used as target project where

clone is sought. Here, the similar codes that exist in both the system will be reported as clone in the

detection result.

5. Language-independent Similarity Detection: SimCad can be used not only for software code but also

for any project artifacts such as the requirements or help documents by using its second interface

(Figure 4.4b, 4.7). In order to do that, the user needs to create a XML file with target data according

to the format shown in Figure 4.5 and then use this file as an input to the appropriate interface as

57

mentioned earlier. For all the scenarios above (e.g., clone detection, clone search, cross-project clone

detection), this interface can use for any types of artifacts.

4.5 Summary

SimCad is a potential tool to be used in clone detection research and industry. It provides an easy to use

command line interface as well as a convenient graphical user interface (GUI) where a user can explore the

detected clones in a subject system. Using it, clones can be searched locally or in the whole project. Besides,

it can work as a code search engine as well. In this chapter, we have demonstrated various features of SimCad,

explained its different interfaces and outlines multi-purpose use of it in the area of code similarity detection.

SimCad has been published [171] as a versatile tool for detecting clones in diverse situations as well as for

both source and non-source code based data. It is also used in a recent study by Keivanloo et al. [92] to

detect clones in Java bytecode. It is also being used in our research lab for several other ongoing studies.

58

Chapter 5

SimLib: A Customizable API for Portable Code Clone

Detection Service

5.1 Introduction

Applying an existing clone detection tool on data with diverse characteristics and having limited configura-

bility support in such a tool limit the applicability of the tool for both research and industry. In most of the

software clone research, clone detection is the first step prior to doing further analysis. Since most of the pop-

ular tools used in the clone research community are standalone, in order to develop a tool for clone analysis

studies, researchers need to obtain the clone detection results first, typically as text or XML files. Programs

then need to read those files to do further processing. Creating such a program or tools using loosely coupled

components (e.g., a standalone clone detection tool) is inconvenient and has the added difficulty of having

to deal with different clone output formats. In order to avoid such intermediate clone data processing and to

provide a portable and robust clone detection solution, SimLib, a customizable and scalable clone detection

API is developed. This API offers a convenient solution by providing a broad set of configuration facilities to

meet different detection requirements. As well, the library can be integrated with other clone management

tools so that they can directly access clone detection results from memory to avoid the overhead of getting

the results from the output of a standalone tool through a ‘post-mortem’ approach [111].

5.2 Motivation

Over the past decades, clone detection based study happens to be a highly active area in software clone

research. The research trend in the area in recent time is mostly on determining what to do with the clones

when they are detected. A significant portion of the research includes but is not limited to finding ways to

manage clones, gaining more control of their generation and studying clone evolution and their effects on the

evolution of software.

However, as mentioned in previous section, service portability is one of the major issue in use of currently

available state of the art standalone tools in clone analysis and management. Since clone detection is one

important pre-requisite of any clone based research, the API SimLib has been developed as a convenient

59

solution in providing off the shelf clone detection functionality where needed. The API is targed to provice

the following benefits.

• On the fly clone detection

• Re-detection / import-export clone index

• Incremental clone detection

• Direct availability of detection result/no intermediate file processing

• Custom clone filtering

• Custom process injection, for example compiling some analytical report based on the detected clones

• Ready-made clone detection service

• Modular development architecture

• Java based API, portable to any platform

• Easy integration to other tools

• Highly customizable to meet diverse detection requirement

• Extensible by user code integration

5.3 Existing clone detrection API

Deissenboeck et al. [44] developed ConQAT as an integrated framework to detect clones in Simulink/Matlab

models especially in automotive domain. Their clone detection module CloneDetective [84] is available for

use as an API, which is part of the ConQAT framework, works by representing the model as a normalized

multi-graph where labels are assigned to relevant blocks. Biegel and Diehl [28, 27] introduced a novel way for

fast and configurable code clone detection using pipelines. They developed JCCD, a flexible and customizable

AST based clone detection tool in which several cascaded processors perform various steps of clone detection

process. JCCD API parallelizes the detection process using multiple cores.

5.4 SimLib Architecture

The SimLib application interface has been designed on top of a highly modular architecture that facilitates its

extension and use in a fully customized clone detection system including a very fast clone search that can be

used for detecting clones in variety of structured and non-structured data. As shown in Fig. 5.1, it contains a

3-layer architecture: (1) Pre-processing, (2) Detection, and (3) Post-processing. Each layer contains number

60

Figure 5.1: Architecture of SimLib

of configurable components where the user can choose different options from within the library or can create

custom components and link them with the core system using an external SimLib configuration file to address

different needs. Components in each layer are discussed as follows:

5.4.1 Pre-processing

This module covers processing of the detection input source code as collection of soure fragments, generation

of simhash fingerprint for each fragment and finally organize the simhash values using an indexing strategy.

It covers the following APIs.

CloneDataProvider

This is an interface to data provider for managing raw data for clone detection from different data sources.

Following implementations of CloneDataProvider are available in the API.

i. FileSystemDataProvider: Here the data source is standard source code file. The implementation uses

61

a TXL1 based parser to normalize, extract and transform raw source code to source code fragment

at function or block level. Because of using a parser, this implementation is language dependent and

currently supports four popular programming languages, namely: c, java, c-sharp, and python.

ii. XMLDataProvider: Here the data source is a standard XML file of a pre-defined format. The XML

file consists of source code fragments along with their location information in the original source file.

This implementation is language independent and can be used for both source code or non-source code

based data.

iii. DBDataProvider: This is an equivalent implementation of XMLDataProvider except that the data

source is a database instead of XML filesystem.

SimHashGenerator

This class implements the simhash algorithm outlined in Figure 3.2 that is used to generate simhash value

for each sosurce code fragment. Following helper interfaces are used in this algorithm implementation. The

SimLib API provides some default implementation of these helper interface. However, at runtime, the API

allows user to hook-up their own implementation of these interface for a versatile execution of simhash

algorithm suited for various types of data.

i. TokenGenerator: A source code fragment need to be tokenized while generating simhash value for

it. This interface is used to implement different token generating strategies depending on source data

characteristics. Additionally, a TokenGenerator can take a list of TokenFilter based or source data

characteristics.

ii. TokenFilter: This is an interface to implement various token filters. Token filters are used to accept,

discard or transform tokens used by TokenGenerator during simhash generation.

iii. RegularHashGenerator: The algorithm of simhash requires user of some regular hash function for each

data token. This interface is used to implement various types of 64-bit hash generators for each token

provided by a TokenGenerator.

CloneIndex

Once the simhash value for each source fragments are generated, the values are organized in an indexing

structure (Figure 3.4) to facilitate fast searching of similar code fragment. This interface is used to implement

a 2-level index of source data. Following two implementations are available in the API.

i. InMemoryCloneIndex: Interface to implement clone index in runtime memory. The library contains

three implementations based on the collection frameworks from Java, Apache and Google.

1www.txl.ca

62

ii. InDbCloneIndex: Interface to implement clone index in database in support of detection of clone in

large-scale data and implementation of instant clone search.

IndexIO

IndexIO interfaces is used to import and export clone index. Using implementation of this interface, clone

index can be saved and reused as many time as needed, which facilitates faster re-detection and incremental

clone detection.

i. XMLIndexIO: Interface to implement clone index in runtime memory. The library contains three

implementations based on the collection frameworks from Java, Apache and Google.

ii. ObjectDbIndexIO: Interface to implement clone index in database in support of detection of clone in

large-scale data and implementation of instant clone search.

5.4.2 Detection

This module receives a clone index and detection input from the previous module and performs the clone

detection process. It covers the following APIs.

DetectionEngine

This class implements the clone detection algorithm, which is mainly the data clustering algorithm as outlined

in Figure 3.5. The implementation is build on an Observer design pattern where the observers of the detection

process are being notified about different runtime state or event, for example, current status of completion,

detection of a new clone group, etc.

CloneFilter

Interface to implement various clone filters to discard uninterested clones during detection process. The

library includes following two such filters.

i. TypeFilter: This filter is used to discard a particular type of clones from the detection result and keep

those for which users are interested in.

ii. SubsumeFilter: This filter is particularly used during the detection of block clones to discard the clone

fragments that are subsumed by some bigger fragments (the former clone fragment is fully contained

in the later one).

TypeMapper

Once a clone group/pair is fully discovered by the detection algorithm, TypeMapper class is used in defining

the type of the clone group/pair.

63

----------Detection Summary----------

Date/Time : 2013/May/20 19:35:00
Source Location : /TestSystems/junit-4.11
Output Location : /TestSystems/junit-4.11 simcad clones
Source fragment type : function
Source transformation : generous
Clone type : Type-1, Type-2, Type-3
Clone grouping type : group
Total source fragment : 387
Total clone fragment : 110
Total clone group/pair : 47
Pre-Processing time : 0 min, 2 sec, 963 ms
Detection time : 0 min, 0 sec, 77 ms
Post-Processing time : 0 min, 0 sec, 5 ms

Figure 5.2: Clone Detection Summary

5.4.3 Post-processing

This module accepts detection results from the detection module and does some additional processing on the

result as needed. This includes generation of a clone detection summary and exportation of the detection

result in several output form for various purpose, for example: persistent storage, visualization, etc. It covers

the following APIs.

DetectionSummariser

This class is used to generate a complete detection summary of an invocation of clone detection using this

API. An example of such detection summary shown by this class is shown in Figure 5.2.

Processors

Interface to implement classes for various post-processing activities to be performed on clone detection results.

The library contains several clone data output processors for different output strategies, for example:

i. XmlOutputProcessor: This processor writes Clone detection results as an XML file.

ii. HtmlOutputProcessor: This processor writes Clone detection results as an HTML file.

iii. DbOutputProcessor: This processor writes clone detection results as a database. We call it ‘zero

configuration database output ’ since the library itself will create the predefined schema in a database

and will write the clone detection results to it. Using Hibernate2 ORM, the library provides a variety of

database options for the user both in embedded and client/server mode as shown in Table 5.1. SimLib

2www.hibernate.org

64

Table 5.1: Database selections for DbOutputProcessor

Database Source Embedded Client-Server

H2 www.h2database.com Yes Yes

DerbyDB http://db.apache.org/derby Yes Yes

HSQLDB http://hsqldb.org Yes Yes

MySQL www.mysql.com N/A Yes

PostgreSQL www.postgresql.org N/A Yes

provides an external configuration file hibernate.cfg.xml from which the user can select a particular

database and provides the credentials to access the database as required.

5.5 SimLib Modification and Extension

SimLib provides options to modify its default behavior or to add new features in its pre-processing and post-

processing layers (Fig. 5.1). Using such customization facilities, a user can adapt SimLib for clone detection

on data with different characteristics, add functionality to process the clone detection results, and its even

possible to develop a full customized clone detection tool to target processing a particular type of data. The

modification and extension options are discussed in the following subsections.

5.5.1 Extension Points

SimLib provides three extension points where users can plug in their own code to be executed during the

detection process. What users need to do is to write their own implementation of the corresponding interface

and point the class name in the SimLib external configuration file simcad.cfg.xml through the appropriate

property key. At runtime, the user provided code will be executed in place of those in the library.

TokenGenerator

An implementation of the interface ITokenGenerator takes a data fragment and builds a list of tokens. A

user can define the boundary of a single token based on the target data and implement that strategy in their

own implementation because a single strategy might not work for all types of data. Such a strategy could be

based on a single line, a sequence of characters separated by whitespace characters, a fixed length character

sequence, a fixed length sub token, a tokenization by special characters (e.g., comma, period), and so on.

65

RegularHashGenerator

The detection algorithm used in SimLib is based on simhash [33]. In order to generate simhash for a data

fragment, a regular data hashing3 mechanism is required to convert each token generated from that fragment.

By default SimLib uses an implementation of JenkinHash4 for this purpose. User can use an alternate

algorithm by implementing the interface IRegularHashGenerator if the default one is not considered good for

the target data.

CloneIndexHolder

The interface ICloneIndex defines the multi-level Clone Index [172] that provides the context for the detection

process. The library provides three different implementations based on collection frameworks provided by

Java, Google and Apache; the default is set to Java. A user can choose from the alternate implementations

or use their own.

5.5.2 Programatic Manipulation

IFragmentDataProvider

The detection algorithm works on pre-defined source fragments extracted during its pre-processing step (Fig-

ure 5.1). SimLib provides a group of classes to implement the interface IFragmentDataProvider for extract-

ing fragments from source data. It contains a basic implementation of the interface IFragmentDataProvider

named XMLSourceFragmentDataProvider that accepts an XML file in a pre-defined format (Figure 4.5)

containing marked up source fragments. For clone detection in a target dataset, users need to organize the

source data fragments into the predefined XML format. SimLib also provides an advanced Data Provider

implementation named FileSystemFragmentDataProvider that takes a filesystem location of a dataset and

generates an XML file from the source code using TXL5. A user can develop their own implementation of

IFragmentDataProvider or modify an existing implementation that can extract fragments from the target

dataset or generate the XML file of source fragments from the target dataset through other means and then

feed it to XMLSourceFragmentDataProvider.

IProcessor & ProcessorDispatcher

SimLib’s post-processing tasks are performed through ‘processor’: an implementation of the interface IPro-

cessor. Processors are added to a ProcessorDispatcher to coordinate their execution. Processors perform

activities, such as : generating a detection summary; writing a log file for the detection process; and, writing

a detection result to an XML file or a database. For example, in the sample code snippet shown in Figure 5.3,

3http://en.wikipedia.org/wiki/Hash function
4http://en.wikipedia.org/wiki/Jenkins hash function
5www.txl.ca

66

1. IProcessor xmlOutputProcessor = new XmlOutputProcessor(detectionSettings, output_dir,

"Writing xml file...");

2. IProcessor logWriter = new DetectionSummaryPrinter(detectionSettings, logPrinter,

"Writing log file...");

3. IProcessor consoleWriter = new DetectionSummaryPrinter(detectionSettings, consolePrinter);

4. ProcessorDisptacher.getInstance().addProcessor(xmlOutputProcessor).addProcessor(logWriter)

.addProcessor(consoleWriter).applyOn(detectionResult, detectionSettings);

Figure 5.3: Example execution of IProcessors in post-processing.

Figure 5.4: Different uses of SimLib

the statements 1, 2 and 3 use an implementation of three different processors used to write detection results in

XML file, write a log file for the detection process and print a detection summary in the console respectively.

Users can also write their own implementation of a processor for a particular post-processing task and add

it to ProcessorDispatcher to execute it.

5.6 Target Use

SimLib has a great potentiality to be used both in industry and research as a configurable and ready-made

clone detection service provider. Figure 5.4 shows some multi-dimensional use of SimLib in providing clone

detection facility. Following are high-level overview of SimLib’s target use.

Third-party API Integration:

Both in academia and industry, researchers and developers develop various types of clone analysis,

67

visualization or management tools. Clone detection service can be considered as a basic requirement

for any such clone based software. SimLib can be great tool in this respect for providing portable and

customizeable clone detection service where needed. Therefore, integration of SimLib as a 3rd part

API with other clone based applciation would be a convenient way to provide on the fly cone detection

support.

Advanced API:

In order to make a software successfull in practice, it needs to be updated continuously by adding

new features and or enhancing capabilities. One important aspect of API design is the capability

of its future extension with minimal modification of existing core components/architecture. Because

of having a moduler architecture, SimLib can easily be modified and/or extended by incorporating

additional feature and thus enhancing its overall performance and capability. Therefore, it would be

possible to developed more advanced clone detection API based on SimLib’s core architecture.

IDE Plugins for clone management:

Since clones are evolved mainly because of various development activities of developer, integration

of clone detection and analysis facility within software development environment can provide better

support in clone management in software. Towards this goal, SimLib can be used to develop an IDE

plugin intended towards on the fly clone detection, visualization and management.

Standalone Tool for Clone Research:

In software engineering study, researchers frequently use or develop various standalone tools to generate

or process data for further analysis. In clone based study, SimLib could be a useful library in developing

such tools. SimLib can be customized for detecting clone in variour types of textual of data. Therefore,

development of a standalone clone detection tool for that target data using SimLib would be faster and

convenient.

Versatile Similarity Detection API:

The primary target of SimLib is to be used as a portable library for source code clone detection in

software projects written in popular high level programming language like C, Java, etc. However the

similarity detection capability can be tailored and extended to be used for multi-purpose needs, for

example, detection of clones in intermediate source code (java/.net byte code) or non-source code data

like code documentation, source code search engine, plagiarism detection in source or non-source code

based data, etc.

5.7 Evaluation on SimLib Installation, Integration and Use

A user study based evaluation on SimLib API has been performed to gain some insights about the operation

and target use of the API. In this study, the participants get to install, integrate and use the API through a

68

demo program and at the end they were required to answer some questions regarding their experience using

the API and provide their opinions on improvements and future use of the API.

5.7.1 Study Design

A set of tasks was designed to have the participants install SimLib using the documentation available in

public site and integrate the API to a demo program that can call and execute clone detection methods from

the API. Once installation and integration is done, they were instructed to execute the demo program with

varying detection settings using the options available in both the API and the external detection configuration

file. After performing these tasks, participants were requested to answer a set of questionnaires capturing

their experience on integration and use of SimLib as an API.

Questionnaire Design

For this study, the following two sets of questionnaire have been designed.

Questions on API Installation and Use: This set of questions is to capture overall user experience of the

tool operation. User’s feedback on each question was captured based on a five level likert scale containing

options as: Strongly agree, Agree, Neutral, Disagree and Strongly disagree.

Q1: Do you think the API installation/integration/use was simple and easy?

Q2: Do you think the API documentation for installation/integration/use was helpful?

Q3: Do you think the API would be useful in detecting clone from data with various characteristics?

Q4: Do you think the API would be useful in providing clone detection support as a 3rd party tool?

Q5: Do you think the configurability and extendibility feature made the API more versatile in clone

detection?

Q6: Did you find the tool satisfying overall?

Issues, Target use and Future Improvements Questions: This final set of questions is to identify the issues

that the participants felt while integrating and using the API and find the scope for further improvements

in their opinion.

(a) What whould be the three most important target uses of SimLib?

Option: 1) Third-party API Integration, 2) Advanced API, 3) IDE Plugin, 4) Standalone Tool and

5) Versatile Similarity Detection

(b) What difficulty did you face while using the tool?

(c) What portion of the tool you think requires improvement?

(d) What additional features do you think should be implemented in the tool?

69

Feature based Task Design

The following tasks has been defined to guide the user from installing to using the API as a developer.

T1: Download and install pre-requisites of SimLib.

T2: Setup/Install the sample SimLib integration project.

T3: Change and execute the demo program ‘CloneDetectionDemo.java’ as shown in integration documen-

tation for the given project source code.

T4: Execute the demo ‘CloneDetectionDemo.java’ with varying detection settings for type and transforma-

tion.

T5: Customize the detection behaviour by changing external detection configuration parameters in ‘sim-

cad.cfg.xml’.

T6: Change and execute the demo ‘CloneDetectionDemo.java’ for the given non-source code data (code

documentation) provided in XML file.

Runing Study Session

This is a one-to-one study session that allows the participants to do a set of task towards using the API and

answer the related questions afterwards. They were given introduction about the nature and purpose of the

study. Then they were briefed about the different features of SimLib API and the motivations behind it.

The participants were then allowed to perform the tasks specified in previous section.

After the demo session the questionnaire was handed to the participants and the participants’ opinion

based on their level of agreement on the performed tasks were recorded. Answering the ’Overall Evaluation

Question’s was an open discussion session and the participants had the option of asking questions regarding

any difficulty they faced during the task completion and knowing their views in further improvements of the

API.

5.7.2 Summary of Findings

User Experience on API Installation and Use

We had 5 participants in this study each of them having at least three years of software development experi-

ence, have basic knowledge of software clones and have experience of using clone based tools and technologies

in academic research. Participants’ feedback on the User Experience questions are analyzed and presented in

Figure 5.5 with separate component for each question. From the feedback chart, it is clear that the SimLib

got most of the remarks on the positive side of the likert scale from the study participants on all the evalua-

tion questions. While 60% of the participants found the API overall satisfying, the rest being found neither

satisfying not dissatisfying and advised valuable suggestion for further improvements.

70

Figure 5.5: Consolidated user feedback on SimLib API use

At the end of the study session, the Issues, Target use and Future Improvements Questions were enabled

us to get some advise on how can we improve the API for convenient and versatile use. We got valuable

suggestion on existing feature improvements, specially for support of more programming languages and use

of source code transformation through integrated API instead of loosely coupled external tool. For additional

features, notable requests we got were: generic way to adapt source transformation for any programming

language, similar API in other language as the one currently available in Java. To investigate the users’

opinion on the possible target use of SimLib API, we asked them to choose best three options that they

thought SimLib API could be used for. The distribution of their choice has been presented in Figure 5.6,

which shows the use of SimLib API for Third-party API Integration has been choose by 100% for the

participants, followed by 60% of the participants supported for Advanced API and IDE Plugin. This user

feedback shows, SimLib could be a potential library towards providing support for clone/similarity detection

needs of other applications.

5.8 Summary

Portability of clone detection service is one of the major usability issues of standalone clone detection tools.

The clone detection library SimLib helps to overcome limitations of minimally configurable standalone tools,

such as SimCad. SimLib allows its default behaviour to be modified through a higher level of customization.

For example, SimLib can be configured for detecting clones in software source code as well as it can be

configured for detecting clones in non-source code based documents, where most of the existing tools might

not be a good fit. We performed a user study based evaluation on SimLib to get some feedback on installation

and use of the API and to uncover its potential use as a third-party clone detection library. The user

feedback we received from the study indicates its potential use as a third-party clone detection library

towards providing support for various clone/similarity detection needs to the other applications. Beside,

considering the operation benefit as mentioned in Section 5.2 and by addressing the user feedback on further

71

Figure 5.6: Distribution of top three target uses for SimLib API chosen by the study participants

improvements with a regular API maintenance, SimLib could be a viable tools in software clone based research

as well as in industry.

72

Chapter 6

SimEclipse: Towards Managing Code Clones in Soft-

ware Development and Evolution

6.1 Introduction

The research described in this chapter focuses on the activity of maintaining clones in code from a software

developers’ perspective. Göde [56] found that most of the clones detected by state of the art clone detectors

need not be removed. The study has significant implications from the point of view of software maintenance.

Besides it is problematic to identify consistently changing clones over time. Thus a clone tracking and

awareness tool is essential to assist software developers in efficient maintenance of software. The chapter

covers IDE integration of state of the art techniques for detection, visualization and tracking of clones in

software with a focus on preventive clone management. In addition, the study also considers integration of

novel techniques in clone based research, for example, extraction and visualization of clone genealogy in IDE

to assist in the process of clone comprehension by the software developers. The overall idea of supporting

clone management, is gathering some clone management primitives under the same hood where clones gets

evolved. As a result, we are interested in addressing the following three research questions:

RQ1: What clone based technologies (tools and techniques evolved in clone study) can be grouped

together in support of better clone management?

RQ2: How effective can clone management be when the clone based technologies are brought together

under the same platform?

RQ3: Could an IDE be the preferable platform for integrated clone management functionalities rather

than having the same functionalities as a standalone tool?

In order to answer some of the research questions, we conducted a user study based on a prototype IDE

plugin with integrated clone management features. In this chapter, we also present that prototype named

SimEclipse - an Eclipse IDE plugin to provide developer support for detecting, visualizing and tracking clones

in projects being developed using Eclipse IDE. It uses a fast source code similarity detection algorithm we

previously studied that makes it possible to implement a real time clone detection and management system

for exact and near-miss clones in large-scale software systems. In support of understanding the evolution of

73

both clone and non-clone source code in a multi version software system, SimEclipse also provides source

code evolution history viewer and clone genealogy viewer. We show how SimEclipse can support a software

developer in dealing with clones and be integrated with a typical software development environment.

6.2 Motivation

No matter what the cause, in most cases it is the developer’s activity that directly (e.g., by copying, pasting

or modifying code) or indirectly (e.g., by using code generation programs or tools) introduces cloned code in

a system. It is very hard to manually track, especially in large systems, whether those activities unknowingly

cause clones. Convenient access to clone information from within the development environment is a key

factor in managing clones. Because, without an efficient use of clone information it is also hard for a

developer to efficiently manage clones in the system (e.g., refactoring/removing cloned code) or to reduce

their negative effects during software evolution. Even if the knowledge of clones in a system is available (e.g.,

using a standalone clone detection tool), in most cases a developer needs to apply that knowledge by manual

investigation and identification inside the working codebase to locate and process the clones.

From a developer’s perspective, there is a gap between state-of-the-art software clone management support

tools and software development environments. Besides, manual investigation of clones in system would make

the task of clone management both challenging and inefficient. In support of code clone management,

a number of standalone tools are proposed in the literature and are available for use in clone detection,

visualization, analysis, etc. However, using these standalone tools for managing clones in evolving software

might not be practically useful as opposed to having the similar facilities directly from within a software

development platform (for example, IDE) as some integrated features. A growing need for further research

towards an integrated clone management system is also addressed in a recent study by Roy et al. [152].

Towards that goal, we developed SimEclipse, an Eclipse IDE plug-in to assist developers in managing clones

in the softwares they are developing/maintaing using one of the most popular software development IDEs,

Eclipse. The current implementation of SimEclipse would assist clone managenemt by providing support for:

1) Just-in-time clone detection to identify the presence of cloned code in whole or any part of the project,

e.g., in files, directories, etc.

2) Visualization of the clones detected in the project, linking them to their code location and, if interested,

comparing clones side-by side from within the IDE.

3) Mark/Annotation of clones in the editor for easy and convenient access to existing clones throughout

the project.

4) Automatic tracking of changes made in the code and notifying the developer if a change introduces

cloned code; that is, a clone-aware development environment.

5) Inspection of code code change history for both cloned and non-cloned code

74

6) And, finally detection and visualization of clone genealogy

6.3 Clone Management

Clone management is a cross cutting topic concerning different domains of software clones. As an umbrella

activity it covers various aspects regarding clones including but not limited to clone detection, classification,

visualization, evolution analysis, tracking, refactoring, etc.

Current studies show various benefits of clone management including improved customer satisfaction,

improving the quality of the system with a positive impact on maintainability of the software [108, 90].

Moreover, clone management in an Integrated Development (IDE) found effective in increasing clone aware-

ness and understanding the evolution of duplicated code over time [75, 93].

6.3.1 Management Strategy

Clone management summarizes all process activities which are targeted at detecting, avoiding and/or remov-

ing clones [53]. Therefore, there are essentially two mainstream strategies of managing clones:

Preventive Clone Management featuring avoidance of introduction of clones, or being aware of the

existing unavoidable clones and understand their evolution to avoid their harmful effects. In practice,

clones are unavoidable and thus expectation of a clone-free system can be unrealistic. Therefore, preventive

clone management might also termed as proactive clone management [72] that aims to deal with the clones

during their creation or anytime soon after they are introduced in the system.

Corrective Clone Management featuring refactoring/removing clones after they are detected. While

it might not be possible to remove/refactor all the clones in the system especially the near-miss clones,

but exact clones (Type-1) are typically good candidates for being refactored.

Figure 6.1 shows a high level overview of clone management workflow. The figure also shows two clone

management strategies mentioned earlier covering various clone management primitives.

• Detection: To manage clones in a system the very first requirements is that clones need to be detected.

Although clone detection is a fundamental requirement to a clone management strategy, this feature

might not always be integrated into a clone management system. In case where this feature is not

present natively, detection results from third-party standalone clone detectors are used. Such feature

dependency, or in another way, lack of native detection support would make a clone management

system less interactive to the developers and also might be incapable of supporting other features like

focused/on-demand clone search, clone tracking, and so on. Therefore, a versatile and user-friendly

clone management system could be benefited from having its own clone detection capability rather

than depending on some external detectors.

75

Figure 6.1: Clone management workflow

• Representation/Documentation: This feature captures and stores the result of clone detection in the

form of clone documentation that records the location of code segments and their clone relationship.

Once created, it can be re-used as many times as needed to get the clone information of the sys-

tem without invoking the detection process. The clone documentation may be analyzed to determine

justification of clones or to find potential clones for removal.

• Visualization: Visualization is a powerful technique that can aid understanding and analysis of clones

after detection. This feature may offer various types of clone visualization with (for example, tree-view)

or without (for example, scatter-plot, tree-map, etc) using internal features of the IDE. In most of the

visualization approaches, developers can navigate to the actual clone code in the system and possibly

compare the clones in the same group to see the differences.

• Analysis: This module analyzes the clones in the system and provides various insights about the

cloning status of the system. Such analysis may include but is not limited to various statistical analysis

featuring types of clones, clone density in various regions in the system or historical analysis, for

example, extract and explore the evolution clones a software system having versionized source code

(throughout the source revisions or releases in their development lifecycle). Besides, analysis could

be performed to determine clone candidates for refactoring with the purpose of removing duplication.

Therefore, this module basically helps in understanding various aspects of the clones in the system,

which in turn helps developers in managing those.

• Tracking: This module provides clone aware functionality in a clone management system. An evolving

software system goes through frequent changes in the code-base. Such changes may introduce new code

segments that might form new clones or invalidate some existing clones in the system. Both situations

require corresponding update in clone documentation that can be supported through this feature. It

tracks existing clones in the system and follow their evolution throughout the lifecycle of the software.

76

Besides, it looks for source code changes and notifies developer if new clones introduced in the system

because of the changes made.

• Refactor/Removal: A number of patterns in the general software refactoring patterns [51] are found

to be suitable for clone refactoring, as suggested by earlier research [65, 184]. This module allows

developers to delegate the code structure changes to the refactoring engine of IDE and reduces errors

that may occur if changing the code was done manually. However, the clone refactoring step of feeding

the clone information to the refactoring engine is still required as a manual process.

6.3.2 Dimensions of Clone Management

Most of the clone detectors [105, 164, 91, 78] are implemented as standalone tools and typically search for

all the clones in a given code-base. Although, such tools can help clone management in a post-mortem

approach, from a management perspective, this approach is not too convenient in practice. Researchers and

practitioners [62, 71, 83, 84, 132, 154, 204, 205] believe that clone management activities should be integrated

with the development process to enable effective clone management. Giesecke [53] addressed the following

dimensions of clone management offered by a software tool as a Clone Management System.

Operational Structure

Most of the software systems are implemented in teams where members of the teams work in collaboration on

different, possibly overlapping parts of the system. The environment of such teamwork can be characterized

as a distributed system with local, decentralized software development environments for team members

and a central source repository, which often provides configuration and version management functionalities.

Therefore, a clone management system can be implemented either at the central repository (Centralized

Architecture) or at the local development environments (Decentralized Architecture).

In a Decentralized Architecture, the clone management functionalities, when augmenting the features

in local programming environments, can enable the individual programmers to exploit the benefit of clone

management. Developers can use different tools here; even some of them can get the flexibility to completely

or partially disregard clone management at their respective situations. However, this might require additional

setup for establishing means for communication between distributed developers, as well as combining and

synchronizing clone information across all the developers.

In a Centralized Architecture, the clone management functionalities can be implemented as a client-

server application on top of the central version control systems. Due to the client/server architecture, a

centralized implementation will affect both the repository and the local programming environments. Such a

centralized clone management system may require greater effort and offer less flexibility than a decentralized

implementation.

77

Locality of clone management data

The data building the foundation of the clone management may be used locally only or globally. In a

decentralized implementation a local-only use of the data will be easier to implement, while in a centralized

implementation, it would require sharing the data among the distributed developers.

Triggering of clone management activity

A clone management activity can be human triggered (for example initiated by the developer or some other

person involved in the software maintenance process) or system triggered (for example as a response to certain

actions performed by the developer in the system).

In a human-triggered initiative, a developer, after writing or modifying a piece of code, may invoke search

for its clones in the system, and upon finding the clones, she may analyze and decide how to deal with them.

An instance of clone management activity may also be periodically scheduled in advance as part of a larger

plan of process activities.

In a system-triggered initiative, the development environment can trigger clone management activities in

response to certain events, such as saving changes in the code, or the check-in of modified code to the central

repository. Such events may notify and suggest the developer to perform the required clone management

operations.

Scope of Clone Management

An instance of clone management activity may be more focused towards the clones or the subject system

itself. While a clone-focused activity deals with a narrow set of clones of a particular code segment of interest,

a system-focused clone management activity aims to deal with broad collection of clones in the entire code

base, or particular portions of the subject system.

6.3.3 Implementation options for a Clone Management System

Clone management activities may be considered as a part of regular code-centered development activity [125].

A developer typically works inside an IDE running on his/her workstation, for fairly large projects, especially

in industrial settings, a team of developers collaboratively work on a shared code base kept in a version control

system (e.g., SVN, CVS) set up on a central server. Thus, the need for the integration of clone management

activities with the development process suggests that the IDEs should include features to support clone

management activities during their actual development phase.

While, ideally, all clones should be managed proactively, in practical settings, proactive treatment to all

clones may not be feasible or possible. Therefore, a versatile clone management system should focus on the

support for proactive management, while at the same time, should also facilitate corrective clone manage-

ment [35]. Therefore, an IDE would be a better option than a standalone management tool to implement

78

both clone management strategies. Because managing clones using some standalone clone management tool,

especially for implementing proactive clone management strategy would simply mean making the developers

decoupled from an IDE, which would be nothing but a post-mortem approach.

6.4 Existing work on IDE based clone management

There are many clone detection tools, each has its own strengths and weaknesses. However, for proactive clone

management, the support for clone detection should be integrated with the development process. Therefore,

we focus on those tools that realized the clone detection feature integrated with an IDE or a version control

system.

Tools for managing copy-paste clone: This very first category covers the tools that only deal with

clones resulting from developers copy-paste operation. Hou et al. developed their clone management tool

CnP [72] that is tightly coupled with the clone detection technique based on the programmers’ copy-paste

operations. Thus, the scope of the clone management is limited to copy-pasted code only, and not applicable

to clone management based on similarity based clone detection. Jablonski and Hou introduced CReN [74] tool

as an Eclipse plug-in for Java programs to help programmers avoid making copy-paste error, while renaming

various instances of identifiers, such as variable names. It tracks the code clones involved when copying and

pasting occurs in the IDE and infers a set of rules based on the relationships between the identifiers in these

code fragments. So, it is only a subset of Type-1 clones (i.e., only the clones arising from the developer’s

copy-paste action in IDE) that are being managed using this tool. The plug-in CSeR (Code Segment Reuse)

was developed by Jacob et al. [76] to check copy and paste induced clones in an integrated development

environment. The tool was designed to compute the clone differences interactively by checking whether a

piece of code is copy-pasted while the programmer edits and/or types the code. A similar IDE plugin is

proposed by Venkatasubramanyam et al. [175] for proactive moderation of the genesis of clones through

copy-paste-modify operations. The approach is guided by associating constraints formulated from predefined

guidelines, and checking for their satisfaction at the time of copy and upon modifications. CloneBoard [43]

and CPC [177] are another two Eclipse plugins that can detect and track clones based on clip-board/copy-

paste activities of the developer. Both CPC and ClonkeBoard support linked editing of clone pairs. While the

above mentioned approaches based on programmers’ copy-paste activities may be able to handle intentional

clones (i.e., the clones that someone purposely introduced in the system or being aware that the intended

action will introduce new clone), they are unable to deal with unintentional clones. Moreover, such tools may

not be suitable for distributed development, as they may fail to combine information about clones separately

created by distinguished developers working in a distributed environment [184].

Tools with integrated clone detection and visualization only: This second groups of tools pro-

vide native clone detection support and offer various visualization of clones from within the IDE. SHI-

NOBI [91] is an add-on to the Microsoft Visual Studio 2005. It internally uses CCFinderX’s preprocessor,

79

and thus it can detect Type-1 and Type-2 clones only [184]. It was developed as a client-server application to

mainly relocate the clone detection overhead from the client (local programming environment) to a central

server (source code repository). SHINOBI only displays clones of a code fragment underneath the mouse-

cursor, no further support for clone management is offered. Such a plug-in is CloneDR [23], an AST-based

clone detector that can detect Type-1 and Type-2 clones, but it also fails to detect Type-3 clones in many

scenarios [151]. Zibran and Roy [184] presented an IDE-integrated focused clone search tool for Type-1,

Type-2 and Type-3 clones. The implementation is based on a suffix-tree based k-difference hybrid algorithm.

Bahtiyar developed JClone [10] as a plugin to the Eclipse IDE for detecting Type-1 and Type-2 clones only

from Java projects. JClone applies an AST based technique to detect clones. It enables the user to trigger

the detection of clones from one or more selected files or directories. It also offers a few visualization (i.e.,

TreeMap and CloneGraph views). Plug-ins in this category may aid clone analysis to some extent, but they

offer no further support for clone management beyond the detection and visualization of clones.

Versatile clone management tools: This final group of tools cover additional clone management ser-

vices beyond those mentioned in the previous two groups. CloneTracker [46] is a more versatile clone man-

agement system as an Eclipse plug-in presented by Duala-Ekoko et al. The plug-in allows tracking and

simultaneous editing of clones. It relies on the output of the SimScan [29] clone detection tool and requires

the programmer to manually select the clone groups of interest to be documented. Once the clone groups are

identified, CloneTracker translates the location of all clone regions from a file name and line range notation

into Clone Region Descriptors (CRDs). Instead of using the clone’s exact text or its physical location in the

file, the CRD technique uses syntactic, structural, and lexical information (the clone region’s alignment with

code blocks) to determine the clone’s relative location in a file. While this technique has some benefits, it only

gives an approximate location. Recently, Tairas and Gray developed CeDAR [167], a plug-in for the Eclipse

IDE, where they introduced an approach to unify the processes of clone detection, analysis, and refactoring.

They integrated a clone detection approach in the plug-in and presented a visualization technique in which

one clone instance displays the properties of all the clones in the clone group. This representation helps in

refactoring as clone group representation displays the differences among clone instances.

In next section we are going to present SimEclipse as a versatile IDE plug-in covering a rich set of features

in support of better clone management in software development and evolution.

6.5 SimEclipse: The plug-in for clone-aware software develop-

ment

A number of state-of-the-art tools have been evolved in software clone research during past decade covering

clone detection, visualization, analysis and management. From software development perspective, the ques-

tion is, are those tools really useful in practical context? That is, how conveniently developers can make use

80

Figure 6.2: Enable/Disable SimEclipse

of those tools in their development workflow. In most cases the existing approaches partially cover the scope

of clone management or do not integrate well in a software developer’s development workflow. In this section,

we present SimEclipse - an Eclipse plugin focusing on preventive clone management strategy (Figure 6.1)

by providing developer support for detection, visualization, analysis and tracking clones in projects being

developed using Eclipse IDE. The goal of ’SimEclipse’ is to make state-of-the-art clone management tools

available in the IDE so that clones in software can be managed in a better way at the place where they are

introduced and evolved. It uses a fast source code similarity detection algorithm we previously studied that

makes it possible to investigate real time management of exact and near-miss clones in large-scale software

systems. On the fly detection and tracking of clones in the IDE has been made easier in the plug-in using

the versatile clone-index implemented in the SimLib API (Chapter 5). Besides, an implementation of the

genealogy extractor proposed by Saha et. al. [155] has been integrated into the plugin for extraction and

visualization of clone genealogies that would help developer in understanding the evolution of clones. Various

features of SimEclipse are presented as follows.

6.5.1 Startup and Configuration

Once SimEclipse is installed in the Eclipse environment, it can be enabled or disabled for any open projects

shown in the Project/Package Explorer by right clicking on the project and navigating to the SimEclipse

menu item in the context menu. More options are available for the SimEclipse enabled project in the same

menu location (Fig. 6.2). These new options are also available from other views (Fig. 6.4.a, Fig. 6.4.b). Each

project has a customizable SimEclipse settings that defines the detection and runtime behaviour of the plugin

on that project.

View for SimEclipse Projects

This view shows all the projects in the current workspace for which SimEclipse has been enabled (Fig. 6.3.b).

It also shows the ‘Enable/Disable’ status of the two background services for the corresponding project. This

81

Figure 6.3: SimEclipse Views

view can be made available anytime from the ‘Workbench’s Main Menu’ (Fig. 6.3.d), ‘Workbench Toolbar’

(Fig. 6.3.a) and ‘Show View dialogue’ (Fig. 6.3.c). For each of the projects shown in SimEclipse Projects

View, the following actions are available to perform from the context menu available by right clicking on any

project in that view (Fig. 6.4.a):

6.5.2 Just-in-time Clone Detection

Clone detection can be performed on a SimEclipse enable project from various views, e.g., ‘Eclipse Project/-

Package Explorer View’, ‘SimEclipse Projects View’, ‘SimEclipse Navigator View,’ etc. (Fig. 6.4). ‘SimEclipse

Navigator View’ (Fig. 6.4.c) also allows developers to explore the codebase of a SimEclipse enabled project

using a tree based hierarchical view. Developers can see the directory, files and fragments maintained in the

clone-index [172], which reflects the similar hierarchy of the actual code-base. Non-related files and folders

are not shown in this view although they are available in the actual codebase. For example, if Java is the

language for a project, only Java files and container folders will be shown in this view. Clicking on any file or

fragment entry here will display the actual source file in the workbench using the integrated source editor as-

sociated with the file. For fragments, the entire fragment will be highlighted in the editor (Fig. 6.6). Besides,

user can also perform clone detection from editor by selecting an arbitrary portion of code of interest and

then go for that selection only or for corresponding complete functions or blocks touched by that selection

(Fig. 6.7).

6.5.3 Clone Visualization

Detected clones are visualized through the ‘SimEclipse Clones View’ (Figure 6.8) where user can see grouping

of clones based on the detection settings for the project. Clones are displayed in different colours based on

their types. Users can click on any clone to see it highlighted in the editor (Fig. 6.9). From this view, the user

can also compare any two clones in a clone group to see the actual similarities and dissimilarities (Fig. 6.10).

82

Figure 6.4: SimEclipse Views and Actions

Figure 6.5: SimEclipse Settings

83

Figure 6.6: Navigation of source in SimEclipse Navigator View

6.5.4 Clone Analysis

Clone Genealogy Viewer

For a multi-version project, SimEclipse is able to extract and display clone genealogies. From the SimEclipse

settings option (Figure 6.5), users can add multiple versions of the project and then invoke for extract/view

clone genealogy for the lifecycle project covered by the versions choosen. From ‘SimEclipse Clone Genealogy

View’ (Figure 6.11) user can explore the all the genealogies version by version and get to know their evolution.

Figure 6.7: Search for Clones From Editor

84

Figure 6.8: SimEclipse Clones View for display clone detection result

Code History Exploration

Similar to Clone Genealogy, for a multi-version project, SimEclipse allows developers to inspect the source

modification history for both clone and non-clone source fragments (Figure 6.12). If the original source

code includes source code ripository information along with it, SimEclipse would be able to display the

developer/author information as well so that the developer who is currently working with the code get

to know which other developer worked on this code in the past. This feature would help developer in

understandig changes in source code throughout the lifecycle of the project.

6.5.5 Clone Tracking

Mark/Annotation of Clones in Editor/Existance Tracking

Developers can have their editor marked for a file that contains clones by choosing the corresponding option

in the context menu as shown in Fig. 6.7, which can be made available by right-clicking on the source file in

editor. Each yellow flag mark shown in the left vertical bar of the editor (Fig. 6.13) represents the location of

a clone fragment in the subject file. Location information of other clone fragments related to this fragment

can be seen by double clicking the flag. This will open a pop-up window (Fig. 6.14) from which developers

can explore and see the actual source of those fragments in the editor.

Clone Tracking in Project/Change Tracking

Clone Tracking is an automated service provided by SimEclipse to track generation of new clones in project

due to the developer’s activity on changing project source code. Developers can have this service enabled

85

Figure 6.9: Inspect Clone Code in SimEclipse Clones View

Figure 6.10: Text compare between two clone fragments

86

Figure 6.11: Clone Genealogy Viewer in SimEclipse

or disabled from the project specific settings of the plugin. This workflow of service is shown in Fig. 6.15.

It provides real-time notifications to the developers when any new clone has been evolved in the system

because of developer activity. If the changed code is originally a clone but the recent changes made on it

is not quite enough for it to no longer be considered as a clone under the defined detection setting, it will

also be reported. Both the new and old (but changed) clone fragment entry will be highlighted in red text

in SimEclipse Clones View, while for the others it remains in the default colour scheme for the particular

type of clone (Fig. 6.16). As a background service, it senses changes made on the codebase after every save

operation made on the project files from the IDE and reports if changed or new portion of code matches

with any other existing code in the codebase under the defined detection settings. Using this, developers

can avoid accidental generation of clones, for example, because of not knowing existence of similar code

somewhere else in the project. If source code gets changed outside the project, that may affect the cloning

state of the system, updating the clone index for that project in SimEclipse would cover those changes in the

clone tracking process. Current implementation of SimEclipse does not provide any automatic refactoring or

removal feature of clones. Instead, it lets the developers do this based on his/her own rationale using manual

approach or general code refactoring features available in IDE. SimEclipse however does make sure whether

any changes made to clone fragments make them disappear or not.

6.6 Scenario Based Study for Identifying Effectiveness of Inte-

grated Clone Technologies

The motivation of this study is to capture the user experience in dealing with software clones in two different

working environments (experimental setup). In one setup, the study participants were told to perform some

87

Figure 6.12: SimEclipse Code History Explorer

Figure 6.13: Mark Location of Clones in Editor

Figure 6.14: Information of Other Clones in Marked Location

88

Figure 6.15: Clone Tracking Service in SimEclipse

Figure 6.16: Notification of newly introduced clone

89

pre-defined code clone related tasks on a subject system using some standalone tools. In second setup, they

were told to perform the same tasks using SimEclipse as a tool with integrated clone management features.

User experiences on both the environments are contrasted to measure the effectiveness of using integrated

clone technologies in working with software clone. To fulfill the experiment we have conducted a series of

steps starting from experimental setup to analysis of the results.

6.6.1 Experimental Setup

To perform the study, we required a set of participants, a set of tasks, a questionnaire, methods of evaluation,

and analysis of the result. The following are the steps that constitute our setup for the experiment.

Tasks Design

In this experiment, the participants get to perform the same set of tasks in two different working environments

as stated earlier. The tasks for this study have been designed from easy to fairly complex. Each of the tasks

is associated with a question and the participants are expected to lead towards some answers by performing

the task. All the required input information to perform the given tasks are also provided to the user. The

idea of having the participants performing these tasks in two different environments is to capture whether

they feel any importance of having a platform with integrated clone management system rather than using

some separate standalone tools to accomplish the tasks. Following are the tasks that the participants have

been performed in this study.

T1: Given three functions, identify if they are clone or not in the given system.

Target Usage: Clone Detection

T2: On-demand/Focused clone search, identify number of Type-1 clones in three source package/folder.

Target Usage: Clone Detection/Visualization

T3: Apply given source modification to three existing functions, if there are clones; apply the modification

to all clone fragments.

Target Usage: Clone Detection/Visualization/Tracking

T4: Add three functions on a specified source file (both code to write and source file location are provided),

determine which of the functions newly added are fall into existing clones in the system, if there are existing

clones to the new code, then identify the location and type of the clones.

Target Usage: Clone Detection/Visualization/Tracking

T5: Identify clone genealogy of two given function (the function is being a member of an existing clone

class).

Target Usage: Clone Analysis/Understanding

90

T6: The clone genealogy of one of the above two function is inconsistent. Identify that inconsistent

genealogy and locate the change that makes the clone class inconsistent. Locate the developer who made

the change..

Target Usage: Clone Analysis/Understanding

Questionnaire Design

For this study, following two sets of questionnaire have been designed.

User Profile Based Questionnaires: This first set of the questionnaire is designed to acquire the background

of the participants with respect to their knowledge about the domain clones in software development, which

includes the following questions:

1. Software development experience (in years).

Options: <1, 1, 2, 3, 4, 5, 5+.

2. Industrial experience.

Options: Yes/No

3. Experience in Programming languages.

Options: Java, C/C++, Python, C-Sharp

4. Experience in lDE.

Options: Eclipse, Netbeans, VisualStudio, Other

5. Do you have basic knowledge of software clone?

Options: Yes/No

6. Do think ”Clones should be managed during software development”?

Options: Strongly agree, Agree, Neutral, Disagree and Strongly disagree

7. Do think ”Preventive clone management is preferable than Corrective clone management”?

Options: Strongly agree, Agree, Neutral, Disagree and Strongly disagree

8. Do think ”Clone understanding is important for managing clones efficiently”?

Options: Strongly agree, Agree, Neutral, Disagree and Strongly disagree

9. Do you have any experience of using clone based tools for research?

Options: Yes/No

10. Do you have any experience of using clone based tools in software development (for managing clones)?

Options: Yes/No

91

Task Based Questionnaires: The second set extracts information about user experience in performing the

given tasks. At the end of each task, the participants were required to answer the following questions. This

set of questions again sub-divided into following two groups:

1. Per task based question: Participants were required to answer the following questions at the end of

each task mentioned earlier in this section:

(a) Completion status of the task.

Options: 1) Yes, 2) No (task fails if not complete within 15 minutes)

(b) Time taken to complete the task.

Options: 1) 0-5 min, 2) 5-10 min, 3) 10+ min (max 15 mins/task)

(c) Correctness of the answer found in the task.

Options: 1) Wrong/Incomplete, 2) Partially correct, 3) Fully correct

(d) Difficulty to accomplish the task.

Options: 1) Very easy, 2) Easy, 3) Moderate, 4) Somewhat hard, 5) Hard, 6) Very Hard

2. Overall user experience question: Finally, participants were asked following two questions to understand

their overall experience in the study:

(a) In which environment you felt comfortable and confident in performing the given tasks?

Options: Environment-1, Environment-2

(b) Which platform do you think would be preferable for managing clones in software? If you prefer

one over the other, please mention your reasons for support if any.

Options: IDE Plugin, Standalone Application Suite, Either would be fine

Run Study Session

It is the second phase of our experiment modeling, which initiates the user participation in one-to-one session

with each participant. At the very beginning, the participants were given an introduction about the nature

and purpose of the study followed by a small orientation on the software clones if the term is new to the

participant. After that, a short survey was performed using User Profile Based Questionnaires that captures

their familiarity with software development and various aspects of clones in software. The next part allows

the participants to do specific tasks using some code clone related software tools and answer the related

questions. This part of the study session went in following three phases:

Phase 1:

Study Environment-1:

1. A candidate Java project with multiple versions (at release level), each version is checkout from SVN

source repository to separate folder with version name.

92

2. Eclipse IDE with latest version of the candidate project imported as Java project

3. Standalone clone detection, visualization, analysis tools (we have used SimCad, VisCad, gCad) and

SVN command-line client.

Study Session: The study participants have been shown the use of supporting standalone tools (using

video demonstration) and then asked to perform the tasks mentioned earlier in this section.

User Feedback: After end of each task, the participants gets to match his/hew own answer to the actual

answer, fill out the ’Task Based Questionnaires’ for this task on Study Environment-1, which records

his/her experience and any outcome of the task in this environment setup.

Phase 2:

Study Environment-2:

1. A candidate Java project with multiple versions (at release level), each version is checkout from SVN

source repository to separate folder with version name.

2. Eclipse IDE with latest version of the candidate project imported as java project

3. SimEclipse plugin installed and enabled for candidate project imported in Eclipse

Study Session: The study participants (the same group as earlier) have been shown the features of

SimEclipse (using video demonstration) and then they are asked to perform the same tasks (with different

input set) again using various features of SimEclipse.

User Feedback: After end of each task, the participants fills out the ’Task Based Questionnaires’ for Study

Environment-2, which records his/her experience and any outcome of the task in this environment setup.

Phase 3:

After finishing the tasks on both the study environments, user fills out the answers to the question covering

”Overall User Experience” in performing the tasks in two different environments.

6.6.2 Summary of Findings

General Feedback

This feedback is about user profile and their knowledge/experience with software clones and related tools. All

of the participants found having some software development experience throughout their academic curriculum

and 40% of them were found having few years of experience in industries. The participants have experience in

developing software with at least one or more popular programming language using well-known IDEs used for

software development. Among the participants, 70% were found having at least basic knowledge of software

clones prior to the introductory session of the study. However, all were found being at least ’agree’ that clones

should be managed and understanding of clones is important to manage them efficiently. On the question of

93

Figure 6.17: User performance in completion of task in different environments

clone management strategy, 70% of them found being at least ’agree’ that Preventive clone management is

preferable than Corrective clone management.

Interestingly, 50% of the participants were found having some experience in using various clone based

tools for academic research, but none of the participants were found to have experience of using any clone

management tool in their own software development process. Possible reasons for that as expressed by the

participants’ opinion include: worked with small projects, did not stuck into a situation so far for which the

reason was being identified as clone, lack of established standard clone management tools in industry, lack of

default clone management support in IDE, etc.

Task Based Feedback

User feedback from the 12 participants upon performing the given tasks in two different environments has

been analyzed. The result is presented here in the form of contrasting their task performance in those envi-

ronments based on the four criteria: completeness, time taken, correctness and difficulty.

Task Completeness Analysis: Here we comapre how much tasks have been completed successfully by the

participants in two different study environments. Figure 6.17 shows, in Environment-1, three (25% of the

total) and seven (58% of the total) participants were not able to complete the task T4 and T6 respectively

in the given timeframe. On the other hand, all the participants in Environment-2 were able to complete all

the tasks successfully.

Task Completion Time Analysis: In the task completion time analysis, we tried to investigate and compare

the time taken by the participants in completing the tasks in different environments. The recorded time

slot data in the study are normalized into Time Points according to the Table 6.1. The normalization scale

94

(a) Users’ total completion time points per task (b) Users’ average completion time points per task

Figure 6.18: Comparison on completion time of tasks taken by users in different environment

Table 6.1: Time Point scale for task completion time analysis

Time Slot Time Point

0-5 minutes 3

5-10 minutes 2

10+ minutes 1

assigns higher points to the task completed in lesser time. For each tasks, total and average Time Points

are calculated for all the participants. Figure 6.18 shows the comparison of total and average Time Points

of the tasks in two different environments. From the figure it is clear that all the tasks being performed in

Environment-2 associated with higher total and average Time Points than in Environment-1, which means

participants were able to complete the tasks faster in Environment-2 than in Environment-1.

Table 6.2: Correctness Point scale for task correctness analysis

Question Answered Correctness Point

Wrong/Incomplete 0

Partially correct 1

Fully correct 2

Task Correctness Analysis: Each task has a question associated it, and by performing the task, user are

leading towards some answer to that. This analysis covers user performance in finding correct answer to the

question associated with the tasks. Based on the user’s answer, a Correctness Point is assigned according

to Table 6.2. For each tasks, total and average Correctness Points are calculated for all the participants.

Figure 6.19 shows the comparison of total and average Correctness Points of the tasks in two different en-

vironments, which clearly indicates that the participants did well in Environment-2 than in Environment-1

towards finding correct answers to the questions.

95

Table 6.3: Difficulty Point scale for task difficulty analysis

Difficulty Level Difficulty Point

Very easy 1

Easy 2

Moderate 3

Somewhat hard 4

Hard 5

Very Hard 6

Task Difficulty Analysis: This part of the analysis investigated on how difficult it was to perform the given

tasks using the resource provided in each environment. The participants reported their opinions in a six level

difficulty scale, where each level is assigned a Difficulty Point according to the Table 6.3. For each tasks, total

and average Difficulty Points are calculated for all the participants. Figure 6.20 shows the comparison of

total and average Difficulty Points for the tasks performed by the participants in two different environments,

which again shows that participants performing the tasks in Environment-2 felt that the tasks were less

difficult to complete than it is in Environment-1.

Finally, from the feedback received on Overall user experience question, 100% of the participants felt

more comfortable and confident in performing the given tasks in the Integrated Environmnet than in Discrete

Environment. Moreover, eight (66%) participants mentioned ‘IDE’ as a preferred platform over a ‘Standalone

Application Suite’ for providing tool support for clone management. Some major reasons mentioned in

support to their opinion were: avoidance of context switching between IDE and some external tool to transfer

clone knowledge, less manual or intermediate data processing and reducing the possibility human error.

Among the rest, two (17%) participants were fine with either approaches, and the remaining two (17%)

preferred Standalone Application Suite over IDE with supporting reasons including: possibility of IDE being

bogged down with memory/time intensive tasks (specially for large systems), freedom for developers to choose

working with different IDEs, etc.

(a) Users’ total correctness points per task (b) Users’ average correctness points per task

Figure 6.19: Comparison on correctness of the tasks performed by the users in different environment

96

(a) Users’ total difficulty points per task (b) Users’ average difficulty points per task

Figure 6.20: Comparison on difficulty of performing the tasks by the users in different environment

From here we can conclude that majority of the participants were in favour of doing clone management

activity in Environment-2, which in this study was an IDE integrated clone management tool that makes the

management tasks less difficult, less error prone and leads to faster processing.

Investigating a Possible Biasness in Task Performance

In the study, the participants were given to perform the tasks first in the discrete environment and then

in the integrated environment. Although, for the same task, the inputs were different for different study

environments, there might be a chance that participants would do better in performing the tasks in later

environment because of being experienced in doing things in former one and thus the study result would

be biased to the later environment. In order to investigate that, we have conducted the same study with

eight new participants, where they performed the tasks in integrated environment first and then in discrete

environment. User performance in this supplementary study has been shown in Figure 6.21. Comparing the

results in both the studies, we found almost similar pattern of task performance and no significant sign of

biasness as discussed earlier.

Besides, in both the studies, we have asked the participants whether changing the order of the task

environment would make any different in their task performance. In response to that, we have found, all

the participants had a common understanding that, since the way of performing the tasks in the two study

environments are completely different, there is a very small chance that participants would get any advantage

in performing the tasks in the later environment, and thus changing the order would not make any influence

in the task performance as defined.

6.6.3 Threats to Validity of the Experiment

• In the ‘Task Correctness’ measurement, the state of answer termed as ‘partial correct’ has not been

weighted (for task correctness points) as per the number of the correct answers. Therefore, there would

be no difference whether the answers for a task found by the participants were almost correct or almost

incorrect. Considering this would make the comparison more realistic.

97

(a) Comparison on completion status of the tasks
performed by users

(b) Comparison on completion time of tasks taken
by users

(c) Comparison on correctness of the tasks performed
by the users

(d) Comparison on difficulty of performing the tasks
by the users

Figure 6.21: User performence in supplementary study

• The participants size of our study is not sufficient enough to draw a general conclusion. Furthermore, the

level of technical expertise of the involved participants might also have some effects on the experimental

results.

6.7 Scenario Based Feature Evaluation of SimEclipse

In this section we will describe how SimEclipse is evaluated based on its usefulness. This is an extension of

the previous study where user gets to play with different features of SimEclipse as a tool for managing clones

in software. This study included the actual validation of the outcomes of the tool by the expert developers.

6.7.1 Study Motivation

Since the correctness evaluation of the core technologies behind the SimEclipse (e.g., clone detector [172],

genealogy detector [155], etc) has been done in their respective study, we did not conduct similar evaluation

for SimEclipse here. Instead, we tried to focus on investigating its usefulness and acceptability to its target

users, as in SimEclipse, we attempted to integrate those core technologies to facilitate management of software

clones in IDE.

98

6.7.2 Study Design

The evaluation study was based on the following criteria, which were measured from the task based users’

experience on the tool:

Usability: How effective the tool is to manage clones in system during software development?

Operability: How simple and easy the tool is to operate for source code clone management?

Presentation: How presentable the information is in the tool for the participants to understanding and

analysis of clone?

A set of tasks was designed to cover all the features of SimEclise and after performing the task the

participants were required to answer a set of questionnaires capturing their experience based on the above

mention criteria.

Questionnaire Design

For this study, following three sets of questionnaire have been designed.

Feature Evaluation Questions: The questions in this set are solely designed to get user satisfaction level.

The satisfaction level is represented using a likert scale. Five different levels such as Strongly agree, Agree,

Neutral, Disagree and Strongly disagree define how satisfied the participants are about the usefulness of

the tool after the tasks are done.

(a) The feature is helpful for understanding and/or managing clones.

(b) The feature is easy to operate.

(c) The information presented on this feature was relevant and well presented.

Overall Tool Experience Questions: This set of questions is to capture overall user experience of the tool

operation. User’s feedback on each question was captured based on a five level likert scale containing

options as: Strongly agree, Agree, Neutral, Disagree and Strongly disagree.

(a) Did you find the tool satisfying overall? [Overall Satisfying]

(b) Do you think the overall performance of the tool was good? [Overall Good Performance]

(c) Do you think the clone aware software development planform provided by the tool would help de-

veloper in managing clones in their projects? [Helpful in Clone Management]

Issues and Improvements Questions: This final set of questions is to identify the issues that the study

participants felt while operating the tool and find the scope of further improvements based on their

observation.

99

(a) What difficulty did you experience while using the tool?

(b) What portion of the tool you think requires improvement?

(c) What additional features do you think should be implemented in the tool for better clone manage-

ment?

Feature based Task Design

To evaluate SimEclipse and address the three evaluation criteria we have defined a set of tasks based on

different clone management features, which will allow the participants to express their opinions accordingly.

Each task intends to gather statistics about the usefulness and the usability of the tool. Usefulness signifies

how the tool can bridge the gap between the complexity of a system’s implementation and the program

comprehension by the participants. Usability portrays how simple and easy the tool is to operate and

therefore assists the participants in understanding and convenient management of clones. Table 6.4 provide

a summary of the task the participants were provided with.

Runing Study Session

This experiment modelling is a continution of the previous study with separate task and goal. This part

also allows the participants to do specific tasks using the tool and answer the related questions. They were

given introduction about the nature and purpose of the study. Then they were briefed about the different

features of SimEclipse and the motivations behind it. The participants were then allowed to perform the

tasks specified in Table 6.4 over a given subject system and operate for a while to get familiar with it.

After the demo session the questionnaire was handed to the participants. Each individual task was followed

by a question that recorded the participants’ opinion based on their level of agreement on the performed

tasks. Answering the ’Overall Evaluation Question’s was an open discussion session and the participants had

the liberty to ask questions regarding any difficulty they faced during the task completion and knowing their

views in further improvements of the tool.

6.7.3 Summary of Findings

Feature Evaluation

This section presents an analytical overview of the user evaluation of different features of SimEclipse in

managing clones in software. User feedback on the feature evaluation questions are analyzed and presented

in Figure 6.22 with separate component for each feature. From the feedback chart, it is clear that the features

of SimEclipse got most of the remarks on the positive side of the likert scale from the study participants on

all the three evaluation criteria (Usability, Operability and Presentation). Figure 6.23 presents a consolidated

view of the positive feedback (Strongly Agree’ or ’Agree’) recived for all the features of SimEclipse. The

100

Table 6.4: Feature based tasks on SimEclipse for user study

Feature Task Task Description

Clone
Detection

-Full clone detection
-Focused clone detec-
tion
-On-the-fly/Instant
clone detection from
editor

-Detect clone in the whole project.
-Explore the project hierarchy in SimEclipse Nav-
igator View and detect clones for any package/-
folder, file or source fragment.
-Open a source file in editor, select/highlight one
or more function or block of code and detect clone
for the selected code.

Clone
Visualization

-Detection result explo-
ration
-View clone code

-Explore detected clones in SimEclipse Clones
View.
-View/highlight the clone code in editor.
-Compare clone fragments.

Clone
Tracking

-Detect copy-paste
clone
-Detect non copy-paste
clone
-Existing clone code
modification

-Enable Clone Tracking feature
-Copy a function from a source file, paste the func-
tion in another source file and save the file. Make
sure the new function is reported as clone with the
source function from where it was being copied. -
Pick a function from any source file in the project.
Type code for a new function from the scratch in
another source file, keeping some source code simi-
larity with the previously picked function. Save the
new function and make sure it is reported as clone
with the picked function.
-Select a clone class from the clone detection re-
sult. Select a clone fragment and do as much as
source modification such that it should not be part
of that clone class. Save the source file and perform
clone detection on that source file. Make sure the
modified source fragment does not appear in the
detection result. Undo the chage and perform the
detection again. Make sure the fragment appears
again in the detection result.

-On demand Clone
Marking/Annotation
(useful when clone
tracking is disabled)

- Select a function from a file that is known to be a
part of a clone class. Invove clone Annotation for
that function. Make sure an Information Marker
appears in the editor marker bar (as shown in Fig-
ure 6.13 and Figure 6.14) next to selected function
with location information to other clone fragments
of this clone class.

Clone
Analysis

-Clone Genealogy View
-Source Change History
View

-Enable clone genealogy extraction
- In settings, configure source location of the previ-
ous versions of the project
-Detect clone genealogy for the project
-Explore the clone genealogies shown in SimEclipse
Genealogy View
-Select a particular function from a source file and
invoke for Source Change History from context
menu.
-Explore the source of the function in previous ver-
sions of the project from SimEclipse Code History
View.

101

(a) Detection Feedback (b) Visualization Feedback

(c) Analysis Feedback (d) Tracking Feedback

Figure 6.22: User opinion on Usability, Operability and Presentation for the features of SimEclipse

observation shows, 100% of the participants expressed their positive feedback (answering ’Strongly Agree’ or

’Agree’) on all the evaluation criteria for the Detection, and for Visualization features it was found 91.7%.

For the remaining two features, at least 66.7% of them were being positive in the three evaluation criteria

for Analysis and Tracking features. This indicates the Analysis and Tracking features need to be improved

to further enhance the clone management experience using SimEclipse. The study also received various

recommendations from user in improving and adding new features to SimEclipse, which will be discussed in

the following section.

Feedback from the Overall Experience Questions has been analyzed and presented in Figure 6.24. Among

the study participants, 83.3% of them agreed that SimEclipse would be Helpful in Clone Management. While

66.7% of the participants were found being agreed on SimEclipse’s Overall good Performance, 75% were found

being Overall Satisfied in using the tool.

Future Improvements

At the end of the study session, the Issues and Improvements Questions were enabled us to get some advice

on how can we improve the overall clone management experience by the developers using SimEclipse. We

got valuable suggestions on existing feature improvements, especially for interactive visualization in the user

interface part for Clone Tracking and Clone Analysis part. Although SimEclipse is capable to do focused

102

Figure 6.23: Consolidated feedback on all the features of SimEclipse

clone search, a few users request for post-detection filtering of clone when detection is done in the whole

project, search and filtering option in Clone Genealogy View. To enhance the clone visualization experience,

implementation of model/graph based visualization also suggested by some participants. For additional

features, notable requests we got were: enhanced highlighting of difference in clone comparison, portable

clone documentation sharable among developers, clone refactor scheduling, linked-editing of clones, all of

which we believe would be a great addition in our future improvement plan for SimEclipse to enhance the

overall clone management experience of the developer.

6.8 SimEclipse Feature Comparison

In this thesis, we looked for what clone based technologies can be incorporated into the software developer’s

development workflow along with convenient solutions to make those technologies readily available in practice.

The motivation of the study is to allow developers to deal with clone in software they are developing both

in time and effort efficient ways. Towards that goal, we developed SimEclipse as a solution for making a

number of clone based technologies readily available to software developers and clone researchers. Table 6.5

shows the feature matrix of SimEclipse compared to existing clone management tools discussed in Section 6.4.

From the table, it is clear that SimEclipse supersedes the rest of the tools in providing integrated features

to identify and understand software clones as well as address various clone management needs.

6.9 Addressing Research Questions

In this section we are going to answer the research question presented at the beginning of this chapter based

on the study and experimental analysis.

RQ1: The research question was about identifying the clone based technologies that can be grouped

103

Figure 6.24: Overall user evaluation of SimEclipse

together in support of better clone management. This question has been addressed in Section 6.3.1. We

have identified the individual components of managing clones in software and grouped them together in

the form of some strategy. These strategies can be applied to deal with clones in various state of the

project and its cloning situation.

RQ2: This question was about investigating the effectiveness of integrating clone based technologies into

a single platform. The analysis done in Section 6.6 covers the answer to this question. Participants in

the study were allowed to perform some clone based tasks using some discrete clone support tools and

then using an IDE integrated clone management plugin. Based on their feedback after performing the

same tasks in two different environments, it is clear that having various clone management functionalities

under a single platform yields faster, convenient and less error prone clone management.

RQ3: This research question looks for feasible choice of platform that can be used for integration of

clone based technologies towards effective clone management. Answer to this question is based on our

analysis done in Section 6.6 and Section 6.7. Based the feedback gained from the ‘Overall user experience

questions’ at the end of the study done in Section 6.6, we have seen that 100% of the participants felt

more comfortable and confident in performing the given tasks using an integrated clone management tool

in IDE other than using some discrete standalone tool. In this part of study, more relevant finding to this

research question is, 60% of the participants expressed that they would prefer IDE as a platform over a

Standalone Application Suite for providing tool support for clone management. So, we have developed

SimEclipse, a clone aware IDE plugin to provide the software developers a platform for managing clones

from within IDE. In the second part of our study done in Section 6.7, we tried to evaluate SimEclipse

104

Table 6.5: Feature Comparison of SimEclipse with other tools/plug-ins

Features C
n
P

[7
2]

C
S
eR

[7
6]

C
lo

n
eB

oa
rd

[4
3]

S
H

IN
O

B
I

[9
1]

C
lo

n
eD

R
[2

3]

Z
ib

ra
n

an
d

R
oy

[1
84

]

J
C

lo
n
e

[1
0]

C
lo

n
eT

ra
ck

er
[4

6]

C
eD

A
R

[1
67

]

S
im

E
cl

ip
se

Integrated Detection Engine N N N Y Y Y Y N* N* Y

Copy-paste Detection Only Y Y Y N N N N N N Y

Type-1 Clone Detection Y Y Y Y Y Y Y Y Y Y

Type-2 Clone Detection N N N Y Y Y Y Y Y Y

Type-3 Clone Detection N N N N Y Y N Y Y Y

On-the-fly/Focused Detection N N N N Y Y Y N N Y

Clone Visualization Y Y Y Y Y Y Y Y Y Y

Code Change History View N N N N N N N N N Y

Clone Genealogy View N N N N N N N N N Y

Clone Tracking N N Y N N N N Y N Y

Clone Refactoring N N N N N N N N Y N

* Use clone detection results from other standalone tool

based on the three evaluation criteria (Usability, Operability and Presentation) upon its features. We

found, 83.3% of the participants considered SimEclipse would be Helpful in Clone Management. While

66.7% of the participants found agreed on SimEclipse’s Overall good Performance, 75% were found being

Overall Satisfied in using the tool.

6.10 Summary

Lack of integration of clone management functionalities in a developer’s work environment makes the task

of managing clones in software a challenging and potentially error prone task. This chapter presents a user

study in order to answer some research questions on finding a way to provide efficient clone management

support to the developers. Here we also present SimEclipse, a tool intended to promote the practical use

of code clone research. Our main contribution is an approach for integrating clone detection functionality

and clone management techniques in particular with the software development environment. The highly

configurable clone detection library developed in our previous study [172] provides us a fast software code

clone detector. Based on that, SimEclipse was developed to investigate how we can integrate clone detection

with software development to better support clone management and software evolution. By integrating some

105

other clone analysis and management features, it provides a clone detection friendly and clone-aware software

development environment that forms a strong basis for developing IDE based tools for managing clones. Our

small scale user study shows that SimEclipse has great potential to be used both in research and industry in

dealing with clones.

106

Chapter 7

Conclusion and Future Work

Cloning is a common phenomenon found in almost all kinds of software systems during their evolutions.

Investigating and understanding a software system’s code clones is important to manage clones effectively.

Previous studies reported that duplicate code in software systems ranges from 9-17% [183] to 50% [144].

Cloning can be a substantial problem during development and maintenance unless special care is taken to

find and track existing clones and their evolution [78]. Source code clone detection has been greatly studied

over the past decade. A number of state of the art clone detection tools are in use in software clone research

[151], and the majority of the work focused on the detection and analysis of code clones. Current research

trend in the area is mostly on determining what to do with the clones when they are detected, i.e., finding the

ways and means to manage the clones, gaining more control of their generation and studying clone evolution

and their effects on the evolution of software. Roy et al. [152] conducted the very first comprehensive survey on

software clone management, which points to the achievements so far in this area, and reveal the opportunities

for further research necessary towards an integrated clone management system, and developing a prototype

of such a system is one of the main parts of this thesis.

In this thesis, we first presented a fast and scalable near-miss structural software clone detection process.

We made this process available for practical use in the form of a standalone clone detection tool Simcad as

well as a portable clone detection library SimLib. For the evaluation, we performed a user study on SimLib

to get some feedback on installation and use of the API and to uncover its potential use as a third-party clone

detection library. Our small scale user study demonstrates that SimLib could be a potential library towards

providing support for various clone/similarity detection needs to the other applications. Finally, we have

also conducted an empirical study in order to answer three research questions on finding a way to provide

efficient clone management support to the developers. In support of the study, we presented a clone-aware

software development platform SimEclipse as a handy tool to accomplish the task of clone detection and

various clone management activities in an easier and meaningful way. The objective of developing such a tool

was to make the clone management activities as a part of the software development lifecycle. As clones in

software are mainly evolved from various coding activities of the developer, we have shown that ready-made

tool support for clone based technologies in a typical software development tool (e.g., Integrated Development

Environment) as an IDE plugin would make a great impact in getting efficient control of managing evolution

of clones in software systems. By using the clone tracking facility in SimEclipse, some of the prominent

107

causes of clone origination like accidental code copying or not knowing of the previous existence of code can

be avoided. Identifying clones in the IDE will also make the clone refactoring task easier. We conducted a user

study based evaluation of SimEclipse plugin considering the three evaluation criteria (Usability, Operability

and Presentation), and majority of the study participants found it to be ‘Helpful in Clone Management’.

We hope SimEclipse will help developers deal with cloned code from within an IDE and support clone

management from where a clone evolves. Having these clone based services under the same hood would be

handy in detection, visualization and management of clones in software.

We have presented three tools in this thesis that are readily available to be used in practice by various

types of users. Following are some target users of these tools:

• SimCad: Developer/researcher for clone analysis in software source code or non source code based data.

• SimLib: It would help a developer/researched in developing 1) more advanced clone detection tool

customized for particular type of data, 2) other clone analysis/visualization/management tool where

clone detection is a pre-requisite of the tool.

• SimEclipse: It would help a software developer managing clones in the software s/he in working on.

We hope that both researchers and developers would enjoy and utilize the benefit of using these tools in

different aspect of code clone research and easily manage cloned codes in their projects.

Since current research trend in software clones states strong emphasis on clone management, in the

future, we would like to focus mainly on improving SimEclipse by addressing the feedbacks and improvement

suggestions we received from our tool evaluation study. The target of this future improvement will be to

enhance the overall clone management experience of the developers using SimEclipse. Our evaluation study

on SimEclipse shows that the clone ‘Tracking’ and ‘Analysis’ features require further improvements to meet

users expectations, which would be first thing to work on in our future plan. Besides, implementation of new

features like enhanced highlighting of difference in clone comparison, portable clone documentation sharable

among developers, clone refactor scheduling, linked-editing of clones, all of which we believe would be a

great addition to our future improvement plan to establish SimEclipse as a viable tool for integrated clone

management.

108

References

[1] K. Abd-El-Hafiz. A metrics-based data mining approach for software clone detection. In Computer
Software and Applications Conference, pages 35–41, 2012x.

[2] E. Adar. GUESS: a language and interface for graph exploration. In CHI, pages 791–800. ACM, 2006.

[3] E. Adar and M. Kim. SoftGUESS: Visualization and exploration of code clones in context. In ICSE,
pages 762 –766, 2007.

[4] G. Alkhatib. The maintenance problem of application software. In Journal of Software Maintenance,
volume 4, pages 83–104, 1992.

[5] G. Antoniol, G. Casazza, M. Di Penta, and E. Merlo. Modeling clones evolution through time series.
In ICSM, page 273, 2001.

[6] G. Antoniol, U. Villano, E. Merlo, and M. Di Penta. Analyzing cloning evolution in the linux kernel.
Information and Software Technology, 44(13):755 – 765, 2002.

[7] M. Asaduzzaman. Visualization and analysis of software clones. M.Sc. thesis, University of
Saskatchewan, Canada, 2011.

[8] M. Asaduzzaman, C. Roy, and K. Schneider. VisCad: flexible code clone analysis support for NiCad.
In IWSC, pages 77–78. ACM, 2011.

[9] L. Aversano, L. Cerulo, and M. Di Penta. How clones are maintained: An empirical study. In CSMR,
pages 81 –90, 2007.

[10] M. Bahtiyar. JClone : Syntax tree based clone detection for java. Master’s thesis, Linnaeus University,
2010.

[11] B. Baker. A program for identifying duplicated code. Computing Science and Statistics, 24:49–57,
1992.

[12] B. Baker. On finding duplication and near-duplication in large software systems. In WCRE, pages 86
–95, 1995.

[13] T. Bakota, R. Ferenc, and T. Gyimothy. Clone smells in software evolution. In ICSM, pages 24–33,
2007.

[14] M. Balazinska, E. Merlo, M. Dagenais, and K. Kontogiannis. Advanced clone-analysis to support
object-oriented system refactoring. In WCRE, pages 98–107. IEEE Computer Society Press, 2000.

[15] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Measuring clone based reengi-
neering opportunities. In METRICS, pages 292 –303, 1999.

[16] D. Barbara and P. Chen. Using self-similarity to cluster large data sets. In Data mining and Knowledge
Discovery, volume 7, pages 123–152, 2003.

[17] L. Barbour, F. Khomh, and Y. Zou. Late propagation in software clones. In ICSM, pages 273 –282,
2011.

109

[18] L. Barbour, H. Yuan, and Y. Zou. A technique for just-in time clone detection. In ICPC, pages 76–79,
Washington DC, USA, 2010.

[19] H. Basit and S. Jarzabek. Detecting higher-level similarity patterns in programs. SIGSOFT Softw.
Eng. Notes, 30:156–165, 2005.

[20] H. Basit and S. Jarzabek. A data mining approach for detecting higher-level clones in software. In
Transactions on Software Engineering, volume 35 (4), pages 497– 514. IEEE, 2009.

[21] H. Basit, S. Puglisi, W. Smyth, A. Turpin, and S. Jarzabek. Efficient token based clone detection with
flexible tokenization. In ESEC-FSE companion, pages 513–516. ACM, 2007.

[22] H. Basit, D. Rajapakse, and S. Jarzabek. Beyond templates: a study of clones in the stl and some
general implications. In ICSE, pages 451–459, 2005.

[23] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection using abstract syntax trees.
In ICSM, page 368, 1998.

[24] S. Bellon. Vergleich von techniken zur erkennung duplizierten quellcodes. Diploma thesis, Universität
Stuttgart, 2002.

[25] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of clone
detection tools. IEEE Trans. on Softw. Engg., 33(9):577–591, 2007.

[26] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. Hassan. An empirical study on
inconsistent changes to code clones at release level. In WCRE, pages 85–94, 2009.

[27] B. Biegel and S. Diehl. Highly configurable and extensible code clone detection. In WCRE, pages
237–241, Beverly, MA, USA, 2010.

[28] B. Biegel and S. Diehl. Jccd: a flexible and extensible api for implementing custom code clone detectors.
In Automated Software Engineering, pages 167–168, Antwerp, Belgium, 2010.

[29] Blue Edge Bulgaria. SimScan - Similarity Scanner. http://blue-edge.bg/download.html, last access:
Aug 2011.

[30] P. Bulychev. CloneDigger Tool. http://clonedigger.sourceforge.net, Last Accessed August 2013.

[31] P. Bulychev and M. Minea. Duplicate code detection using anti-unification. In Colloquium on Software
Engineering, pages 51–54, St. Petersburg, Russia, 2008.

[32] F. Calefato, F. Lanubile, and T. Mallardo. Function clone detection in web applications. In Journal of
Web Engineering, volume 3 (1), pages 3–21, 2004.

[33] M. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages 380–388,
2002.

[34] M. Chilowicz, E. Duris, and G. Roussel. Syntax tree fingerprinting for source code similarity detection.
In ICPC, pages 243–247, 2009.

[35] A. Chiu and D. Hirtle. Beyond clone detection. CS846 Course Project Report, University of Waterloo,
2007.

[36] K. W. Church and J. I. Helfman. Dotplot: A program for exploring self-similarity in millions of lines
for text and code. In Journal of American Statistical Association, volume 2(2), pages 153–174, June
1993.

[37] J. Cordy. Practical challenges to software maintenance automation. In IWPC, pages 196–206. IEEE,
2003.

[38] J. Cordy. Live scatterplots. In IWSC, pages 79–80. ACM, 2011.

110

[39] J. Cordy, T. Dean, and N. Synytskyy. Practical language-independent detection of near-miss clones.
In CASCON, pages 1–12. IBM Press, 2004.

[40] A. Cuomo, A. Santone, and U. Villano. A novel approach based on formal methods for clone detection.
In International Workshop on Software Clones, pages 8–14, 2012.

[41] M. Datar, N. Immorlica, Indyk P., and V. Mirrokni. Locality-sensitive hashing scheme based on p-stable
distributions. In SoGG, pages 253–262, Brooklyn, New York, USA, June 2004.

[42] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley. The development of a software clone detector.
International Journal of Applied Software Technology, 1(3/4):219 – 236, 1995.

[43] M. de Wit. Managing Clones Using Dynamic Change Tracking and Resolution. M.Sc. thesis, Delft
University of Technology, 2008.

[44] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J. Girard, and S. Teuchert. Clone
detection in automotive model-based development. In ICSE, pages 603–612. ACM, 2008.

[45] G. Di Lucca, M. Di Penta, and A. Fasolino. An approach to identify duplicated web pages. In
COMPSAC, pages 481 – 486, 2002.

[46] E. Duala-Ekoko and M. Robillard. CloneTracker: tool support for code clone management. In ICSE,
pages 843–846, 2008.

[47] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach for detecting duplicated
code. In ICSM, pages 109–118, 1999.

[48] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large
spatial databases with noise. In KDD, pages 226–231, 1996.

[49] W. Evans, C. Fraser, and F. Ma. Clone detection via structural abstraction. In WCRE, pages 150–159.
IEEE Computer Society, 2007.

[50] R. Falke, P. Frenzel, and R. Koschke. Empirical evaluation of clone detection using syntax suffix trees.
Empirical Softw. Engg., 13:601–643, 2008.

[51] M. Fowler, K. Beck, J.Brant, W. Opdyke, and D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison Wesley Professional, 1999.

[52] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In ICSE, pages 321–330. ACM,
2008.

[53] S. Giesecke. Generic modelling of code clones. In DRSS, pages 1–23, 2007.

[54] D. Gitchell and N. Tran. Sim: a utility for detecting similarity in computer programs. In SIGCSE,
pages 266–270. ACM, 1999.

[55] N. Göde. Evolution of type-1 clones. In SCAM, pages 77–86, 2009.

[56] N. Göde. Clone removal: Fact or fiction. In International Workshop on Software Clones, pages 22–40,
Cape Town, SA, 2010.

[57] N. Göde and J. Harder. Clone stability. In CSMR, pages 65 –74, 2011.

[58] N. Göde and R. Koschke. Studying clone evolution using incremental clone detection. Journal of
Software Maintenance and Evolution: Research and Practice, pages 1–28, 2010.

[59] N. Göde and R. Koschke. Frequency and risks of changes to clones. In ICSE, pages 311–320. ACM,
2011.

[60] C. Gong, X. Huang, Cheng, and S. Bai. Detecting near-duplicates in large-scale short text databases.
In PAKDD, pages 877–883, 2008.

111

[61] S. Grant and J. Cordy. Vector space analysis of software clones. In ICPC, pages 233–237, Vancouver,
BC, Canada, 2009.

[62] J. Harder and N. Göde. Efficiently handling clone data: Rcf and cyclone. In IWSC, pages 81–82. ACM,
2011.

[63] S. Harris. Simian - Similaruty Analyzer. http://www.harukizaemon.com/simian, last access: Aug 2011.

[64] M. Henzinger. Finding near-duplicate web pages: a large-scale evaluation of algorithms. In SIGIR,
pages 284–291, 2006.

[65] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Aries: Refactoring support environment based on
code clone analysis. In IASTED-SEA, pages 222–229. ACTA Press, 2004.

[66] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue. Code Clone Analysis Methods for Efficient Software
Maintenance. PhD thesis, Graduate School of Information Science and Technology, Osaka University,
2006.

[67] Y. Higo and S. Kusumoto. Enhancing quality of code clone detection with program dependency graph.
In WCRE, pages 315 –316, 2009.

[68] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On software maintenance process improve-
ment based on code clone analysis. In PROFES, pages 185–197. Springer-Verlag, 2002.

[69] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto. Incremental code clone detection: A PDG-based
approach. In WCRE, pages 3 –12, 2011.

[70] W. Hordijk, M. Ponisio, and R. Wieringa. Harmfulness of code duplication: A structured review of the
evidence. In EASE, pages 88–97, 2009.

[71] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto. Is duplicate code more frequently modified than non-
duplicate code in software evolution?: an empirical study on open source software. In IWPSE-EVOL,
pages 73–82. ACM, 2010.

[72] D. Hou, P. Jablonski, and F. Jacob. CnP: Towards an environment for the proactive management of
copy-and-paste programming. In ICPC, pages 238–242, 2009.

[73] B. Hummel, E. Juergens, L. Heinemann, and M. Conradt. Index-based code clone detection: incre-
mental, distributed, scalable. In ICSM, pages 1 –9, 2010.

[74] P. Jablonski and D. Hou. CReN: a tool for tracking copy-and-paste code clones and renaming identifiers
consistently in the IDE. In ETX, pages 16–20, 2007.

[75] P. Jablonski and D. Hou. Aiding software maintenance with copy and paste clone awareness. In ICPC,
pages 170–179, 2010.

[76] F. Jacob, D. Hou, and P. Jablonski. Actively comparing clones inside the code editor. In IWSC, pages
9–16. ACM, 2010.

[77] S. Jarzabek and Y. Xue. Are clones harmful for maintenance. In IWSC, pages 73–74, 2010.

[78] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. DECKARD: Scalable and accurate tree-based detection
of code clones. In ICSE, pages 96–105, 2007.

[79] Z. Jiang and A. Hassan. A framework for studying clones in large software systems. In SCAM, pages
203 –212, 2007.

[80] Z. Jiang, A. Hassan, and R. Holt. Visualizing clone cohesion and coupling. In APSEC, pages 467 –476,
2006.

[81] J. Johnson. Identifying redundancy in source code using fingerprints. In CASCON, pages 171–183.
IBM Press, 1993.

112

[82] J. Johnson. Substring matching for clone detection and change tracking. In ICSM, pages 120 –126,
1994.

[83] J. Johnson. Visualizing textual redundancy in legacy source. In CASCON, pages 32–41. IBM Press,
1994.

[84] E. Juergens, F. Deissenboeck, and B. Hummel. CloneDetective - a workbench for clone detection
research. In ICSE, pages 603–606, 2009.

[85] E. Juergens, F. Deissenboeck, and B. Hummel. Code similarities beyond copy and paste. In CSMR,
pages 78–87, Madrid, Spain, 2010.

[86] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do code clones matter? In ICSE, pages
485–495, 2009.

[87] T. Kamiya. CCFinderX Tool. http://www.ccfinder.net, Accessed August 2013.

[88] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: a multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw. Eng., 28(7):654–670, 2002.

[89] C. Kapser and M. Godfrey. Improved tool support for the investigation of duplication in software. In
ICSM, pages 305–314. IEEE Computer Society, 2005.

[90] C. Kapser and M. Godfrey. Cloning considered harmful” considered harmful. In WCRE, pages 19–28,
2006.

[91] S. Kawaguchi, T. Yamashina, H. Uwano, K. Fushida, Y. Kamei, M. Nagura, and H. Iida. SHINOBI:
A tool for automatic code clone detection in the IDE. In WCRE, pages 313–314, 2009.

[92] I. Keivanloo, C. Roy, and J. Rilling. ava bytecode clone detection via relaxation on code fingerprint
and semantic web reasoning. In IWSC, pages 36–42, 2012.

[93] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of copy and paste programming
practices in oopl. In International Symposium on Empirical Software Engineering, pages 83–92. IEEE,
2004.

[94] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and supporting evolution
of code clones. In MSR, pages 1–5. ACM, 2005.

[95] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone genealogies.
SIGSOFT Softw. Eng. Notes, 30(5):187–196, 2005.

[96] E. Kodhai, V. Vijayakumar, G. Balabaskaran, T. Stalin, and B. Kanagaraj. Method level detection and
removal of code clones in C and Java programs using refactoring. In IJJCET, pages 93–95. Gopalax
Publications & TCET, 2010.

[97] R. Komondoor and S. Horwitz. Semantics-preserving procedure extraction. In POPL, pages 155–169,
Boston, MA, USA, January 2000. ACM.

[98] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source code. In SAS, pages
40–56. Springer-Verlag, 2001.

[99] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler, and M. Bernstein. Pattern matching for clone and
concept detection. In ASE, volume 3 (1–2), pages 77–108, 1996.

[100] S. Kosaraju. Faster algorithms for the construction of parameterized suffix trees. In FOCS, pages
631–638, 1995.

[101] R. Koschke. Survey of research on software clones. In DRSS, pages 1–24, 2006.

[102] R. Koschke. Frontiers of software clone management. In FoSM, pages 119 –128, 2008.

113

[103] R. Koschke, R. Falke, and P. Frenzel. Clone detection using abstract syntax suffix trees. In WCRE,
pages 253–262, 2006.

[104] R. Koschke, J. Girard, and M. Wrthner. An intermediate representation for reverse engineering analyzes.
In WCRE, pages 241–250, Hawai, USA, 1998.

[105] J. Krinke. Identifying similar code with program dependence graphs. In WCRE, pages 301–309, 2001.

[106] J. Krinke. A study of consistent and inconsistent changes to code clones. In WCRE, pages 170 –178,
2007.

[107] J. Krinke. Is cloned code more stable than non-cloned code? SCAM, 0:57–66, 2008.

[108] B. Lague, D. Proulx, J. Mayrand, E. Merlo, and J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In ICSM, pages 314–321. IEEE Computer Society,
1997.

[109] M. Lanza and S. Ducasse. Polymetric views - a lightweight visual approach to reverse engineering. In
Transactions on Software Engineering, volume 29(9), pages 782–795, Semptember 2003.

[110] T. Lavoie, M. Eilers-Smith, and E. Merlo. Challenging cloning related problems with gpu-based algo-
rithms. In IWSC, pages 25–32, Cape Town, SA, 2010.

[111] M. Lee, J. Roh, S. Hwang, and S. Kim. Instant code clone search. In FSE, pages 167–176, 2010.

[112] S. Lee and I. Jeong. SDD: high performance code clone detection system for large scale source code.
In OOPSLA, pages 140–141, 2005.

[113] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: finding copy-paste and related bugs in large-scale
software code. Software Engineering, IEEE Transactions on, 32(3):176 – 192, 2006.

[114] Z. Li and J. Sun. A metric space based software clone detection approach. In Software Engineering
and Data Mining, pages 111–116, Chengdu, China, 2010.

[115] C. Liu, C. Chen, J. Han, and P. Yu. Gplag: Detection of software plagiarism by program dependence
graph analysis. In KDD, Philadelphia, USA, August 2006. ACM.

[116] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue. Analysis of the linux kernel evolution using code
clone coverage. In MSR, page 22, 2007.

[117] S. Livieri, Y. Higo, M. Matushita, and K. Inoue. Very-large scale code clone analysis and visualization
of open source programs using distributed ccfinder: D-ccfinder. In ICSE, pages 106–115, 2007.

[118] A. Lozano and M. Wermelinger. Assessing the effect of clones on changeability. In ICSM, pages 227–236,
2008.

[119] A. Lozano, M. Wermelinger, and B. Nuseibeh. Evaluating the harmfulness of cloning: A change based
experiment. In MSR, pages 18–18, 2007.

[120] K. Maeda. Experience of xml-based source code representation with parsing actions. In SoMeT, pages
330–339, 2007.

[121] K. Maeda. Syntax sensitive and language independent detection of code clones. In World Academy of
Science, Engineering and Technology, volume 60, pages 350–354, 2009.

[122] U. Manber. Finding similar files in a large file system. In Usenix Technical Conference, pages 1–10,
1994.

[123] G. Manku, A. Jain, and A. Sarma. Detecting near-duplicates for web crawling. In WWW, pages
141–150, 2007.

114

[124] A. Marcus and J. Maletic. Identification of high-level concept clones in source code. In ASE, pages 107
– 114, 2001.

[125] J. Mayrand, B. Lague, and J. Hudepohl. Evaluating the benefits of clone detection in the software
maintenance activities in large scale systems. In WESS, 1996.

[126] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the automatic detection of function clones in a
software system using metrics. In ICSM, pages 244 –253, 1996.

[127] E. McCreight. A space-economical suffix tree construction algorithm. In Journal of the ACM, volume
2 (2), pages 262–272, 1976.

[128] M. Mondal, C. Roy, M. Rahman, R. Saha, J. Krinke, and K. Schneider. Comparative stability of cloned
and non-cloned code: An empirical study. In ACM-SAC (SE Track), pages 1–8, 2012 (to appear).

[129] M. Mondal, C. Roy, and K. Schneider. Dispersion of changes in cloned and non-cloned code. In IWSC,
pages 29 – 35, 2012.

[130] M. Mondal, C. Roy, and K. Schneider. An insight into the dispersion of changes in cloned and non-
cloned code: A genealogy based empirical study. In Science of Computer Programming, page 44, 2014.

[131] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Matsumoto. Software quality analysis by code
clones in industrial legacy software. In METRICS, pages 87–94, Ottawa, Canada, 2002. IEEE.

[132] L. Moonen. Generating robust parsers using island grammars. In WCRE, pages 13–22, 2001.

[133] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto. Gapped code clone detection with
lightweight source code analysis. In International Conference Program Comprehension, pages 93–102,
2013.

[134] E. W. Myers. An o (nd) difference algorithm and its variations. In Algorithmica, volume 1(1), pages
251–266, 1986.

[135] S. Nasehi, G. Sotudeh, and M. Gomrokchi. Source code enhancement using reduction of duplicated
code. In IASTED, pages 192–197. ACTA Press, 2007.

[136] T. Nguyen, H. Nguyen, J. Al-Kofahi, N. Pham, and T. Nguyen. Scalable and incremental clone detection
for evolving software. In ICSM, pages 491 –494, 2009.

[137] J. Pate, R. Tairas, and N. Kraft. Clone evolution: a systematic review. Journal of Software Maintenance
and Evolution: Research and Practice, pages 1–23, 2011.

[138] J. Patenaude, E. Merlo, M. Dagenais, and B. Lagu e. Extending software quality assessment techniques
to java systems. In IWPC, pages 49–56, Washington, DC, USA, 1999. IEEE.

[139] B. Pi, S. Fu, W. Wang, and S. Han. Simhash-based effective and efficient detecting of near-duplicate
short messages. In ISCSCT, pages 020–025, 2009.

[140] F. Rahman, C. Bird, and P. Devanbu. Clones: what is that smell. In Mining Software Repositories,
pages 72–81, Cape Town, South, Africa, 2010.

[141] D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A systematic review. volume 55(7),
pages 1165–1199. Information and Software Technology, July 2013.

[142] A. Raza, G. Vogel, and E. Plödereder. Project Bauhaus. http://www.bauhaus-stuttgart.de, Last
Accessed August 2013.

[143] M. Rieger. Effective Clone Detection Without Language Barriers. Phd thesis, Institut fur̈ Informatik
und angewandte Mathematik, Germany, 2005.

[144] M. Rieger, S. Ducasse, and M. Lanza. Insights into system-wide code duplication. In WCRE, pages
100–109, 2004.

115

[145] C. Roy. Detection and analysis of near-miss software clones. In ICSM, pages 447–450, 2009.

[146] C. Roy and J. Cordy. A survey on software clone detection research. Tech Report TR 2007-541, School
of Computing, Queens University, Canada, 2007.

[147] C. Roy and J. Cordy. NICAD: Accurate detection of near-miss intentional clones using flexible pretty-
printing and code normalization. In ICPC, pages 172–181, 2008.

[148] C. Roy and J. Cordy. Towards a mutation-based automatic framework for evaluating code clone
detection tools. In C3S2E, pages 137–140, 2008.

[149] C. Roy and J. Cordy. A mutation/injection-based automatic framework for evaluating code clone
detection tools. In ICSTW, pages 157–166, 2009.

[150] C. Roy and J. Cordy. Near-miss function clones in open source software: an empirical study. J. of
Softw. Maintenance and Evolution: Research and Practice, 22(3):165–189, 2010.

[151] C. Roy, J. Cordy, and R. Koschke. Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach. Sci. Comput. Program., 74:470–495, 2009.

[152] C. Roy, M. Zibran, and R. Koschke. The vision of software clone management: Past, present and
future. In Software Evolution Week (SEW’14), page 16. IEEE, 2014.

[153] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su. Detecting code clones in binary executa-
bles. In ISSTA, pages 117–128. ACM, 2009.

[154] R. Saha, M. Asaduzzaman, M. Zibran, C. Roy, and K. Schneider. Evaluating code clone genealogies at
release level: An empirical study. In SCAM, pages 87–96, 2010.

[155] R. Saha, C. Roy, and K. Schneider. An automatic framework for extracting and classifying near-miss
clone genealogies. In ICSM, pages 293 –302, 2011.

[156] R. Saha, C. Roy, and K. Schneider. Visualizing the evolution of code clones. In IWSC, pages 71–72.
ACM, 2011.

[157] R. Saha, C.. Roy, K. Schneider, and D. Perry. Understanding the evolution of type-3 clones: an
exploratory study. In MSR, pages 139–148, Piscataway, NJ, USA, 2013. IEEE.

[158] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue. Finding file clones in freebsd ports collection. In
Mining Software Repositories, pages 102–105, Cape Town, South, Africa, 2010.

[159] G. Selim, L. Barbour, W. Shang, B. Adams, A. Hassan, and Y. Zou. Studying the impact of clones on
software defects. In WCRE, pages 13 –21, 2010.

[160] G. Selim, K. Foo, and Y. Zou. Enhancing source-based clone detection using intermediate representa-
tion. In WCRE, pages 227–236, 2010.

[161] F. Smith and M. Waterman. denti fi cation of common molecular identification of common molecular
subsequences. In Journal of Molecular Biology, volume 147, pages 195–197, 1981.

[162] R. Smith and S. Horwitz. Detecting and measuring similarity in code clones. In IWSC, pages 28–34,
2009.

[163] H. Sutton, A. andKagdi, J. Maletic, and G. Volkert. Hybridizing evolutionary algorithms and clustering
algorithms to find source-code clones. In GECCO, pages 1079–1080, Washington DC, USA, 2005.

[164] J. Svajlenko, C. Roy, and J. Cordy. A mutation analysis based benchmarking framework for clone
detectors. In IWSC, pages 8–9, 2013.

[165] R. Tairas. Centralizing clone group representation and maintenance. In OOPSLA, pages 781–782,
Orlando, Florida, USA, 2009.

116

[166] R. Tairas and J. Gray. Phoenix-based clone detection using suffix trees. In ACM-SE, pages 679–684,
2006.

[167] R. Tairas and J. Gray. Increasing clone maintenance support by unifying clone detection and refactoring
activities. In Information and Software Technology, volume 54, pages 1297–1307, 2012.

[168] S Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An empirical study on the maintenance
of source code clones. Empirical Software Engineering, 15:1–34, 2010.

[169] R. Tiarks, R. Koschke, and R. Falke. An extended assessment of type-3 clones as detected by state-of-
the-art tools. In Software Quality Journal, volume 19(2), pages 295–331, 2011.

[170] M. Toomim, A. Begel, and S. Graham. Managing duplicated code with linked editing. In VLHCC,
pages 173–180. IEEE Computer Society, 2004.

[171] M. Uddin, C. Roy, and Schneider K. Simcad: An extensible and faster clone detection tool for large
scale software systems. In ICPC, San Francisco, CA, USA, May 2013.

[172] M. Uddin, C. Roy, K. Schneider, and A. Hindle. On the effectiveness of simhash for detecting near-miss
clones in large scale software systems. In WCRE, pages 13 –22, 2011.

[173] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance support environment based
on code clone analysis. In METRICS, pages 67–76. IEEE Computer Society Press, 2002.

[174] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On detection of gapped code clones using gap
locations. In APSEC, pages 327 – 336, 2002.

[175] R.D. Venkatasubramanyam, H.K. Singh, and K. Ravikanth. A method for proactive moderation of
code clones in ides. In IWSC, pages 62–66, 2012.

[176] V. Wahler, D. Seipel, J. Wolff, and G. Fischer. Clone detection in source code by frequent itemset
techniques. In SCAM, pages 128 –135, 2004.

[177] V. Weckerle. CPC: an eclipse framework for automated clone life cycle tracking and update anomaly
detection. Master’s thesis, Freie Universität Berlin, Germany, 2008.

[178] M. Weiser. Program slicing. In IEEE Transactions on Software Engineering, volume 10(4), pages
352–357, July 1984.

[179] R. Wettel and R. Marinescu. Archeology of code duplication: recovering duplication chains from small
duplication fragments. In SYNASC, pages 63–70, Sep 2005.

[180] X. Yan, J. Han, and R. Afshar. Clospan: Mining closed sequential patterns in large datasets. In SDM,
pages 166–177, San Francisco, CA, USA, May 2003.

[181] W. Yang. Identifying syntactic differences between two programs. Softw. Pract. Exper., 21:739–755,
1991.

[182] Y. Yuan and Y. Guo. Boreas: an accurate and scalable token-based approach to code clone detection.
In Automated Software Engineering, pages 286–289, 2012.

[183] M. Zibran and C. Roy. Towards flexible code clone detection, management, and refactoring in IDE. In
IWSC, pages 75–76, 2011.

[184] M. Zibran and C. Roy. IDE-based real-time focused search for near-miss clones. In ACM-SAC (SE
Track), pages 1–8, 2012.

[185] M. Zibran, R. Saha, M. Asaduzzaman, and C. Roy. Analyzing and forecasting near-miss clones in
evolving software: An empirical study. In ICECCS, pages 295–304, 2011.

117

