1,823 research outputs found

    Mutual query data sharing protocol for public key encryption through chosen-ciphertext attack in cloud environment

    Get PDF
    In this paper, we are proposing a mutual query data sharing protocol (MQDS) to overcome the encryption or decryption time limitations of exiting protocols like Boneh, rivest shamir adleman (RSA), Multi-bit transposed ring learning parity with noise (TRLPN), ring learning parity with noise (Ring-LPN) cryptosystem, key-Ordered decisional learning parity with noise (kO-DLPN), and KD_CS protocol’s. Titled scheme is to provide the security for the authenticated user data among the distributed physical users and devices. The proposed data sharing protocol is designed to resist the chosen-ciphertext attack (CCA) under the hardness solution for the query shared-strong diffie-hellman (SDH) problem. The evaluation of proposed work with the existing data sharing protocols in computational and communication overhead through their response time is evaluated

    An Elliptic Curve-based Signcryption Scheme with Forward Secrecy

    Full text link
    An elliptic curve-based signcryption scheme is introduced in this paper that effectively combines the functionalities of digital signature and encryption, and decreases the computational costs and communication overheads in comparison with the traditional signature-then-encryption schemes. It simultaneously provides the attributes of message confidentiality, authentication, integrity, unforgeability, non-repudiation, public verifiability, and forward secrecy of message confidentiality. Since it is based on elliptic curves and can use any fast and secure symmetric algorithm for encrypting messages, it has great advantages to be used for security establishments in store-and-forward applications and when dealing with resource-constrained devices.Comment: 13 Pages, 5 Figures, 2 Table

    HUC-HISF: A Hybrid Intelligent Security Framework for Human-centric Ubiquitous Computing

    Get PDF
    制度:新 ; 報告番号:乙2336号 ; 学位の種類:博士(人間科学) ; 授与年月日:2012/1/18 ; 早大学位記番号:新584

    Strong Electronic Identification: Survey & Scenario Planning

    Get PDF
    The deployment of more high-risk services such as online banking and government services on the Internet has meant that the need and demand for strong electronic identity is bigger today more than ever. Different stakeholders have different reasons for moving their services to the Internet, including cost savings, being closer to the customer or citizen, increasing volume and value of services among others. This means that traditional online identification schemes based on self-asserted identities are no longer sufficient to cope with the required level of assurance demanded by these services. Therefore, strong electronic identification methods that utilize identifiers rooted in real world identities must be provided to be used by customers and citizens alike on the Internet. This thesis focuses on studying state-of-the-art methods for providing reliable and mass market strong electronic identity in the world today. It looks at concrete real-world examples that enable real world identities to be transferred and used in the virtual world of the Internet. The thesis identifies crucial factors that determine what constitutes a strong electronic identity solution and through these factors evaluates and compares the example solutions surveyed in the thesis. As the Internet become more pervasive in our lives; mobile devices are becoming the primary devices for communication and accessing Internet services. This has thus, raised the question of what sort of strong electronic identity solutions could be implemented and how such solutions could adapt to the future. To help to understand the possible alternate futures, a scenario planning and analysis method was used to develop a series of scenarios from underlying key economic, political, technological and social trends and uncertainties. The resulting three future scenarios indicate how the future of strong electronic identity will shape up with the aim of helping stakeholders contemplate the future and develop policies and strategies to better position themselves for the future

    Strong Electronic Identification: Survey & Scenario Planning

    Get PDF
    The deployment of more high-risk services such as online banking and government services on the Internet has meant that the need and demand for strong electronic identity is bigger today more than ever. Different stakeholders have different reasons for moving their services to the Internet, including cost savings, being closer to the customer or citizen, increasing volume and value of services among others. This means that traditional online identification schemes based on self-asserted identities are no longer sufficient to cope with the required level of assurance demanded by these services. Therefore, strong electronic identification methods that utilize identifiers rooted in real world identities must be provided to be used by customers and citizens alike on the Internet. This thesis focuses on studying state-of-the-art methods for providing reliable and mass market strong electronic identity in the world today. It looks at concrete real-world examples that enable real world identities to be transferred and used in the virtual world of the Internet. The thesis identifies crucial factors that determine what constitutes a strong electronic identity solution and through these factors evaluates and compares the example solutions surveyed in the thesis. As the Internet become more pervasive in our lives; mobile devices are becoming the primary devices for communication and accessing Internet services. This has thus, raised the question of what sort of strong electronic identity solutions could be implemented and how such solutions could adapt to the future. To help to understand the possible alternate futures, a scenario planning and analysis method was used to develop a series of scenarios from underlying key economic, political, technological and social trends and uncertainties. The resulting three future scenarios indicate how the future of strong electronic identity will shape up with the aim of helping stakeholders contemplate the future and develop policies and strategies to better position themselves for the future

    REISCH: incorporating lightweight and reliable algorithms into healthcare applications of WSNs

    Get PDF
    Healthcare institutions require advanced technology to collect patients' data accurately and continuously. The tradition technologies still suffer from two problems: performance and security efficiency. The existing research has serious drawbacks when using public-key mechanisms such as digital signature algorithms. In this paper, we propose Reliable and Efficient Integrity Scheme for Data Collection in HWSN (REISCH) to alleviate these problems by using secure and lightweight signature algorithms. The results of the performance analysis indicate that our scheme provides high efficiency in data integration between sensors and server (saves more than 24% of alive sensors compared to traditional algorithms). Additionally, we use Automated Validation of Internet Security Protocols and Applications (AVISPA) to validate the security procedures in our scheme. Security analysis results confirm that REISCH is safe against some well-known attacks

    Blockchain-Enabled Authenticated Key Agreement Scheme for Mobile Vehicles-Assisted Precision Agricultural IoT Networks

    Get PDF
    Precision Farming Has a Positive Potential in the Agricultural Industry Regarding Water Conservation, Increased Productivity, Better Development of Rural Areas, and Increased Income. Blockchain Technology is a Better Alternative for Storing and Sharing Farm Data as It is Reliable, Transparent, Immutable, and Decentralized. Remote Monitoring of an Agricultural Field Requires Security Systems to Ensure that Any Sensitive Information is Exchanged Only among Authenticated Entities in the Network. to This End, We Design an Efficient Blockchain-Enabled Authenticated Key Agreement Scheme for Mobile Vehicles-Assisted Precision Agricultural Internet of Things (IoT) Networks Called AgroMobiBlock. the Limited Existing Work on Authentication in Agricultural Networks Shows Passive Usage of Blockchains with Very High Costs. AgroMobiBlock Proposes a Novel Idea using the Elliptic Curve Operations on an Active Hybrid Blockchain over Mobile Farming Vehicles with Low Computation and Communication Costs. Formal and Informal Security Analysis Along with the Formal Security Verification using the Automated Validation of Internet Security Protocols and Applications (AVISPA) Software Tool Have Shown the Robustness of AgroMobiBlock Against Man-In-The-Middle, Impersonation, Replay, Physical Capture, and Ephemeral Secret Leakage Attacks among Other Potential Attacks. the Blockchain-Based Simulation on Large-Scale Nodes Shows the Computational Time for an Increase in the Network and Block Sizes. Moreover, the Real-Time Testbed Experiments Have Been Performed to Show the Practical Usefulness of the Proposed Scheme
    corecore