11,469 research outputs found

    Positive trigonometric polynomials for strong stability of difference equations

    Full text link
    We follow a polynomial approach to analyse strong stability of linear difference equations with rationally independent delays. Upon application of the Hermite stability criterion on the discrete-time homogeneous characteristic polynomial, assessing strong stability amounts to deciding positive definiteness of a multivariate trigonometric polynomial matrix. This latter problem is addressed with a converging hierarchy of linear matrix inequalities (LMIs). Numerical experiments indicate that certificates of strong stability can be obtained at a reasonable computational cost for state dimension and number of delays not exceeding 4 or 5

    Relative controllability of linear difference equations

    Get PDF
    In this paper, we study the relative controllability of linear difference equations with multiple delays in the state by using a suitable formula for the solutions of such systems in terms of their initial conditions, their control inputs, and some matrix-valued coefficients obtained recursively from the matrices defining the system. Thanks to such formula, we characterize relative controllability in time TT in terms of an algebraic property of the matrix-valued coefficients, which reduces to the usual Kalman controllability criterion in the case of a single delay. Relative controllability is studied for solutions in the set of all functions and in the function spaces LpL^p and Ck\mathcal C^k. We also compare the relative controllability of the system for different delays in terms of their rational dependence structure, proving that relative controllability for some delays implies relative controllability for all delays that are "less rationally dependent" than the original ones, in a sense that we make precise. Finally, we provide an upper bound on the minimal controllability time for a system depending only on its dimension and on its largest delay

    Time and frequency domain analysis of sampled data controllers via mixed operation equations

    Get PDF
    Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods

    An Algebra of Synchronous Scheduling Interfaces

    Full text link
    In this paper we propose an algebra of synchronous scheduling interfaces which combines the expressiveness of Boolean algebra for logical and functional behaviour with the min-max-plus arithmetic for quantifying the non-functional aspects of synchronous interfaces. The interface theory arises from a realisability interpretation of intuitionistic modal logic (also known as Curry-Howard-Isomorphism or propositions-as-types principle). The resulting algebra of interface types aims to provide a general setting for specifying type-directed and compositional analyses of worst-case scheduling bounds. It covers synchronous control flow under concurrent, multi-processing or multi-threading execution and permits precise statements about exactness and coverage of the analyses supporting a variety of abstractions. The paper illustrates the expressiveness of the algebra by way of some examples taken from network flow problems, shortest-path, task scheduling and worst-case reaction times in synchronous programming.Comment: In Proceedings FIT 2010, arXiv:1101.426

    On the stability of the gravity-driven viscous channel flow

    Get PDF

    Open issues in devising software for the numerical solution of implicit delay differential equations

    Get PDF
    AbstractWe consider initial value problems for systems of implicit delay differential equations of the formMy′(t)=f(t,y(t),y(α1(t,y(t))),…,y(αm(t,y(t)))),where M is a constant square matrix (with arbitrary rank) and αi(t,y(t))⩽t for all t and i.For a numerical treatment of this kind of problems, a software tool has been recently developed [6]; this code is called RADAR5 and is based on a suitable extension to delay equations of the 3-stage Radau IIA Runge–Kutta method.The aim of this work is that of illustrating some important topics which are being investigated in order to increase the efficiency of the code. They are mainly relevant to(i)the error control strategies in relation to derivative discontinuities arising in the solutions of delay equations;(ii)the integration of problems with unbounded delays (like the pantograph equation);(iii)the applications to problems with special structure (as those arising from spatial discretization of evolutions PDEs with delays).Several numerical examples will also be shown in order to illustrate some of the topics discussed in the paper
    • …
    corecore