
Journal of Computational and Applied Mathematics 185 (2006) 261–277
www.elsevier.com/locate/cam

Open issues in devising software for the numerical solution of
implicit delay differential equations

Nicola Guglielmi1

Dipartimento di Matematica Pura e Applicata, Università dell’Aquila via Vetoio (Coppito), I-67010 L’Aquila, Italy

Received 31 March 2003

Abstract

We consider initial value problems for systems of implicit delay differential equations of the form

My′(t)= f (t, y(t), y(�1(t, y(t))), . . . , y(�m(t, y(t)))),

whereM is a constant square matrix (with arbitrary rank) and�i (t, y(t))� t for all t andi.
For a numerical treatment of this kind of problems, a software tool has been recently developed [6]; this code

is called RADAR5 and is based on a suitable extension to delay equations of the 3-stage Radau IIA Runge–Kutta
method.

The aim of this work is that of illustrating some important topics which are being investigated in order to increase
the efficiency of the code. They are mainly relevant to

(i) the error control strategies in relation to derivative discontinuities arising in the solutions of delay equations;
(ii) the integration of problems with unbounded delays (like the pantograph equation);

(iii) the applications to problems with special structure (as those arising from spatial discretization of evolutions
PDEs with delays).

Several numerical examples will also be shown in order to illustrate some of the topics discussed in the paper.
© 2005 Elsevier B.V. All rights reserved.

Keywords:RADAR5; Implicit delay differential equations; Radau method; Numerical code; Error control

E-mail address:guglielm@univaq.it.
1 Supported by the Italian M.I.U.R.

0377-0427/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2005.03.010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82776617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/cam
mailto:guglielm@univaq.it

262 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

1. Introduction

We consider systems of delay differential equations in the general (implicit) form:

My′(t)= f (t, y(t), y(�(t, y(t)))), t ∈ (t0, T],
y(t0)= y0,

y(t)= g(t), t < t0, (1)

whereT > t0 is a given constant,y ∈ Rd (d�1), f is a real-valued vector function,M is a constant
(possibly singular) matrix,�(t, y(t)) denotes a vector ofmdeviating arguments,y(�(t, y(t))) denotes the
corresponding vector of retarded terms, i.e.,(y(�1(t, y(t))), . . . , y(�m(t, y(t)))) and�(t, y(t))� t (to be
intended componentwise).The valueg(t0)may be different fromy0, allowing for a discontinuity att0.Very
often we shall make reference to the so-called delays, that is�i(t, y(t)) := t − �i(t, y(t)), i = 1, . . . , m.

The considered class of problems includes retarded differential-algebraic systems, neutral delay
differential equations of the form

y′(t)= f (t, y(t), y(�(t, y(t))), y′(�(t, y(t)))),

singularly perturbed problems and problems with vanishing delays (see[6]).
The paper is organized as follows. In Section 2 we describe synthetically the integration technique;

in Section 3 we deal with the error control strategy (illustrating it on a real-life neutral problem) and
propose a novel technique for approximating jump discontinuities and in Section 4 we direct attention
at problems with unbounded delays; finally in Section 5 we discuss issues related to the integration of
evolution PDEs with memory effects.

2. The basic integration scheme

The integration scheme we consider is based on thes-stage Radau IIA method (in particular the code
RADAR5 usess=3). For a detailed description we address the reader to[6] and—for technical details—to
the documentation at the addresshttp://www.unige.ch/math/folks/hairer/software.html

For simplicity we consider the case of a single deviating argument in (1) and focus our attention on
the genericnth time step, from the grid-pointtn to the grid-pointtn+1 = tn + hn. We use the following
notation:

• {aij } and{ci} (i, j=1, . . . , s) are the coefficients and abscissae of the Radau IIA Runge–Kutta method;
• f (t, y, z) denotes the right-hand-side function;
• Y

(n)
� denotes the�th stage value computed at the (current)nth step;

• �� := �(tn + c�hn, Y
(n)
�);

• u(t) denotes the continuous approximation toy(t) computed during the integration process, that is

u(t)=
{
g(t) if t� t0,
um(t) if tm < t� tm+1,

http://www.unige.ch/math/folks/hairer/software.html

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 263

whereum(t) is step-by-step given by the collocation polynomial associated with the Radau method,
that is (fortm� t� tm+1)

um(tm + ϑhm)= �0(ϑ)ym +
s∑
i=1

�i(ϑ)Y
(m)
i , ϑ ∈ [0,1], (2)

wherehm is the stepsize used at themth step,�i(ϑ) is the polynomial of degreessatisfying�i(cj)=�ij
(�ij being the Kronecker delta symbol), where we addc0 =0 to the abscissaec1, . . . , cs of the method.

The application of the Runge–Kutta method leads to the equations

0 =M(Y
(n)
i − yn)− hn

s∑
j=1

aijf (tn + cjhn, Y
(n)
j , Z

(n)
j)

︸ ︷︷ ︸
Fi(tn+cihn,Y (n)1 ,...,Y

(n)
s ,Z

(n)
1 ,...,Z

(n)
s)

, i = 1, . . . , s, (3)

Z
(n)
� = u(��), �= 1, . . . , s

yn+1 = Y (n)s (the method is stiffly accurate).

Observe that form = n, as evidenced by (2),um identifies the continuous output to be computed in
the current interval[tn, tn+1] (which hence depends on the unknown stage valuesY

(n)
1 , . . . , Y

(n)
s). This

makes evident thefull implicitness of the Runge–Kutta equations as soon as the delay vanishes or the
code proceeds with a stepsize larger than the delay (which means that�� > tn for some�).

2.1. Discontinuities in the solution

It is well known (see e.g.,[1–3]) that jump discontinuities may occur in various orders of the derivative
of the solution, independently of the regularity of the right-hand side. With respect to the case ofexplicit
DDEs (that is when the matrixM is the identity), jump discontinuities do not necessarily smooth out for
problems in the form (1). Consider for example the following equation (from[14]), having a constant
delay� = 1,

y′(t)= y′(t − 1), t�0,

y(0)= 0, t = 0,

y(t)= (t + 1)5, t <0, (4)

having analytical solutiony(t)=�t
+ (t−�t
)5, t�0 (here�·
 denotes the integer part function). Hence
the solution is onlyC0-continuous and jump discontinuities in its first derivative occur at any integer point
�i = i, i >0 (such points are usually calledbreaking points[1]). Observe that, by adding a new variable
v(t)= y′(t), the above equation can be written in form (1) as(

1 0
0 0

)(
y′(t)
v′(t)

)
=
(

v(t)

v(t)− v(t − 1)

)
. (5)

264 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

If the points�i are not included in the mesh either an order reduction may be detected (e.g., when using
a constant stepsize which is not a sub-multiple of�) or the stepsize may be severely restricted in a
neighborhood of the jump discontinuities (when using variable stepsize).

3. Error estimation

In the case of a state-dependent delay or of a variable stepsize integration, theO(hs+2) contribution to
the local error, due to the approximation of delayed variables, determines a global errorO(hs+1). Hence
the 3-stage Radau IIA method has classical orderp = 4 (when applied to (1)).

Now we briefly outline the stepsize control mechanism implemented by the code RADAR5 (this means
that we restrict our attention to the cases = 3). In ordinary differential equations the stepsize is chosen
accordingly to a suitable error estimation at grid points. However, for problems of form (1), the control
of the only local error at grid points could be very misleading and in many problems it turns out to be
fundamental to estimate the error in the continuous numerical approximation to the solution.

The discrete advancing method is given by the tableau

A classical error estimation at mesh points is obtained, as in the standard ODE framework, by embedding
a method of lower order into the Radau method.

The embedded error-estimating method has classical orderp′ =3 and is constructed by using the same
stagesY (n)i , i = 1,2,3, plus the additional explicit stageY (n)0 given by

Y
(n)
0 = yn to which correspondsZ(n)0 = u(�0) with �0 = �(tn, yn).

Therefore, denoting byc0 = 0 the abscissa corresponding to this further stage, we get

M(ȳn+1 − yn)= hn

3∑
i=0

b̄if (tn + cihn, Y
(n)
i , Z

(n)
i),

whereȳn+1 denotes the numerical approximation toy(tn+1) determined by the embedded method, whose
weights are given by

b̄0 = �0, b̄1 = 16− √
6

36
− 2 + 3

√
6

6
�0, b̄2 = 16+ √

6

36
− 2 − 3

√
6

6
�0, b̄3 = 1

9
− 1

3
�0

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 265

with

�0 = 6 − 3
√

9 + 3 3
√

3

30

being the real eigenvalue of the coefficient matrixA of the method (see[9]).
Unfortunately the embedded method is notA-stable; hence as the stiffness of the problem and/or

the stepsizehn grow, the classical error estimate�̄n = ȳn+1 − yn+1 is unbounded and, consequently, it
dramatically overestimates the true local error. Therefore, in order to overcome this inconvenience, the
code utilizes the alternative quantity

�n = Pn�̄n = O(h4
n) with Pn = (M − hn�0Gn)

−1M, (6)

or even�n = P 2
n �̄n, where the projection matrixPn is constructed by using the JacobianGn of the

function f (see Section 5); this is in complete analogy to what is done by the code RADAU5 (by Hairer
and Wanner) for stiff ODEs; the only difference between the two cases is in the different structure of the
Jacobian matrixGn.

This technique, called “filtering” is essentially arbitrary; the problem is that the available error estimator
�̄n cannot be used in the stiff regime; this makes necessary to develop a new error estimator suitable for stiff
computations. This is obtained in (6) by means of the projectorPn; the projector has several properties
but some of them still need to be studied. As an example, ifM is rank deficient, the behavior of the
projector ash → 0 deserves to be investigated. The approach of constructing a new error estimator for
stiff computations has been considered by de Swart and Söderlind in[15]. Here the arbitrary “filtering”
idea is abandoned in favor of a justified error estimator of proper classical order ash → 0 and with a
uniform upper bound whenh → ∞. It is a plan of the author to implement and include this estimator in
a future version of RADAR5.

We remark that the LU-decomposition of the matrixM − hn�0Gn in (6) is already available from the
simplified Newton iteration which is used to solve the system (3) of the R–K equations and hence does
not involve further computation (see[6]).

This alternative estimate of the local error has the advantage that, while asymptotically equivalent to
the classical estimate for vanishing stiffness and stepsizehn, it remains bounded (or even vanishes with
the second choice) as the stiffness of the problem and/or the stepsizehn grow.

We consider the following norm for an arbitrary (error) vectorvn,

‖vn‖ =
√√√√1

d

d∑
i=1

(
vn,i

si

)2

,

wheresi = 1 + �|yn,i | and� is the ratio tolr/tola between the relative (tolr) and absolute (tola) input
tolerances per step (which are used for the stepsize selection). Then we denote by�n the following
measure of the error at grid points,

�n = ‖�n‖.

We shall call�n as thediscretecomponent of the local error.
In the general case, the local order of the error-estimating method turns out to be 4, that is

�n = O(h4
n).

266 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

As we have mentioned, for delay equations, where the uniform accuracy of the numerical solution has
also influence on the local error, it is necessary to control the error uniformly in time.

To do this we may consider in general also the polynomial

vm(tm + ϑhm)=
s∑
i=1

�i(ϑ)Y
(m)
i , ϑ ∈ [0,1], (7)

of degrees−1, which interpolates the valuesY (m)i but notym (compare with (2)). In the considered case,
that iss = 3, vm is a parabola. It turns out that

�n = max
ϑ∈[0,1] ‖un(tn + hnϑ)− vn(tn + hnϑ)‖ = ‖un(tn)− vn(tn)‖ = O(h3

n).

We use this quantity as an indicator for the uniform error and denote it ascontinuouscomponent of the
local error.

The estimate used for the stepsize control is finally given by

errn = �1�n + �2(�n)
4/3 = O(h4

n) (8)

with the parameters�1, �2�0 possibly tuned by the user. This choice is the fruit of both theoretical and
empirical analyses. The order of the estimation is 4 when the solution is smooth, and is obtained quite
cheaply.

The criteria for accepting the current step and selecting the new one are based on the two input
parameters tolr and tola, denoting the absolute and relative tolerances per step (actually in the code it
is possible to define both tolerances componentwise but for simplicity we consider here the case where
they are constant for all components).

If we set tola = 	 and tolr = 0, the error test takes the form

errn�	

and a possible prediction for the new stepsizehn+1 is given by the following classical formula:

h̄n+1 = max

{

1,min

{

2, �

4

√
	

errn

}}
hn (9)

with the parameters
1,
2 and � possibly chosen by the user (default values are 0.2, 8.0 and 0.9,
respectively). An alternative strategy used by the code is based on the Gustafsson predictive control
(derived by the seminal works of Gustafsson et al.[8] and Gustafsson[7]). Such technique is also
described in[9].

3.1. Behavior of the error estimator on a real-life neutral problem

In order to better illustrate the behavior of the error estimator (8), we consider its application to a
real-life model. In particular we are interested in the relationship between the given input tolerance and
the obtained accuracy without making use of any a priori knowledge of breaking points. We have chosen

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 267

Table 1
Computational results for problem (10)

	 ST RE EM

10−2 27 12 5.4610−3

10−3 55 39 1.7410−3

10−4 93 58 6.7310−3

10−5 144 92 1.5610−4

10−7 210 132 4.1910−6

10−10 362 181 4.3510−8

10−12 527 213 3.2710−9

a system of neutral equations which models a predator–pray system due to Kuang[12]. It is given by the
following two equations:

y′
1(t)= y1(t)

(
1 − y1(t − �)− 29

10
y′

1(t − �)

)
− y1(t)

2y2(t)

y1(t)
2 + 1

,

y′
2(t)=

(
y1(t)

2

y1(t)
2 + 1

− 1

10

)
y2(t) (10)

with � = 21
50 and initial conditionsg1(t)= 33

100 − t/10 andg2(t)= 111
50 + t/10 for t�0. We transformed

the problem into the form (1) and applied the code RADAR5 till the endpointT = 6. We remark that, in
order to set (10) into the form (1), it is necessary to pass to a higher dimensiond = 3 (by introducingy′

1
as a new variable).

In the experiments (summarized inTable 1), we do not insert the breaking points into the mesh and,
for the error control, use (8) with parameters�1 = �2 = 0.5.

We obtained the following results, where	 indicates the given tolerance (here we assume that the
absolute and relative tolerance are the same), ST the number of accepted steps, RE the number of rejected
steps (by the error controller) and EM is a measure of the error at the final integration point (which is
given by the Euclidean norm of the difference(y1,N , y2,N)

T − (y1(T), y2(T))
T, whereN denotes the

number of executed steps, which means thattN = T).
Table 1shows a good convergence to zero of the error as the input tolerance	 decreases to zero.
We also observe that the ratio between accepted and rejected steps has a slight variation for tolerances

10−2�	�10−10 (the ratio is always between 1.4 and 2). We remark that the large number of rejections is
due to the non-regularity of the solution and in particular to the fact that breaking points are not directly
approximated during the integration.

3.2. An effective comparison between error estimators

We consider now the scalar DDE (4) (which we have written in the equivalent form (5)), introduced in
Section 1. Since the breaking points are known a priori, we could easily insert them in advance into the
mesh; in such case the use of the sole discrete error estimate�n would turn out to be enough in order to
get an accurate approximation of the solution. Nevertheless, since our aim is that of giving evidence to the

268 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

90 92 94 96 98 100
90

92

94

96

98

100

102

90 92 94 96 98 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 1. In theleft sideare shown both the numerical approximations of the solutiony(t) of (4) obtained by using combined error
control (continuous line) and sole discrete error control (dashed line), respectively. In theright sideare shown the corresponding
global errors, that is the error measured integrating (4) by making use of the combined error control (continuous line) and the
error measured by using the sole discrete error control (dashed line).

importance of controlling the continuous error component in the general case where the breaking points
are not available (this is certainly the case in state-dependent problems), we do not insert in advance any
point into the mesh. We consider the integration of (5) in the time intervalt ∈ [0,100] and use tolerances
tola = tolr = 10−4 for both componentsy andv.

As a first experiment we integrate the equation by making use of the combined error control strategy
given by (8). In such a way we obtain a good approximation of the solutiony (as shown by the continuous
line in Fig. 1). Such a control gives rise to a strong restriction of the stepsize in a neighborhood of the
breaking points, due to the magnitude of the continuous error component. A possible way to obtain a
more efficient integration could consist in a strategy attempting to tracking the discontinuities in parallel
to the integration; this will be discussed in Section 3.3.

As a second experiment we make only use of the discrete error estimate�n. As shown inFig. 1, the
numerical approximation of the solutiony(t) (dashed line) appears to be quite inaccurate in the last part
of the integration interval. This is due to the poor continuous approximation of the solution(y(t), v(t))

in a neighborhood of the breaking points. The effect of this is put in evidence by the high increase of the
global error as the integration advances (see the right frame inFig. 1).

3.3. A novel procedure for detecting and approximating breaking points

As we have seen, when breaking points are not known a priori, in order to get a precise integration of
problem (1), it is necessary to determine them to a sufficient accuracy (which is related to the required
input tolerances). Despite this is implicitly done by the error estimator (8), we are going to consider a
more direct and efficient approach.

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 269

In the literature two different approaches have been developed forexplicitDDEs (that is for the case
when the matrixM is the identity); they are based, respectively, on

(a) discontinuity tracking, that is on a direct computation of discontinuities from the deviating arguments
(e.g., by Manchester’s group[16]);

(b) relying on uniform local error estimation based on the analysis of the so-called defect, that is on
y′(t)− f (t, y(t), y(�(t, y(t)))) (e.g., by Toronto’s group et al.[5,4]).
Significant discontinuities are detected in this case by an analysis of the sequence of stepsizes and
then located by a suitable analysis of the defect.

Both approaches present some advantages and difficulties. For the first approach, the construction of the
network dependency graph (see[16]) is necessary and may be quite expensive. On the other hand, the
second approach is computationally honerous especially in presence of jumps in the solution or its first
derivative (which require a higher accuracy).

We propose here a novel approach which is related to some of the ideas proposed in[5] and is based
on the ratio between the error estimates�n and�n as a detection measure and on the extrapolated defect
as localization function. We observe, in fact, that when a breaking point is internal to the considered
time-step[tn, tn+ h̄n], the continuous error estimate�n is much larger than the classical discrete estimate
�n. The algorithm, which we denote with the JD acronym (standing for “jump discontinuity”), activates
in case of a stepsize rejection and proceeds through the following phases (we focus attention on thenth
time step).

Algorithm JD

1. Detection of a discontinuity by monitoring the ratio between the error indicators�n and �n; if
|�n|/|�n|>
 (
 being a given threshold, e.g.,
 = 10), the interval[tn, tn + h̄n] is identifiedto
contain at least one breaking point. Otherwise the procedure exits.

2. Approximation of the jump discontinuity by means of the analysis of theextrapolateddefect from the
previous (accepted) mesh interval, that is

Mu′
n−1(s)− f (s, un−1(s), u(�(s, un−1(s)))) for s ∈ [tn, tn + h̄n]

(recall thatu(·) denotes the computed piecewise polynomial continuous approximation to the solution
available on the left oftn). The predicted breaking point identifies with the nonregular point of the
defect in the considered interval (seeFig. 2). Such approximation, saŷ�i , may be obtained, e.g., by a
bisection-like algorithm.

3. Insertion of the approximately computed breaking point into the mesh, which means settingtn+1 = �̂i .
4. Execution of a new step fromtn to tn+1.

Let us consider again example (5) and focus attention on its numerical integration on the left side of the
first breaking point�1=1. Suppose first to make use of the combined error estimate (8) without providing
any approximation of the breaking point during the advancing of the method (actual procedure adopted
by the code) and then to make use of the algorithm JD in order to approximate the breaking points (novel
procedure proposed).

270 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

101

100

10-1

10-2

10-3

10-4

10-5

10-6

Fig. 2. Extrapolated defect (in logarithmic scale) in a neighborhood of�1 = 1.

3.4. An experimental comparison

The following behavior is experimentally observed. Since the breaking point� = 1 is not inserted
a priori into the mesh, attn = 0.9580. . . a stepsizēhn = 0.1335. . . (s.t. tn+1> �) is proposed by the
stepsize predictionalgorithm. Due to the high estimated error (8) the step is rejected. The measured ratio
between thecontinuous error estimatorand thediscrete error estimatoris�n/�n ≈ 0.24·103; thisdetects
the presence of a breaking point within the interval[0.9580. . . ,1.0915. . .] (which is actually given by
�1 = 1). How to proceed?
Presentprocedure(P): Due to the large estimated error errn a new, very small, stepsize (hn=0.00292. . .)

is predicted and finally accepted. Then the same situation is repeated for several times, that is an alternation
of large rejected stepsizes and quite small accepted ones. After 13 steps (counting both accepted and
rejected ones) the breaking point�1 = 1 is overcome.
Novel procedure(N): If, instead, the algorithm JD is applied to approximate the breaking points, the

behavior of the code is totally different. The extrapolated defect

Mu′
n−1(s)− f (s, un−1(s), u(�(s, un−1(s)))) for s ∈ [tn, tn + h̄n]

is processed in order to approximate the breaking point�1. By means of some steps of a bisection-like
method, an approximation (say�̂1) of the breaking point,̂�1 ≈ 0.9994. . ., is obtained (seeFig. 2) and
the code setstn+1 = �̂1; in this way the jump discontinuity is essentially reached in a further single step
(having sizehn = tn+1 − tn ≈ 0.0414. . .).

The advantage with respect to the actual procedure is in a significant reduction of the total number
of steps (taking into account both accepted and rejected ones) and in a smaller global error, at the cost
of a bisection-like algorithm for approximating the jump-discontinuities in the extrapolated defect. An
efficient implementation of the proposed algorithm (JD) is under development and is planned to be

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 271

included in the next distribution of the code. In particular, the algorithm JD should have the aim to
detect discontinuities in the solutions and presumably its first derivatives. For what concerns, instead,
discontinuities in higher-order derivatives, the error control procedure (8) is expected to be efficient
enough.

4. Problems with unbounded delays

In this section, we direct attention at problems of the form (1) characterized by the unboundedness of
some of the delays.

4.1. The memory allocation problem

In the present implementation, after any accepted step, the coefficients of the collocation polynomials
which provide the approximation to the solution in the current mesh interval are stored in a suitablememory
array. Such information is stored in a memory segment of size 4· d̂ + 2 double precision elements (d̂
being the number of components of the solution—sayyij , j=1, . . . , d̂, with ij ∈ {1, . . . , d}—presenting
deviating arguments in the right-hand-side functionf of (1)). In particular two cells store the left mesh-
point tn and the stepsizehn and—for each componentyij—four cells contain the coefficients of the
interpolating cubic polynomial (which is represented in the Newton form). We shall denote byMl the
full size (that is the number of double precision elements) of thememory array.

The memorization process fills the array starting from the beginning and proceeds step by step towards
its end. When the memory array is completely filled, the continuous output corresponding to the current
step is stored at the beginning of thememory array(which can be interpreted as a circular stack). As a
consequence the information relevant to the step which had been previously stored in the same initial
segment of the memory array is lost; this means that the continuous approximation to the solution is
usually available only on the right of a mesh pointtb, b= max(0, n−L) (L being the number ofstorable
steps, that isL= Ml/(4 · d̂ + 2)). Hence, typically,tb increases asn increases.

If, during the execution of thenth step, any deviating argument falls on the right-hand side oft0 and on
the left-hand side oftb > t0 the integration process has to stop, since the required approximation to the
solution in the past is not available.

Some remarks are timely.

(1) Since thememory arrayhas an arbitrary but fixed length given byMl ∝ L, the approximation of
the solution in the domain of integration (for a sufficiently largen) is only partially available, that is
in the interval[tn−L, tn].

(2) For a fixedL, the above interval has smaller length for increasing accuracies.
(3) No a priori information concerning the range of the deviating arguments is taken into account by the

storage procedure.

Some improvements are actually being investigated and implemented. The first one is that of allowing
different storagestrategies; e.g., in the equation

y′(t)= f (t, y(t), y(qt)), t�T , (q <1),

272 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Fig. 3. Numerical approximation of the real part of the solution of (11) with	 = 10−6.

the special form of the deviating argument�(t)=qt implies that the dense output is not needed iftn > qT .
This a priori information could of course be exploited by the code. A second, more theoretical, subject
is that of investigating the effectiveness of suitable reformulations of the problem in hand, aiming to
minimize the storage requirements.

4.2. An illustrative example

We present here an example which illustrates the potential difficulties lying in the numerical solution
of an equation with an unbounded delay. Let us consider the following so-called pantograph equation (in
complex form)

y′(t)= (−1 + 10i)y(t)+ 5eit y(t/2), t >0,

y(0)= 1 − i. (11)

The basic features of the considered equation are the following: on the one hand, the mentioned unbound-
edness from above of the delay�(t) = t/2, and on the other hand, the slow vanishing behavior of the
solution, which may be accompanied by persisting oscillations (asymptotic stability of sub-exponential
type is observed), as shown inFig. 3. The combination of them makes the memory requirements very
hard, as shown by the following illustrative experiments.

First observe that (11) may be rewritten as a two-dimensional system of the form (1) by simply
separating the real and the imaginary part of the solution.

We used several relative tolerances tola = 	 and corresponding absolute tolerances tola = 10−6	 (uni-
formly for all components), and two different valuesL, namelyL= 104 and 5· 104 (we remark that the
default value provided by the code is 104). The resulting length of the memory array isMl = 10L in
this case.

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 273

Table 2
Statistics for the problem (11) with different tolerances

	 L= 104 L= 5 × 104

tf n.s. tf n.s.

10−1 0.1250· 105 19 829 0.6327· 105 100 013
10−2 0.7435· 104 20 094 0.3692· 105 100 061
10−3 0.4609· 104 20 099 0.2289· 105 99 921
10−4 0.3140· 104 20 115 0.1571· 105 100 127
10−5 0.2232· 104 20 178 0.1116· 105 100 191
10−6 0.1561· 104 20 283 0.7819· 104 100 355
10−7 0.1027· 104 20 351 0.5138· 104 100 211
10−8 0.5452· 103 20 831 0.2695· 104 100 478
10−9 0.9440· 102 20 241 0.5340· 103 103 614

In Table 2we have reported, for each value of	 and ofL, the maximum allowed number of steps
(n.s.) and the corresponding final mesh-pointtf , where the integration stops because of the lack of storage
capacity for the history of the numerical solution. It appears that, as the tolerance	 decreases, the memory
required for storing the history necessary to reach the same final integration point becomes larger and
larger. This example shows how the integration of an apparently simple problem as (11), may be very
expensive. An optimal use of the memory is indeed very important.

5. On the application to evolution PDEs

As a final subject of this paper we discuss a very important task also for a general-purpose code like
RADAR5; it consists in an efficient integration of problems with structure. Consider for example the
so-called Hutchinson equation (see[11,13])

�

�t
u(x, t)= ε

�2

�x2u(x, t)+ u(x, t)[1 − u(x, t − �)],

u(x, t)= �(x, t) t ∈ [−�,0]; x ∈ (0,1),

subject to homogeneous Dirichlet boundary conditions.

5.1. Semi-discretization in space

Using constant stepsize�x := 1/(d + 1), and setting

y(t)= (u(�x, t), u(2�x, t), . . . , u(1 − �x, t))T,

we are lead to thed-dimensional system of DDEs

d

dt
y(t)= ε

�x2Dy(t)+ y(t) ◦ (e − y(t − �)),

274 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

0
5

10
15

0

0.5

1
0

2

4

6

tx 0
5

10
15

0

0.5

1
0

200

400

tx

0
5

10
15

0

0.5

1
0

0.5

1

1.5

tx 0
5

10
15

0

0.5

1
0

0.5

1

1.5

tx

Fig. 4. Numerical approximation of the solution with(ε, �) = (10,0.1) (upper left), (ε, �) = (10,0.05) (upper right),
(ε, �)= (1.5,0.05) (lower left) and(ε, �)= (1,0.001) (lower right).

y(t)= �(t), t ∈ [−�,0] (12)

with D the standard central difference operator,e= [1,1, . . . ,1]T and◦ denoting componentwise vector
multiplication. The right-hand side has a very special structure and it is important to exploit it in the
solution process of the Runge–Kutta equations.

The solution of the considered equation has a very interesting dynamics, which clearly depends on the
choice of the diffusion parameterε and of the delay�. In Fig. 4 it is shown the behavior of the solution
for different values of the coefficients (with respect to an initial function�(x, t)= cos(t) sin(� x)). The
solution presents different steady states (as is known); in particular, in the upper right figure, the solution
increases to a very high value before collapsing to the zero steady-state; such phenomenon appears more
evident if the diffusion coefficient is further decreased. An experimental numerical bifurcation analysis
would be a very interesting subject, although being very computationally expensive. This makes evident
the necessity of exploiting the structure of the system in order to decrease the number of floating point
operations.

5.2. The nonlinear Runge–Kutta system in problems with structure

For general nonlinear differential equations (1), the system (3) of the Runge–Kutta equations has to be
solved by an iterative method; usually—due to the stiffness of the problem—Newton’s method is applied.

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 275

This method needs to solve for each iteration a linear system with matrix


�F1

�Y1
. . .

�F1

�Ys
...

. . .
...

�Fs
�Y1

. . .
�Fs
�Ys


 ,

where, for sake of conciseness we omit the dependence ofFi (i = 1, . . . , s) on n and on its arguments
(see (3)). An exact computation of the derivatives of the functionFi(tn + cihn, Y1, . . . , Ys, Z1, . . . , Zs)

would lead to the following expression:

�Fi
�Yk

=M�ik − hnaik

(
�f

�z
(tn + ckhn, Yk, Zk)u

′(�k)
��

�y
(tn + ckhn, Yk)

+ �f

�y
(tn + ckhn, Yk, Zk)

)
− hn

s∑
j=1

aij
�f

�z
(tn + cjhn, Yj , Zj)

�Zj
�Yk

, (13)

where�ik is the Kronecker delta symbol. Observe that�Zj/�Yk = ZjkId (Id being thed × d identity
matrix); the scalarZjk is zero only if the deviating argument falls on the left side oftn; more precisely,
settingϑj := (�(tn + cjhn, Yj)− tn)/hn, we have

Zjk =
{
�k(ϑj) if ϑj >0,
0 if ϑj �0,

(14)

where�k(·) still represents the polynomial of degrees satisfying�i(ci) = 1 and�i(cj) = 0 for j �= i

(where we recall thatc0 = 0 andc1, . . . , cs are the abscissae of the method).
For an efficient computation, we simplify (13) by approximating all derivatives of the functionf (that

is (�f/�y, z)(tn + ckhn, Yk, Zk)) by (�f/�y, z)(tn, yn, zn), wherezn = u(�0) and�0 = �(tn, yn).
Then the simplified Newton iteration, in the equivalent variablesVi := Yi − yn, becomes

Ĵ�V (r) = F(V (r)), V (r+1) = V (r) + �V (r), r = 0,1, . . .

Ĵ = I ⊗M − hnA⊗
(

�f

�y
+ �f

�z

(
u′(�0)

��

�y

))
− hnAZ ⊗ �f

�z
, (15)

where

F(V (r))= (F1(tn + c1hn, yn + V
(r)
1 , . . . , yn + V (r)

s , Z
(r)
1 , . . . , Z(r)s), F2(· · ·), . . . , Fs(· · ·))T,

Z
(r)
� = u(�(r)�) with �(r)� = �(tn + c�hn, yn + V

(r)
�), �= 1, . . . , s

and �f/�y, �f/�z denote thed × d matrices of the partial derivatives off w.r.t. y and z variables,
respectively, and��/�y the 1× d matrix of the partial derivatives of� w.r.t. y, computed at(tn, yn, zn),
andZ = {Zjk}sj,k=1.

In the above notationV = (V1, . . . , Vs)
T ∈ Rsd and the apexr identifies the iteration number.

A further simplification considered in RADAR5 consists in possibly approximating the matrixZ as

Z ≈ �Is for a suitable� ∈ [0,1],

276 N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277

(Is being thes × s identity matrix) which determines a very special tensor structure of the approximated
JacobianĴ . Then, following the ideas of Bickart and Butcher, the matrixĴ is premultiplied by(hn A)−1⊗
Id . Successively, in order to simplify the structure of the system, the idea is to block-diagonalizeA−1

(this is completely analogous to the ODE-case as shown e.g., in[10]). Indicating byT the transformation
matrix, we haveT −1A−1T = D; then, introducing the transformed variablesW := (T −1 ⊗ Id) V , we
obtain the equivalent Newton iteration

J�W(r) = . . . , W(r+1) =W(r) + �W(r), r = 0,1, . . . ,

J = h−1
n D ⊗M − I ⊗

(
�f

�y
+ �f

�z
u′(�0)

��

�y
+ �

�f

�z

)
. (16)

Since the obtained linear system has block-diagonal structure, the linear algebra is more efficient with
respect to the original iteration (15). We remark that whenZ �= O, a suitable choice of the parameter
� is very important for the convergence of the simplified Newton iteration. An optimal choice (in terms
of speed of convergence of the Newton iteration) of the parameter� is under investigation. We remark
that in case of nonconvergence of the simplified Newton iteration, the code performs the original Newton
iteration (15) without any transformation (in this case, in fact, the tensor-product structure which lead to
the transformation (16) is lost).

5.3. Band structure of the Jacobian

A further advantage which can be possibly exploited by the linear solver is related to the band structure
of the matrix

G= �f

�y
+ �f

�z
u′(�0)

��

�y
+ �

�f

�z
. (17)

This is the case, for example, of the considered semi-discretized Hutchinson equation, where

f (t, y, z)= ε

�x2Dy + y ◦ (e − z)

and hence both

�f

�y
= ε

�x2D + diag(e − z) and
�f

�z
= −diag(y)

have band structure (here diag(v) denotes the diagonal matrix whose diagonal coincides with the vector
v). In the actual release of RADAR5, contrary to the fact that the matrix�f/�y may be stored by the user
both in a full-matrix structure and in a band-matrix one, the code stores the matrix�f/�z in a suitable
one-dimensional array, using a sparse matrix format; this is due to the fact that in most cases such matrix
does not need to be computed (recall that its use is necessary only when large stepsizes, with respect to
the delays, are used). Consequently, concerning the matrix (17), the complete band-matrix case is not
specifically treated at present. Allowing the linear algebra routines to exploit such possibleglobalband
structure of the system is certainly an important development which is planned to be added in the next
release.

N. Guglielmi / Journal of Computational and Applied Mathematics 185 (2006) 261–277 277

Acknowledgements

The issues discussed in this paper are the subject of a joint research with Ernst Hairer (Université
de Genève). A new version of the code including modifications related to the topics considered here is
distributed at the websitehttp://www.unige.ch/math/folks/hairer/software.html(where the first released
version is actually available).

The author wishes to thank Gustaf Söderlind for the careful reading of the manuscript and his very
useful remarks.

References

[1] A. Bellen, M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford University Press, Oxford, 2003.
[2] R. Bellman, K.L. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.
[3] R. Driver, Ordinary and Delay Differential Equations, Springer, Berlin, 1977.
[4] W.H. Enright, H. Hayashi, A delay differential equation solver based on a continuous Runge–Kutta method with defect

control, Numer. Algorithms 16 (1998) 349–364.
[5] W.H. Enright, K.R. Jackson, S.P. NZrsett, P.G. Thomsen, Effective solution of discontinuous IVPs using a Runge–Kutta

formula pair with interpolants, Appl. Math. Comput. 27 (1988) 313–335.
[6] N. Guglielmi, E. Hairer, Implementing Radau IIA methods for stiff delay differential equations, Computing 67 (2001)

1–12.
[7] K. Gustafsson, Control theoretic techniques for stepsize selection in explicit Runge–Kutta methods, ACM Trans. Math.

Software 17 (1991) 533–554.
[8] K. Gustafsson, M. Lundh, G. Söderlind, A PI stepsize control for the numerical solution of ordinary differential equations,

BIT 28 (1988) 270–287.
[9] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer,

Berlin, 1996.
[10] E. Hairer, G. Wanner, Stiff differential equations solved by Radau methods, J. Comput. Appl. Math. 111 (1999) 93–111.
[11] D.J. Higham, T. Sardar, Existence and stability of fixed points for a discretized nonlinear reaction diffusion equation with

delay, Appl. Numer. Math. 18 (1995) 155–173.
[12] Y. Kuang, On neutral delay logistic Gauss-type predator–pray system, Dynamic Stability Systems 6 (1991) 173–189.
[13] S. Luckhaus, Global boundedness for a delay differential equation, Trans. Amer. Math. Soc. 294 (1986) 767–774.
[14] C.A.H. Paul, A test set of functional differential equations, Technical report 243, University of Manchester, 1992.
[15] J.J.B. de Swart, G. Söderlind, On the construction of error estimators for implicit Runge–Kutta methods, J. Comput. Appl.

Math. 86 (1997) 347–358.
[16] D.R. Willè, C.T.H. Baker, The tracking of derivative discontinuities in systems of delay differential equations,Appl. Numer.

Math. 9 (1992) 209–222.

http://www.unige.ch/math/folks/hairer/software.html

	Open issues in devising software for the numerical solution of implicit delay differential equations
	Introduction
	The basic integration scheme
	Discontinuities in the solution

	Error estimation
	Behavior of the error estimator on a real-life neutral problem
	An effective comparison between error estimators
	A novel procedure for detecting and approximating breaking points
	An experimental comparison

	Problems with unbounded delays
	The memory allocation problem
	An illustrative example

	On the application to evolution PDEs
	Semi-discretization in space
	The nonlinear Runge--Kutta system in problems with structure
	Band structure of the Jacobian

	Acknowledgements
	References

