1,099 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Single-machine scheduling of multi-operation jobs without missing operations to minimize the total completion time

    Get PDF
    Author name used in this publication: T. C. E. ChengAuthor name used in this publication: C. T. Ng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Scheduling in an assembly-type production chain with batch transfer

    Get PDF
    Author name used in this publication: T. C. E. Cheng2006-2007 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Scheduling theory since 1981: an annotated bibliography

    Get PDF

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    Customer order scheduling on a single machine with family setup times: complexity and algorithms

    Get PDF
    Cataloged from PDF version of article.We consider a situation where C customers each order various quantities (possibly zero in some cases) of products from P different families, which can be produced on a continuously available machine in any sequence (requiring a setup whenever production switches from one family to another). We assume that the time needed for a setup depends only on the family to be produced immediately after it, and we follow the item availability model (which implies that all units are ready for dispatch as soon as they are produced). However, an order is shipped only when all units required by a customer are ready. The time from the start (time zero) to the completion of a customer order is called the order lead time. The problem, which restates the original description of the customer order scheduling problem, entails finding a production schedule that will minimize the total order lead time. While this problem has received some attention in the literature, its complexity status has remained vexingly open. In this note, we show for the first time that the problem is strongly NP-hard. We proceed to give dynamic programming based exact solution algorithms for the general problem and a special case (where C is fixed). These algorithms allow us to solve small instances of the problem and understand the problem complexity more fully. In particular, the solution of the special case shows that the problem is solvable in polynomial time when C is fixed. 2006 Elsevier Inc. All rights reserved
    corecore