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Abstract

We consider a situation where C customers each order various quantities (possibly zero in some cases) of products from
P different families, which can be produced on a continuously available machine in any sequence (requiring a setup when-
ever production switches from one family to another). We assume that the time needed for a setup depends only on the
family to be produced immediately after it, and we follow the item availability model (which implies that all units are ready
for dispatch as soon as they are produced). However, an order is shipped only when all units required by a customer are
ready. The time from the start (time zero) to the completion of a customer order is called the order lead time. The problem,
which restates the original description of the customer order scheduling problem, entails finding a production schedule that
will minimize the total order lead time. While this problem has received some attention in the literature, its complexity
status has remained vexingly open. In this note, we show for the first time that the problem is strongly NP-hard. We pro-
ceed to give dynamic programming based exact solution algorithms for the general problem and a special case (where C is
fixed). These algorithms allow us to solve small instances of the problem and understand the problem complexity more
fully. In particular, the solution of the special case shows that the problem is solvable in polynomial time when C is fixed.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose that there are C customers who each order from some or all of P different product families and
that customer c orders tcp (tcp P 0) units from family p. Assume, without loss of generality, that a unit from
each product family requires a unit processing time on a continuously available machine and that it is imme-
diately ready for dispatch upon its completion (this is the item availability assumption). Let the setup time
needed to start a production lot of family p on the machine be sp. If we define r to be a production schedule
for the machine and Lc(r) to be the order lead time in r for customer c (this equals the completion time of
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customer c’s last produced unit), then our objective is to find a schedule that will minimize the total customer
order lead time given by

P
16c6CLcðrÞ.

It is easily seen that an optimal schedule, ignoring the setups, admits no machine idle time. A schedule can
thus be thought of as being composed solely of setups and production lots that follow them. Similarly, it can
be shown that the entire requirement of customer c from product family p is processed contiguously within a
single production lot of family p in an optimal schedule. We can thus consider c’s requirement for p as a single
aggregate unit with a processing time of tcp (which may be 0). We let Np represent the number of customers
ordering an aggregate unit from product family p (i.e., Np = j{c:tcp > 0,1 6 c 6 C}j) and Nc the number of
product families ordered by customer c (i.e., Nc = j{p:tcp > 0,1 6 p 6 P}j). The total number of aggregate
units on order is given by N ¼

P
16p6P Np ¼

P
16c6CNc. For obvious reasons, we require that Np > 0 for all

p and Nc > 0 for all c. Based on the values of Np and Nc, we get two versions of the above problem, which
has been called the customer order scheduling problem (COS). If Np = C and Nc = P for all p and c, we have
the full order (F-Order) version. But if Np < C and Nc < P for at least one p and c, we have the less than full

order (LTF-Order) version. These versions often warrant different treatments.
Scheduling in presence of multiple customer orders (each of which may include various product families in

different quantities), as above, is quite common in the make to order and assemble to order production envi-
ronments. It is in this context that Julien and Magazine [17] have originally stated the COS problem. They
have analyzed the structure of optimal schedules, presented a polynomial time algorithm for the case with
a given order processing sequence and two product types, and identified some conditions under which the gen-
eral problem is easy to solve. Subsequently, Julien [16] has shown that a particular class of schedules is dom-
inant for problem instances where the processing times as well as the setup times are agreeable in a certain
sense (the optimal schedule in this case can be found in polynomial time). He has successfully exploited the
corresponding algorithm to generate an effective heuristic solution and a useful lower bound for the general
problem. However, much of the above work relates to the F-Order version of COS and lack generality. Erel
and Ghosh [9] have given an O(P2CP) time algorithm for both the F-Order and LTF-Order versions of COS
for the case where an order sequence is given. (Notice that the meaning of an order sequence becomes ambig-
uous in the LTF-Order version. One can talk about either an order processing sequence or an order delivery
sequence. The Erel–Ghosh algorithm [9] works in both cases.)

Problems similar to COS surface when one considers scheduling multi-operation jobs on a single machine.
Early examples of such problems, which are seen as special cases of COS, can be found in the works of Baker
[3], Coffman et al. [7] and Vickson et al. [24], among others. More recently, Gerodimos et al. [11] have
addressed a problem that is in fact equivalent to COS. They have given an essentially O(P) time algorithm
for the F-Order version of COS where all units from a product family are to be produced within a single setup
(consistent with the group technology assumption). (A similar solution has also been given by Erel and Ghosh
[9] earlier.) They have also given an essentially O(P2CP) time algorithm for COS that is optimal subject to an
agreeability assumption on the processing times. This assumption is rather restrictive and may in fact hinder
the algorithm’s application to the LTF-order version of COS. However, the algorithm is similar to that of Erel
and Ghosh [9] and can be easily modified to solve COS if an order sequence is given.

Extending standard notation, maintaining consistency with Gerodimos et al. [11] and retaining above all
our focus on the scheduling of customer orders (rather than multi-operation jobs), we use 1jsp; cos j

P
cLc to

designate our problem. To sum up what is known about it to date, we first note that its complexity status
remains vexingly open. We know trivially that if the setups are sequence-dependent, then the problem is
strongly NP-Hard. We also know (Erel and Ghosh [9], Gerodimos et al. [11]) that if the setups are not
needed or if the setup times are sufficiently small, all units required by a customer can be processed together
and the customer orders themselves can be processed in non-decreasing order of

P
16p6P tcp (i.e., the total

processing time needed by a customer); the ordering of the production lots for a given customer is imma-
terial if there are no setups or handled easily through an algorithm of Julien [16] if there are setups. The
solution times are essentially O(C) in the first case and O(CP) in the second. Next, we know that if only
one setup per product family is allowed (as discussed above) or if the setup times are sufficiently large forc-
ing a single setup per family, the F-Order version of the problem can be solved in essentially O(P) time.
However, nothing is known about the exact solution of the LTF-Order version of the problem in this
situation. As for the exact solution of the general problem, a polynomial time algorithm is known for
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the F-Order version (Julien [16]) under very restrictive assumptions. If P is fixed, another polynomial time
algorithm (Gerodimos et al. [11]) is available for the same version under somewhat less restrictive assump-
tions. Similarly, if an order sequence is given and P is fixed, a polynomial time algorithm (Erel and Ghosh
[9], Gerodimos et al. [11]) is also possible for both the F-Order and LTF-Order versions of the general prob-
lem (without further assumptions).

In the sequel, we address some of the unresolved issues. We show for the first time that 1jsp; cos j
P

cLc is
strongly NP-Hard. We do this by proving the NP-Hardness of the LTF-Order version of the problem when
the setup times are sufficiently large (thus forcing a single setup per family). We then give an essentially
O(N2N) time algorithm for the general problem (without any simplifying assumptions). For fixed C, we also
give what is an essentially O(PC+1) time algorithm. These algorithms, while not practical, can help us solve
small problem instances. More importantly, they can help us understand the complexity of the problem more
fully. For example, we now know that the problem is solvable in polynomial time if C is fixed (without further
assumptions).

We have introduced the problem that is of the most immediate interest to us, discussed the work done on it
thus far and outlined what we purport to do in the remainder of this note. But before we move on, it behooves
us to briefly touch upon the recent works done on COS related problems. Many have considered single
machine variations of COS with different objectives. These include the works of Bagchi et al. [2], Liao [20],
Liao and Chuang [21], Gupta et al. [13] and Gerodimos et al. [11]. Many others have considered multi-
machine extensions to COS under various objectives. These include the works of Ahmadi and Bagchi [1], Roe-
mer and Ahmadi [23], Blocher and Chhajed [4], Cheng and Wang [6], Ng et al. [22], Yang and Posner [26],
Yang [25] and Leung et al. [19]. Most of these ignore setups and often assume that machines are dedicated
to product families. In yet another line of research, many have considered order-oriented scheduling in a
job-shop environment with a view to evaluating the effectiveness of various dispatching rules. These include
the works of Hastings and Yeh [14], Kim [18] and Blocher et al. [5]. Finally, in an interesting twist, the
COS perspective (both in the single and multi-machine modes) has been brought to bear on the seemingly
unrelated problems of scheduling load/unload cranes at shipping terminals (Daganzo [8]) and laying out data
items in wireless broadcasts (Gondhalekar et al. [12]).

2. Problem complexity

As indicated earlier, we prove the strong NP-Hardness of COS or, more precisely, that of 1jsp; cos j
P

cLc by
proving the strong NP-Hardness of the LTF-Order version of COS when the setup times are so large that it is
suboptimal to have more than one setup per product family. For this purpose, we need two known strongly
NP-Complete decision problems, both of which are involved with the optimal linear arrangement (OLA) of
graph vertices.

Let G = (V,E) be a simple graph with the vertex set V and the edge set E. In addition, let an edge e 2 E
connect vertices u, v 2 V. The first decision problem, call it OLA, asks: Given G = (V,E) and a positive integer
K, is there a one-to-one function f:V! {1,2, . . ., jVj} such that

P
e2Ejf ðuÞ � f ðvÞj 6 jK? OLA is a strongly

NP-Complete problem of long standing (Garey and Johnson [10]).
Next, let G 0 = (V 0,E 0) be a pseudograph with the vertex set V 0 and the edge set E 0. As before, let an edge e 0

connect vertices u 0, v 0 2 V 0. This time around, however, the graph is allowed to have multiple edges between
two vertices and self-loops at a vertex. The second decision problem, call it OLA 0, asks: Given G 0 = (V 0,E 0)
and a positive integer K 0, is there a one-to-one function f: V 0 ! {1,2, . . ., jV 0j} such that

P
e02E0 max

ff ðu0Þ; f ðv0Þg 6 K 0? Gondhalekar et al. [12] have established, relatively recently, that OLA 0 is strongly NP-
complete, through a reduction from OLA.

While it is not strictly needed here, we believe that, an outline of a simplified version of the above reduction
is instructive. Let d(u) be the degree of a vertex u 2 V of G; d(u) is thus the number of edges connected to u.
Similarly, let D(G) be the maximum degree of the graph G; i.e., D(G) = maxu2V{d(u)}. Now, from G = (V,E),
construct G 0 = (V 0,E 0) as follows: Let V 0 = V; for each e 2 E, add two copies of e to E 0; for each u 2 V, add
D(G) � d(u) self-loops at u 0 in V 0 (recall that u 0 = u). This construction is polynomial-time. For a given f, it can
be shown that:

P
e02E0 maxff ðu0Þ; f ðv0Þg ¼

P
e2Ejf ðuÞ � f ðvÞj þ 1=2jV jðjV j þ 1ÞDðGÞ. (This follows from the

relationship between the distance between two numbers and their average as well as the definition of the vertex
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degree.) The second term in the right hand side of the equation being a constant (i.e., independent of f), if we
let K 0 = K + 1/2jVj(jVj + 1)D(G), we get a polynomial-time reduction of OLA to OLA 0.

We now show how to reduce OLA 0 to COS in polynomial time. From an instance of OLA 0, construct an
instance of COS as follows. (Notice that, because of the reduction shown above, we can choose an OLA 0

instance such that the minimum degree of G 0, minu02V 0 fdðu0Þg, is at least 1.) Let each vertex u 0 in V 0 correspond
to a product family p and each edge e 0 in E 0 correspond to a customer c. We assume that c orders a single unit
each from the product families (say, p and q) corresponding to u 0 and v 0, the vertices connected by the edge e 0.
If e 0 is a self-loop, c orders a single unit from the product family p corresponding to the associated vertex u 0.
Clearly, P = jV 0j, C = jE 0j, tcp = {0, 1} for all c and all p, 1 6 Nc 6 2, and Np > 0. Finally, we assume that

sp = s for all p. (Note that s is chosen to be sufficiently large, say, equal to N3.) The COS decision problem
now asks: Is there a schedule r for the above instance of COS such that

P
16c6CLcðrÞ 6 sðK 0 þ 1Þ?

It should be obvious that the COS decision problem is in NP. The construction of the COS instance is also
accomplished in polynomial time.

Now, observe that the setup time s is selected such that there can be at most one setup per product family in
a potentially optimal schedule. Let r be such a schedule. r yields a unique processing order of the product
families. Let this correspond to the function f of OLA 0. The position of a product family p within r is thus
given by f(u 0), where the vertex u 0 of OLA 0 corresponds to p. The position within r of the last product family
for customer c (associated with the edge e 0 connecting vertices u 0 and v 0 of OLA 0) is thus given by
max{f(u 0), f(v 0)}. The number of setups prior to the start of the last product unit of c is also max{f(u 0), f(v 0)}.
Let the number of all product units processed on or before the completion of this unit be mc (mc 6 N). The order
lead time for c is given by: Lc(r) = s max{f(u 0), f(v 0)} + mc. This leads to the total

P
16c6CLcðrÞ ¼ s

P
e02E0 max

ff ðu0Þ; f ðv0Þg þ
P

16c6Cmc.

If there is an f that produces a ‘‘yes’’ answer to OLA 0, we can construct r by ordering the product families
according to the linear ordering of the vertices induced by f; the product units within the family can be ordered
arbitrarily. Having done that, we see from the above that

P
16c6CLcðrÞ 6 sK 0 þ

P
16c6Cmc ¼ s½K 0þ

ð
P

16c6CmcÞ=s� < sðK 0 þ 1Þ. This implies that the COS decision problem has a ‘‘yes’’ answer as well.
Similarly, if there is a r 0 that produces a ‘‘yes’’ answer to the COS decision problem, we first convert it

to a schedule r (with exactly one setup per family) by producing all family p units, for each p, immediately
following the occurrence of its first setup in r 0. Because of the large value of s, it is easy to see thatP

16c6C LcðrÞ 6
P

16c6CLcðr0Þ. We can now easily obtain the f for OLA 0 as described earlier. From the fact thatP
16c6CLc(r) 6 s(K 0 + 1), we get

P
e02E0 maxff ðu0Þ; f ðv0Þg 6 K 0 þ 1� ð

P
16c6CmcÞ=s 6 K 0 (this follows from the

integrality of both
P

e02E0 maxff ðu0Þ; f ðv0Þg and K 0). The implication is that OLA 0 too has a ‘‘yes’’ answer.
We have in effect proved that the COS decision problem is NP-Complete. The reduction has been from a

strongly NP-Complete problem and the transformation has been polynomial-time. Thus, the COS decision
problem is also strongly NP-Complete, and our COS problem 1jsp; cos j

P
cLc is strongly NP-Hard.
3. Solution algorithms

We now give two algorithms for solving COS exactly. The second algorithm exploits two solution proper-
ties first observed by Julien and Magazine [17]. We reiterate them below.

Property 1. There is an optimal schedule where the product requirements for the customers are processed in the

same sequence for all product families.

Property 2. There is an optimal schedule where the processing of a product family begins only when its inventory

level is zero.
3.1. The general algorithm

No algorithm has thus far been proposed for exactly solving COS in general; we now give a dynamic pro-
gram for COS. Let X be the set of all the product lots ordered by the C customers (N is thus the cardinality of
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X), [k] be the index of the lot (indicating the customer it belongs to and its family) processed in the kth last
position in a schedule, d[k] be a binary variable indicating if the kth last lot is the last one for the customer
concerned, t[k] be the processing time requirement for the kth last lot, and s[k] be the setup time that may
be required before the processing of the kth last lot. The total customer order lead time in some schedule r
can now be written as follows:
X
16c6C

LcðrÞ ¼
X

16k6N

ðs½k� þ t½k�Þ
X

16i6k

d½i�

 !
:

Based on the above formula, we can develop a Held–Karp [15] like dynamic programming recursion for solv-
ing COS. To this end, we define fk(h;x) to be the minimum total customer order lead time realizable when the
product lots in the set h (represented by their c–p pairs) occupy the last k positions in a schedule and a lot of
family x is the first among them. We let C(h) and P(h) be respectively the sets of customers and product fam-
ilies represented in h. Notice that jCðhÞj ¼

P
16i6kd½i� for all schedules in which the product lots in h occupy the

last k positions. If we also let o be a c–p pair in h such that p = x, the dynamic programming recursion at stage
k can be expressed as follows:
fkðh; xÞ ¼ min
o

min
y2Pðh�oÞ

ffk�1ðh� o; yÞ þ jCðhÞjto þ jCðh� oÞjrxyg;
where rxy equals sy if x 5 y and zero otherwise. The recursion is carried out from k = 2 to k = N over all k-
element subsets h of X and over all x in P(h); the initial conditions are: f1({(c,p)};p) = tcp for all (c,p) 2 X. The
optimal solution is given by min16p6P{fN (X;p) + Csp}. The algorithm executes in O(N2N) time, which trans-
lates to O(CP2CP) in case of the F-Order version of COS.

3.2. The fixed C algorithm

We now present a new dynamic programming based algorithm that can solve the general COS problem in
polynomial time for a fixed C. Assume that we are given the customer order sequence and that we know which
product family is processed last for each customer. It is now possible to visualize a schedule as being a string of
intervals demarcated by the order deliveries for the individual customers (see Fig. 1a). Assume that the cus-
tomers are indexed according to their positions in the given sequence. Let Hcp be the time taken for the pro-
cessing (including setups, if any) of product family p in the cth interval. It is easily seen that, for any schedule,
we have

P
16c6CLc ¼

P
16p6P

P
16c6CðC � cþ 1ÞH cp. As long as we maintain conformance with the customer

sequence and the last product families given, we can solve this subproblem as P separate dynamic programs.
Once that is accomplished, COS can be solved by enumerating over all customer order sequences and their last
product families. The complexity of solving the fixed-order-sequence/last-product-families subproblem is
O(C2P), and the effort required for the enumeration is O(C!PC). The overall complexity of solving COS is thus
O(C2C!PC+1); for a fixed C, this translates to O(PC+1) which is polynomial-time.

The dynamic programs mentioned above exploit the schedule structure induced by the given customer
sequence and the last product family per customer. They also use the aforementioned optimality properties
whenever possible. The following observations summarize the key features of the algorithm:
                                         Interval c 

             type q                         Hcp type r

0                          L1 Lc-1            family p  lot(c,p)             L c L C

Fig. 1a. General schedule structure (also the case when r 5 q 5 p, tcp > 0, and Hcp > 0).
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1. A customer order sequence and last product family combination is deemed feasible if and only if the last
product family p for each customer c is actually ordered by c, that is tcp > 0. (This is obvious.)

2. All orders from customer c are processed in intervals 1, . . .,c. (This is dictated by the schedule structure.)
3. All products from family p are processed according to the given customer order sequence; that is, the order

for p from c is processed only after (before) the orders for p from 1, . . .,c � 1 (c + 1, . . .,C) have been pro-
cessed. (This is done in keeping with Property 1.)

4. If two consecutive customers, say c � 1 and c, have the same families for their last products, then these two
are processed together with no other products in between (see Fig. 1b). (This is done as there is no advan-
tage in having a setup before c’s last product.)

5. If the condition of ‘‘4’’ is not true and customer c 0 last product family is p, only the order for p from c is
processed in interval c initiating a setup; orders for p from c + 1, . . .,C are processed in later intervals (see
Fig. 1c). (This is dictated by the schedule structure.)

6. If the condition of ‘‘4’’ is not true and customer (c � 1)’s last product family is p, then the order for p from c

is processed in interval c sharing the setup with and immediately following customer (c � 1)’s order for p

(see Fig. 1d). (Saving a setup is clearly more advantageous.)
7. If the conditions of ‘‘4’’ through ‘‘6’’ are not true, customer c’s order for p is processed either in interval c

initiating a setup or in an earlier interval sharing a setup (see Figs. 1a and 1e). (This is in line with
Property 2.)

8. If the conditions of ‘‘4’’–‘‘6’’ are not true and c has not ordered p, orders for p from c + 1, . . .,C are pro-
cessed either in intervals 1, . . .,c � 1 or c + 1, . . .,C (see Fig. 1f). (This is also in line with Property 2.)

Let hc(j;p) be the minimum total customer lead time realizable when j customers requiring product family p

are processed on or before the delivery for the cth customer for a specific combination of customer order
sequence and last product families. Note that this contributes only to

P
16c6C ðC � cþ 1Þ H cp for product

family p, which is a component of the overall objective function value, say H. We now describe the algorithm.
                   family p      lot(c,p) 

0                               lot(c-1,p)   Lc-1 Lc LC

Fig. 1b. The case when q = r = p.

family p 

0                                          Lc-1     lot(c,p)   Lc LC

Fig. 1c. The case when r = p.

               family p 

0                                          Lc-1  lot(c,p)     Lc LC

Fig. 1d. The case when q = p.



family p 

0                           lot(c,p)             Lc-1 Lc LC

Fig. 1e. The case when r 5 q 5 p, tcp > 0, and Hcp = 0.

family p                                                 family p 

 0                                     Lc-1 Lc LC

Fig. 1f. The case when r 5 q 5 p, and tcp = 0.
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(During the execution of the algorithm, the index c is updated so that it corresponds to the customer order
sequence under consideration at the time of reference.)

1. Select a customer order sequence; for this sequence, select the last product family for each customer.
Renumber the c’s according to the customer order sequence.

2. Do the following if the combination generated in ‘‘1’’ is feasible:
2.0. For 1 6 p 6 P:h0(0;p) = 0, and h0(j;p) =1, 1 6 j 6 C.
2.1. Do over C customers (c = 1, . . .,C):

2.1.1. If last product family of c = last product family of c � 1 = q, then

For 1 6 p 6 P and p 5 q:hc(j;p) = hc�1(j;p), c 6 j 6 C.
For p = q:hc(c;p) = hc�1(c � 1;p) + (C � c + 1)tcp, and hc(j;p) =1, c + 1 6 j 6 C.
2.1.2. Else Do over P product families (p = 1, . . .,P):

If p= last product family of c, then
hc(c;p) = hc�1(c � 1;p) + (C � c + 1) (sp + tcp), and
hc(j;p) =1, c + 1 6 j 6 C.
Else If p = last product family of c � 1, then
hcðj; pÞ ¼ hc�1ðc� 1; pÞ þ ðC � cþ 1Þð

P
c6k6jtkpÞ, c 6 j 6 C.

Else If tcp = 0, then
hc(c;p) = hc�1(c � 1;p), and
hc(j;p) = hc�1(j;p), c + 1 6 j 6 C.
Else
hcðj; pÞ ¼ minfhc�1ðc� 1; pÞ þ ðC � cþ 1Þðsp þ

P
c6k6jtkpÞ, hc�1(j;p)}, c 6 j 6 C.

End If P

. Compute H ¼ 16p6P hCðC; pÞ.
2.2

3. Compute the minimum of H over all customer order sequence and last product families combinations; this

provides an optimal solution to COS.

Clearly, Step 1 generates all combinations of customer order sequence and last product families. In Step 2
(which is the heart of the algorithm), dynamic programming recursions are carried out for each feasible com-
bination over all P product families until the last customer interval C in the generated sequence is encountered.
At this point, the optimal schedule and the associated total customer order lead time for this particular com-
bination are noted. Notice that the recursions in this step consider only those subschedules that conform to
features 1 through 8 given above. Finally, Step 3 enumerates over all feasible combinations generated to arrive
at the optimal solution to COS.
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4. Conclusion

The customer order scheduling problem as posed here and otherwise is practically relevant and theoretically
interesting. We have presented a number of new results for the basic COS problem that should be of theoretical
value and of help in the evaluation of heuristic performance over small problem instances. We know now for
sure that the problem is strongly NP-hard and further that it is polynomial-time solvable if the number of cus-
tomers remains fixed. Based on our limited experience, we also know that if we are willing to spend adequately
large CPU times, we can expect to solve problem instances with N up to 30 (for any admissible C and P) or up to
200 (for C 6 4 and P 6 50).

A number of issues remains open for future research. Many of these involve the development of practical
solution strategies, both exact and approximate. In particular, attention should be given to finding good lower
bounds and effective heuristic solution methods. The work of Julien [16] provides a nice lead in this direction,
albeit with respect to the F-Order version of COS only. More work, of course, needs to be done with respect to
the LTF-Order version as well.
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