
Single-machine scheduling of multi-operation jobs
without missing operations to minimize the total

completion time

T.C.E. CHENG1, C.T. NG1∗ and J.J. YUAN1,2

1Department of Logistics, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, People’s Republic of China
2Department of Mathematics, Zhengzhou University,

Zhengzhou, Henan 450052, People’s Republic of China

Abstract

We consider the problem of scheduling multi-operation jobs on a singe machine to min-
imize the total completion time. Each job consists of several operations that belong to
different families. In a schedule each family of job operations may be processed as batches
with each batch incurring a set-up time. A job is completed when all of its operations
have been processed. We first show that the problem is strongly NP-hard even when the
set-up times are common and each operation is not missing. When the operations have
identical processing times and either the maximum set-up time is sufficiently small or the
minimum set-up time is sufficiently large, the problem can be solved in polynomial time.
We then consider the problem under the job-batch restriction in which the operations
of each batch is partitioned into operation batches according to a partition of the jobs.
We show that this case of the problem can be solved in polynomial time under a certain
condition.

Keywords: Scheduling, Single machine, Multi-operation jobs, Job-batch restriction,
SPT-agreeability.

∗Corresponding author

1

This is the Pre-Published Version.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61008563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

As introduced in [4], the problem under consideration arises in a food manufacturing en-
vironment. The problem can be stated as follows: Let n multi-operation jobs J1, J2, ..., Jn

and a machine that can handle only one job at a time be given. Each job consists of
several operations that belong to different families. There are F families F1,F2, ...,FF .
We assume that each job has at most one operation in each family. The operation of
job Jj (j = 1, ..., n) in family Ff (f = 1, ..., F) is denoted by (j, f), and its associated
processing time is p(j,f) ≥ 0. Any operation with a zero processing time is called a trivial
operation. Each family Ff has an associated set-up time sf . The operations of each
family are processed in batches, where a batch of a family is a subset of the operations of
this family and the batches of a family form a partition of the operations belonging to this
family. Each batch (of family Ff) containing at least one nontrivial operation will incur
a set-up time sf . That is, a trivial operation does not share the set-up time in its family.
Hence, a trivial operation is treated as a missing operation. Trivial operations arise when
not every job Jj contains all the operations (j, f), 1 ≤ f ≤ F . A job is completed when
all of its operations have been processed. Hence, the completion time of job Jj is

Cj = max{C(j,f) : (j, f) is a nontrival operation of Jj},

where C(j,f) is the completion time of the operation (j, f). The objective is to find a
schedule that minimizes the sum of the job completion times

∑
j Cj. Following [4], we

denote the problem by
1|sf , assembly|

∑
Cj,

where the term “assembly” is used to describe the fact that a job is completed when it
becomes available for assembly, i.e., when all of its operations have been processed. If
we require that all the operations in any family are to be scheduled contiguously, i.e.,
each family acts as a single batch, we say that we study the problem under the group
technology (GT) assumption. The corresponding problem is denoted by

1|sf , assembly, GT|
∑

Cj.

If p(j,f) > 0 for each family Ff and each job Jj, we say that the assembly problem is
without missing operations, and the corresponding problem is denoted by

1|sf , assembly, p(j,f) > 0|
∑

Cj.

Example 1: We consider an instance of the problem 1|sf , assembly, p(j,f) > 0|∑Cj.
Suppose that we have four jobs J1, J2, J3, J4, and two families F1,F2 of operations with
s1 = 1 and s2 = 2. The processing times of the operations are given in Table 1.

Table 1: Processing times.

Jobs J1 J2 J3 J4

p(j,1) 2 1 2 1

p(j,2) 1 2 1 2

2

Let π be a schedule defined in the following way. The first family is partitioned into two
batches {(1, 1), (2, 1)} and {(3, 1), (4, 1)}, and the second family {(1, 2), (2, 2), (3, 2), (4, 2)}
acts as a single batch. Then we process the operations in the three batches in the following
order:

{(1, 1,) → (2, 1)} → {(1, 2,) → (2, 2) → (3, 2) → (4, 2)} → {(3, 1) → (4, 1)}.

Processing of the operations can be shown in a Gantt chart in Figure 1.

- t
s1 (1,1) (2,1) s2 (1,2) (2,2) (3,2) (4,2) s1 (3,1) (4,1)

0 1 3 4 6 7 9 10 12 13 15 16
Figure 1: Processing of jobs in π.

The completion times of all the operations and jobs are given in Table 2. The total
completion time of the jobs is 47. 2

Table 2: Completion times.

Jobs J1 J2 J3 J4

C(j,1) 3 4 15 16

C(j,2) 7 9 10 12

Cj 7 9 15 16

The following complexity results show that the complexity of the assembly problem
is different between the versions with and without missing operations. It seems that the
problem is more tractable if it is without missing operations.

Gerodimos et al. [4] gave an O(Fn logn) algorithm for the scheduling problem

1|sf , assembly, GT, p(j,f) > 0|
∑

Cj.

But Ng et al. [6] showed that the scheduling problems

1|sf , assembly, p(j,f) = 0 or 1|
∑

Cj

and
1|sf , assembly, GT, p(j,f) = 0 or 1|

∑
Cj

are strongly NP-hard. Cheng et al. [1] showed that the scheduling problem

1|sf , assembly, dj = d, p(j,f) = 0 or 1|
∑

Uj

is strongly NP-hard and that the scheduling problem

1|sf , assembly, dj = d, p(j,f) > 0|
∑

Uj

3

can be solved by the shortest processing time (SPT) rule in O(n(log n + F)) time, where
dj is the due date of Jj, dj = d means that the jobs have a common due date d, and
Uj = 1 if Cj > dj and 0 otherwise.

It should be noticed that in the NP-hardness proofs of the above three NP-hard
problems in [6] and [1], the operations with a zero processing time were treated as missing
operations and they did not share the set-up times. Since the two problems

1|sf , assembly, GT, p(j,f) > 0|
∑

Cj.

and
1|sf , assembly, dj = d, p(j,f) > 0|

∑
Uj

can be solved in polynomial time, this means that the version without missing operations
is distinct from the version with missing operations. Thus the computational complexity
of the problem

1|sf , assembly, p(j,f) > 0|
∑

Cj

is still open. Furthermore, to the best of our knowledge, the computational complexity of
the same problem is still unaddressed even if the number of families F is 2 or any fixed
number.

We show in Section 2 that the assembly problem 1|sf , assembly, p(j,f) > 0|∑Cj

remains strongly NP-hard even when the set-up times are common. We show in Section 3
that when the operations have identical processing times and either the maximum set-up
time is sufficiently small or the minimum set-up time is sufficiently large, the problem can
be solved in polynomial time.

We say that the jobs are of SPT-agreeability if the jobs can be re-indexed such that

p(1,f) ≤ p(2,f) ≤ · · · ≤ p(n,f)

for 1 ≤ f ≤ F . Gerodimos et al. [4] provided an O(F 2nF+1) algorithm for the assembly
problem 1|sf , assembly, SPT-agreeability|∑ Cj, which is a polynomial-time algorithm if
the number of families F is fixed. When F is arbitrary, the complexity of the problem
1|sf , assembly, SPT-agreeability|∑ Cj is still open [4]. According to Gerodimos et al.
[4], if the jobs are of SPT-agreeability, then there is an optimal schedule such that the
operations of each batch are processed in the shortest processing time (SPT) order.

Hence, we consider a variation of the problem called job-batch, assembly scheduling,
in which we have the following Job-batch Restriction: The batches of the families are
determined by the jobs, i.e., the jobs are first partitioned into k (1 ≤ k ≤ n) subsets
B1, B2, ..., Bk, and then the batches of each family Ff (≤ f ≤ F) are formed by

F(1,f),F(2,f), ...,F(k,f),

where
F(i,f) = {(j, f) : j ∈ Bi}, 1 ≤ i ≤ k.

4

Such a scheduling problem is denoted by

1|sf , job-batch assembly|
∑

Cj,

which is clearly a generalization of the problem 1|sf , assembly, GT|∑ Cj. When miss-
ing operations are allowed, this problem is still strongly NP-hard since the problem
1|sf , assembly, GT, p(j,f) = 0 or 1|∑Cj is strongly NP-hard [6]. Hence, we consider
the problem under the restriction that there are no missing operations. We show in
Section 4 that the problem

1|sf , job-batch assembly, SPT-agreeability|
∑

Cj

can be solved in O(Fn3) time.

2 NP-hardness proofs

Our reduction uses the NP-complete linear arrangement problem of graphs. We first
introduce some graph theory terminology.

The graphs considered here are finite and simple. For a graph G, let V = V (G) and
E = E(G) denote its sets of vertices and edges, respectively. An edge e with end vertices
u and v is denoted by e = uv = vu. For e = uv ∈ E, we say that e is incident to u and
v. The set of edges incident to a vertex v is denoted by Ev = Ev(G), i.e.,

Ev = {e ∈ E : e is incident to v in G}.

The degree of a vertex v ∈ V , denoted by d(v), is defined by

d(v) = |Ev|.

It is well-known that ∑

v∈V

d(v) = 2|E|.

Given a graph G, a labelling σ of G is a permutation

σ : V −→ {1, 2, 3, ..., |V |}.

The linear sum of G under the labelling σ is defined by

S(G, σ) =
∑

xy∈E

|σ(x) − σ(y)|.

The linear arrangement problem of graphs is defined as follows:

Linear arrangement problem: For a given graph G and a positive integer Y , is
there a labelling σ of G such that S(G, σ) ≤ Y ?

5

By [2, 3], it is known that the linear arrangement problem is NP-complete in the strong
sense. We will make use of this result for the reduction.

The following lemma is implied in [5]. We give a short proof of the result for the sake
of completeness.

Lemma 2.1 For a labelling σ of a graph G,

∑

uv∈E

2 max{σ(u), σ(v)} −
∑

v∈V

d(v)σ(v) =
∑

uv∈E

|σ(u) − σ(v)|.

Proof By noting the facts that

∑

v∈V

d(v)σ(v) =
∑

uv∈E

(σ(u) + σ(v))

and
2 max{σ(u), σ(v)} − (σ(u) + σ(v)) = |σ(u) − σ(v)|,

we see that the result follows. 2

Theorem 2.2 The scheduling problem

1|sf = s, assembly, p(j,f) > 0|
∑

Ci

is strongly NP-hard.

Proof The decision version of our scheduling problem is clearly in NP. To prove
the strong NP-completeness of the problem, we use the NP-complete linear arrangement
problem of graphs for our reduction.

Suppose that we are given an instance of the linear arrangement problem of graphs,
which inputs a graph G and a positive integer Y and asks whether there is a labelling σ
of G such that S(G, σ) ≤ Y . Without loss of generality, we suppose that |V | ≥ 5. We
construct an instance of the decision version of our scheduling problem as follows:

• There are n = |V |2 + |V |8 jobs, which are of three types: vertex-jobs, edge-jobs and
small jobs.

• Each vertex v ∈ V corresponds to α(v) = |V | − d(v) vertex-jobs Jv(1), Jv(2), ..., Jv(α(v)).

• Each edge e ∈ E corresponds to α(e) = 2 edge-jobs Je(1) and Je(2). Note that

∑

v∈V

α(v) +
∑

e∈E

α(e) = |V |2 −
∑

v∈V

d(v) + 2|E| = |V |2.

Hence, the numbers of vertex-jobs and edges-jobs are |V |2.
• There are additional |V |8 small jobs Js(1), Js(2), ..., Js(|V |8).

• There are F = |V | families, with each vertex v ∈ V corresponding to a family Fv with

6

a set-up time s = |V |5 + 2|V |11 + |V |17(|V | + 2) + 2|V |15Y.

• For v ∈ V , the family Fv contains |V |2+|V |8 operations, where we have α(v) = |V |−d(v)
vertex-operations

(v(1), v), (v(2), v), ..., (v(α(v)), v),

with each having a processing time |V |14, and 2d(v) edge-operations

(e(1), v), (e(2), v), e ∈ Ev,

with each also having a processing time |V |14; each of the other operations (called small
operations) not mentioned here has a processing time 1.

• Each operation (still called small operation) of a small job has processing time 1.

• The decision is whether there exists a schedule such that the total completion time
∑

Cj

is at most

X = |V |9(s+ |V |2 + |V |8)+ |V |2((|V |−1)s+ |V |3 + |V |9)+(s+2|V |15)(1
2
|V |2(|V |+1)+Y).

Summarizing the above construction, we have n = |V |2 + |V |8 jobs and |V | families
with each job having |V | operations with a positive processing time belonging to distinct
families; we have three types of jobs: vertex-jobs, edge-jobs and small jobs; we also
have three types of operations: vertex-operations, edge-operations and small operations,
where each of the vertex-operations and edge-operations has processing time |V |14, and
each small operations has processing time 1; furthermore, for each family Fv, the vertex-
operations in it are (v(1), v), (v(2), v), ..., (v(α(v)), v), and the edge-operations in it are
(e(1), v), (e(2), v) with e ∈ Ev.

For the sake of a better understanding of the above reduction, we consider an example
as follows. Figure 2 is a graph G with vertex set V (G) = {x, y, u, v, w} and edge set
E(G) = {a, b, c, d, e}. Using G as an instance of the linear arrangement problem, the
constructed instance of the scheduling problem is displayed in Table 3 and Table 4. Table
3 shows the jobs and their operations, and Table 4 shows the families and their operations.

} } } }
}

�
�

�
��

@
@

@
@@

x u v y

w

a b c

d e

Figure 2: A graph G in the linear arrangement problem.

7

Types Jobs Large operations Small operations

Vertices Jx(i), 1 ≤ i ≤ 4 (x(i), x) (x(i), z), z ∈ V (G) \ {x}
Jy(i), 1 ≤ i ≤ 4 (y(i), y) (y(i), z), z ∈ V (G) \ {y}
Ju(i), 1 ≤ i ≤ 2 (u(i), u) (u(i), z), z ∈ V (G) \ {u}
Jv(i), 1 ≤ i ≤ 2 (v(i), v) (v(i), z), z ∈ V (G) \ {v}
Jw(i), 1 ≤ i ≤ 3 (w(i), w) (w(i), z), z ∈ V (G) \ {w}

Edges Ja(i), 1 ≤ i ≤ 2 (a(i), x), (a(i), u) (a(i), z), z ∈ V (G) \ {x, u}
Jb(i), 1 ≤ i ≤ 2 (b(i), u), (b(i), v) (b(i), z), z ∈ V (G) \ {u, v}
Jc(i), 1 ≤ i ≤ 2 (c(i), v), (c(i), y) (c(i), z), z ∈ V (G) \ {v, y}
Jd(i), 1 ≤ i ≤ 2 (d(i), u), (d(i), w) (d(i), z), z ∈ V (G) \ {u, w}
Je(i), 1 ≤ i ≤ 2 (e(i), v), (e(i), w) (e(i), z), z ∈ V (G) \ {v, w}

Small Js(i). 1 ≤ i ≤ 58 None (s(i), z), z ∈ V (G)

Table 3: Jobs and their operations.

Families Large operations Small operations

Fx
(x(i), x), 1 ≤ i ≤ 4;
(a(1), x), (a(2), x)

(z(i), x), 1 ≤ i ≤ 5 − d(z), z ∈ V (G) \ {x};
(h(i), x), 1 ≤ i ≤ 2, h ∈ E(G) \ {a};
(s(i), x), 1 ≤ i ≤ 58

Fy
(y(i), y), 1 ≤ i ≤ 4;
(c(1), y), (c(2), y)

(z(i), y), 1 ≤ i ≤ 5 − d(z), z ∈ V (G) \ {y};
(h(i), y), 1 ≤ i ≤ 2, h ∈ E(G) \ {c};
(s(i), y), 1 ≤ i ≤ 58

Fu

(u(i), u), 1 ≤ i ≤ 2;
(a(1), u), (a(2), u);
(b(1), u), (b(2), u);
(d(1), u), (d(2), u)

(z(i), u), 1 ≤ i ≤ 5 − d(z), z ∈ V (G) \ {u};
(h(i), u), 1 ≤ i ≤ 2, h ∈ E(G) \ {a, b, d};
(s(i), u), 1 ≤ i ≤ 58

Fv

(v(i), v), 1 ≤ i ≤ 2;
(b(1), v), (b(2), v);
(c(1), v), (c(2), v);
(e(1), v), (e(2), v)

(z(i), v), 1 ≤ i ≤ 5 − d(z), z ∈ V (G) \ {v};
(h(i), v), 1 ≤ i ≤ 2, h ∈ E(G) \ {b, c, e};
(s(i), v), 1 ≤ i ≤ 58

Fw

(w(i), w), 1 ≤ i ≤ 3;
(d(1), w), (d(2), w);
(e(1), w), (e(2), w)

(z(i), w), 1 ≤ i ≤ 5 − d(z), z ∈ V (G) \ {w};
(h(i), w), 1 ≤ i ≤ 2, h ∈ E(G) \ {d, e};
(s(i), w), 1 ≤ i ≤ 58

Table 4: Families and their operations.

Clearly, the construction can be done in polynomial time. We show in the sequel that
the instance of the linear arrangement problem has a labelling σ such that S(G, σ) ≤ Y if
and only if the instance of the decision version of our scheduling problem has a schedule
such that

∑
Cj ≤ X.

8

If the linear arrangement problem has a labelling σ of G such that S(G, σ) ≤ Y , we
construct a schedule π as follows. The family Fv with σ(v) = 1 is processed in a single
batch Av. Each of the other families Fv with σ(v) > 1 is processed in two batches Bv

and Av; the batch Bv consists of all the operations in Fv with processing time 1, and the
batch Av consists of all the operations in Fv with processing time |V |14. The jobs are
scheduled in the following way.

The batches Bv with σ(v) > 1 are scheduled first in any order with the operations
in each batch being scheduled in any order; then the family Fv = Av with σ(v) = 1
is scheduled such that the operations of the small jobs are scheduled first and then the
other operations are scheduled in any order; and then the batches Av with σ(v) > 1 are
scheduled such that Av is scheduled before Au if and only if σ(v) < σ(u) and such that
the operations in each batch are scheduled in any order.

In the schedule π the first |V | batches include all the operations with processing time
1, each of the first |V | batches in π contains at most |V |2+ |V |8 operations with processing
time 1, the first |V | − 1 batches consist of operations with processing time 1, and the |V |-
th batch leads the operations with processing time 1. Hence, the completion time of the
last small job under π is less than

|V |(s + |V |2 + |V |8).

Furthermore, each batch Av (v ∈ V) consists of |V | + d(v) < 2|V | operations with
processing time |V |14. Hence, the completion time of every operation in batch Av (v ∈ V)
is less than

(|V | − 1)s + |V |3 + |V |9 + (s + 2|V |15)σ(v).

It follows that for each edge-job Juv(i) with uv ∈ E and i = 1, 2, the completion time
Cuv(i) = max{C(uv(i),u), C(uv(i),v)} under π is less than

(|V | − 1)s + |V |3 + |V |9 + (s + 2|V |15) max{σ(u), σ(v)}.

Now the total completion time of the small jobs is given by
∑

1≤i≤|V |8
Cs(i) < |V |9(s + |V |2 + |V |8),

the total completion time of the vertex-jobs is given by
∑

v∈V

∑
1≤i≤α(v) Cv(i)

<
∑

v∈V α(v)((|V | − 1)s + |V |3 + |V |9 + (s + 2|V |15)σ(v))

=
∑

v∈V (|V | − d(v))((|V | − 1)s + |V |3 + |V |9 + (s + 2|V |15)σ(v))

= (|V |2 − 2|E|)((|V | − 1)s + |V |3 + |V |9)
+(s + 2|V |15)|V |∑v∈V σ(v) − (s + 2|V |15) ∑

v∈V d(v)σ(v)

= (|V |2 − 2|E|)((|V | − 1)s + |V |3 + |V |9)
+(s + 2|V |15)(1

2
|V |2(|V | + 1)) − (s + 2|V |15) ∑

v∈V d(v)σ(v),

9

and the total completion time of the edge-jobs is given by
∑

uv∈E

∑
1≤i≤2 Cuv(i)

<
∑

uv∈E 2((|V | − 1)s + |V |3 + |V |9 + (s + 2|V |15) max{σ(u), σ(v)})
= 2|E|((|V | − 1)s + |V |3 + |V |9) + (s + 2|V |15) ∑

uv∈E 2 max{σ(u), σ(v)}.

Hence, by Lemma 2.1, the total completion time of all the jobs is given by
∑

1≤i≤|V |8 Cs(i) +
∑

v∈V

∑
1≤i≤α(v) Cv(i) +

∑
uv∈E

∑
1≤i≤2 Cuv(i)

< |V |9(s + |V |2 + |V |8) + |V |2((|V | − 1)s + |V |3 + |V |9)
+(s + 2|V |15)(1

2
|V |2(|V | + 1)) + (s + 2|V |15)S(G, σ)

≤ |V |9(s + |V |2 + |V |8) + |V |2((|V | − 1)s + |V |3 + |V |9)
+(s + 2|V |15)(1

2
|V |2(|V | + 1)) + (s + 2|V |15)Y

= X.

So the scheduling problem has the required schedule.

Conversely, assume that the scheduling problem has a schedule π such that the total
completion time of all the jobs is at most X. Define a labelling σ of the graph G in
the following way. For every two vertices u, v ∈ V , σ(u) < σ(v) if and only if a certain
operation (u, x) in family Fu with processing time |V |14 is processed before every operation
in family Fv with processing time |V |14 under the schedule π.

If there are a family Fu and an operation (x, y) with processing time |V |14 such that
every operation of the small jobs in family Fu is scheduled after (x, y), then the processing
of the operation (x, y) and at least |V | set-ups must be scheduled before any small job is
completed. This means that the completion time of every small job is at least |V |s+ |V |14.
Then the total completion time of the |V |8 small jobs is at least |V |9s + |V |22. By noting
the facts that Y < 1

2
|V |3 and |V | ≥ 5, we can easily check that

|V |9s + |V |22 > X.

This contradicts the fact that the total completion time of all the jobs is at most X. This
leads to the following claim.

Claim For every family Fu, there is at least one operation O of a certain small job
in family Fu such that O is scheduled before every operation (x, y) with processing time
|V |14.

By the above claim, there are at least |V | − 1 batches, each of which consisting of the
small jobs, such that these batches are scheduled before any operation with processing
time |V |14. As a rough estimate, it is easy to see that the completion time of the first
small job under π is greater than |V |s, and the completion time of every operation in
family Fv (v ∈ V) with processing time |V |14 is greater than

(|V | − 1)s + sσ(v).

10

It follows that for each edge-job Juv(i) with uv ∈ E and i = 1, 2, the completion time
Cuv(i) = max{C(uv(i),u), C(uv(i),v)} under π is greater than

(|V | − 1)s + s max{σ(u), σ(v)}.

Now the total completion time of the small jobs is given by

∑

1≤i≤|V |8
Cs(i) > |V |9s,

the total completion time of the vertex-jobs is given by

∑
v∈V

∑
1≤i≤α(v) Cv(i)

>
∑

v∈V α(v)((|V | − 1)s + sσ(v))

=
∑

v∈V (|V | − d(v))((|V | − 1)s + sσ(v))

= (|V |2 − 2|E|)(|V | − 1)s + s|V |∑v∈V σ(v) − s
∑

v∈V d(v)σ(v)

= (|V |2 − 2|E|)(|V | − 1)s + s(1
2
|V |2(|V | + 1)) − s

∑
v∈V d(v)σ(v),

and the total completion time of the edge-jobs is given by

∑
uv∈E

∑
1≤i≤2 Cuv(i)

>
∑

uv∈E 2((|V | − 1)s + s max{σ(u), σ(v)})
= 2|E|(|V | − 1)s + s

∑
uv∈E 2 max{σ(u), σ(v)}.

Hence, by Lemma 2.1, the total completion time of all the jobs is given by

∑
1≤i≤|V |8 Cs(i) +

∑
v∈V

∑
1≤i≤n(v) Cv(i) +

∑
uv∈E

∑
1≤i≤2 Cuv(i)

> |V |9s + |V |2(|V | − 1)s + s(1
2
|V |2(|V | + 1)) + sS(G, σ).

By the fact that the total completion time under π is at most

X = |V |9(s+ |V |2 + |V |8)+ |V |2((|V |−1)s+ |V |3 + |V |9)+(s+2|V |15)(1
2
|V |2(|V |+1)+Y),

we have
sS(G, σ) < sY + |V |5 + 2|V |11 + |V |17(|V | + 2) + 2|V |15Y.

Because
s = |V |5 + 2|V |11 + |V |17(|V | + 2) + 2|V |15Y,

we deduce that sS(G, σ) < sY + s, and so

S(G, σ) < Y + 1.

The result follows by noting that both S(G, σ) and Y are integers.

11

3 Scheduling with identical processing times and re-

stricted set-up times

Consider the scheduling problem 1|sf , assembly, p(j,f) = p|∑Ci. Write smax = max{sf :
1 ≤ f ≤ F} and smin = min{sf : 1 ≤ f ≤ F}. We show that the scheduling problem can
be solved in polynomial time if either smax is sufficiently small or smin is sufficiently large.
Assume that the families of operations have been re-indexed so that s1 ≤ s2 ≤ · · · ≤ sF .
Then s1 = smin and sF = smax.

As in [4], in a schedule π, an operation (j, f) is called final if Cj = C(j,f), and non-final
if Cj > C(j,f). Furthermore, a batch is called final if it contains at least one final operation,
and a batch is called full if it is a family of operations. It can be observed that in a given
final batch of an optimal schedule, the final operations are processed before the non-final
operations (if any).

Theorem 3.1 If smin ≥ np, then each family of operations acts as a full batch in
any optimal schedule.

Proof Let π be an optimal schedule. Let B be the first final batch in π. Let t be
the completion time of B. We only need to show that B is also the last final batch in π.

Suppose that B is not the last final batch in π. Let B′ be the second final batch in
π. Let (x, f) be the first operation in B′. Then (x, f) is a final operation. Let B∗ be
the first batch in π such that B∗ ⊆ Ff . Then B∗ is not full. Let π∗ be a new schedule
obtained from π by shifting (x, f) from B′ to B∗. If B∗ is completed after time t, then
π∗ is better than π since Cj(π

∗) < Cj(π) and Cj(π
∗) ≤ Cj(π) for j 6= x. Hence, we

suppose that B∗ is completed by time t. Write J (t) = {Jj : Cj(π) ≤ t}. Then, for each
Jj ∈ J (t), Cj(π

∗) ≤ Cj(π) + p, for each Ji 6∈ J (t) ∪ {Jx}, Ci(π
∗) ≤ Ci(π). Furthermore,

Cx(π
∗) ≤ Cx(π) − sf . Hence, we have

∑

1≤j≤n

Cj(π
∗) ≤

∑

1≤j≤n

Cj(π) + |J (t)|p − sf .

Since sf ≥ smin ≥ np > |J (t)|p, we conclude that
∑

1≤j≤n Cj(π
∗) <

∑
1≤j≤n Cj(π). This

contradicts the assumption that π is optimal. The result follows. 2

As a consequence of Theorem 3.1, for the case smin ≥ np, the scheduling problem
1|sf , assembly, p(j,f) = p|∑ Ci can be solved in O(Fn) time.

When smax ≤ p/n, we define a schedule σ∗ by the following batch partition and

12

processing order:

{(1, 1)}, {(1, 2)}, ..., {(1, F − 2)}, {(1, F − 1)}, {(1, F), (2, F)},
{(2, 1)}, {(2, 2)}, ..., {(2, F − 2)}, {(2, F − 1), (3, F − 1)},
{(3, 1)}, {(3, 2)}, ..., {(3, F − 2)}, {(3, F), (4, F)},
{(4, 1)}, {(4, 2)}, ..., {(4, F − 2)}, {(4, F − 1), (5, F − 1)}, ...

That is, we first obtain a schedule σ by setting, for each operation (j, f), a single batch
B(j,f) = {(j, f)}, and sequencing the batches in the order

B(1,1), B(1,2), ..., B(1,F), B(2,1), B(2,2), ..., B(2,F), ..., B(n,1), B(n,2), ..., B(n,F).

Then the schedule σ∗ is obtained from σ by deleting the batches

B(2,F), B(3,F−1), B(4,F), B(5,F−1), ...

and replacing the batches

B(1,F), B(2,F−1), B(3,F), B(4,F−1), ...

by
B(1,F) ∪ B(2,F), B(2,F−1) ∪ B(3,F−1), B(3,F) ∪ B(4,F), B(4,F−1) ∪ B(5,F−1), ...,

respectively.

Theorem 3.2 If smax ≤ p/n, then the schedule σ∗ is optimal.

Sketch of the proof The details of the proof of this theorem are easy but long. We
only give a sketch of the proof. Suppose n ≥ 2.

Let π be an optimal schedule. Suppose that there are k final batches in π, and suppose
that Bi is the i-th final batch in π. Let ti be the completion time of batch Bi in π. Write
J (i) = {Jj : ti−1 < Cj(π) ≤ ti}, where t0 = 0.

(a) By contradiction and shifting arguments, we can show that any non-final batch
processed between ti−1 and ti contains only operations of the jobs in J (i), and such a
non-final batch is of size |J (i)|.

(b) By contradiction and shifting arguments, we can show that any final batch Bi

contains only operations of the jobs in J (i) ∪ J (i+1), where J (k+1) = ∅. That is |Bi| =
|J (i)| + |J (i+1)|.

(c) Since p(j,f) = p for every operation (j, f), we can assume that C1(π) < C2(π) <
· · · < Cn(π).

(d) Based on (a), (b) and (c), we show in the following that k = n and J (i) = {Ji},
1 ≤ i ≤ n. Here we assume that F ≥ 3. The case F = 2 can also be proved, but we omit
it. If possible, let x ∈ {1, ..., k − 1} be the maximum value such that |J (x)| ≥ 2. Let y be

13

the maximum value such that Jy ∈ J (x). Then y ≥ 2. There are two possibilities: either
y = n or y ≤ n − 1.

If y = n, then let (y, f) be any operation such that (y, f) 6∈ Bx. The batch that
contains (y, f) is denoted by B′. Then B′ ≥ 2. Write B∗ = B′ \ {(y, f)}. We obtain a
new schedule π∗ from π by replacing B′ with the new batch B∗ and adding a new batch
{(y, f)} just after Bx. For Jj ∈ J (i) with i ≤ i ≤ x − 1, we have Cj(π

∗) = Cj(π); for
Jj ∈ J (x) \ {Jy}, we have Cj(π

∗) = Cj(π) − p; for j = y, we have Cj(π
∗) = Cj(π) + s.

Hence, we have

∑

1≤j≤n

Cj(π
∗) ≤

∑

1≤j≤n

Cj(π) − p + sf <
∑

1≤j≤n

Cj(π).

This contradicts the assumption that π is optimal.

If y ≤ n − 1, then x ≤ k − 1. Suppose Bx ⊆ Fa. Then, from (b) and (c), we have
(y + 1, a) ∈ Bx. Let B̄ be the the batch just after Bx and assume that B̄ ⊆ Fb. Then
B̄ is not a final batch, since F ≥ 3. The batch that contains (y, b) is still denoted by B′.
Write B∗ = B′ \ {(y, b)} and B∗

x = Bx \ {(y + 1, a)}. We obtain a new schedule π′ from π
by replacing B′ with B∗, replacing Bx with B∗

x, replacing B̄ with B̂ = B̄ ∪ {(y, b)} with
(y, b) being the first operation in B̂, and then inserting a batch {(y + 1, a)} just after B̂.
Then we have

∑

1≤j≤n

Cj(π
′) ≤

∑

1≤j≤n

Cj(π) − p + (n − y + 1)sf <
∑

1≤j≤n

Cj(π).

Again, this contradicts the assumption that π is optimal.

(e) Now the structure of π is clear. Each final batch Bi, 1 ≤ i ≤ n−1, contains exactly
two operations of Ji and Ji+1, respectively. Each of the other batches contains just one
operation. The processing time p contributes a fixed amount Q(p) = Fpn(n+1)/2 to the
objective function. We only need to consider the contribution R(s1, s2, ..., sF) of the set-up
times to the objective function. Suppose that Bi ⊆ Fδ(i), 1 ≤ i ≤ n. Then δ(i) 6= δ(i + 1)
for 1 ≤ i ≤ n− 1. The total set-up time before the completion of each job Ji is calculated
by

(s1 + · · ·+ sF) + (s1 + · · ·+ sF − sδ(1)) + · · ·+ (s1 + · · ·+ sF − sδ(i−1))

= i(s1 + · · ·+ sF) − (sδ(1) + · · ·+ sδ(i−1)).

It follows that

R(s1, ..., sF) =
1

2
n(n + 1)(s1 + · · · + sF) −

(
(n − 1)sδ(1) + (n − 2)sδ(2) + · · ·+ sδ(n−1))

)
.

To minimize R(s1, ..., sF) and guarantee the condition δ(i) 6= δ(i + 1) for 1 ≤ i ≤ n − 1,
we must have

sF = sδ(1) = sδ(3) = sδ(5) = · · ·

14

and
sF−1 = sδ(2) = sδ(4) = sδ(6) = · · · .

Denote by R∗(s1, ..., sF) the minimum value of R(s1, ..., sF), subject to the condition
δ(i) 6= δ(i + 1) for 1 ≤ i ≤ n − 1. It can be checked that σ∗ is a schedule with objective
value R∗(s1, ..., sF) + Q(p) ≤ R(s1, ..., sF) + Q(p) =

∑
j Cj(π). Hence, we conclude that

σ∗ is optimal. 2

As a consequence of Theorem 3.2, for the case smax ≤ p/n, the scheduling problem
1|sf , assembly, p(j,f) = p|∑ Ci can be solved in O(F log F +Fn) time, where O(F log F)
time is used to sort the set-up times.

4 Job-batch scheduling with SPT-agreeability

Consider the scheduling problem 1|sf , job-batch assembly, SPT-agreeability|∑ Cj. Re-
call that if the jobs are partitioned into batches B1, B2, ..., Bk, then the batches of each
family Ff (1 ≤ f ≤ F) are formed by

F(1,f),F(2,f), ...,F(k,f),

where
F(i,f) = {(j, f) : j ∈ Bi}, 1 ≤ i ≤ k.

For each job Jj, define Pj =
∑

1≤f≤F p(j,f). Re-index the jobs such that P1 ≤ P2 ≤
· · · ≤ Pn. Since the jobs are of SPT-agreeability, we can see that, for each family Ff , we
have p(1,f) ≤ p(2,f) ≤ · · · ≤ p(n,f).

By the pairwise job exchange argument, we can show the following lemma.

Lemma 4.1 There is an optimal schedule π for the considered problem such that

(1) The jobs are partitioned into job batches B1, B2, ..., Bk for some k with 1 ≤ k ≤ n
such that, if Ji and Jj are two jobs such that i < j, and Ji ∈ Bx and Jj ∈ By for some x
and y with 1 ≤ x, y ≤ k, then x ≤ y. Consequently, each batch Bx consists of jobs with
consecutive indices.

(2) For each job batch Bx = {Ji, Ji+1, ..., Jj} and for each family Ff , the jobs in the
operation batch F(x,f) = {(i, f), (i + 1, f), ..., (j, f)} are processed in the order (i, f), (i +
1, f), ..., (j, f) according to increasing order of the indices of their jobs.

(3) If x and y are two job batch indices with x < y, then each operation of the jobs in
Bx are processed before all the operations of the jobs in By.

15

A schedule for the considered problem that satisfies the three properties in Lemma
4.1 is called a regular schedule.

Let π be an optimal regular schedule for the considered problem for the partial job
set {Ji, Ji+1, ..., Jn}. Suppose the job batches in π are B1, B2, ..., Bk. Then, according to
Lemma 4.1, the batches of the operations are processed in the following order:

{F(1,f) : 1 ≤ f ≤ F}, {F(2,f) : 1 ≤ f ≤ F}, ..., {F(k,f) : 1 ≤ f ≤ F}.

In order to give a backward dynamic programming recursion, we first consider the
processing order of the batches in {F(1,f) : 1 ≤ f ≤ F}. This is equivalent to solving the
problem 1|sf , assembly, GT, p(j,f) > 0|∑Cj for the jobs in B1, which, by Gerodimos et
al. [4], can be solved in O(F |B1| log |B1|) time. But since the jobs are of SPT-agreeability
and have been sorted in the SPT order, the solving of the present problem needs only
O(F |B1|) time. In fact, the total completion time of the jobs in B1 is determined by
the processing of the operations in the last batch in {F(1,f) : 1 ≤ f ≤ F}, and we can
enumerate the F possibilities to choose the best one. Suppose that the last job in the job
batch B1 is Jj. We denote the total completion time of the jobs in B1 in π (which is also
optimal when restricted in B1 under the GT assumption) by CGT (i, j).

Now, let G(i) be the total completion time of the jobs in {Ji, Ji+1, ..., Jn} under an
optimal regular schedule. If the first job batch consists of the jobs Ji, Ji+1, ..., Jj, then the
sum of the set-up times and processing times of all operations of the jobs in the first job
batch is calculated by P (i, j) =

∑
1≤f≤F sf +

∑
i≤l≤j Pl. Clearly, P (i, j) contributes to the

completion time of every jobs in {Jj+1, ..., Jn}. Hence, we have

G(i) = CGT (i, j) + (n − j)P (i, j) + G(j + 1).

Based on the above discussion, the backward dynamic programming recursion for
solving the problem 1|sf , job-batch assembly, SPT-agreeability|∑Cj is given by

G(i) = min
i≤j≤n

(CGT (i, j) + (n − j)P (i, j) + G(j + 1)) , 1 ≤ i ≤ n.

The initial condition is given by G(n + 1) = 0. The optimal objective value is given by
G(1).

Note that we can calculate all the values CGT (i, j) for 1 ≤ i ≤ j ≤ n before invoking
the backward dynamic programming recursion, which can be calculated in O(Fn3) time.
All the values P (i, j) can be calculated in O(F + n2) time in advance.

Each iteration of the above recursion can be calculated in O(n) time. The dynamic
recursion function has n states. Hence, the total complexity of the dynamic programming
recursion is O(n2) by using the previously given values CGT (i, j) and P (i, j). Conse-
quently, we have

Theorem 4.2 The problem 1|sf , job-batch assembly, SPT-agreeability|∑ Cj can
be solved in O(Fn3) time.

16

5 Conclusions

We showed in this paper that the scheduling problem 1|sf , assembly, p(j,f) > 0|∑ Cj is
strongly NP-hard even when the set-up times are common. When the operations have
identical processing times, the problem can be solved in polynomial time when either
smax is sufficiently small or smin is sufficiently large. We also discussed the problem
1|sf , job-batch assembly, SPT-agreeability|∑Cj and showed that it can be solved in
O(Fn3) time by backward dynamic programming. For future research, the complexities
of the problems 1|sf , job-batch assembly, p(j,f) > 0|∑Cj and 1|sf , assembly,
p(j,f) > 0|∑ Cj with F being fixed are still open. It is also worth devising effective
approximation algorithms for the NP-hard problem 1|sf , assembly, |∑Cj with or without
missing operations.

Acknowledgements

We are grateful for two anonymous referees for their constructive comments on an earlier
version of this paper. This research was supported in part by The Hong Kong Poly-
technic University under grant number G-YW43. Yuan was also supported in part by
NSFC(10671183).

References

[1] T.C.E. Cheng, C.T. Ng and J.J. Yuan, A stronger complexity result for the single
machine multi-operation jobs scheduling problem to minimize the number of tardy
jobs, Journal of Scheduling, 6(2003), 551-555.

[2] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, Freeman, San Francisco, CA, 1979.

[3] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph
problem, Theoretical Computer Science, 1(1976), 237-267.

[4] A.E. Gerodimos, C.A. Glass, C.N. Potts and T. Tautenhahn, Scheduling multi-
operation jobs on a single machine, Annals of Operations Research, 92(1999), 87-105.

[5] J.K. Lenstra and A.H.G. Rinnooy Kan, Complexity of scheduling under precedence
constraints, Operations Research, 26(1978), 22-35.

[6] C.T. Ng, T.C.E. Cheng and J.J. Yuan, Strong NP-hardness of the single machine
multi-operation jobs total completion time scheduling problem, Information Process-
ing Letters, 82(2002), 187-191.

17

