4,928 research outputs found

    Greedy Algorithms for Steiner Forest

    Full text link
    In the Steiner Forest problem, we are given terminal pairs {si,ti}\{s_i, t_i\}, and need to find the cheapest subgraph which connects each of the terminal pairs together. In 1991, Agrawal, Klein, and Ravi, and Goemans and Williamson gave primal-dual constant-factor approximation algorithms for this problem; until now, the only constant-factor approximations we know are via linear programming relaxations. We consider the following greedy algorithm: Given terminal pairs in a metric space, call a terminal "active" if its distance to its partner is non-zero. Pick the two closest active terminals (say si,tjs_i, t_j), set the distance between them to zero, and buy a path connecting them. Recompute the metric, and repeat. Our main result is that this algorithm is a constant-factor approximation. We also use this algorithm to give new, simpler constructions of cost-sharing schemes for Steiner forest. In particular, the first "group-strict" cost-shares for this problem implies a very simple combinatorial sampling-based algorithm for stochastic Steiner forest

    Distance Transformation for Network Design Problems

    Get PDF
    International audienceWe propose a new generic way to construct extended formulations for a large class of network design problems with given connectivity requirements. The approach is based on a graph transformation that maps any graph into a layered graph according to a given distance function. The original connectivity requirements are in turn transformed into equivalent connectivity requirements in the layered graph. The mapping is extended to the graphs induced by fractional vectors through an extended linear integer programming formulation. While graphs induced by binary vectors are mapped to isomorphic layered graphs, those induced by fractional vectors are mapped to a set of graphs having worse connectivity properties. Hence, the connectivity requirements in the layered graph may cut off fractional vectors that were feasible for the problem formulated in the original graph. Experiments over instances of the Steiner Forest and Hop-constrained Survivable Network Design problems show that significant gap reductions over the state-of-the art formulations can be obtained

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial

    Operations Research Games: A Survey

    Get PDF
    This paper surveys the research area of cooperative games associated with several types of operations research problems in which various decision makers (players) are involved.Cooperating players not only face a joint optimisation problem in trying, e.g., to minimise total joint costs, but also face an additional allocation problem in how to distribute these joint costs back to the individual players.This interplay between optimisation and allocation is the main subject of the area of operations research games.It is surveyed on the basis of a distinction between the nature of the underlying optimisation problem: connection, routing, scheduling, production and inventory.cooperative games;operational research
    corecore