57,199 research outputs found

    Viscous Taylor droplets in axisymmetric and planar tubes: from Bretherton's theory to empirical models

    Get PDF
    The aim of this study is to derive accurate models for quantities characterizing the dynamics of droplets of non-vanishing viscosity in capillaries. In particular, we propose models for the uniform-film thickness separating the droplet from the tube walls, for the droplet front and rear curvatures and pressure jumps, and for the droplet velocity in a range of capillary numbers, CaCa, from 10−410^{-4} to 11 and inner-to-outer viscosity ratios, λ\lambda, from 00, i.e. a bubble, to high viscosity droplets. Theoretical asymptotic results obtained in the limit of small capillary number are combined with accurate numerical simulations at larger CaCa. With these models at hand, we can compute the pressure drop induced by the droplet. The film thickness at low capillary numbers (Ca<10−3Ca<10^{-3}) agrees well with Bretherton's scaling for bubbles as long as λ<1\lambda<1. For larger viscosity ratios, the film thickness increases monotonically, before saturating for λ>103\lambda>10^3 to a value 22/32^{2/3} times larger than the film thickness of a bubble. At larger capillary numbers, the film thickness follows the rational function proposed by Aussillous \& Qu\'er\'e (2000) for bubbles, with a fitting coefficient which is viscosity-ratio dependent. This coefficient modifies the value to which the film thickness saturates at large capillary numbers. The velocity of the droplet is found to be strongly dependent on the capillary number and viscosity ratio. We also show that the normal viscous stresses at the front and rear caps of the droplets cannot be neglected when calculating the pressure drop for Ca>10−3Ca>10^{-3}

    A novel weight function for RMS stress intensity factor determination in surface cracks

    Get PDF
    This paper discusses the problem of stress intensity factor determination in surface cracks. In particular, the concept of root mean square stress intensity factors (RMS SIF) is discussed for the general class of semi-elliptical surface cracks. The weight function SIF derivation method is considered problems with the existing techniques are highlighted, and a novel technique for the derivation of the RMS SIF weight functions for surface cracks is presented and results are compared with numerical solutions for a variety of loadings and geometries

    A connection between the Camassa-Holm equations and turbulent flows in channels and pipes

    Full text link
    In this paper we discuss recent progress in using the Camassa-Holm equations to model turbulent flows. The Camassa-Holm equations, given their special geometric and physical properties, appear particularly well suited for studying turbulent flows. We identify the steady solution of the Camassa-Holm equation with the mean flow of the Reynolds equation and compare the results with empirical data for turbulent flows in channels and pipes. The data suggests that the constant α\alpha version of the Camassa-Holm equations, derived under the assumptions that the fluctuation statistics are isotropic and homogeneous, holds to order α\alpha distance from the boundaries. Near a boundary, these assumptions are no longer valid and the length scale α\alpha is seen to depend on the distance to the nearest wall. Thus, a turbulent flow is divided into two regions: the constant α\alpha region away from boundaries, and the near wall region. In the near wall region, Reynolds number scaling conditions imply that α\alpha decreases as Reynolds number increases. Away from boundaries, these scaling conditions imply α\alpha is independent of Reynolds number. Given the agreement with empirical and numerical data, our current work indicates that the Camassa-Holm equations provide a promising theoretical framework from which to understand some turbulent flows.Comment: tex file, 29 pages, 4 figures, Physics of Fluids (in press

    Applicability of a Representation for the Martin's Real-Part Formula in Model-Independent Analyses

    Full text link
    Using a novel representation for the Martin's real-part formula without the full scaling property, an almost model-independent description of the proton-proton differential cross section data at high energies (19.4 GeV - 62.5 GeV) is obtained. In the impact parameter and eikonal frameworks, the extracted inelastic overlap function presents a peripheral effect (tail) above 2 fm and the extracted opacity function is characterized by a zero (change of sign) in the momentum transfer space, confirming results from previous model-independent analyses. Analytical parametrization for these empirical results are introduced and discussed. The importance of investigations on the inverse problems in high-energy elastic hadron scattering is stressed and the relevance of the proposed representation is commented. A short critical review on the use of Martin's formula is also presented.Comment: Two comments and one reference added at the end of Subsec. 3.3; 23 pages, 9 figures; to be published in Int. J. Mod. Phys.

    A two-species continuum model for aeolian sand transport

    Get PDF
    Starting from the physics on the grain scale, we develop a simple continuum description of aeolian sand transport. Beyond popular mean-field models, but without sacrificing their computational efficiency, it accounts for both dominant grain populations, hopping (or "saltating") and creeping (or "reptating") grains. The predicted stationary sand transport rate is in excellent agreement with wind tunnel experiments simulating wind conditions ranging from the onset of saltation to storms. Our closed set of equations thus provides an analytically tractable, numerically precise, and computationally efficient starting point for applications addressing a wealth of phenomena from dune formation to dust emission.Comment: 23 pages, 9 figure

    Modeling and control of a plastic film manufacturing web process

    Get PDF
    This paper is concerned with the modelling of aplastic film manufacturing process and the development and implementation of a model-based Cross-Directional (CD) controller. The model is derived from first-principles and some empirical relationships. The final validated nonlinear model could provide a useful off-line platform for developing control and monitoring algorithms.A new controller is designed which has a similar structureto that of Internal Model Control (IMC) with the addition ofan observer whose gain is designed to minimise process andmodel mis-match. The observer gain is obtained by solving amulti-objective optimisation problem through the application of a genetic algorithm. The controller is applied to the nonlinear model and simulation results are presented demonstrating improvements that can be achieved by the proposed controller over two existing CD controllers

    Nonequilibrium Thermodynamics of Porous Electrodes

    Full text link
    We reformulate and extend porous electrode theory for non-ideal active materials, including those capable of phase transformations. Using principles of non-equilibrium thermodynamics, we relate the cell voltage, ionic fluxes, and Faradaic charge-transfer kinetics to the variational electrochemical potentials of ions and electrons. The Butler-Volmer exchange current is consistently expressed in terms of the activities of the reduced, oxidized and transition states, and the activation overpotential is defined relative to the local Nernst potential. We also apply mathematical bounds on effective diffusivity to estimate porosity and tortuosity corrections. The theory is illustrated for a Li-ion battery with active solid particles described by a Cahn-Hilliard phase-field model. Depending on the applied current and porous electrode properties, the dynamics can be limited by electrolyte transport, solid diffusion and phase separation, or intercalation kinetics. In phase-separating porous electrodes, the model predicts narrow reaction fronts, mosaic instabilities and voltage fluctuations at low current, consistent with recent experiments, which could not be described by existing porous electrode models
    • 

    corecore