220,206 research outputs found

    Strength Guided Motion

    Get PDF
    A methodology and algorithm is presented that generates motions imitating the way humans complete a lifting task under various loading conditions. The path taken depends on natural parameters: the figure geometry, the given load, the final destination, and especially, the strength model of the agent. Additional user controllable parameters of the motion are the comfort of the action and the perceived exertion of the agent. The algorithm uses this information to incrementally compute a motion path of the end effector moving the load. It is therefore instantaneously adaptable to changing force, loading, and strength conditions. Various strategies are used to model human behavior (such as pull back, add additional joints, and jerk) that compute the driving torques as the situation changes. The strength model dictates acceptable kinematic postures. The resulting algorithm offers torque control without the tedious user expression of driving forces under a dynamics model. The algorithm runs in near-realtime and offers an agent-dependent toolkit for fast path prediction. Examples are presented for various lifting tasks, including one- and two-handed lifts, and raising the body from a seated posture

    Mechanistic origin of high retained strength in refractory BCC high entropy alloys up to 1900K

    Full text link
    The body centered cubic (BCC) high entropy alloys MoNbTaW and MoNbTaVW show exceptional strength retention up to 1900K. The mechanistic origin of the retained strength is unknown yet is crucial for finding the best alloys across the immense space of BCC HEA compositions. Experiments on Nb-Mo, Fe-Si and Ti-Zr-Nb alloys report decreased mobility of edge dislocations, motivating a theory of strengthening of edge dislocations in BCC alloys. Unlike pure BCC metals and dilute alloys that are controlled by screw dislocation motion at low temperatures, the strength of BCC HEAs can be controlled by edge dislocations, and especially at high temperatures, due to the barriers created for edge glide through the random field of solutes. A parameter-free theory for edge motion in BCC alloys qualitatively and quantitatively captures the strength versus temperature for the MoNbTaW and MoNbTaVW alloys. A reduced analytic version of the theory then enables screening over >600,000 compositions in the Mo-Nb-Ta-V-W family, identifying promising new compositions with high retained strength and/or reduced mass density. Overall, the theory reveals an unexpected mechanism responsible for high temperature strength in BCC alloys and paves the way for theory-guided design of stronger high entropy alloys.Comment: This version corrects the theory and provides more extensive explanation

    Kinetics of self-induced aggregation of Brownian particles: non-Markovian and non-Gaussian features

    Full text link
    In this paper we have studied a model for self-induced aggregation in Brownian particle incorporating the non-Markovian and non-Gaussian character of the associated random noise process. In this model the time evolution of each individual is guided by an over-damped Langevin equation of motion with a non-local drift resulting from the local unbalance distributions of the other individuals. Our simulation result shows that colored nose can induce the cluster formation even at large noise strength. Another observation is that critical noise strength grows very rapidly with increase of noise correlation time for Gaussian noise than non Gaussian one. However, at long time limit the cluster number in aggregation process decreases with time following a power law. The exponent in the power law increases remarkable for switching from Markovian to non Markovian noise process

    Magnetic domain-wall velocity enhancement induced by a transverse magnetic field

    Full text link
    Spin dynamics of field-driven domain walls (DWs) guided by Permalloy nanowires are studied by high-speed magneto-optic polarimetry and numerical simulations. DW velocities and spin configurations are determined as functions of longitudinal drive field, transverse bias field, and nanowire width. Nanowires having cross-sectional dimensions large enough to support vortex wall structures exhibit regions of drive-field strength (at zero bias field) that have enhanced DW velocity resulting from coupled vortex structures that suppress oscillatory motion. Factor of ten enhancements of the DW velocity are observed above the critical longitudinal drive-field (that marks the onset of oscillatory DW motion) when a transverse bias field is applied. Nanowires having smaller cross-sectional dimensions that support transverse wall structures also exhibit a region of higher mobility above the critical field, and similar transverse-field induced velocity enhancement but with a smaller enhancement factor. The bias-field enhancement of DW velocity is explained by numerical simulations of the spin distribution and dynamics within the propagating DW that reveal dynamic stabilization of coupled vortex structures and suppression of oscillatory motion in the nanowire conduit resulting in uniform DW motion at high speed.Comment: 8 pages, 5 figure

    Wetting gradient induced separation of emulsions: A combined experimental and lattice Boltzmann computer simulation study

    Full text link
    Guided motion of emulsions is studied via combined experimental and theoretical investigations. The focus of the work is on basic issues related to driving forces generated via a step-wise (abrupt) change in wetting properties of the substrate along a given spatial direction. Experiments on binary emulsions unambiguously show that selective wettability of the one of the fluid components (water in our experiments) with respect to the two different parts of the substrate is sufficient in order to drive the separation process. These studies are accompanied by approximate analytic arguments as well as lattice Boltzmann computer simulations, focusing on effects of a wetting gradient on internal droplet dynamics as well as its relative strength compared to volumetric forces driving the fluid flow. These theoretical investigations show qualitatively different dependence of wetting gradient induced forces on contact angle and liquid volume in the case of an open substrate as opposed to a planar channel. In particular, for the parameter range of our experiments, slit geometry is found to give rise to considerably higher separation forces as compared to open substrate.Comment: 34 pages, 12 figure

    Dispersion management using betatron resonances in an ultracold-atom storage ring

    Full text link
    Specific velocities of particles circulating in a storage ring can lead to betatron resonances at which static perturbations of the particles' orbit yield large transverse (betatron) oscillations. We have observed betatron resonances in an ultracold-atom storage ring by direct observation of betatron motion. These resonances caused a near-elimination of the longitudinal dispersion of atomic beams propagating at resonant velocities, an effect which can improve the performance of atom interferometric devices. Both the resonant velocities and the strength of the resonances were varied by deliberate modifications to the storage ring.Comment: 4 pages, 5 figures. Also available at http://physics.berkeley.edu/research/ultracol

    Transverse and secondary voltages in BSCCO single crystals

    Full text link
    Multicontact configuration is one of the most powerful arrangements for electrical transport measurements applied to study vortex phase transition and vortex phase dimensionality in strongly anisotropic high-Tc superconducting materials. In this paper we present electrical transport measurements using a multiterminal configuration, which prove both the existence of guided vortex motion in BSCCO single crystals near the transition temperature and that secondary voltage in zero external magnetic field is induced by thermally activated vortex loop unbinding. The phase transition between the bound and unbound states of the vortex loops was found to be below the temperature where the phase coherence of the superconducting order parameter extends over the whole volume of the sample. We show experimentally that 3D/2D phase transition in vortex dimensionality is a length-scale-dependent layer decoupling process and takes place simultaneously with the 3D/2D phase transition in superconductivity at the same temperature.Comment: 8 pages, 5 figures, to be published in Physica

    Dynamic Vortex Phases and Pinning in Superconductors with Twin Boundaries

    Full text link
    We investigate the pinning and driven dynamics of vortices interacting with twin boundaries using large scale molecular dynamics simulations on samples with near one million pinning sites. For low applied driving forces, the vortex lattice orients itself parallel to the twin boundary and we observe the creation of a flux gradient and vortex free region near the edges of the twin boundary. For increasing drive, we find evidence for several distinct dynamical flow phases which we characterize by the density of defects in the vortex lattice, the microscopic vortex flow patterns, and orientation of the vortex lattice. We show that these different dynamical phases can be directly related to microscopically measurable voltage - current V(I) curves and voltage noise. By conducting a series of simulations for various twin boundary parameters we derive several vortex dynamic phase diagrams.Comment: 5 figures, to appear in Phys. Rev.

    Dispersive response of atoms trapped near the surface of an optical nanofiber with applications to quantum nondemolition measurement and spin squeezing

    Full text link
    We study the strong coupling between photons and atoms that can be achieved in an optical nanofiber geometry when the interaction is dispersive. While the Purcell enhancement factor for spontaneous emission into the guided mode does not reach the strong-coupling regime for individual atoms, one can obtain high cooperativity for ensembles of a few thousand atoms due to the tight confinement of the guided modes and constructive interference over the entire chain of trapped atoms. We calculate the dyadic Green's function, which determines the scattering of light by atoms in the presence of the fiber, and thus the phase shift and polarization rotation induced on the guided light by the trapped atoms. The Green's function is related to a full Heisenberg-Langevin treatment of the dispersive response of the quantized field to tensor polarizable atoms. We apply our formalism to quantum nondemolition (QND) measurement of the atoms via polarimetry. We study shot-noise-limited detection of atom number for atoms in a completely mixed spin state and the squeezing of projection noise for atoms in clock states. Compared with squeezing of atomic ensembles in free space, we capitalize on unique features that arise in the nanofiber geometry including anisotropy of both the intensity and polarization of the guided modes. We use a first principles stochastic master equation to model the squeezing as function of time in the presence of decoherence due to optical pumping. We find a peak metrological squeezing of ~5 dB is achievable with current technology for ~2500 atoms trapped 180 nm from the surface of a nanofiber with radius a=225 nm.Comment: To be appeared on PR
    • …
    corecore