18,374 research outputs found

    A large sample analysis of European rivers on seasonal river flow correlation and its physical drivers

    Get PDF
    The geophysical and hydrological processes governing river flow formation exhibit persistence at several timescales, which may manifest itself with the presence of positive seasonal correlation of streamflow at several different time lags. We investigate here how persistence propagates along subsequent seasons and affects low and high flows. We define the high-flow season (HFS) and the low-flow season (LFS) as the 3-month and the 1-month periods which usually exhibit the higher and lower river flows, respectively. A dataset of 224 rivers from six European countries spanning more than 50 years of daily flow data is exploited. We compute the lagged seasonal correlation between selected river flow signatures, in HFS and LFS, and the average river flow in the antecedent months. Signatures are peak and average river flow for HFS and LFS, respectively. We investigate the links between seasonal streamflow correlation and various physiographic catchment characteristics and hydro-climatic properties. We find persistence to be more intense for LFS signatures than HFS. To exploit the seasonal correlation in the frequency estimation of high and low flows, we fit a bi-variate meta-Gaussian probability distribution to the selected flow signatures and average flow in the antecedent months in order to condition the distribution of high and low flows in the HFS and LFS, respectively, upon river flow observations in the previous months. The benefit of the suggested methodology is demonstrated by updating the frequency distribution of high and low flows one season in advance in a real-world case. Our findings suggest that there is a traceable physical basis for river memory which, in turn, can be statistically assimilated into high- and low-flow frequency estimation to reduce uncertainty and improve predictions for technical purposes

    Bringing Statistical Learning Machines Together for Hydro-Climatological Predictions - Case Study for Sacramento San Joaquin River Basin, California

    Get PDF
    Study region: Sacramento San Joaquin River Basin, California Study focus: The study forecasts the streamflow at a regional scale within SSJ river basin with largescale climate variables. The proposed approach eliminates the bias resulting from predefined indices at regional scale. The study was performed for eight unimpaired streamflow stations from 1962–2016. First, the Singular Valued Decomposition (SVD) teleconnections of the streamflow corresponding to 500 mbar geopotential height, sea surface temperature, 500 mbar specific humidity (SHUM500), and 500 mbar U-wind (U500) were obtained. Second, the skillful SVD teleconnections were screened non-parametrically. Finally, the screened teleconnections were used as the streamflow predictors in the non-linear regression models (K-nearest neighbor regression and data-driven support vector machine). New hydrological insights: The SVD results identified new spatial regions that have not been included in existing predefined indices. The nonparametric model indicated the teleconnections of SHUM500 and U500 being better streamflow predictors compared to other climate variables. The regression models were capable to apprehend most of the sustained low flows, proving the model to be effective for drought-affected regions. It was also observed that the proposed approach showed better forecasting skills with preprocessed large scale climate variables rather than using the predefined indices. The proposed study is simple, yet robust in providing qualitative streamflow forecasts that may assist water managers in making policy-related decisions when planning and managing watersheds

    A disposition of interpolation techniques

    Get PDF
    A large collection of interpolation techniques is available for application in environmental research. To help environmental scientists in choosing an appropriate technique a disposition is made, based on 1) applicability in space, time and space-time, 2) quantification of accuracy of interpolated values, 3) incorporation of ancillary information, and 4) incorporation of process knowledge. The described methods include inverse distance weighting, nearest neighbour methods, geostatistical interpolation methods, Kalman filter methods, Bayesian Maximum Entropy methods, etc. The applicability of methods in aggregation (upscaling) and disaggregation (downscaling) is discussed. Software for interpolation is described. The application of interpolation techniques is illustrated in two case studies: temporal interpolation of indicators for ecological water quality, and spatio-temporal interpolation and aggregation of pesticide concentrations in Dutch surface waters. A valuable next step will be to construct a decision tree or decision support system, that guides the environmental scientist to easy-to-use software implementations that are appropriate to solve their interpolation problem. Validation studies are needed to assess the quality of interpolated values, and the quality of information on uncertainty provided by the interpolation method

    Evaluating the Variability of Urban Land Surface Temperatures Using Drone Observations

    Get PDF
    Urbanization and climate change are driving increases in urban land surface temperatures that pose a threat to human and environmental health. To address this challenge, we must be able to observe land surface temperatures within spatially complex urban environments. However, many existing remote sensing studies are based upon satellite or aerial imagery that capture temperature at coarse resolutions that fail to capture the spatial complexities of urban land surfaces that can change at a sub-meter resolution. This study seeks to fill this gap by evaluating the spatial variability of land surface temperatures through drone thermal imagery captured at high-resolutions (13 cm). In this study, flights were conducted using a quadcopter drone and thermal camera at two case study locations in Milwaukee, Wisconsin and El Paso, Texas. Results indicate that land use types exhibit significant variability in their surface temperatures (3.9–15.8 °C) and that this variability is influenced by surface material properties, traffic, weather and urban geometry. Air temperature and solar radiation were statistically significant predictors of land surface temperature (R2 0.37–0.84) but the predictive power of the models was lower for land use types that were heavily impacted by pedestrian or vehicular traffic. The findings from this study ultimately elucidate factors that contribute to land surface temperature variability in the urban environment, which can be applied to develop better temperature mitigation practices to protect human and environmental health

    Bayesian spatio-temporal models for stream networks

    Full text link
    Spatio-temporal models are widely used in many research areas including ecology. The recent proliferation of the use of in-situ sensors in streams and rivers supports space-time water quality modelling and monitoring in near real-time. In this paper, we introduce a new family of dynamic spatio-temporal models, in which spatial dependence is established based on stream distance and temporal autocorrelation is incorporated using vector autoregression approaches. We propose several variations of these novel models using a Bayesian framework. Our results show that our proposed models perform well using spatio-temporal data collected from real stream networks, particularly in terms of out-of-sample RMSPE. This is illustrated considering a case study of water temperature data in the northwestern United States.Comment: 26 pages, 10 fig

    Identification of Influential Climate Indicators, Prediction of Long-Term Streamflow and Great Salt Lake Elevation Using Machine Learning Approach

    Get PDF
    To meet the surging water demand due to rapid population growth and changing climatic conditions around the world, and to reduce the impact of floods and droughts, comprehensive water management and planning is necessary. Climatic variability, hydrologic uncertainty and variability of hydrologic quantities in time and space are inherent to hydrological modeling. Hydrologic modeling using a physically-based model can be very complex and typically requires detailed knowledge of physical processes. The availability of data is an important issue to justify the use of these models. Data-driven models are an alternative choice. This is a relatively new and efficient approach to modeling. Data-drive models bridge the gap between the classical regression and physically-based models. By using a data-driven model that relies on the machine learning approach, it is possible to produce reasonable predictions from a limited data set and limited knowledge of underlying physical processes of the system by just relating input and output. This dissertation uses the Multivariate Relevance Vector Machine (MVRVM) and Support Vector Machine (SVM) for predicting a variety of hydrological quantities. These models are used in this dissertation for identifying influential climate indicators, and are used for long-term streamflow prediction for multiple lead times at different locations in Utah. They are also used for prediction of Great Salt Lake (GSL) elevation series. They provide reasonable predictions of hydrological quantities from the available data. The predictions from these models are robust and parsimonious. This research presents the first attempt to identify influential climate indicators and predict long lead-time streamflow in Utah, and to predict lake elevation using machine learning models. The approach presented herein has potential value for water resources planning and management especially for irrigation and flood management
    • …
    corecore