
A large sample analysis of European 
rivers on seasonal river flow correlation 
and its physical drivers 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CCBY) 

Open Access 

Iliopoulou, T., Aguilar, C., Arheimer, B., Bermúdez, M., Bezak, 
N., Ficchi, A., Koutsoyiannis, D., Parajka, J., Polo, M. J., 
Thirel, G. and Montanari, A. (2019) A large sample analysis of 
European rivers on seasonal river flow correlation and its 
physical drivers. Hydrology and Earth System Sciences, 23 
(1). pp. 7391. ISSN 10275606 doi: 
https://doi.org/10.5194/hess23732019 Available at 
http://centaur.reading.ac.uk/82278/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.5194/hess23732019 

Publisher: Copernicus 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur


Hydrol. Earth Syst. Sci., 23, 73–91, 2019
https://doi.org/10.5194/hess-23-73-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

A large sample analysis of European rivers on seasonal river flow
correlation and its physical drivers
Theano Iliopoulou1, Cristina Aguilar2, Berit Arheimer3, María Bermúdez4, Nejc Bezak5, Andrea Ficchì6,a,
Demetris Koutsoyiannis1, Juraj Parajka7, María José Polo2, Guillaume Thirel8, and Alberto Montanari9
1Department of Water Resources and Environmental Engineering, School of Civil Engineering,
National Technical University of Athens, Zographou, 15780, Greece
2Fluvial Dynamics and Hydrology Research Group, Andalusian Institute of Earth System Research,
University of Córdoba, Córdoba, 14071, Spain
3Swedish Meteorological and Hydrological Institute, 601 76 Norrköping, Sweden
4Water and Environmental Engineering Group, Department of Civil Engineering,
University of A Coruña, 15071 A Coruña, Spain
5Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
6Department of Geography and Environmental Science, University of Reading, Reading, RG6 6AB, UK
7Vienna University of Technology, Institute of Hydraulic Engineering and Water Resources Management,
Karlsplatz 13/222, 1040 Vienna, Austria
8IRSTEA, Hydrology Research Group (HYCAR), 92761, Antony, France
9Department DICAM, University of Bologna, Bologna, 40136, Italy
aformerly at: IRSTEA, Hydrology Research Group (HYCAR), 92761, Antony, France

Correspondence: Theano Iliopoulou (anyily@central.ntua.gr)

Received: 15 March 2018 – Discussion started: 3 April 2018
Revised: 16 November 2018 – Accepted: 6 December 2018 – Published: 7 January 2019

Abstract. The geophysical and hydrological processes gov-
erning river flow formation exhibit persistence at several
timescales, which may manifest itself with the presence of
positive seasonal correlation of streamflow at several differ-
ent time lags. We investigate here how persistence propagates
along subsequent seasons and affects low and high flows. We
define the high-flow season (HFS) and the low-flow season
(LFS) as the 3-month and the 1-month periods which usu-
ally exhibit the higher and lower river flows, respectively. A
dataset of 224 rivers from six European countries spanning
more than 50 years of daily flow data is exploited. We com-
pute the lagged seasonal correlation between selected river
flow signatures, in HFS and LFS, and the average river flow
in the antecedent months. Signatures are peak and average
river flow for HFS and LFS, respectively. We investigate the
links between seasonal streamflow correlation and various
physiographic catchment characteristics and hydro-climatic
properties. We find persistence to be more intense for LFS
signatures than HFS. To exploit the seasonal correlation in

the frequency estimation of high and low flows, we fit a bi-
variate meta-Gaussian probability distribution to the selected
flow signatures and average flow in the antecedent months
in order to condition the distribution of high and low flows
in the HFS and LFS, respectively, upon river flow observa-
tions in the previous months. The benefit of the suggested
methodology is demonstrated by updating the frequency dis-
tribution of high and low flows one season in advance in a
real-world case. Our findings suggest that there is a traceable
physical basis for river memory which, in turn, can be sta-
tistically assimilated into high- and low-flow frequency es-
timation to reduce uncertainty and improve predictions for
technical purposes.

Published by Copernicus Publications on behalf of the European Geosciences Union.



74 T. Iliopoulou et al.: A large sample analysis of European rivers

1 Introduction

Recent analyses for the Po River and the Danube River high-
lighted that catchments may exhibit significant correlation
between peak river flows and average flows in the previ-
ous months (Aguilar et al., 2017). Such correlation is the
result of the behaviours of the physical processes involved
in the rainfall–runoff transformation that may induce mem-
ory in river flows at several different timescales. The pres-
ence of long-term persistence in streamflow has been known
for a long time, since the pioneering works of Hurst (1951),
and has been actively studied ever since (e.g. Koutsoyian-
nis, 2011; Montanari, 2012; O’Connell et al., 2016 and refer-
ences therein). While a number of seasonal flow forecasting
methods have been explored in the literature (e.g. Bierkens
and van Beek, 2009; Dijk et al., 2013), attempts to explic-
itly exploit streamflow persistence in seasonal forecasting
through information from past flows have been, in general,
limited. Koutsoyiannis et al. (2008) proposed a stochastic ap-
proach to incorporate persistence of past flows into a predic-
tion methodology for monthly average streamflow and found
the method to outperform the historical analogue method (see
also Dimitriadis et al., 2016, for theory and applications of
the latter) and artificial neural network methods in the case
of the Nile River. Similarly, Svensson (2016) assumed that
the standardized anomaly of the most recent month will not
change during future months to derive monthly flow fore-
casts for 1–3 months lead time and found the predictive skill
to be superior to the analogue approach for 93 UK catch-
ments. The above-mentioned persistence approach has also
been used operationally in the production of seasonal stream-
flow forecasts in the UK since 2013, within the framework of
the Hydrological Outlook UK (Prudhomme et al. 2017). A
few other studies have included past flow information in pre-
diction schemes along with teleconnections or other climatic
indices (Piechota et al., 2001; Chiew et al., 2003; Wang et al.,
2009). Recently, it was shown that streamflow persistence,
revealed as seasonal correlation, may also be relevant for pre-
diction of extreme events by allowing one to update the flood
frequency distribution based on river flow observations in the
pre-flood season and reduce its bias and variability (Aguilar
et al., 2017). The above previous studies postulated that sea-
sonal streamflow correlation may be due to the persistence
of the catchments storage and/or the weather, but no attempt
was made to identify the physical drivers.

The present study aims to further inspect seasonal persis-
tence in river flows and its determinants, by referring to a
large sample of catchments in six European countries (Aus-
tria, Sweden, Slovenia, France, Spain, and Italy). We focus
on persistence properties of both high and low flows by in-
vestigating the following research questions: (i) what are the
physical conditions, in terms of catchment properties, i.e. ge-
ology and climate, which may induce seasonal persistence in
river flow, and (ii) can floods and droughts be predicted, in
probabilistic terms, by exploiting the information provided

by average flows in the previous months? These questions
are relevant for gaining a better comprehension of catchment
dynamics and planning mitigation strategies for natural haz-
ards. To reach the above goals, we identify a set of descrip-
tors for catchment behaviours and climate and inspect their
impact on correlation magnitude and predictability of river
flows.

A few studies have analysed physical drivers of streamflow
persistence on annual and deseasonalized monthly and daily
time series (Mudelsee, 2007; Hirpa et al., 2010; Gudmunds-
son et al., 2011; Zhang et al., 2012; Szolgayova et al., 2014;
Markonis et al., 2018), but the topic has been less studied on
intra-annual scales relevant to seasonal forecasting of floods
and droughts.

To demonstrate the high practical relevance of the identi-
fied seasonal correlations we present a technical experiment
for one of the studied rivers (Sect. 7) in which the frequency
distribution of both high and low flows is updated one season
in advance by exploiting real-time information on the state
of the catchment.

2 Methodology

The investigation of the persistence properties of river flows
focuses separately on both high and low discharges and is
articulated in the following steps: (a) identification of the
high- and low-flow seasons, (b) correlation assessment be-
tween the peak flow in the high-flow season (average flow
in the low-flow season) and average flows in the previous
months, (c) analysis of the physical drivers for streamflow
persistence and its predictability through a principal compo-
nent analysis (PCA), and (d) real-time updating of the fre-
quency distribution of high and low flows for a selected case
study with significant seasonal correlation by employing a
meta-Gaussian approach. The above steps are described in
detail in the following sections.

2.1 Season identification

Season identification is performed algorithmically to identify
the high-flow season (HFS) and low-flow season (LFS) for
each river time series. For the estimation of HFS, we employ
an automated method recently proposed by Lee et al. (2015),
which identifies the high-flow season as the 3-month period
centred around the month with the maximum number of oc-
currences of peaks over threshold (POT), with the thresh-
old set to the highest 5 % of the daily flows. To evaluate
the selection of HFS, a metric constructed as the percentage
of annual maximum flows (PAMF) captured in the HFS is
used. The PAMFs are classified in the subjective categories
of “poor” (< 40 %), “low” (40 %–60 %), “medium” (60 %–
80 %), and “high” (> 80 %) values, denoting the probability
that the identified HFS is the dominant high-flow season in
the record. If the identified peak month alone contains more
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than or equal to 80 % of the annual maxima flows, a unimodal
regime is assumed and the identification procedure is termi-
nated. In all other cases, the method allows for the search of
a second peak month and the identification of a minor HFS,
but we do not further elaborate on this analysis here, because
we are only interested in the most extreme seasons for the
purpose of predicting high and low flows.

The method proposed by Lee et al. (2015) has several ad-
vantages that make it suitable for the purpose of this research.
Most importantly, it is capable of handling conditions of bi-
modality, which is usually a major issue for traditional meth-
ods, e.g. directional statistics (Cunderlik et al., 2004). A po-
tential limitation is the assumption of symmetrical extension
of HFS around the peak month, along with the uniform selec-
tion of its length (3-month period). The degree of subjectiv-
ity in the evaluation of the second HFS is another limitation,
which is not relevant here, as we focus on the main HFS.

The LFS is herein identified as the 1-month period with
the lowest amount of mean monthly flow. An alternative ap-
proach of estimating the relative frequencies of annual min-
ima of monthly flow and selecting the month with the highest
frequency as the LFS is also considered.

2.2 Correlation analysis and physical interpretation
through principal component analysis

2.2.1 Correlation analysis

In the case of HFS, a correlation is sought between the max-
imum daily flow occurring in the HFS period and the mean
flow in the previous months, before the onset of HFS. For
LFS, correlation is computed between the mean flow in the
LFS itself and the mean flow in the previous months. We use
the mean flow in the previous month as a robust proxy of
“storage” in the catchment that is expected to reflect the state
of the catchment, i.e. wetter or drier than usual. Since we are
interested in seasonal persistence, we compute the Pearson’s
correlation coefficient for HFS lag up to 9 months and for
LFS lag up to 11 months.

2.2.2 Analysis of physical drivers

Catchment, geological, and climatic descriptors

An extensive investigation is carried out to identify physical
drivers of seasonal streamflow correlation, in terms of catch-
ment, geological, and climatic descriptors.

As catchment descriptors, we consider the basin area (A),
the baseflow index (BI), the mean specific runoff (SR), the
percentage of basin area covered by lakes (percentage of
lakes – PL) and glaciers (percentage of glaciers – PG), and
altitude as candidates for explanatory variables for stream-
flow correlation.

The area A (km2) is primarily investigated, as it is repre-
sentative of the scale of the catchment, under the assumption
that in larger basins the impact of the climatological and geo-

physical processes affecting river flow becomes more signif-
icant and may lead to a magnified seasonal correlation.

The BI is considered based on the assumption that high
groundwater storage may be a potential driver of correla-
tion. BI is calculated from the daily flow series of the rivers
following the hydrograph separation procedure detailed in
Gustard et al. (2008). Flow minima are sampled from non-
overlapping 5-day blocks of the daily flow series, and turn-
ing points in the sequence of minima are sought and identi-
fied when the 90 % value of a certain minimum is smaller or
equal to its adjacent values. Subsequently, linear interpola-
tion is used in between the turning points to obtain the base-
flow hydrograph. The BI is obtained as the ratio of the vol-
ume of water beneath the baseflow separation curve versus
the total volume of water from the observed hydrograph, and
an average value is computed over all the observed hydro-
graphs for a given catchment. A low index is indicative of
an impermeable catchment with rapid response, whereas a
high value suggests high storage capacity and a stable flow
regime.

SR (m3 s−1 km−2) is computed as the mean daily flow
of the river standardized by the size of its basin area. It
may be an important physical driver, as it is an indica-
tor of the catchment’s wetness. PL (%) and PG (%) are
investigated for the Swedish and Austrian catchments, re-
spectively, as lakes and glaciers are expected to increase
catchment storage thus affecting persistence. Lake cover-
age data are based on cartography and are available from
the Swedish Water Archive (https://www.smhi.se/, last ac-
cess: 1 November 2016), while glacier coverage data are
estimated from the CORINE land cover database (https:
//www.eea.europa.eu/publications/COR0-landcover, last ac-
cess: 6 November 2016).

The effect of catchment altitude is also inspected us-
ing relief maps from the Shuttle Radar Topography Mis-
sion (SRTM) data (http://srtm.csi.cgiar.org/, last access:
28 July 2017). The data are available for the whole globe and
are sampled at 3 arcsec resolution (approximately 90 m). To-
pographic information is available for all catchments located
at latitudes lower than 60◦ north, while a 1 km resolution dig-
ital elevation model is available for Austria.

As geological descriptors we consider the percentage of
catchment area with the presence of flysch (percentage of fly-
sch – PF) and karstic formations (percentage of karst – PK)
for Austrian and Slovenian catchments, respectively, where
this type of information is available. A subset of Austrian
catchments is characterized by the dominant presence of fly-
sch, a sequence of sedimentary rocks characterized by low
permeability, which is known to generate a very fast flow
response. Karstic catchments, characterized by the irregular
presence of sinkholes and caves, are also known for having
rapid response times and complex behaviour; e.g. initiating
fast preferential groundwater flow and intermittent discharge
via karstic springs (Ravbar, 2013; Cervi et al., 2017). Ge-
ological features are also presumed to be linked to persis-
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tence properties, because geology is the main control for the
baseflow index across the European continent (Kuentz et al.,
2017). PK (%) and PF (%) are estimated from geological
maps of Slovenia and Austria, respectively.

As climatic descriptors, the mean annual precipitation P
(mm year−1) and the mean annual temperature T (◦C) are
selected. Corresponding gridded data are retrieved from the
WorldClim database (http://www.worldclim.org/, last access:
20 March 2017) at a spatial resolution of 10 arcminutes (ap-
proximately 18.55 km). We note that low mean temperature
regimes are also associated with snow, the presence of which
is also considered in the interpretation of the results. We also
adopt the De Martonne index (IDM; De Martonne, 1926) as
a climatic descriptor, which is given by IDM= P/(T + 10)
and enables classification of a region into one of the fol-
lowing six climate classes, i.e. arid (IDM≤ 5), semi-arid
(5 < IDM ≤ 10), dry subhumid (10 < IDM≤ 20), wet subhu-
mid (20 < IDM≤ 30), humid (30 < IDM≤ 60), and very hu-
mid (IDM≥ 60). Additionally, the Köppen–Geiger climatic
classification (Kottek et al., 2006) of the rivers is assessed.

Principal component analysis

To identify which catchment, physiographic, and climatic
characteristics may explain river memory, we attempt to
regress the seasonal streamflow correlation on the physical
descriptors introduced above. We expect the presence of mul-
ticollinearity among the predictor variables, and therefore
PCA (Pearson, 1901; Hotelling, 1933) was applied to con-
struct uncorrelated explanatory variables. In essence, PCA
is an orthonormal linear transformation of p data variables
into a new coordinate system of q ≤ p uncorrelated variables
(principal components – PCs) ordered by decreasing degree
of variance retained when the original p variables are pro-
jected into them (Jolliffe, 2002). Therefore, the first princi-
pal axis contains the greatest degree of variance in the data,
while the second principal axis is the direction which max-
imizes the variance among all directions orthogonal to the
first principal axis, and each succeeding component in turn
has the highest variance possible while satisfying the condi-
tion of orthogonality to the preceding components. Specifi-
cally, let x be a random vector with mean µ and correlation
matrix 6, and the principal component transformation of x

is then obtained as follows:

y = CTx′, (1)

where y is the transformed vector whose kth column is the
kth principal component (k = 1, 2, . . . ,p), C is the p×p
matrix of the coefficients or loadings for each principal com-
ponent, and x′ is the standardized x vector. Standardization is
applied in order to avoid the impact of the different variable
units on selecting the direction of maximum variance when
forming the PCs. The y values are the scores of each obser-
vation, i.e. the transformed values of each observation of the
original p variables in the kth principal component direction.

PCA has useful descriptive properties of the underlying
structure of the data. These properties can be efficiently vi-
sualized in the biplot (Gabriel, 1971), which is the combined
plot of the scores of the data for the first two principal com-
ponents along with the relative position of the p variables as
vectors in the two-dimensional space. Herein, the distance
biplot type (Gower and Hand, 1995), which approximates
the Euclidean distances between the observations, is used.
Variable vector coordinates are obtained by the coefficients
of each variable for the first two principal components. After
construction of the PCs, a linear regression model is explored
for the case of HFS and LFS lag-1 correlation.

2.3 Technical experiment: real-time updating of the
frequency distribution of high and low flows

In order to evaluate the usefulness of the information pro-
vided by the 1-month-lag seasonal correlation for flow signa-
tures in HFS and LFS, we perform a real-time updating of the
frequency distribution of high and low flows based on the av-
erage river flow in the previous month. A similar analysis for
the high flows was carried out by Aguilar et al. (2017) for the
Po and Danube Rivers. In principle, this is a data assimila-
tion approach, since real-time information, i.e. observations
of the average river flow, is used in order to update a prob-
abilistic model and inform the forecast of the flow signature
of the upcoming season.

In detail, a bi-variate meta-Gaussian probability distribu-
tion (Kelly and Krzysztofowicz, 1997; Montanari and Brath,
2004) is fitted between the observed flow signatures, i.e. peak
flow in the HFS, QP, average flow in the LFS, QL, and the
average flow in the pre-HFS and LFS months,Qm. The peak
HFS flow and the average LFS flow are the dependent vari-
ables and are extracted as the peak river discharge observed
in the previously identified HFS and the average river dis-
charge observed in the previously identified LFS, respec-
tively. The average flow in the month preceding the HFS and
the LFS is the explanatory variable in both cases. In the fol-
lowing, random variables are denoted by an underscore and
their outcomes are written in plain form.

The normal quantile transform (NQT; Kelly and Krzyszto-
fowicz, 1997) is used in order to make the marginal probabil-
ity distribution of dependent and explanatory variables Gaus-
sian. This is achieved as follows: (a) the sample quantiles Q
are sorted in increasing order, e.g.Qm1 ,Qm2 . . . Qmn , (b) the
cumulative frequency, e.g. FQmi

, is computed via a Weibull
plotting position, and (c) the standard normal quantile, e.g.
NQmi

, is obtained as the inverse of the standard normal dis-
tribution for each cumulative frequency, e.g. G−1 (FQmi

).
Therefore, all sample quantiles are discretely mapped into
the Gaussian domain. To get the inverse transformation for
any normal quantile, we connect the points in the above map-
ping with linear segments. The extreme segments are ex-
tended to allow extrapolation outside the range covered by
the observed sample.
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http://www.worldclim.org/


T. Iliopoulou et al.: A large sample analysis of European rivers 77

In the Gaussian domain, a bi-variate Gaussian distribu-
tion is fitted between the random explanatory variable NQm
and the dependent variables NQP and NQL by assuming the
stationarity and ergodicity of the variables. We define the
generic random variable NQfs to represent any dependent
flow signature, i.e.; NQP and NQL in our case. Then, the pre-
dicted signature at time t can be written as

NQfs(t)= ρ(NQm,NQfs)NQm(t −h)+Nε(t), (2)

where ρ(NQm,NQfs) is the Pearson’s cross-correlation coef-
ficient between NQm and NQfs, h is the selected correlation
lag with h= 1 in the present application, and Nε(t) is an
outcome of the stochastic process Nε, which is independent,
homoscedastic, stochastically independent of NQm, and nor-
mally distributed with zero mean and variance 1− ρ2(NQm,

NQfs). Then, the joint bi-variate Gaussian probability dis-
tribution function is defined by the mean (µ(NQm)= 0
and µ(NQfs)= 0), the standard deviation (σ (NQm)= 1 and
σ (NQfs)= 1) of the standardized normalized series, and the
Pearson’s cross-correlation coefficient between the normal-
ized series, ρ(NQm, NQfs). From the Gaussian bi-variate
probability properties, it follows that for any observed
NQm(t −h) the probability distribution function of NQfs(t)

conditioned on NQm is Gaussian, with parameters given by

µ(NQfs(t))= ρ(NQm,NQfs)NQm(t −h), (3)

σ(NQfs(t))= (1− ρ
2(NQm,NQfs))

0.5. (4)

To derive the probability distribution of Qfs(t) conditioned
to the observed Qm(t −h), we first apply the inverse NQT,
i.e. we use linear segments to connect the points of the pre-
vious discrete quantile mapping of the original quantiles into
the Gaussian domain, and accordingly, obtain Qfs(t) for any
NQfs(t). Subsequently, we estimate the parameters of an as-
signed probability distribution for the obtained quantiles in
the untransformed domain. This is referred to as the up-
dated probability distribution of the considered flow signa-
ture (NQP and NQL, in our case). We use the extreme value
type I distribution for the peak flows and calculate the differ-
ences in the magnitude of estimated maxima for a given re-
turn period between the unconditioned and the updated distri-
bution. The latter is conditioned by the 95 % sample quantile
of the observed mean flow in the previous month. To model
the low flows we use the log-normal distribution, which was
found to exhibit the best fit for the river in question among
other typical candidates for average flows, i.e. the Weibull
and Gamma distribution. The low flows are conditioned by
the lower 5 % sample quantile of the observed mean flow in
the previous month.

3 Data and catchment description

The dataset includes 224 records spanning more than
50 years of daily river flow observations from gauging sta-
tions, mostly from non-regulated streams. A few catchments

are impacted by regulation. Among the 224 rivers, 108 are
located in Austria, 69 in Sweden, 31 in Slovenia, 13 in
France, two in Spain, and one in Italy. Catchment areas vary
significantly, the largest being the Po River basin in Italy
(70 091 km2) and the smallest being the Hallabäcken River
basin in Sweden (4.7 km2). The geographical location of the
river gauge stations as well as their climatic classification are
shown in Fig. 1. Most of the examined rivers belong to either
a warm temperate (C) or a boreal or snow climate (D) with
a subset impacted by polar climatic conditions (E), accord-
ing to the updated world map of the Köppen–Geiger climate
classification (Fig. 1) based on gridded temperature and pre-
cipitation data for the period 1951–2000 (Kottek et al., 2006).
More specifically, the majority of French and Slovenian and
approximately one third of the Swedish basins belong to the
warm temperate Cfb category characterized by precipitation
distributed throughout the year (fully humid) and warm sum-
mers. The rest of the Swedish catchments are impacted by a
Dfc climatic type, i.e. a snow climate, fully humid with cool
summers. The Austrian catchments belonging to the region
impacted by the European Alps have the most complicated
regime due to their topographic variability. At the lowest al-
titudes, Cfb is the prevailing regime, but as proximity to the
Alps increases, a Dfc regime dominates, and progressively, in
the highest altitude basins, the climate becomes a polar tun-
dra type (Et), characterized primarily by the very low temper-
atures present. The characteristics of all the climatic regimes
of the studied rivers are given in the legend of Fig. 1. A sum-
mary of the river basins under study, in terms of the selected
descriptors, is also provided in Table 1, showing that the in-
vestigated rivers cover a wide range of catchment area sizes,
flow regimes, and climatic conditions.

It is relevant to note that 16 of the Austrian rivers are sub-
ject to regulation, which may alter the persistence proper-
ties of river flows. This relates to generally “mild” forms of
regulation, i.e. upstream regulation with a very low degree
of flow attenuation, hydropower operations, and flow diver-
sions to and from the basin. A preliminary examination of
these rivers did not reveal any significant change during time
of the flow regime. The presence of regulation does not pre-
clude the exploitation of correlation for predicting river flows
in probabilistic terms, but it may affect the analysis of phys-
ical drivers, as it may enhance or reduce persistence in the
natural river flow regime. Given that detailed information is
generally lacking on the impact of regulation (Kuentz et al.
2017), we assume stationarity of the river flows for all the
catchments herein considered and, additionally, assume that
river management does not significantly affect the identifica-
tion of the physical drivers.

www.hydrol-earth-syst-sci.net/23/73/2019/ Hydrol. Earth Syst. Sci., 23, 73–91, 2019
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Table 1. Summary statistics of the river descriptors. Summary statistics for PL, PG, and PF variables are computed only for the subset of
catchments with positive values (the total number of catchments is also reported in brackets next to the values). PK is used as a categorical
variable (PK is either higher or lower than 50 % of catchment area), therefore sample statistics are not computed in this case, but the number
of stations with PK≥ 50 % is reported as “positive” presence of karst.

Descriptor A BI SR PL PG PF PK P T IDM
(units) (km2) (–) (m3 s−1 km−2) (%) (%) (%) (–) (mm year−1) (◦C) (–)

Min 4.7 0.29 0.004 0.5 0.1 0.3 – 444 –1.8 29.41
Max 70091 0.99 0.088 19.5 56.5 100 – 1500 13.7 153.40
Standard deviation 5904.3 0.14 0.018 4.04 15.54 32.56 – 288.22 3.59 24.53
Sample size 224 224 224 69 (69) 39 (108) 18 (108) 21 (31) 224 224 224

Figure 1. Updated Köppen–Geiger climatic map for period 1951–2000 (Kottek et al., 2006) showing the location of the 224 river gauge
stations.

4 River memory analysis for the considered case
studies

4.1 Season identification

Approximately half of the 224 rivers are characterized by at
least one high-flow season with medium or higher signif-
icance (PAMF of HFS≥ 60 %). Among them, very strong
unimodal regimes (PAMF of HFS≥ 80 %) are observed in
63 rivers, the majority of which are located in Sweden. For
25 % of the rivers, a high-flow season of low significance
is found (PAMF of HFS between 40 %–60 %), while for
the remaining 25 % the high-flow distribution looks uniform
throughout the year. Bimodality regimes are found with low

and moderate significance in rivers located mostly in Austria
and Sweden, but we focus here on the major high-flow sea-
son, as we are interested in the most extreme events. A minor
HFS analysis would be perhaps relevant in other regions of
the world where bimodal flood regimes are more prominent,
as suggested by the analysis of Lee et al. (2015).

Regarding the LFS identification, the two considered ap-
proaches (see Sect. 2.1) agree for 139 out of 224 stations,
but the first method, i.e. the 1-month period with the low-
est amount of mean monthly flow, is selected as being more
relevant to the purpose of computing mean flow correlations.
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Figure 2. Box plots of seasonal correlation coefficient against lag time for HFS (a) and LFS (b) analysis for the 224 rivers. The lower and
upper ends of the box represent the first and third quartiles, respectively, and the whiskers extend to the most extreme value within 1.5 IQR
(interquartile range) from the box ends; outliers are plotted as filled circles.

4.2 Seasonal correlation

LFS correlation is markedly higher than the corresponding
HFS correlation for lags 1–6, and its median remains higher
than 0 for more lags (see Fig. 2). For the case of HFS correla-
tion, we focus only on the most significant first lag, for which
73 rivers are found to have correlation significantly higher
than 0 at a 5 % significance level. In Fig. 3, the autocorre-
lation of the whole monthly series is compared to the LFS
correlation for lag of 1 and 2 months, in order to prove that
the seasonal correlation for LFS is significantly higher than
its counterpart computed by considering the whole year. The
latter is also confirmed by the Kolmogorov–Smirnov test for
both LFS lags (corresponding p values, plag1<2.2× 10−6

and plag2<2.2× 10−6 for the null hypothesis that the LFS
correlation coefficients are not higher than the correspond-
ing values for the monthly series autocorrelation; Conover,
1971).

Figure 4 shows the spatial pattern of HFS and LFS stream-
flow correlations. It is interesting to notice the emergence of
spatial clustering in the correlation magnitude, which implies
its dependence on different spatially varying physical mecha-
nisms. For example, for HFS, a geographical pattern emerges
within France, since the highest correlation coefficients are
located in the northern part of the country, which is charac-
terized by an oceanic climate and higher baseflow indices.

5 Physical interpretation of correlation

To attribute the detected correlations to physical drivers, we
define six groups of potential drivers of seasonal correlation
magnitude: basin size, flow indices, the presence of lakes and
glaciers, catchment elevation, catchment geology, and hydro-
climatic forcing. For some of the descriptors the information
is only available for a few countries.

Figure 3. Box plots of lag-1 and lag-2 correlation coefficients for
LFS analysis (orange) and the whole monthly series (white) for the
224 rivers. The lower and upper ends of the box represent the first
and third quartiles, respectively, and the whiskers extend to the most
extreme value within 1.5 IQR (interquartile range) from the box
ends.

In what follows, we will use the term “positive (negative)
impact on correlation” to imply that an increasing value of
the considered descriptor is associated with increasing (de-
creasing) correlation. For each descriptor, we also report, be-
tween parentheses, the Spearman’s rank correlation coeffi-
cient rs (Spearman, 1904) between its value and the consid-
ered (LFS or HFS) correlation and the p value of the null
hypothesis rs = 0. Spearman’s coefficient is adopted in view
of its robustness to the presence of outliers and its capability
of capturing monotonic relationships of the non-linear type.
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Figure 4. Spatial distribution of the lag-1 correlation coefficients for HFS (a) and LFS (b) analysis. Legend shows the colour assigned to
each class of correlation for the data.

5.1 Catchment area – descriptor A

Figure 5 shows that there is only a weak positive impact of
the catchment area (log transformed) on correlation for HFS
(rs = 0.17, p = 0.01) but a more significant positive one for
LFS (rs = 0.27, p = 5.5× 10−5). The presence of relevant
scatter in the plots also indicates that it is not a key determi-
nant of correlation.

5.2 Flow indices – descriptors BI and SR

The effect of the BI and SR is shown in Fig. 6. The BI
(Fig. 6a) appears to be a marked positive driver for LFS
(rs = 0.6, p = 1.8× 10−23), while its effect for HFS is less
clear, being weakly positive (rs = 0.21, p = 0.001). For SR
(Fig. 6b), it appears that both LFS and HFS streamflow cor-
relations drop for increasing wetness (rs =−0.4,p = 4×
10−10, and rs =−0.28,p = 2.8× 10−5 respectively).

5.3 Presence of lakes and glaciers – descriptors PL and
PG

Detailed information on the presence of lakes is available
for the 69 Swedish catchments, while the areal extension
of glaciers is known for the 108 Austrian catchments. Fig-
ure S1 in the Supplement shows that the impact of lake area
(Fig. S1a) on correlation for LFS and HFS is not signifi-
cant but positive (rs = 0.10,p = 0.399, and rs = 0.12,p =

Figure 5. Scatter plots of lag-1 HFS (b) and LFS (a) streamflow
correlation versus the natural logarithm of basin area ln A.

0.347). The results for glaciers show a positive impact for
LFS (rs = 0.28,p = 0.081) but a negative impact for HFS
(rs =−0.34,p = 0.032). For a meaningful interpretation,
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Figure 6. Scatter plots of lag-1 HFS (bottom panels) and LFS streamflow correlation (a) versus baseflow index (BI) (a) and specific runoff
(SR) (b).

these results should be considered in conjunction with the
seasonality of flows for the Austrian catchments. Low flows
for the glacier-dominated catchments typically occur in win-
ter months, when glaciers are not contributing to the flow
(Parajka et al., 2009). Thus the observed result for LFS more
likely portrays the impact of low temperature (low evapotran-
spiration) and snow accumulation, the latter generally being
a slowly varying process. For HFS, which typically occurs
in the summer months for the considered catchments, flows
are mainly determined by snowmelt, which is associated to
reduced persistence (Fig. S1b).

5.4 Catchment elevation

The areal coverage of the SRTM data is limited to 60◦ N and
54◦ S, therefore data for the northern part of the Swedish
catchments are not available. The rest of the rivers are di-
vided in three regions based on proximity: Region I, includ-
ing the central and eastern part of the Alps and encompass-
ing Austrian, Slovenian, and Italian catchments; Region II,
including the western part of the Alps and encompassing
French and Spanish territory; and Region III, including the
southern part of Sweden. Figure 8 shows elevation maps
along with the location of gauge stations and magnitude of
correlations. Elevation seems to enhance LFS correlation,
which is more evident in the mountainous Region I (Fig. 7).
For HFS correlation there is not a prevailing pattern.

In the case of Austrian catchments, a 1 km resolution dig-
ital model is also used to extract information on elevation.
Figure 8 confirms that there is a positive correlation pat-
tern emerging with elevation for LFS. Based on local cli-
matological information, it can be concluded that the spa-
tial pattern for LFS correlation is reflective of the timing and
strength of seasonality of the low flows in Austria, where

dry months occur in lowlands during the summer due to in-
creased evapotranspiration and in the mountains during win-
ter (mostly February) due to snow accumulation which is
characterized by stronger seasonality compared to the low-
lands flow regime (Parajka et al., 2016; see Fig. 1). Concern-
ing HFS in the same region, high flows are significantly im-
pacted by the seasonality of extreme precipitation (Parajka et
al., 2010), which is highly variable, with the exception of the
rivers where high flows are generated by snowmelt. There-
fore, a spatially consistent pattern does not clearly emerge.

5.5 Catchment geology – descriptors PK and PF

Two different geological behaviours are identified which
may impact river correlation. We first focus on 21 Slove-
nian catchments (out of 31) where more than 50 % of the
basin area is characterised by the presence of karstic aquifers
(percentage of karstic areas PK≥ 50 %). Figure 9 shows box
plots of the estimated lag-1 correlation coefficient for both
HFS and LFS against rivers where PK < 50 %. It is clear that
there is a significant decrease in correlation where karstic ar-
eas dominate for both for HFS and LFS.

In a second analysis, we focus on Austrian catchments and
investigate the relationship between correlation and percent-
age of flysch coverage, PF. Figure S2 shows that there is not a
prevailing pattern in either case (rs = 0.13,p = 0.6 for LFS,
and rs =−0.19,p = 0.446 for HFS).

5.6 Atmospheric forcing – descriptors P and T

Figure 10 shows the lag-1 HFS and LFS correlations against
estimates of the annual precipitation P and annual mean tem-
perature T as well as the IDM. LFS correlation appears to
be more sensitive than HFS to the above climatic indices,
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Figure 7. Relief maps from SRTM elevation data for the HFS and LFS lag-1 correlations of the rivers. Note that elevation scale is different
for each region. Legend shows the colour assigned to each class of correlation for the data.

showing a decrease with increasing temperature and also
a decrease with increasing precipitation (rs =−0.44,p =
3.1× 10−12 for P , and rs =−0.57,p = 1.8× 10−20 for T ).
HFS correlation is scarcely sensitive to these variables (rs =
−0.17,p = 0.011 for P , and rs = 0.08,p = 0.208 for T ).
The IDM (Fig. 10c) shows a mild decrease of both LFS
(rs =−0.06,p = 0.368) and HFS correlation with increas-

ing IDM (rs =−0.17,p = 0.01), while for the latter there
seems to be a clearer trend (lower correlation with higher
IDM) in very humid areas (dark blue points in Fig. 10c).

5.7 Physical drivers of high correlation

To gain further insight into the results we select the 20 catch-
ments with the highest streamflow seasonal correlation coef-
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Figure 8. Digital elevation model of the Austrian river network depicting the spatial distribution of lag-1 positive correlation for HFS (a) and
lag-1 positive correlation for LFS (b). Legend shows the colour assigned to each class of correlation for the data.

Figure 9. Box plots of lag-1 correlation for Slovenian rivers with more than 50 % presence of karstic formations (PK) and rivers with no
or less presence for HFS analysis (a) and LFS analysis (b). The lower and upper ends of the box represent the first and third quartiles,
respectively, and the whiskers extend to the most extreme value within 1.5 IQR (interquartile range) from the box ends.

ficients for both HFS and LFS periods in order to investigate
their physical characteristics in relation to the remaining set
of rivers. Table 2 summarizes statistics for selected descrip-
tors in order to identify dominant behaviours. We also com-
pare the number of rivers with distinctive features, i.e. lakes
NL (number of rivers with lakes), glaciers NG (number of
river with glaciers), flysch NF (number of rivers with flysch
formations) and karst NK (number of rivers with karstic ar-
eas), for the highest correlation group with those obtained
from 1000 randomly sampled 20-catchment groups from the
whole set of considered catchments to assess whether higher
correlation implies distinctive features.

By focusing on HFS, one can notice that the catchments
with higher seasonal correlation are characterized by larger
catchment area; higher baseflow index and temperature with
respect to the remaining catchments; and lower specific
runoff, precipitation, and wetness. The presence of lake,
glacier, karstic, and flysch areas do not appear significantly
effective at a 5 % significance level. More robust considera-
tions can be drawn for the LFS; higher seasonal correlation is
found for larger catchments with a higher baseflow index and
lower specific runoff, precipitation, and wetness. Decreasing

temperature is strongly associated with higher correlation for
the LFS. The presence of lakes plays a significant role, both
for lag-1 and lag-2 correlations, with the latter also being sig-
nificantly influenced by the presence of glaciers.

6 Principal component analysis of the predictors and
linear regression

We attempt to fit a linear regression model to relate corre-
lation to physical drivers, in order to support correlation es-
timation for ungauged catchments. To avoid the impact of
multicollinearity in the regression while additionally sum-
marizing river information, we apply PCA (see Sect. 2.2).
Although correlation effects are efficiently dealt with via the
PCA, we avoid including highly correlated variables in the
analysis. For example, the De Martonne index, precipitation
and SR are mutually highly correlated (all Pearson’s cross-
correlations are higher than 0.6), therefore we only consider
the SR in the PCA because it shows a more robust linear re-
lationship with correlation magnitude. We select A, BI, SR,
and T as the variables to be considered in the PCA. A log
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Table 2. Differences in the mean values between the descriptors of the group 20-highest-correlation-river group for HFS and LFS versus the
remaining rivers (204). NL, NG, NF, and NK columns contain the absolute number of rivers in the higher correlation group with the specific
descriptor (presence of lake, glacier, flysch, and karst ), with ∗ denoting significance at 5 % significance level (two-sided test), and brackets
in the body of the table containing the mean value from the 1000 resampled 20-catchment subsets.

Descriptor A BI SR NL NG NF NK P T IDM
(units) (km2) (–) (m3 s−1 km−2) (–) (–) (–) (–) (mm year−1) (◦C) (–)

HFS lag 1 +38.7% +9.6% −36.5% 5 (6) 5 (3) 1 (2) 1 (2) −6.7% +11.7% −11.3%
LFS lag 1 +358% +20.2% −47.3% 17∗ (6) 3 (3) 0 (2) 0 (2) −37.9% −80% −17.3%
LFS lag 2 +139.7% +18.9% −40.8% 12∗ (6) 7∗ (3) 0 (2) 0 (2) −26.5% −64.2% −8.8%

Table 3. Loadings of the three principal components for ln A, SR, BI, and T . The explained variance of each PC is denoted in parenthesis.

Predictor variables PC 1 (42.5 %) PC 2 (28.2 %) PC 3 (17 %) PC 4 (12.2 %)

ln A −0.486 −0.427 0.748 0.145
SR 0.48 0.483 0.652 −0.332
BI −0.619 0.262 −0.11 −0.731
T 0.385 −0.718 −0.04 −0.577

transformation is applied to the basin area to reduce the im-
pact of outliers. Table 3 shows the coefficients estimated for
each component (the loadings) and the explained variance.
The first principal component is primarily a measure of BI,
the second principal component mostly accounts for T , and
the third principal component accounts for A. There is an ev-
ident geographical pattern emerging by the visualization of
countries in the biplot (Fig. 11). Slovenian rivers cluster to-
wards the direction of increasing SR and T , whereas Swedish
rivers cluster towards the opposite direction of increasing BI
and decreasing T . Austrian rivers, which are the majority, are
the most diverse. The first two components together explain
70 % of the total variability in the data.

Naturally, the statistical behaviour of the indices reflects
the known local controls for certain rivers. For example, the
observed lowest BI in Slovenia is consistent with the pres-
ence of karstic formations for the majority of the Slovenian
rivers, as is the higher BI in Sweden and Austria, which is re-
lated to the presence of lakes and glaciers in both countries.

In the case of HFS, all the examined linear models (com-
binations of ln A, SR, BI, P , T , and IDM predictors) failed
in explaining the streamflow correlation magnitude. On the
contrary, the linear regression model performs fairly well
in explaining the correlation for LFS, with an adjusted R2

value of 0.58 and an F test returning a p value < 2.2×10−16.
The coefficients for the first three PCs are found significantly
different from zero at a 0.1 % significance level and are in-
cluded in the regression (see Table 4). The highest coeffi-
cient is obtained for the first PC, which mostly accounts for
BI importance. Diagnostic plots from linear regression for
LFS are shown in Fig. 12. There is no clear violation of the
homoscedasticity assumption in linear regression, apart from
the presence of a limited number of outliers. There is a cer-
tain departure from normality in the lower tail of the residu-

als, which relates to the fact that the model performs better in
the area of higher seasonal streamflow correlations and over-
estimates the lower correlations.

7 Real-time updating of the frequency distribution of
high and low flows for the Oise River

We apply the technical experiment (see Sect. 2.3) for high
and low flows to the Oise River in France and assess the dif-
ference in the estimated flood and low-flow magnitudes. We
update the probability distribution of high and low flows af-
ter the occurrence of the upper 95 % and lower 5 % sample
quantile of the observed mean flow in the previous month,
respectively.

The Oise River (55 years of daily flow values) at Sem-
pigny in France has a basin area of 4320 km2, and its gaug-
ing station at Sempigny is part of the French national real-
time monitoring system (https://www.vigicrues.gouv.fr/, last
access: 23 July 2018), which is in place to monitor and fore-
cast floods in the main French rivers. The selected river has
a high technical relevance, since it experiences both types of
extremes with large impacts. For instance, a severe drought
event in 2005 led to water restrictions impacting agricul-
ture and water uses in the region (Willsher, 2005), while the
river originated an inundation during the 1993 flood events
in northern and central France, which was one of the most
catastrophic flood-related disasters in Europe in the period
1950–2005 (Barredo, 2007). It is characterized by HFS cor-
relation ρ = 0.54, which is the third largest lag-1 correlation
for the HFS in our dataset, and LFS correlation ρ = 0.80,
which stands for the 70 % quantile of the sample lag-1 corre-
lation for LFS.
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Table 4. Summary of linear regression results for the LFS model. ∗ indicates a 0.1 % significance level.

Predictor variables Estimate Standard error t value Pr (> |t |) Adjusted R2 F statistic

Intercept 0.659407 0.008557 77.065 <2× 10−16∗ 0.5834 104.2
PC 1 −0.110632 0.006577 −16.820 <2× 10−16∗ p value:
PC 2 0.031761 0.008070 3.936 0.000111∗ <2.2× 10−16

PC 3 −0.038999 0.010388 −3.754 0.000223∗

A visual inspection of the residual plots is also performed
(Fig. 13a, b) in order to evaluate the assumption of ho-
moscedasticity of the residuals of the regression models
given by Eq. (2). The residuals do not show any apparent
trend, and the Gaussian linear model is therefore accepted.
Figure 13c, d shows the conditioned and unconditioned prob-
ability distributions of peak and low flows in the Gaussian
domain. As follows from Eqs. (3) and (4), the variance of the
updated (conditioned) distributions decreases while the mean
value increases.

After application of the inverse NQT the conditioned peak
flows are modelled through the EV1 distribution and com-
pared to the unconditioned (observed) peak flows. The cor-
responding Gumbel probability plot for conditioned and un-
conditioned distributions is shown in Fig. 13e. For the return
period of 200 years, the updated distribution shows a 6 %
increase in the flood magnitude for the Oise River (307.7
to 326.44 m3 s−1). Likewise, the conditioned low flows are
modelled through the log-normal distribution. The two cu-
mulative distribution functions are compared in Fig. 13f,
showing a major departure in the estimated quantiles for the
updated distribution; the occurrence of the predefined 5 %
quantile flow in the pre-LFS month induces a decrease of the
exceedance probability of an average LFS flow of 15 m3 s−1

from a prior 43 % (according to the unconditioned model) to
1 %.

8 Discussion

The methodology presented herein aims to progress our
physical understanding of seasonal river flow persistence for
the sake of exploiting the related information to improve
probabilistic prediction of high and low flows. The correla-
tion of average flow in the previous months with the LFS flow
and HFS peak flow was found to be relevant, with the former
prevailing over the latter. This result was foreseen, since the
LFS correlation refers to average flow, while the HFS cor-
relation is related to rapidly occurring events. We also aim
to investigate physical drivers for correlation and quantify
their relative impact on correlation magnitude. Therefore, a
thorough investigation of the geophysical and climatological
features of the considered catchments was carried out.

We found that the increasing basin area and baseflow in-
dex are associated with increasing seasonal streamflow cor-

relation, yet the latter has a stronger impact. To this re-
spect, Mudelsee (2007), Hirpa et al. (2010), and Szolgay-
ova et al. (2014) also found positive dependencies of long-
term persistence on basin area, and Markonis et al. (2018)
found a positive impact too, but for larger spatial scales
(>2×104 km2), while Gudmunsson et al. (2011) found basin
area to have negligible to no impact on the low-frequency
components of runoff. Our results additionally point out that
catchment storage induces mild positive correlation, not only
for low discharges which are directly governed by base flow,
but also for high flows, which is less anticipated.

Previous studies also pointed out that correlation increases
for groundwater-dominated regimes (Yossef et al., 2013;
Dijk et al., 2013; Svensson, 2016) and slower catchment re-
sponse times (Bierkens and van Beek, 2009), which concurs
with the impact of the baseflow index found herein as well
as with the observed impact of fast responding karst areas.
The latter findings are also in agreement with our conclusion
that correlation decreases with increasing rapidity of river
flow formation, which, for instance, occurs in the presence
of karstic areas and wet soils, explaining why persistence de-
creases with high specific runoff, as also confirmed by other
studies (Gudmundsson et al., 2011; Szolgayova et al., 2014).

Other contributions also reported higher streamflow per-
sistence in drier conditions, either relating to lower specific
runoff or mean areal precipitation estimates (Szolgayova et
al., 2014; Markonis et al., 2018). It was postulated that this is
due to wet catchments showing increased short-term variabil-
ity compared to drier catchments (Szolgayova et al., 2014)
and having a faster response to rainfall due to saturated soil.
A similar conclusion has been reached by other previous
studies reporting that low humidity catchments are more sen-
sitive to interannual rainfall variability (Harman et al., 2011),
therefore leading to enhanced persistence. Yet, these studies
refer to generally humid regions and cannot be extrapolated
to more arid climates. A related conclusion is proposed by
Seneviratne et al. (2006), who found the highest soil mois-
ture memory for intermediate soil wetness. These results do
not contrast with our findings, which refer to a wide range of
climatic conditions. In fact, our finding that increased wet-
ness has a negative impact on seasonal memory of both high
and low flows extends the above results to the seasonal scale
and, interestingly, to both types of extremes.

We also confirm the role of lakes in determining higher
catchment storage and therefore positive correlations for the
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Figure 10. Scatter plots of lag-1 HFS and LFS correlation versus
annual precipitation P (a), mean annual temperature T (b), and De
Martonne index (IDM) (c).

Figure 11. Principal component distance biplot showing the princi-
pal component scores on the first two principal axes along with the
vectors (brown arrows) representing the coefficients of the baseflow
index (BI), specific runoff (SR), natural logarithm of basin area ln
A, and mean annual temperature T variables when projected on the
principal axes. Scores for the rivers are plotted in different colours
corresponding to each country of origin, and 68 % normal probabil-
ity contour plots are plotted for the countries.

LFS, which has only been reported for annual persistence in
a few sites (Zhang et al., 2012).

The effect of snow cover for lag-1 LFS correlation is
also revealed by the Austrian catchments. The mountainous
rivers, directly affected by the process of snow accumula-
tion, exhibit winter LFS and higher correlation than the rivers
in the lowlands, which are more prone to drying out due to
evapotranspiration in the hotter summer months. The inspec-
tion of elevation data confirmed the role of high altitudes in
increasing LFS correlation, which is likely related to stor-
age effects due to snow accumulation and gradual melting.
In this respect, Kuentz et al. (2017) found that topography
exerts dominant controls over the flow regime in the larger
European region, controlling the flashiness of flow and be-
ing a particularly important driver for other low-flow signa-
tures too. In fact, topography may affect the flow regime di-
rectly, through flow routing, but also indirectly, because of
orographic effects in precipitation and hydro-climatic pro-
cesses affected by elevation (e.g. snowmelt and evapotran-
spiration).

Regarding atmospheric forcing, we find LFS correlation
to be negatively correlated to mean areal temperature and
annual precipitation. The former result may be explained,
considering that increased evapotranspiration (higher tem-
perature) is likely to dry out LFS flows while snow cov-

Hydrol. Earth Syst. Sci., 23, 73–91, 2019 www.hydrol-earth-syst-sci.net/23/73/2019/



T. Iliopoulou et al.: A large sample analysis of European rivers 87

Figure 12. Diagnostic plots of linear regression for the LFS model. Residuals versus the first (a), the second (b), and the third principal
component (c) as well as the predicted values (d). Normal Q–Q plot of the residuals (e). Plot of the predicted values from linear regression
versus the observed ones; red line is the diagonal line 1 : 1 (f).

erage (lower temperature) was found to be associated with
higher LFS correlation. An apparently different conclusion
was drawn by Szolgayova et al. (2014a) and Gudmundsson et
al. (2011), who reported increasing persistence with increas-
ing mean temperature postulating that snow-dominated flow
regimes smooth out interannual fluctuations. Yet, it should
be noted that they refer to interannual variability, while we
refer here to seasonal correlation and therefore to shorter
timescales, which imply a different dynamic of snow accu-
mulation and snowmelt; latitude may also play a relevant
role in this, since in southern Europe the complete ablation
of snow can occur more than once during the cold season,
and sublimation may account for 20 %–30 % of the annual
snowfall (Herrero and Polo, 2016), decreasing the amount of
snowmelt and impacting LFS flows in the summer season.

Snowmelt mechanisms are found to increase predictive
skill during low-flow periods in some other studies (Bierkens
and van Beek, 2009; Mahanama et al., 2011; Dijk et al.,
2013). However, in the glacier-dominated regime of western
Alpine and central Austrian catchments, it is unlikely that
this is a relevant driver of higher correlation, since low flow
occurs in the winter months. Yet the mountainous, glacier-
dominated rivers still show increased LFS correlation com-
pared to rivers in the lowlands, which agrees well with other
studies that have found less uncertainty in the rainfall–runoff
modelling in this regime owing to the greater seasonality of
the runoff process and the decreased impact of rainfall com-
pared to the rainfall-dominated regime of the lowlands (e.g.
Parajka et al., 2016).

Although the considerable uncertainty of areal precipita-
tion estimates should be acknowledged, the contribution of
annual precipitation interestingly complements the negative
effect of increasing specific runoff –which is highly corre-
lated to P estimates– on the correlation magnitude for both
LFS and HFS. This outcome confirms that catchments re-
ceiving significant amount of rainfall do show less correla-
tion than drier regimes as discussed before.

9 Conclusions and outlook

This research investigates the presence of persistence in river
flow at the seasonal scale, the associated physical drivers,
and the prospect for employing the related information to
improve probabilistic prediction of high and low flows by ex-
ploring a large sample of European rivers. The main findings
are summarized below:

– Rivers in Europe show persistent features at the seasonal
timescale, manifested as correlation between high- and
low-flow signatures, i.e. peak flows in HFS, average
flows in LFS, and average flows in the previous month.
Correlation for LFS signatures is found to be consis-
tently higher than HFS.

– Seasonal correlation shows increased spatial variability
together with spatial clustering.

– Storage mechanisms, groundwater-dominated basins,
and slower catchment response time, as reflected by
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Figure 13. Conditioning the frequency distributions for high and low flows for the Oise River. Plots of the residuals of the linear regression
given by Eq. (2) for the HFS (a) and LFS (b) models. Probability distribution of the unconditioned normalized peak flows NQP (solid
line) and the normalized peak flows NQP conditioned to the occurrence of the 95 % quantile (dotted line) for the HFS (c), and probability
distribution of the unconditioned normalized low flows NQL (solid line) and the normalized low flows NQL conditioned to the occurrence of
the 5 % quantile (dotted line) for the LFS (d). Gumbel probability plots of the return period versus the unconditioned peak flows QP (black
line), and the peak flows QP modelled by the EV1 distribution and conditioned to the occurrence of the 95 % quantile (red line) for the
HFS (e). Cumulative distribution function of the unconditioned low flowsQL (black line) and the low flowsQL modelled by the log-normal
distribution and conditioned to the occurrence of the 5 % quantile (red line) for the LFS (f).
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large basin areas, a high baseflow index, and the pres-
ence of lakes, amplify seasonal correlation. On the con-
trary, correlation is lower in quickly responding karstic
basins and increased wetness conditions, as revealed by
high specific runoff.

– Low mean areal temperature is associated with higher
LFS correlation owing to the weaker drying-out evap-
otranspiration force and the mechanism of snow accu-
mulation in higher altitudes. Higher mean areal precip-
itation is associated with lower LFS predictability, pos-
sibly due to the presence of saturated conditions and in-
creased short-term variability in wetter climates.

– The drivers of LFS predictability are easier to identify
and allow for the opportunity to construct regression
models for possible application to ungauged basins (see
Sect. 6).

– HFS and LFS correlation may directly apply to the
probabilistic prediction of “extremes”, i.e. high and low
flows, as increased correlation can be exploited in var-
ious stochastic models. Such an application was per-
formed in Sect. 7 in a data assimilation setting for a river
of marked technical relevance.

Regarding the last point, once a significant correlation is
identified, it may be exploited in other model variants as well,
e.g. adding more dependent variables of lagged flow and/or
coupling with other relevant explanatory variables, such as
teleconnections or antecedent rainfall, in multivariate predic-
tion schemes. Indeed, the presence of river memory at the
seasonal scale represents a possible opportunity to improve
the prediction of water-related natural hazards by reducing
uncertainty of associated estimates and allowing significant
lag time for decision-making and hazard prevention. Besides
the high relevance for extremes, this type of seasonal pre-
dictability could also be of interest to the management of
water resources by, for instance, exploring the memory prop-
erties of a minor HFS.

The inspection of the physical basis, apart from advanc-
ing our understanding of the catchment dynamics and en-
abling predictions in ungauged basins, is highly important,
as it may guide the search for other dependent variables and
build confidence in the formation of process-based stochastic
models (Montanari and Koutsoyiannis, 2012). A large sam-
ple of indices was herein inspected, yet more data are neces-
sary in order to allow for more certain and generalized con-
clusions worldwide. An important note is the effect of regu-
lation, which, due to the lack of objective data, is not com-
pletely understood. However, the opportunity of exploiting
correlation is not affected by the presence of regulation, pro-
vided that the management of river flow does not change in
time.

We conclude that our results point out that river mem-
ory provides interesting information that holds both theoret-
ical and operational potential to improve the understanding

and prediction of extremes, support decision-making, and in-
crease the level of preparedness for water-related natural haz-
ards.
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