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ABSTRACT 

Identification of Influential Climate Indicators, Prediction of Long-term Streamflow and 

Great Salt Lake Elevation Using Machine Learning Approach 

by 

Niroj K. Shrestha, Doctor of Philosophy 

Utah State University, 2012 

Major Professor: Dr. Gilberto Urroz 

Department: Civil and Environmental Engineering 

To meet the surging water demand due to rapid population growth and changing 

climatic conditions around the world, and to reduce the impact of floods and droughts, 

comprehensive water management and planning is necessary. Climatic variability, 

hydrologic uncertainty and variability of hydrologic quantities in time and space are 

inherent to hydrological modeling. Hydrologic modeling using a physically-based model 

can be very complex and typically requires detailed knowledge of physical processes. 

The availability of data is an important issue to justify the use of these models.  Data-

driven models are an alternative choice. This is a relatively new and efficient approach to 

modeling. Data-drive models bridge the gap between the classical regression and 

physically-based models. By using a data-driven model that relies on the machine 

learning approach, it is possible to produce reasonable predictions from a limited data set 

and limited knowledge of underlying physical processes of the system by just relating 

input and output.   This dissertation uses the Multivariate Relevance Vector Machine 
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(MVRVM) and Support Vector Machine (SVM) for predicting a variety of hydrological 

quantities. These models are used in this dissertation for identifying influential climate 

indicators, and are used for long-term streamflow prediction for multiple lead times at 

different locations in Utah. They are also used for prediction of Great Salt Lake (GSL) 

elevation series. They provide reasonable predictions of hydrological quantities from the 

available data. The predictions from these models are robust and parsimonious. This 

research presents the first attempt to identify influential climate indicators and predict 

long lead-time streamflow in Utah, and to predict lake elevation using machine learning 

models. The approach presented herein has potential value for water resources planning 

and management especially for irrigation and flood management.  

                                                                                                                (194 pages) 
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                                     PUBLIC ABSTRACT 

Identification of Influential Climate Indicators, Prediction of Long-term Streamflow and 

Great Salt Lake Elevation Using Machine Learning Approach 

by 

Niroj K. Shrestha, Doctor of Philosophy 

Utah State University, 2012 

Major Professor: Dr. Gilberto Urroz 

Department: Civil and Environmental Engineering 

In order to meet rising water demand due to rapid population growth and 

changing climatic conditions around the world, and to reduce the impact of floods and 

draughts, a comprehensive water management and planning is necessary. Water resource 

management requires the prediction of streamflow under climatic variability, and 

variability of hydrologic quantities that changes in time and space.  Prediction of 

streamflow using physically-based model are usually complex and typically requires 

detailed knowledge of physical processes. The availability of data is an important issue to 

justify the use of these models. Using a data-driven model that relies on the machine 

learning approach, it is possible to produce reasonable predictions from a limited data set 

and limited knowledge of underlying physical processes of the system by just relating 

input and output. This dissertation uses the Multivariate Relevance Vector Machine 

(MVRVM) for identifying influential climate indicators, and uses them for long-term 

streamflow prediction for multiple lead times at different locations in Utah. Both 
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MVRVM and Support Vector Machine (SVM) are used for prediction of Great Salt Lake 

(GSL) elevation series. They provide reasonable predictions of hydrological quantities 

from the available data. The predictions from these models are robust and parsimonious. 

The approach presented herein has potential value for water resources planning and 

management.                                                                                                  
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       CHAPTER 1 

1 INTRODUCTION 

Water demand is increasing in the global scale with the rapid growth of 

population that the World is undergoing. Some places are already experiencing mounting 

water stress (UNHDR 2006). There is increasing pressure to meet the water demands 

from the available resources for now and in the future. This issue necessitates more a 

comprehensive approach to water management in order to meet the surging demand for 

this limited resource. Long lead-time prediction of streamflow may provide information 

about future water availability which could, in turn, help water managers to plan 

effectively in order to maximize the efficiency of water use.  

Predicting streamflow for long lead-time is a challenging task for hydrologists. 

Multitude of factors influences the flow in the stream. The states of the basin, local and 

regional climatic conditions are major controlling factors. Streamflow is a part of the 

hydrological cycle which is highly controlled by the climatic variability in the local 

region and around the world. The climatic variability is further connected to the oceanic-

atmospheric interaction. The annual, inter-annual and inter-decadal climatic variability 

characteristic of climate makes the analysis even more complex. The teleconnection 

between climate and the ocean-atmospheric interaction/oscillations is the scientific basis 

of long lead-time streamflow prediction. Their correlation provides the forecast 

opportunity. This dissertation identifies influential climate indicators for a number of 

selected stream gages in Utah and develops a long lead-time streamflow prediction model 

that uses those indicators in order to accurately predict the seasonal and annual 

streamflow at each selected gage. Use of the correct climate indicator for the given 
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stream gage appropriately captures the effect of ocean-atmospheric interaction for that 

gage, a fact that eventually improves the predictive ability of the model.  

In addition to streamflow prediction, this dissertation also develops a model to 

predict the water surface elevation of the Great Salt Lake (GSL) for multiple lead-times 

using past water surface elevation data. This information can be helpful for water 

managers and other GSL stakeholders for planning purposes in order to reduce the impact 

of rising lake elevation in the surrounding area. Each model is ensured to be robust and 

well generalized for future change in data trends, thus making the models reliable for 

long-term predictions. 

Physically-based models are based on the understanding underlying physics of 

hydrologic processes. These models apply the principles of physics in the form of 

mathematical equations to specific hydrologic situations. The physically-based model 

approach has obvious limitations: the physiographic and geomorphic characteristics of 

most hydrologic systems are so complicated and variable, and the degree of uncertainty 

in the boundary conditions are so large, that the solutions are feasible only for certain 

highly simplified situations (Brutsaert 2005). There are quite a few physically-based 

models developed to understand the behavior of water resources systems. The 

complexities in these models and difficulties associated with the data acquisitions and 

corresponding expenses that these models would require has limited the application of 

such models.  

To overcome the limitation of physically based models, data-driven models based 

on the machine-learning approach is used as an alternative model. These models are 

gaining increasing popularity in the hydrological modeling community. They bridge the 
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gap between the physically-based models and classical regression models. The classical 

regression model typically assumes a specific mathematical form with a certain number 

of parameters. Obtaining the required parameters is based on minimizing the discrepancy 

between the observed value and model prediction. The assumption of a specific 

mathematical form may not always correctly represent the input-output relationship in the 

hydrological model, which is a major drawback of classical regression model. This 

limitation is overcome by data-driven models that use the machine learning approach. 

Similar to the human brain, data-driven models are capable of learning from previous 

experiences. They are characterized by their ability to quickly capture the behavior of the 

system by relating input and output. They are robust and are capable of making 

reasonable prediction using historical data (Khalil et al. 2006). They provide potentially 

valuable methods for reducing the cost of data collection and modeling complex river 

basin systems in support of water management needs without losing accuracy (Velickov 

and Solmantine 2000). Use of the machine learning approach also eliminates knowledge 

acquisition time that would be required for the development of physically based models.  

Artificial Neural Network (ANN), Support Vector Machine (SVM), and 

Relevance Vector Machine (RVM) are some popular machine learning models. The ANN 

model is capable of understanding the complex nonlinear relationship between inputs and 

outputs. They usually perform well even if the training data contains noise 

(Hammerstrom 1993), however, they are not free of limitations. An incorrect network 

definition may lead to over-fitting. The optimization may converge to local optima rather 

than global optima (Asefa 2004). Some of the limitations of ANN are overcome by SVM. 

These are very specific class of algorithms, characterized by usage of kernels, absence of 
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local minima, and sparseness of the solution (Vapnik 1995, 1998). SVM presents the 

solution by means of a small subset of training points which gives enormous 

computational advantages over ANNs. However, the number of support vectors typically 

grows linearly with the size of training data, which may require a large amount of 

computer memory storage. The prediction from SVM is not probabilistic and optimizing 

the model parameters needs more data and time for cross validation. RVM is based on 

sparse Bayesian learning. This is a model of identical function form to SVM. RVM 

makes prediction using only a small number of relevant data points which are 

automatically selected from large initial set. RVM does not suffer from any of the above 

limitations of SVM (Tipping 2001). In last few years, RVM has been widely used in 

modeling water resources management problems. This is a parsimonious and robust 

model capable of reasonably accurate predictions from small data sets (Khalil et al. 2006; 

Ticlavilca 2010). RVM is also capable of estimating the uncertainty of prediction (Ghosh 

and Mujumdar 2008; Khalil et al. 2006), which is a major advantage over other machine 

learning models, such as ANN and SVM (Tipping 2000, 2001).  

This dissertation uses the Multivariate Relevance Vector Machine (MVRVM) and 

SVM model for predicting hydrological quantities in basin scale. The MVRVM was 

developed by Thayananthan (2005) as an extension of the RVM algorithm developed by 

Tipping and Faul (2003). It retains all properties of conventional RVM, such as sparse 

modeling, high predictive accuracy, and estimation of uncertainty in the prediction.  

This dissertation contains a total of five chapters including an Introduction and a 

Summary chapter. Two chapters consist of using MVRVM to develop the prediction 
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model, while one chapter consists of using both MVRVM and SVM. These are described 

briefly below. 

Chapter 2 presents the application of the MVRVM model on identifying the 

influential locations of sea surface temperature (SST) for each selected stream gage in the 

state of Utah, and predicting the streamflow for next six months using appropriate sea 

surface temperature locations and other local inputs. The effect of regional 

meteorological condition in streamflow is incorporated through the use of SST data. SST 

also represents an atmospheric circulation indicator. The local inputs used in the model 

consists of past streamflow data, snowpack in the mountains, and local meteorological 

conditions. The stream gages are selected in such a way that they spatially cover the 

entire state of Utah from North to South. The streamflow at each gage is predicted in the 

form of monthly average discharge as well as total volume of water passing the gage for 

next six months. The results show that the MVRVM model is capable of learning from 

the existing input-output relationship and predict accurately for a new set of inputs. The 

uncertainty of the prediction is estimated and shown by confidence intervals in a test 

phase. Bootstrap analysis is used to test the robustness of the model. This analysis 

presents the estimate of measure of variability of test statistics with the change in training 

data. Narrow confidence bound indicates the model is robust over the variability in the 

input data. The results show the model is robust and well generalized.  

In Chapter 3, the MVRVM model is used to predict annual streamflow volume 

using oceanic-atmospheric oscillation indices at four unimpaired stream gages in Utah 

that spatially covers the entire state from North to South. The oscillation indices are 

connected to climatic variability in the region around the globe which is eventually 
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connected to the hydrologic cycle. The teleconnection between climate and the oscillation 

indices is the scientific basis of long lead-time streamflow prediction. The best 

combination of oscillation indices and the lead time is identified for each selected stream 

gage which is, then, used to develop the forecast model. The best combinations of 

oscillations are also identified for each lead time. This information can be useful to 

improve the accuracy of the prediction. The test-phase results show the model is capable 

of learning the relationship between inputs and output and make the prediction 

reasonably well. The bootstrap analysis shows the model is robust and well generalized. 

Chapter 4 presents the application of MVRVM and SVM model to predict the 

water surface elevation of the Great Salt Lake (GSL), Utah, using only past water surface 

elevation data. This consists of constructing multivariate input space in which the 

dynamics unfold by creating a vector of multi-dimension out of a single variable (water 

surface elevation data). The parameters for constructing the state space are estimated for 

the GSL elevation. This multivariate input space is used to predict the water surface 

elevation of the lake at bi-weekly time steps. The test results show that both SVM and 

MVRVM are able to extract the dynamics using only few observed past water surface 

elevations out of the training examples. The predictions from SVM and MVRVM in their 

corresponding test phases are fairly accurate and comparable. An optimum combination 

of reconstruction dimension and time delay is estimated for the model development 

which may be used as final prediction model for GSL water surface elevation. MVRVM 

estimates the uncertainty and presents in the form of confidence interval of the prediction 

while SVM predicts only the mean value. The narrow bound found through a bootstrap 

analysis shows the model is well generalized (robust).  
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CHAPTER 2 

2 BAYESIAN MACHINE LEARNING REGRESSION APPROACH FOR 

IDENTIFICATION OF INFLUENTIAL SEA SURFACE TEMPERATURE 

LOCATIONS AND PREDICTING STREAMFLOW FOR THE NEXT SIX 

MONTHS 

Abstract 

Sea surface temperature (SST) has significant influence in the hydrological cycle 

which eventually affects the discharge in streams. SST is an atmospheric circulation 

indicator which provides the predictive information about the hydrologic variability in 

regions around the world. Choosing the right location of sea surface temperature for the 

prediction of streamflow at a specific location of the gage is crucial. The use of the 

correct location of SST for the selected stream gage appropriately captures the effect of 

oceanic-atmospheric interaction, which eventually improves the predictive ability of the 

model. The strength of the effect of SST changes spatially, thus, the influential locations 

of SST for different locations of the stream gages will be different. This chapter aims on 

identifying appropriate locations of sea surface temperature at selected stream gage in the 

state of Utah that spatially covers the state from South to North, and use them for long-

term streamflow prediction. Analysis shows the influence of Pacific Ocean SST to be 

stronger than that of Atlantic Ocean SST in the state of Utah. Using appropriate location 

of SST, an accurate and reliable long-term streamflow can be predicted, which may play 

an important role on water resources planning and management in the river basin scale. 

This information provides how much water will be available in the next season so that the 
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water managers, stakeholders and farmers can plan accordingly. Predicting future water 

availability accurately and reliably is a key step for successful water resource 

management in arid regions. A data-driven model derived from statistical learning theory 

is used in this chapter. This model relates input/output without trying to understand the 

underlying physical process. The model used in this chapter is developed in the form of a 

Multivariate Relevance Vector Machine (MVRVM). Using the best identified SST 

locations, along with local climatic condition and the current state of basin, both monthly 

mean discharge and volume of water passing the gage for the next six months are 

predicted.  Monthly mean discharge is usually predicted best by the North Pacific SST 

for Northern and Central Utah, while the Tropical Pacific SST develops the best model 

for Southern Utah. For volumetric prediction, the North Pacific SST develops the best 

model prediction in most of the selected stream gages in the state of Utah.  Each model is 

demonstrated to be robust by the results of a bootstrap analysis. 

2.1 Introduction 

Monthly and annual streamflow series are strongly related to long-term climate 

(Sivakumar 2003).  Researches in the atmospheric and hydrologic sciences have recently 

used sea surface temperature (SST) in an attempt to predict streamflow variability. SST 

represents oceanic-atmospheric circulation which has important consequence on the 

weather around the globe. SST provides predictive information about the hydrologic 

variability in regions around the globe (Tootle and Piechota 2006).  This has a strong link 

with the hydrology of individual river basins. The identification of an appropriate 

location of SST will be helpful to improve the predictive ability of the model developed 
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herein. This research identifies the best locations of SST for the selected locations of four 

unimpaired stream gages, and one impaired one, and uses them for long lead-time 

streamflow prediction.  

Streamflow is predicted for the next six months using the SST for the best 

identified locations in the Pacific and Atlantic Oceans, past streamflow data, snow pack 

in the mountains, and local climatic condition. Selections of other inputs are based on the 

understanding of the underlying physical processes. Predictions are made for two 

scenarios. The first one predicts the monthly average discharge for the next six months, 

while the next one predicts the total volume of water passing the gage for the next six 

months. Streamflow predicted using the best identified SST location is more accurate and 

reliable than using other SST locations because use of right location of SST appropriately 

captures the effect of ocean-atmospheric interaction for the corresponding stream gage. 

Precise information about quantity of water availability in next season could be quite 

useful for agricultural planning, watershed management, and other decision making 

processes. It can benefit the management of water resources, in particular allowing 

decision on water allocation for irrigations and other purposes. Financial commitment 

made by the farmers early in the season can result in substantial economic losses if the 

resulting seasonal flow does not subsequently supply enough irrigation water. Forecast 

with long-lead time facilitates co-ordination between different system users that may be 

important in multiple-use water resource systems (Hamlet and Lettenmaier 1999). 

In the present study, inputs are transformed into the output (streamflow) using a 

Bayesian machine-learning regression model. This is used as a simpler, less costly 

alternative to physically-based models. The complexities in the physically based models 
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and difficulties associate with their data acquisitions and corresponding expenses has 

limited the application of such models. Machine learning models are good on capturing 

the underlying physics of the system by relating input and output through robust 

mathematical relations. Machine-learning models are robust and capable of making 

reasonable prediction using historical data (Khalil et al. 2006). Artificial Neural Network 

(ANN), Support Vector Machine (SVM) and Relevance Vector Machine (RVM) are 

some of the most popular machine learning models.  ANN has the disadvantage that it 

may get stuck in local minima rather than global minima. SVM is a very popular machine 

learning model, however, it makes unnecessary liberal use of the basis function. In SVM, 

the number of support vector linearly grows with the size of training data (Tipping 2001) 

and the prediction is not also probabilistic. Moreover, optimizing more than two model 

parameters in SVM requires additional data and time for cross validations. RVM is a 

Bayesian machine learning model. This is sparser than SVM and gives probabilistic 

output as well. Optimizing model parameter for RVM is relatively easier than for SVM, 

however, the performance of their predictions is comparable. RVM has been successfully 

used by many past researches for water resources operation and management, e.g. (Khalil 

et al. 2005b; Ticlavilca 2010). Multivariate Relevance Vector Machine (MVRVM) is 

proposed in this chapter, which is developed by Thayananthan (2005), as an extension of 

the RVM algorithm developed by Tipping and Faul (2003). 

2.2 Study Area 

Five stream gages are chosen at different locations of Utah that spatially cover the 

state from its Northern to its Southern region. Certain data assumptions are made for the 
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site selection, namely: (i) site flows are not affected by diversion or regulation; and (ii) 

several years of systematic record are available. These data assumptions are valid for all 

sites except for one. Two sites were chosen from the Northern region of Utah, two from 

the Central region, and one from the Southern region of the state. The station at the 

Weber River near Oakley and that at Chalk Creek at Coalville are in the Northern region 

of the state. They both lie in the Weber River Basin, which is composed of a flat, fertile 

valley east of the Great Salt Lake. The watershed contains approximately 2060 square 

miles. Average annual precipitation in the Weber River Basin ranges from 12 to 30 

inches. Snow accumulation and melt are very significant features in terms of annual 

hydrologic cycle for this watershed (Perica and Stayner 2004).  

The station at the Sevier River at Hatch is chosen for the Southern region of the 

state. It lies in the Sevier River Basin. The river flows north from its headwaters and then 

turns southwest 255 miles before reaching Sevier Lake (Berger et al. 2003). This river 

basin consists of 12.5 percent of the total area of the State of Utah.  Average annual 

precipitation is close to 13 inches. The major source of surface water for Sevier River 

comes from snowmelt, which is available during the spring and early summer months. 

The primary use of water in the basin is for irrigation (Berger et al. 2003).  

The other two river gages are in the Central region of Utah. They are the station at 

Muddy Creek near Emery, and the station at Sixth Water Creek above the Syar Tunnel 

near Springville. Muddy Creek near Emery is in West Colorado River Basin. This creek 

drains portion of Emery and Wayne Counties in Central Utah.  Muddy Creek begins on 

the eastern slopes of the Wasatch Plateau. It turns southward near the town of Emery, and 

then flows along the western edge of the San Rafael Swell. It has an estimated length of 
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20 miles and a drop of 6000 feet before it combines with the Fremont River to form the 

Dirty Devil River (McCord 1997).  

Sixth Water Creek lies in the Utah Lake Basin. It is about 1 mile long. The flow 

in the Sixth Water Creek near Springville is partly affected by the diversion from 

Strawberry Divide until 2004.  Figure 2.1 shows the location of the selected stream gages 

in Utah. The geometric characteristic of each stream gage is shown in Table 2.1. 

2.3 Background 

Accurate and reliable prediction of streamflow is crucial for water resource 

planning and management. If the appropriate input variables responsible for the 

generation of streamflow are used in the model, the accuracy of the prediction improves, 

and uncertainty reduces, even if the model is data-based, rather than physically-based. 

This research develops a predictive data-based model using precisely identified input 

data.  The input data used in the model are based on the understanding of the physical 

processes and climatic factors that affect the discharge in the stream. Streamflow depends 

not only on the distribution of precipitation in time and in space, but also on the type and 

the state of the basin, which, in turn, depends on the climate condition. Therefore, input 

of climatic conditions in the model through the use of sea surface temperature (SST) has 

significant importance.  

SST is an important variable that affects long-term streamflow. This is an 

atmospheric circulation indicator used to represent the effect of regional climatic 

conditions in local hydrology of a river basin. Use of SST at appropriate locations in the 

nearby oceans improves the accuracy of the prediction. This research explores the 
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influential locations of SST for the selected stream gages in the state of Utah that covers 

the state from South to North, and uses them along with other local inputs for predicting 

streamflow for the next six months. This is useful information for developing an accurate 

forecast model for a given stream gage location. The long-term streamflow prediction is 

crucial information for the water managers, farmers and stakeholders of river basins, 

especially those located in the arid regions. This information helps water users to plan 

their water allocations appropriately for the upcoming water season. Long-term 

streamflow predictions also reduce the risk associated with the financial commitment that 

needs to be made at the beginning of the season by providing accurate water availability 

beforehand.  

A data-driven model based on the learning machine approach was chosen in this 

research paper.  Other researchers have used similar approaches for predicting hydrologic 

phenomena.  For example, Asefa et al. (2006) predicted multi-time scale streamflow 

using Support Vector Machine. This paper consists of using a Bayesian machine learning 

regression approach that uses Multivariate Relevance Vector Machine for the non-linear 

transformation of readily-available input data to predict streamflow for the next six 

months.  

2.4 Model Description 

Multivariate Relevance Vector Machine (MVRVM) (Thayananthan 2005) is 

proposed. This is a supervised learning model based on sparse Bayesian learning. This is 

a model of identical functional form to the Support Vector Machine developed by Vapnik 
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(1995, 1998). MVRVM model is an extension of sparse Bayesian model developed by 

Tipping and Faul (2003). 

For the given input-target pair N

nnn tx 1},{ 
 in training data set, the model learns the 

dependency of the targets on the inputs with the objective of making accurate predictions 

of the target (t) for previously unseen values of input x (Tipping 2000, 2001).  

The targets are assumed to be samples from the model (y) with additive noise 

( ). The target can be written as sum of approximation vector, 

T

Nxyxyy )](...),........([ 1 and the error vector T

N ),........( 1   which is independent 

samples from some noise process. The noise is assumed to be mean-zero Gaussian with 

variance 2 .  The target vector is written as, 

 yt , 

   . w                                    (2.1) 

The target vector can be written as, T

Nttt ).......( 1 . The weight vector (w) is 

expressed as, T

Ni wwww ).....,...( 1  and   is the design matrix of size N*(N+1). This is 

given by T

Nxx )]().....([ 1  , wherein )(x is basis function. The basis function is given 

by, 

T
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The target nt is assumed to be independent so the likelihood of complete dataset is 

written as, 
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Let i be the i
th

 component of the target vector t, and iw  be the weight vector for 

the i
th 

component of the output target vector t such that, .).....,...( 1

T

Ni wwww  This is 

Gaussian distribution which can be written as, 
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To avoid overfitting, Tipping (2001) imposed some additional constraints 

defining an explicit prior probability distribution over them. This prior ultimately leads 

the sparsity of the model. The prior probability is given by, 
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where T

N )....,.........( 0    is a vector of N+1 hyper-parameters. Each i  controls the 

strength of the prior over its associated weight (Tipping and Faul 2003). Bayes’ rule is 

used for obtaining the posterior over the weight. Given the data, the posterior distribution 

over the weights is Gaussian which is given by (Tipping 2001), 
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Some approximation is adapted on the hyper-parameter posterior by a delta 

function at its mode, i.e., at its most probable values 
2, MPMP   (Tipping 2001),  

  222

*

222

* ),(),(),(),(  ddtptpddtp MPMP
.       (2.5) 

The learning then becomes the search for the hyper-parameter posterior mode, i.e. the 

maximization of )()(),(),( 222  pptptp  with respect to   and 2 . For 

uniform hyperpriors over log and logσ, ),(),( 22  tptp  , which is further given 

by, 
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   .          (2.6) 

In Bayesian models, this quantity is known as the marginal likelihood, and its 

maximization is known as the type-II maximum likelihood method (Berger 1993). Eq. 

2.6 is solved by iterative re-estimation which gives,  
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where  iiii N  1 .             

The term i  
is the i

th
 posterior mean weight and N is the number of data examples. iiN  is 

the i
th

 diagonal element of the posterior weight covariance computed with the current  

and 2 . 

The noise variance is re-estimated from, 
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The learning algorithm proceeds by repeated application of (2.7) to (2.8), together 

with updating the posterior statistics   and   until some specified convergence criteria 

is satisfied. It is found that value of i  generally approaches to infinity which implies 

that ),,( 2twp i becomes highly peaked at zero which makes the model sparse. The 

relatively nonzero weights correspond to the input vectors that form the sparse core of the 

RVM model. These input vectors are called relevance vectors (RVs). This sparsity is an 

effective method to control model complexity, avoid over-fitting and control 

computational characteristics of model performance (Tipping and Faul 2003). 

The predictions is made based on the posterior distribution over the weights, 

conditioned on the maximizing values 
MP  and

2

MP . The predictive distribution for a 

new input *x  is given by, 
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This is easily computable because both terms in the integral are Gaussian, 
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The total variance consists of sum of the variance of data and uncertainty in 

estimating weight. Interested readers for Relevance Vector Machine are referred to 
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Tipping (2000, 2001), Tipping and Faul (2003), Thayananthan (2005), and Thayananthan 

et al. (2008). 

2.5  Data Collection and Description 

The input variables are selected based on the underlying physical processes and 

climatic factors that influence the generation of streamflow and their relevancy is judged 

subjectively. The variables used in the model are described below. 

2.5.1 Streamflow 

Streamflow is a consequence of interaction of hydrologic events. Some examples 

of these events are precipitation, snow melt, evapotranspiration, etc. The historical 

streamflow data were collected in the form of monthly mean discharge from 1980 to 

2009 from the U.S. Geological Survey (USGS).  

2.5.2 Snow water equivalent  

When the precipitation falls as snow, it settles, compact and melts several months 

later, and is a prominent source of streamflow (Soukup et al. 2009). Snow serves as 

storage of water, especially in the western United States, and has major effect on the 

streamflow in the spring and early summer months. The snow water equivalent (SWE) is 

defined as the equivalent depth of water when snow completely melts. The SWE data 

were obtained from the Natural Resources Conservation Service (NRCS) (http: 

//www.wcc.nrcs.usda.gov/snow). The period of 1980-2009 was used in this study 

because of the relative completeness of data in the selected basins for these years.  
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Using SWE measurements from different SnoTel stations improves prediction 

compared to the one that uses a single station, in some sense incorporating SWE spatial 

variability (Asefa et al. 2006). The Harris Flat and Midway Valley SnoTel stations are 

used for the Sevier River gage station at Hatch. The Smith and Morehouse and Chalk#1 

SnoTel stations are used for the Weber River gage near Oakley. The Chalk#1 and 

Chalk#2 SnoTel stations are used for the Chalk Creek gage at Coalville. The Buck Flat 

and Dill’s Camp SnoTel stations are used for the Muddy Creek gage near Emery. Finally, 

the Strawberry Divide SnoTel station is used for the Sixth Water Creek gage above Syar 

tunnel near Springville. Although some SnoTel sites are physically outside of the 

watershed, they are still included in the model due to their strong relationship with the 

nearby streamflow processes.  

2.5.3 Local temperature  

Temperature controls the melting rate of snow which consequently affects the 

discharge in the stream. The high discharge in the spring and early summer month is due 

to rising temperature provided that there is enough snowpack in the watershed. The 

temperature data is also collected from the SnoTel stations operated by NRCS. The 

period of data collection for local temperature is same as that of SWE. 

2.5.4 Sea surface temperature  

Sea surface temperature is an important input for long-term streamflow 

forecasting. This is considered in the present study as atmospheric circulation indicator.  

The use of SST data over long temporal range can be relevant to the study of basin scale 

water management issues (Khalil et al. 2005a). It provides important predictive 
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information about hydrologic variability in the regions around the world (Tootle and 

Piechota 2006). This is a regional meteorological indicator appealing to water managers 

and forecasters.  

The Kaplan sea surface temperature anomaly (SSTA) and the Smith and Reynolds 

SST are used in this paper. The Kaplan SST covers the majority of the world’s oceans 

with a 5° by 5° grid (Kaplan et al. 1998), while Smith and Reynolds SST covers the 

majority of the world’s oceans with a 2° by 2° grid (Smith and Reynolds 2003). The 

extended reconstructed global SSTs for Smith and Reynolds SST are based on the 

comprehensive Ocean-Atmosphere data set from 1854 to present. Six locations, identified 

as North Pacific (NP), Central Pacific (CP), Tropical Pacific (TP), East Atlantic (EA), 

Middle Atlantic (MA), and Tropical Atlantic (TA), are selected from the Pacific and 

Atlantic oceans. Their spatial cover is from Tropical Pacific to North Pacific, and 

Tropical Atlantic to East Atlantic (Figure 2.2). 

2.6    Model Development 

The approach applied here in building a model for long-term streamflow 

prediction is based on a data driven model that uses Multivariate Relevance Vector 

Machine. This is a Bayesian regression tool extension of the RVM algorithm developed 

by Tipping and Faul (2003). The model requires the identification of predictor variables 

(input) and response (output vector). The data needs preprocessing in a way that is 

suitable for modeling. The model requires the selection of kernel and kernel parameter. 

The selection of a kernel is heuristic and the Gaussian kernel is used in all combination of 

data set in order to make the uniform comparison. The right value of kernel width for the 
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given input-output set is obtained from an optimization process, which is actually done 

by testing the kernel width over a wide range for each combination of input set.  

Two models are proposed. Model 1 consists of predicting the monthly mean 

discharge for the next six months, while Model 2 consists of predicting the volume of 

water passing the stream gage for the next six months. Inputs to the model consists of 

past streamflow data, snow water equivalent, local temperature, and sea surface 

temperature. SST is collected from six different locations of Pacific and Atlantic Ocean. 

Initially six RVM models are developed using one individual SST at a time. Figure 2.3 

shows the combinations of input variables that are initially used to create input file for 

each stream gage.  

In order to improve the test statistics, SST of different locations are combined 

with a one that develops the best test statistics when using one individual SST at a time. 

For example, if NP SST produces the best test result among other individual SST 

locations, the combination of SSTs is then developed with NP SST. This process is 

repeated for each selected stream gage. The test statistics are computed for each 

combination of input set and best location of SST is identified for the given stream gage 

by comparing their test statistics. Figure 2.4 shows example flowcharts of inputs for 

Model 2. Similar flowcharts are prepared for Model 1. 

2.6.1 Model 1 

This model predicts the monthly mean discharge for the next six months. The 

input to the model consists of past stream discharge, SWE, local temperature, and sea 
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surface temperatures. SWE and local temperature input are in the form of monthly mean 

values. Similarly, monthly values of sea surface temperature are used in the model.  

The model can be mathematically expressed as, 

),,,,( 1212126  ttttt SSTTSQfQ
        (2.11)

 

where 6tQ  is the monthly mean discharge (cfs) passing through a stream gage six 

months prior to time t, 12tS  and 12tT  are the monthly average SWE (in) and local 

temperature (ºC) respectively twelve months prior to time t, 12tSST  represents monthly 

average sea surface temperature twelve month prior to time t. The function f  is a 

nonlinear RVM transformation of inputs to output. The output is monthly mean discharge 

predicted at time t which is six months ahead monthly mean discharge. If the local 

temperature is not included in the model, it is expressed as, 

).,,( 12126  tttt SSTSQfQ
         (2.12)

 

2.6.2 Model 2 

This model predicts the volume of water passing the stream gage for the next six 

months. The model for the volumetric prediction is similar to that of Model 1, however, 

the variable notations have different standings. The input to the model consists of past 

streamflow volume, SWE, local temperature, and sea surface temperature. Streamflow 

input in the model is in the form of total volume of water passing through the stream gage 

in the last six months. The monthly mean discharge obtained from USGS is converted 

into total volume using appropriate conversion factor. SWE and local temperature input 

are in the form of average of monthly mean values of last 12 months. The sea surface 
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temperature input to the model is the average of monthly average values of last 12 

months. The model can be mathematically expressed as, 

),,,( 12121266   ttttt SSTTSQfQ
         (2.13)                      

 

where 6tQ  is a total volume of water flowing through the gage in the last six months, 

12tS  and 12tT  is the average SWE and local temperature computed over the last twelve 

months, 12tSST  represents average sea surface temperature value of last 12 months. The 

output 6tQ
 
is the volume of water passing the stream gage for the next six months. If the 

local temperature is not included in the model, it can be written as, 

).,,( 121266   tttt SSTSQfQ
        (2.14) 

2.6.3 Performance Criteria 

The statistical measures that are used in this paper for the performance evaluation 

of the model are root mean square error (RMSE) and Nash-Sutcliffe efficiency. 

Root Mean Square Error (RMSE) 

The smaller the RMSE value, the better the prediction result is. The ideal value of 

RMSE is zero. Mathematically this is expressed as, 

RMSE = 
n

tt
n

i

ii



1

2* )(

,       

        (2.15)

 

where it is observed value, *

it  is prediction from the model and n is sample size. 
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Nash-Sutcliffe Efficiency 

The Nash-Sutcliffe efficiency, E, is a popular index to evaluate the performance 

of hydrological models. It is used to measure the predictive power of the hydrological 

models (Nash and Sutcliffe 1970). Mathematically it is expressed as, 

,
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        (2.16)
 

where  t  is mean observed value. Nash-Sutcliffe efficiencies range from negative infinity 

to one. An efficiency of one corresponds to a perfect match of model prediction to 

observed data. An efficiency of zero indicates that the model prediction is as accurate as 

the mean of the observed data. A negative efficiency indicates that the observed mean is a 

better predictor than the model.  

2.7    Results and Discussion 

Both the Smith and Reynolds SST (Smith and Reynolds 2003) and the Kaplan 

SSTA were initially used in the model. Based on statistical measures, it was found that, in 

general, the model predictions using Smith and Reynolds SST data were better than that 

of using Kaplan SSTA. The present research, therefore, uses Smith and Reynolds SST 

only. It was also found that the use of local temperature improved the model prediction. 

Therefore, the model that did not include the local temperature was discarded. 
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2.7.1 Identification of influential SST location  

and prediction of monthly mean discharge for the  

next six months using Model 1 

The model was trained for the period 1980-2001 and tested on the period 2002-

2009 for Weber River near Oakley, Chalk Creek at Coalville, and Muddy Creek near 

Emery. The Sevier River at Hatch was trained for the period 1982-2001 and tested for the 

period 2002-2009, while the Sixth Water Creek near Springville was trained for the 

period 2000 to 2006, and tested for the period 2007 to 2009. The test RMSE of each 

prediction model, when one individual SST is used at a time, is shown in Figure 2.5 for 

each stream gage. Similarly, the test RMSE for the combined SSTs for each selected 

stream gage is shown in Figure 2.6.  

Figure 2.7 shows the best locations of the sea surface temperature for each 

selected stream gage for monthly mean discharge prediction. This is developed by 

comparing the test statistics (RMSE and/or efficiency) of individual and combined SSTs 

of different locations (Figure 2.5 and 2.6). It is noticed that the effect of Pacific Ocean 

SST is more dominant than that of the Atlantic Ocean, which is consistent with other 

previous studies (Ting and Wang 1997; Wang and Ting 2000). The streamflow in the 

Northern and Central Utah are best predicted by the sea surface temperature of North 

Pacific, and in some cases, Central Pacific SST. However in Southern Utah, streamflow 

is best predicted by the sea surface temperature of the Tropical Pacific, and Tropical 

Atlantic (when used in combination of SSTs).  

A significance test was used to confirm if the test statistics from the best 

identified SST locations for each selected gage were significantly better than the test 

statistics of other SST locations. The 95% confidence interval for the median RMSE 
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(Table 2.2) was computed. The test RMSE value using best-identified SST locations is 

outside the boundary of 95% confidence interval. This is therefore, said to be 

significantly better. The summary result of the best model and corresponding SST 

locations are shown in Table 2.3. 

The best identified SST locations are used along with SWE, local temperature, 

and past streamflow data to develop forecast model for each selected stream gage. The 

prediction results are shown in Figure 2.8. Results show the predicted streamflow is quite 

accurate for all selected unregulated stream gage, while it is reasonably accurate for 

regulated gage. The predicted discharge shows good agreement with the actual discharge. 

The uncertainty of prediction is captured by the confidence interval in the test phase for 

each selected gage. High flows are perfectly captured while there is little discripency in 

low flows. The ground water flow (base flow) is responsible for the generation of low 

flow in the stream. Since the input representing ground water flow is not included in the 

model, this level of discrepancy is obvious. The overall prediction quality, however, 

remains good. Residuals are higher for low flow conditions, but shows randomness for 

other flows. This is persuasive evidence that the model has no serious modeling 

problems. The overall performance of the model shows its ability to forecast streamflow 

accurately for the next six months. This is crucial for reliable water resource planning and 

management works, especially in arid regions.  

The illustration about the selection of best location of SST for each selected 

locations of stream gage is as follows: When monthly data are used, the SST data consists 

of seasonal, annual, inter-annual to inter-decadal components. The effect of seasonal 

component is stronger than other components. The seasonality may be explained by the 
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El Niño Southern Oscillation (ENSO) effect. The seasonal cross correlation between 

ENSO index and hydrological record is demonstrated by Poveda et al. (2001). The ENSO 

may be characterized by the Southern Oscillation Index (SOI) and sea surface 

temperature in the region: Niño 1+2 (0
°
-10

°
S, 80

°
W-90

°
W), Niño 3 (5

°
N-5

°
S, 90°W-

150°W), Niño 4 (5
°
N-5

°
S, 60°E-150°W), and Niño 3.4 (5

°
N-5

°
S, 120°W-170°W) (Poveda 

et al. 2001). Niño 3.4 gives overall representation of ENSO (Soukup et al. 2009). 

Tropical Pacific SST information may be a useful predictor for the U.S. Precipitation for 

ENSO period (Wang and Ting 2000). Since the streamflow is a consequence of 

precipitation, it may be also useful predictor for streamflow prediction. The TP SST 

station chosen in this research (Figure 2.3) lies in ENSO region (Niño 3.4), therefore, TP 

SST is most responsive input variable where the effect of ENSO is received.  

Utah lies in the boundary of ENSO effect (Wang and Ting 2000). The influence 

of ENSO is dominant in the southern region of Utah. Therefore, TP SST develops best 

model prediction for stream gage in Southern Utah. However, the streamflow in the 

Northern and Central Utah are not much influenced by the ENSO effect because of 

relatively weak ENSO signal in these regions. But, it is more influenced by annual or 

interannual and low frequency components.  The North Pacific atmosphere-ocean climate 

system has prominent timescales that range from interannual to decadal (Nakamura et al. 

1997). NP SST is associated with low frequency variability and has interannual to 

decadal component. Therefore it is more responsive to streamflow sites in Central and 

Northern Utah. Also, the principal moisture source for Central and Northern Utah is the 

Pacific Ocean (Pope and Brough 1996). This moisture is usually moving from west to 
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east toward United States. The latitude of Northern and Central region of the state is close 

to NP SST station than any other SST station in Pacific Ocean. Therefore, NP SST 

usually develops best model prediction in most of the stream gages in the central and 

northern region of the state. 

The prediction result for each streamflow site is discussed individually. For 

Weber River near Oakley, the best prediction model is obtained from CP SST when one 

individual SST is used at a time. The CP SST is then combined with the other  SST 

locations and best prediction is obtained from the combination of CP and NP SST. It is 

noticed that the combination of CP with the SST of northern locations improved the 

prediction result, however, the combination of CP with the SST of the southern locations 

deteriorate it. This stream gage is in the Northern Utah, therefore, the effect of ENSO is 

limited. However it is more influenced by annual and interannual to interdecadal 

components which are best represented by the SST of North Pacific Ocean. Thus, the NP 

SST has major influence in the streamflow predictions for the Weber River near Oakley. 

The principal moisture source of this area is Pacific Ocean. The latitude of this 

streamflow site is similar to the NP and CP SST stations. Considering those factors, it is 

therefore very obvious to have the best prediction obtained from NP and CP SST for 

Weber River near Oakley. 

Chalk Creek at Coalville lies in the northern Utah. The best model prediction is 

obtained at EA SST when individual SSTs are used at a time, and combined EA and NP 

when used in combination. It is found that combination of EA and MA SST did not 

improve the model prediction but made it worse. The combination of EA and TA SST 

made the prediction poor again. Similar result is obtained for the combination of EA SST, 
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MA SST and TA SST. The reason behind the poor prediction is due to the addition of 

irrelevant input variables in learning machine model. This means these SSTs do not have 

responsive influence and gives insight not to use TP, TA, MA or other south located 

SSTs for the prediction of streamflow in Chalk Creek at Coalville. This stream gage is 

out of the range of the strong ENSO effect so there is no strong effect of Tropical Pacific 

SST. Similarly, the Middle and Tropical Atlantic SSTs are irrelevant for this streamflow 

site. The site is more influenced by annual, interannual to interdecadal components which 

are best described by the SST of North Pacific Ocean. The major source of moisture for 

this area is Pacific Ocean as mentioned earlier. This justifies the combination of NP and 

EA SST for the best model prediction. 

Muddy Creek near Emery lies in Central Utah. The best model prediction is 

obtained at NP SST for all cases. The Figure 2.6(c) shows the model developed using the 

combinations with the SST of Northern locations produces a comparable result to that of 

using NP SST alone, however, the model developed with the combination of SST of 

southern locations deteriorate the performance of the model. Since this stream gage is 

outside of ENSO dominant region, there is no strong effect of TP in this site. The 

streamflow at Muddy Creek near Emery, therefore, is affected more by the low frequency 

component, and NP comes into strong position in this case. The major source of moisture 

coming to this area is again from the Pacific Ocean, as indicated above. Therefore NP 

SST produced best model prediction for this stream gage. 

Sevier River at Hatch lies in the Southern Utah. The best prediction is obtained 

from TP SST when one individual SST is used at a time. Interestingly enough, the Sevier 

River at Hatch is in the region of known ENSO influence. Therefore, TP SST is most 
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responsive input variable than that of any other SST locations. The combination of TP 

SST with the CP and NP SST did not improve the model prediction, but made it worse. 

The combinations of TP with southern locations improved the model prediction, while 

the combinations with the central and northern locations of SST deteriorate it. This shows 

the northern and central SST’s does not have strong influence for the discharge prediction 

in Sevier River at Hatch. This is because NP and CP region has low frequency and its 

effect is insignificant as compare to the seasonal component influenced by ENSO. The 

combination of TP and TA SST produced the best result. Since both TP SST and TA SST 

are located on south, their combination performed best for Sevier River at Hatch.  

Sixth Water Creek is in Central Utah. The best model prediction is obtained again 

at NP SST. The explanation is similar as that of the Muddy Creek near Emery, because 

both sites are located in central region of the state, and are spatially close to each other. 

This particular site is partly affected by the diversion from the Strawberry Lake until 

2004. The input corresponding to the diversion or regulation is not incorporated in the 

model for this gage, therefore the model prediction for this site is not very accurate as it is 

in the other unregulated stream gages (Figure 2.8e).  

The identification of appropriate location of SST location is crucial for 

developing accurate long-term forecast of streamflow, which eventually increases the 

benefit and reduces the risk associate with the future shortage of water.   
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2.7.2 Identification of influential SST locations  

and prediction of the volume of water passing the  

gage for next six months using Model 2 

The training and testing period for each stream gage were same as that used in 

monthly mean discharge prediction. The test statistics (RMSE and efficiency) are 

computed for each individual SST for volume of water passing through selected stream 

gage for next six months. The test RMSE for each stream gage when one individual SST 

is used at a time is shown in Figure 2.9. The test statistics for the combined SSTs for each 

gage are shown in Figure 2.10. The SST locations that produce best test statistics are 

shown in Figure 2.11.  

Significance tests for the volumetric prediction were conducted in a similar 

manner as performed for the monthly stream discharge predictions. The 95% confidence 

interval for the median RMSE is shown in Table 2.4. The test RMSE from the best 

identified SST locations is outside of the 95% confidence interval.  This indicates the test 

RMSE from the best chosen SST location is significantly better than the test RMSE from 

other SST locations. The summary result from using appropriate SST locations for each 

stream gage is shown in Table 2.5. 

Using the best identified SST locations, the volume of water passing through each 

selected stream gages was predicted (Figure 2.12). The results show the model 

predictions are quite accurate. A good match between actual and predicted flow volume 

is obtained. The plot of predicted versus actual flow volume shows point saturation 

around the 45 degree line, which shows the model is good for use as a forecast model for 

streamflow volume prediction. The accuracy of the prediction is high for the unimpaired 

gages, while it is relatively less for impaired gage (Sixth Water Creek near Springville). 
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The input corresponding to the diversion is not incorporated in the model for Sixth Water 

Creek, which resulted in reduced accuracy of the predictions. In all cases, the model has 

perfectly captured the high flow, but the low flow is not captured accurately. Since the 

inputs representing the ground water flow are not included in the model, this level of 

discrepancy is obvious. Residual plots of six-month streamflow volume predictions are 

random, as indicated in Figure 2.12g though the residuals are relatively higher for low 

flow conditions. This is the evidence that the model has no serious modeling problems. 

The overall prediction shows the model is good and can be used for predicting 

streamflow volume six months ahead. The uncertainty of prediction is captured by 

confidence interval in test phase for each gage.  

The selection of best SST locations for each selected gage is justified from the 

reasons explained herein. Since the variables are either cumulative or averaged over time, 

the seasonal climatic component gets eliminated in the model. The leftover components 

are annual, internannual to interdecadal components, which are low frequency 

components. NP SST has low frequency variability which has annual, interannual to 

decadal components. NP SST therefore, has a stronger influence than other SST locations 

for most of the streamflow sites in Utah in terms of the volumetric prediction. This 

includes Chalk Creek at Coalville, Muddy Creek near Emery, Sixth Water Creek near 

Springville, and Sevier River at Hatch. In the case of monthly mean streamflow 

predictions, the best prediction was obtained from TP SST for Sevier River at Hatch. 

When prediction is made for the volume of water passing through this gage, the variables 

are averaged or accumulated over the time. The seasonality effect is thus eliminated 

leaving annual, interannual to interdecadal components. These components are best 
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represented by the NP region. Therefore, the best prediction is obtained from NP SST. In 

short, TP is replaced by NP in this site. This result is consistent with result obtained by 

Asefa et al. (2006). 

For the Weber River near Oakley, the best prediction result is obtained at CP SST 

when one individual SST is used at a time. The combination of CP, NP, and TP develops 

the best model prediction when used in combination, however, these predictions are very 

close to predictions from the combination of NP and CP SST.  The principal moisture 

source of this area is the Pacific Ocean. In addition, this stream gage is outside of the 

ENSO dominance region. There is no strong seasonality component therefore NP and CP 

SST appeared as important input. 

2.7.3 Generalization and robustness  

The bootstrap analysis is a data-based simulation method for statistical inference 

(Efron and Tibshirani 1998). This gives the estimate of measure of variability of test 

statistics with the change in training data. This analysis shows how robust the model is 

and how well it will generalize. The concept is to randomly draw a large number of 

‘resamples’ of size n from the original sample, with replacement. Although each 

resample has the same number of elements as the original sample, it may include some of 

the original data points more than once, and some are not included. This process forming 

the training set is random and it is treated as independent sets (Duda et al. 2000). 

Therefore, each of these resamples will randomly depart from the original sample. From 

each bootstrap set, the bootstrap test statistic is computed in exactly the way as the real 

sample is used (Davidson and MacKinnon 2001). Since the elements in these resamples 



36 
 

 

vary slightly, the statistics calculated from these resamples takes on slightly different 

values. Having computed statistics each time, a histogram is prepared which gives the 

variability of the test statistics.  

For each stream gage, bootstrap analysis is performed for the best model. The test 

statistics are computed for each bootstrap sample and a histogram is prepared. Figure 

2.13 and 2.14 shows the result of bootstrapping for the best identified model for monthly 

mean discharge prediction. Figure 2.15 and 2.16 shows the histogram of bootstrap 

analysis for each selected stream gage for volume of water passing the gage for next six 

months. The narrow bound in the resulting histograms shows that the model is robust. 

The variability on these test statistics (RMSE and Efficiency) is consistent. The dotted 

red line in the Figure 2.13 through Figure 2.16 shows the 2.5
th

 percentile and 97.5
th

 

percentile values of test statistics. These bootstrap plots confirm that the model is robust 

and is good enough to use it as a long-term streamflow prediction model.  

2.8   Conclusion 

A major aspect of variability in streamflow is the variability of regional climate, 

which, in turn, is related to larger scale phenomena occurring in the oceans and the 

atmosphere (Koch and Fisher 2000). The regional meteorological effect is represented by 

the sea surface temperature of Pacific and Atlantic Oceans. Identification of right location 

of SST location for given spatial location of stream gage is crucial in order to make 

accurate and reliable prediction. Along with the regional meteorological inputs, local 

meteorological inputs are also used to predict the streamflow for the next six months at 

each of five selected gages in the State of Utah. The local meteorological conditions are 
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incorporated using local temperature and snowpack in the mountains. Thus, the inputs to 

the model are past streamflow data, snowpack in the mountain, local temperature, and sea 

surface temperature at various locations in the Pacific and Atlantic Oceans. The input 

variables are integrated into a machine-learning framework to develop a useful model for 

the long-term streamflow forecast. The Multivariate Relevance Vector Machine 

successfully transformed the input variables into reasonably accurate forecasting of 

outputs. For each gage, the best location of SST was identified by comparing the test 

statistics among all SST locations. It was found that the sea surface temperature in the 

Pacific Ocean predicted better than that of the Atlantic Ocean. It is so because this region 

represents the majority of Ocean-atmosphere climate influencing the Western U.S. (Ting 

and Wang 1997; Wang and Ting 2000). For the stream gages located in the northern and 

Central Utah, usually North Pacific and sometimes Central Pacific SST produced the best 

model predictions. For the stream gages located in the Southern Utah, Tropical Pacific 

SST produced best predictions for monthly mean discharge for the next six months. 

However, NP SST produced best prediction for most of the stream gages in Utah for the 

volume of water passing the gage for the next six months.  

Using the best identified SST locations, the streamflow was predicted for the next 

six months at each selected stream gage that spatially covers the state of Utah from North 

to South. Predictions are made for (i) Monthly mean discharges for the next six months, 

and (ii) Volume of water passing through the gage for the next six months. The 

performance of the model is evaluated based on RMSE and Nash-Sutcliffe efficiency in 

the testing phase. The model prediction has good agreement with the observed flow 

value. The prediction result is very accurate for unimpaired stream gages while the 
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accuracy is reasonable for one impaired gage. Since human induced effects are not 

included in the model for impaired gage, less efficiency of prediction is obvious.  The 

model predicts the streamflow very well for high flow, in general, but predictions for low 

are not captured perfectly. Since input representing ground water flow is not included in 

the model, a certain level of discrepancy is to be expected for low flows. The overall 

prediction is, however, accurate and has good agreement with observed streamflow 

values. The uncertainty of the prediction is also captured and presented by the confidence 

intervals of the predictions. The reliability and robustness of the model is tested by using 

a bootstrap analysis. This analysis confirms the good predictability and robustness of the 

model.  

This paper has demonstrated that with the use of appropriate input, Multivariate 

Relevance Vector Machine (MVRVM) can be utilized for the successful forecast of long-

term streamflow. Accurate and reliable long-term streamflow prediction is crucial for the 

management of water resources at the basin scale. This information could help the water 

managers and stakeholders for planning and decision making. This will ultimately reduce 

the financial risk associated with future water shortages.  

The Northern and Central regions of Utah are affected by the annual, and 

interannual to interdecadal climatic signal. Using those climatic signals, forecast may be 

extended for longer lead-time than what is demonstrated in this paper.  This can be a 

future direction of research on hydrologic modeling using learning machines. 
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Table 2.1 Geometric characteristic of stream gages 

Site ID Name 
Basin         Stream                              Gage  

    

Area 

(mi
2
) 

Length 

(mi) Slope 

Latitude 

(°) 
Longitude 

(°) 

10128500 Weber River near Oakley 162.1 25.3 0.020 40.737 -111.247 

10131000 Chalk Creek at Coalville 248.3 37.5 0.010 40.921 -111.401 

10174500 Sevier River at Hatch 340 31.1 0.007 37.651 -112.430 

09330500 Muddy Creek near Emery  105     20.1 0.004 38.982 -111.249 

10149000 Sixth Water Creek near Springville   15 1 0.048 40.118 -111.314 
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Table 2.2 95 percent confidence interval of the median test RMSE for Model 1 

Stream gages 

95% confidence interval Best RMSE  

(cfs) 

Remark 

   Lower           Upper 

Weber River near Oakley 8.87 9.54 8.54 NP and CP 

Chalk Creek at Coalville 5.85 6.47 5.57 NP and EA 

Muddy Creek near Emery 4.80 5.46 3.56 NP  

Sevier River at Hatch   11.76           13.27         11.74 TP and TA 

Sixth Water Creek     4.99 6.16 3.08  NP 

 

 

 

Table 2.3 Best test statistics for monthly mean discharge prediction (Model 1) 

Stream gages Test RMSE  (cfs) Efficiency Combination of SST locations 

Weber River near Oakley 8.54    0.999 NP and CP 

Chalk Creek at Coalville 5.57    0.995 NP and EA 

Muddy Creek near Emery 3.56    0.995 NP 

Sevier River at Hatch            11.74    0.995 TP and TA 

Sixth Water Creek near Springville 3.08    0.816  NP 
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Table 2.4 95 percent confidence interval of the median test RMSE for Model 2 

Streamflow sites 

95% confidence interval Best RMSE 

(1000 ac-ft) 

Remark 

Lower Upper 

Weber River near Oakley 8.66 11.45 8.31 NP, CP and TP 

Chalk Creek at Coalville 2.75 4.46 2.65 NP 

Muddy Creek near Emery 2.52 4.11 2.44 NP 

Sevier River at Hatch 5.36 7.72 5.04 NP 

Sixth Water Creek near Springville 0.88 1.32 0.73 NP 

 

 

Table 2.5 Best test statistics for volume of water passing the gage for next six months 

(Model 2) 

Stream site 

Test RMSE 

(1000 ac-ft) Efficiency Best combination of SST locations 

Weber River near Oakley     8.307    0.965    NP, CP and TP 

Chalk Creek at Coalville     2.653    0.968    NP 

Muddy Creek near Emery     2.438    0.951    NP 

Sevier River at Hatch     5.042    0.987    NP 

Sixth Water Creek near Springville     0.732    0.739    NP 
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Figure 2.1 Location of the stream gages and SnoTel stations in Utah. 
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Figure 2.2 The locations for the sea surface temperature (Khalil et al. 2005a). 
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Figure 2.3 Flowchart for developing the input file for different combinations of input 

variables using one individual sea surface temperature at a time for both monthly mean 

discharge prediction (Model 1) and volumetric prediction (Model 2). The path to each 

final node shows the set of input variables used for that node.  (a) Combination of input 

variables for Weber River near Oakley, (b) Combination of input variables for Chalk 

Creek at Coalville, (c) Combination of input variables for Muddy Creek near Emery, and 

(d) Combination of input variables for Sevier River at Hatch. 
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Figure 2.4 Sample flowchart for developing the input file for prediction of volume of 

water passing through the stream gages (Model 2) using combined SST of different 

locations of Pacific and Atlantic Oceans. The path to each final node shows the set of 

input variables used for that node.  (a) Combination of input variables for Weber River 

near Oakley, (b) Combination of input variables for Chalk Creek at Coalville, (c) 

Combination of input variables for Muddy Creek near Emery, and (d) Combination of 

input variables for Sevier River at Hatch.  
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(a)                                              (b)                                             (c) 

 

     (d)                                               (e) 

 
Figure 2.5 The test RMSE for six individual SST locations at each selected stream gage 

for monthly mean discharge prediction for next six months. (a) Weber River near Oakley, 

(b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, (d) Sevier River at Hatch, 

and (e) Sixth Water Creek near Springville.  

(a)                                             (b)                                              (c) 

 
        (d)                                              (e) 

 
Figure 2.6 Test RMSE for the combinations of SST locations for the monthly mean 

discharge prediction for next six months at each selected stream gage. (a) Weber River 

near Oakley, (b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, (d) Sevier River 

at Hatch, and (e) Sixth Water Creek near Springville.  
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Figure 2.7 Locations of the sea surface temperature that develops the best test result for 

the monthly mean discharge prediction at selected streamflow gages for next six months. 
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Figure 2.8 Streamflow prediction for next six months at each selected stream gage. For 

(a) to (e), first column is for the training phase, second column is for test phase, third 

column shows the plot of predicted discharge versus actual discharge for training phase, 

and fourth column shows the similar plot for the test phase. (a) Weber River near Oakley, 

(b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, (d) Sevier River at Hatch, (e) 

Sixth Water Creek near Springville, (f) 90 percent confidence interval of prediction in 

test phase for each selected gage for (a) to (e), and (g) Residual plots for (a) to (e). 
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Figure 2.8 Cont. 
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(a)                                           (b)                                              (c) 

 
 

 (d)                                            (e) 

 
Figure 2.9 The test RMSE of six individual SST locations at each selected stream gage 

for volume of water passing the gage for next six months. (a) Weber River near Oakley, 

(b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, (d) Sevier River at Hatch, 

and (e) Sixth Water Creek near Springville.  

(a)                                            (b)                                             (c) 

 
 

(d)                                            (e)  

 
Figure 2.10 Test RMSE for the combinations of SST locations for the volumetric 

prediction at each selected stream gage. (a) Weber River near Oakley, (b) Chalk Creek at 

Coalville, (c) Muddy Creek near Emery, (d) Sevier River at Hatch, and (e) Sixth Water 

Creek near near Springville.   
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Figure 2.11 Locations of the sea surface temperature that developed the best test 

statistics for volume of water passing the stream gage for next six months. 
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Figure 2.12 The prediction for volume of water passing through the stream gages for 

next six months. For (a) to (e), first column is the training phase, second column is test 

phase, third column is the plot of predicted volume versus actual volume for training 

phase, and fourth column is similar plot for the test phase. The results are in the order of 

(a) Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, 

(d) Sevier River at Hatch, (e) Sixth Water Creek near Springville, (f) 90 percent 

confidence interval of prediction for (a) to (e), and (g) Residual plots of test phase for (a) 

to (e). 
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Figure 2.13 The bootstrap analysis for the best model at each stream gage for monthly 

mean discharge prediction for next six months. The figures presented are for the RMSE 

values for (a) Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Muddy Creek 

near Emery, (d) Sevier River at Hatch, and (e) Sixth Water Creek near Springville. 
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Figure 2.14 The bootstrap analysis for the best model for each stream gage for monthly 

mean discharge prediction. The figures presented are for the Nash-Sutcliffe efficiency for 

(a) Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, 

(d) Sevier River at Hatch, and (e) Sixth Water Creek near Springville. 
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Figure 2.15 The bootstrap analysis of the best model for volumetric prediction at each 

stream gage. The figures presented are for the RMSE values for (a) Weber River near 

Oakley, (b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, (d) Sevier River at 

Hatch, and (e) Sixth Water Creek near Springville. 
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Figure 2.16 The bootstrap analysis for the best model for volumetric prediction at each 

selected stream gages. The figures presented are for the Nash-Sutcliffe efficiency for (a) 

Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Muddy Creek near Emery, 

(d) Sevier River at Hatch, and (e) Sixth Water Creek near Springville. 
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CHAPTER 3 

 

3 LONG LEAD-TIME STREAMFLOW FORECASTING AND IDENTIFICATION 

OF RELATIVE INFLUENCE OF OCEANIC-ATMOSPHERIC OSCILLATION 

MODES USING BAYESIAN MACHINE LEARNING REGRESSION 

APPROACH 

Abstract 

Climatic variability influences the hydrological cycle that subsequently affects the 

discharge in streams. The variability in the climate can be represented by ocean-

atmospheric oscillations which provide an input to forecasting streamflow. Four popular 

ocean-atmospheric modes are used in this chapter for annual streamflow volume 

prediction in selected stream gages in Utah. These modes are the Pacific Decadal 

Oscillation (PDO), the El-Niño Southern Oscillation (ENSO), the Atlantic Multidecadal 

Oscillation (AMO), and the North Atlantic Oscillation (NAO). Multivariate Relevance 

Vector Machine (MVRVM), a data-driven model based on a Bayesian learning approach, 

is used for the streamflow prediction. This is a sparse model and provides probabilistic 

output.  The model is applied at four unimpaired stream gages in Utah that spatially cover 

the state from North to South. Different model types are developed based on the 

combination of input oscillation modes. A total of 60 years (1950-2009) of data are used 

for the analysis. The Model is trained on 50 years of data (1950-1999) and tested on 10 

years of data (2000-2009). The accuracy of the prediction is evaluated based on the root 

mean square error (RMSE), efficiency, and correlation coefficient for the test phase data.  

An appropriate combination of oscillation modes and lead-time is chosen for each 
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selected gage, based on test results. These combinations are used to develop final forecast 

model for annual streamflow volume prediction for next few years. The model prediction 

has reasonable agreement with the actual annual streamflow volume. Such predictions 

constitute valuable information to water managers for effective planning and 

management of water resources. The sensitivity analysis shows that PDO and ENSO 

have relatively stronger signals than other oscillation modes in influencing streamflow 

predictions. The prediction results from the MVRVM are compared with Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) results. MVRVM performs better 

than other two models using relatively fewer data points in training. Bootstrap analysis 

confirms the robustness of the model.   

3.1    Introduction 

The ocean-atmospheric modes are connected to climatic variability around the 

globe. The precipitation in any region is influenced by the climatic variability that 

subsequently affects the streamflow. Floods and draughts are also consequences of 

climatic variability. The streamflow in the western United States is no doubt influenced 

by it. The teleconnection between climate and ocean/atmospheric modes (oscillation 

indices) is the scientific basis of long lead-time streamflow prediction. Their correlation 

provides the ability to reliably forecast streamflow. The Pacific Decadal Oscillation 

(PDO), the El-Niño Southern Oscillation (ENSO), the Atlantic Multi-decadal Oscillation 

(AMO), and the North Atlantic Oscillation (NAO) are popular oceanic-atmospheric 

oscillation indices used in hydrologic prediction. The climatic variation in decadal-scale 

over the Pacific Ocean and its surrounding are strongly related to PDO, which is coherent 
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with wintertime climate over North America (Mochizuki et al. 2010). ENSO has been 

linked to climate anomalies throughout the world (Diaz and Markgraf 2000; Philander 

1990). Strong ENSO signal exists in mid-latitude United States that affects the flow in 

rivers and streams (Kahya and Dracup 1993). Many prominent examples of regional 

multidecadal climate variability have been related to AMO.  It affects air temperature and 

rainfall, and river flow over much of the Northern Hemisphere, in particular, North 

America and Europe (Enfield et al. 2001; McCabe et al. 2004; Sutton and Hodson 2005). 

NAO is the dominant mode of winter climate variability in the North Atlantic region 

ranging from Central North America to Europe and much into Northern Asia. There are 

several past studies for the long lead time streamflow prediction using ocean-atmospheric 

oscillation indices. Streamflow responses to individual as well as coupled ocean-

atmospheric indices of PDO, ENSO, AMO, and NAO over the United States are well 

established influencing signals (Hamlet and Lettenmaier 1999; Piechota et al. 1997). 

Chiew and McMahon (2002) used ENSO-streamflow relationship to forecast streamflow 

successfully. Soukup et al. (2009) used PDO, ENSO and AMO for seasonal streamflow 

prediction for the North Platte River. Kalra and Ahmad (2009) used those oscillation 

modes to predict long lead-time streamflow in the Colorado River basin. 

The signal strength of oscillation indices varies spatially in the regions around the 

world. It is thus important to elucidate the influential oscillation indices, or their 

combinations, and corresponding lead time that produces reasonable long lead-time 

annual streamflow volume prediction for a given location of stream gages. This research 

paper uses an optimum combination of oscillation modes to predict long-lead time annual 

streamflow volume accurately and reliably at four unimpaired stream gages in Utah that 
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spatially cover the state from North to South. The combination of oscillations that 

develops the best prediction for each lead time is also identified. This information can be 

useful to enhance the predictive ability of the streamflow model. Accurate prediction of 

long-lead time streamflow can benefit the management of water resources at the basin 

scale (Asefa et al. 2006). This is crucial information for water managers, farmers, and 

stakeholders, especially in arid regions. Such prediction helps decision making process to 

maximize the returns from available water resources and ensures a reliable supply. 

Forecast with long-lead time also facilitates co-ordination between different system users, 

which  may be important in multiple-use water resource systems (Hamlet and 

Lettenmaier 1999).   

There are quite a few physically based models developed to understand the 

behavior of water resources systems. The complexities in these models and difficulties 

associated with the data acquisition and corresponding expenses that these models would 

require has limited in the application. To overcome these limitations, data driven models 

are often used as an alternative to physically based models. They are characterized by 

their ability to quickly capture the underlying physics of the system by relating input and 

output. They are robust and are capable of making reasonable prediction using historical 

data (Khalil et al. 2005b, 2006).  

Artificial Neural Network (ANN), Support Vector Machine (SVM) and 

Relevance Vector Machine (RVM) are data driven models. ANN model has the ability to 

implicitly detect complex nonlinear relationships between response and predictor. It 

performs well even if the data contains noise. However, it has a number of disadvantages. 

For example, ANN models may get stuck in local minima rather than global minima. 
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Also, an incorrect network definition may cause over-fitting of the model. SVM is widely 

used machine learning model. It however makes unnecessary liberal use of the basis 

function, and the number of support vector linearly increases with the size of the training 

dataset (Tipping 2001). The prediction is not probabilistic. Moreover, optimizing more 

than two model parameters in SVM needs more time and data for cross validation. RVM 

is sparser than SVM and gives probabilistic output as well. Optimizing model parameter 

for RVM is easier than SVM, however, the performance is comparable. RVM is therefore 

proposed for long lead-time annual streamflow volume prediction in this paper. This 

paper uses Multivariate Relevance Vector Machine (MVRVM) (Thayananthan 2005), 

which is an extension of the RVM algorithm developed by Tipping and Faul (2003). It 

retains all properties of conventional RVM like sparse modeling, high predictive 

accuracy, and estimation of uncertainty in the prediction. 

3.2    Study Area 

Four stream gages were chosen in Utah that spatially covers the state from the 

northern to the southern region (Figure 3.1). Each gage meets following data 

assumptions: (i) site flows are not affected by diversion or regulation, and (ii) several 

years of systematic streamflow records are available. Two gages are chosen from 

Northern Utah, and one each from Central and Southern Utah. Stream gages at Weber 

River near Oakley and Chalk Creek at Coalville are chosen from Northern Utah. They 

both lie in Weber River Basin, a watershed that is composed of a flat, fertile valley east 

of the Great Salt Lake. The watershed contains approximately 2,060 square miles. The 

gage at Sevier River at Hatch is chosen from Southern Utah. The river flows North from 
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the headwater and then turns southwest 255 miles before reaching Sevier Lake (Berger et 

al. 2003). This river basin consists of 12.5 percent of state’s total area. The gage at 

Muddy Creek near Emery is selected from Central Utah which lies in the West Colorado 

River Basin. It drains portion of Emery and Wayne Counties. The creek begins on the 

eastern slopes of the Wasatch Plateau. It turns southward near the town of Emery, and 

then flows along the western edge of the San Rafael Swell. It has an estimated length of 

20 miles and a drop of 6000 feet before it combines with the Fremont River to form Dirty 

Devil River (McCord 1997). The geometric characteristic of watershed and stream for 

each selected gage are presented in Table 3.1. 

3.3    Background 

Streamflow depends on the distribution of the precipitation in time and in space as 

well as in the type and the state of the basin, which, in turn, depends on the climatic 

conditions (Sivakumar 2003). Annual streamflow is strongly related to long-term climate, 

therefore, streamflow at this scale may be forecasted using long-term climate 

information. The inputs representing those climatic conditions are incorporated in the 

model through popular oceanic-atmospheric oscillation indices. These oscillations have 

longer persistence, therefore, they are useful for long lead-time annual streamflow 

volume prediction. These are PDO, ENSO, AMO, and NAO. Use of appropriate 

oscillation modes is essential to develop a reasonable forecast. Such information is useful 

to improve the predictive accuracy of a streamflow model. A good forecast of streamflow 

provides accurate quantity of future water availability that could help water managers for 

planning and managing in order to maximize the efficiency of water use.  
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Predicting long lead-time streamflow with a physically based model is complex 

and is often limited by the extensive requirement of data. Therefore, a data driven model 

based on the machine learning approach, and using limited amount of data, is proposed 

here. Asefa et al. (2006) predicted multi-time scale streamflow using Support Vector 

Machine, Khalil et al. (2005a) predicted streamflow using Artificial Neural Network. 

This paper uses Multivariate Relevance Vector Machine (MVRVM) to predict annual 

streamflow volume for next few years in selected streams in Utah.  

3.4   Model Description 

The approach used for building a model for long-term streamflow prediction is 

based on a data driven model that uses Multivariate Relevance Vector Machine. This is a 

model of identical functional form to the Support Vector Machine developed by Vapnik 

(1995, 1998). The software to develop the model was obtained from Thayananthan 

(2005), University of Cambridge. This is an extension of the RVM algorithm developed 

by Tipping and Faul (2003). It retains all properties of conventional RVM, such as sparse 

modeling, high predictive accuracy, and estimation of uncertainty in the prediction. 

For a given input-target pair N

nnn tx 1},{ 
, in the training data set, the model learns 

the dependency of targets on the inputs with the objective of making accurate predictions 

of the target (t) for previously unseen values of input x (Tipping 2000; Tipping 2001).  

The targets are assumed to be samples from the model (y) with additive noise 

( ). The target can be written as sum of approximation vector 

T

Nxyxyy )](...),........([ 1  and the error vector T

N ),........( 1   which is independent 
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samples from some noise process and it is further assumed to be mean-zero Gaussian 

with variance 2 . The target vector is given by, 

 yt , 

   . w                                  (3.1) 

where T

Nttt ).......( 1 , T

Ni wwww ).....,...( 1 , T

Nxx )]().....([ 1  , 

wherein )(x is basis function. The basis function is expressed with a kernel as 

parameterized by the training vectors. The basis function is thus given by,  

T

Nnnnn xxKxxKxxKx )],(),.....,,(),,(,1[)( ,21 . 

The target nt is assumed to be independent so the likelihood of complete dataset is 

written as, 

),( 2wtp = }
2

1
exp{)2(

2

2

2/2 wtN 


 .      (3.2) 

Let i be the i
th

 component of the target vector t, and iw  be the weight vector for the i
th 

component of the output target vector t. This is Gaussian distribution which can also be 

written as, 

),( 2wtp 



n

i

iii wN
1

2
).,(   

To avoid overfitting, Tipping (2001) imposed some additional constraints on the 

parameters. The smoother function is made by imposing zero-mean Gaussian prior 

distribution over w. This prior ultimately leads to the sparsity of the model. The prior 

probability is given by, 







N

i

iiwNwp
0

1
),0()(  ,                                                   (3.3) 
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where T

N )....,.........( 0    is a vector of N+1 hyper-parameters. Each i  controls 

the strength of the prior over its associated weight (Tipping and Faul 2003).  

Bayes’ rule is used to compute the posterior over all unknowns given the data, 

),,( 2 twp 
)(

),,(),,( 22

tp

wpwtp 
 .                    (3.4)  

This term can’t be computed in fully analytical form, therefore, an approximation is used. 

Thus posterior term is decomposed as, 

),,( 2 twp  ),(),,( 22 tptwp  .                         (3.5) 

Given the data, the posterior distribution over the weights is Gaussian which is given by 

(Tipping 2001), 

),,( 2twp
),(

)(.),(

2

2





tp

wpwtp
 ,                                                                                

  )}()(
2

1
exp{.)2( 12/12/)1(    ww TN ,        (3.6)              

   = ),(
1

ri

N

i

iwN 


 . 

The posterior covariance and mean of the weight are 
12 )(   AT  and 

tT 2  respectively, where ),........,,( 10 NdiagA  .
 
The key point is that if 

any m , the corresponding 0m  (Thayananthan et al. 2008).  

Some approximation is adapted on the hyper-parameter posterior by the delta 

function at its mode, i.e., at its most probable values 
2, MPMP   (Tipping 2001), 

  222

*

222

* ),(),(),(),(  ddtptpddtp MPMP .               (3.7) 
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The learning then becomes the search for the hyper-parameter posterior mode, i.e., the 

maximization of ),( 2 tp   )()(),( 22  pptp with respect to  and 2 . For 

uniform hyperpriors over log and logσ, ),( 2 tp   ),( 2tp . In this case, one needs 

to maximize only ),( 2tp ,  

),( 2tp =  dwwpwtp )(),( 2  ,                                                          

                  })(
2

1
exp{)2( 112

2/1
122/ tAItAI TTTN 


   .           (3.8) 

Its maximization is known as type-II marginal likelihood method (Berger 1993). There is 

no direct solution to estimate the value of  and 2  that maximizes Eq. 3.8. Their value is 

computed by iterative re-estimation which yields,  

2

i

inew

i



  ,                            (3.9)                             

where  iiii N  1 .             

The term i  
is the i

th
 posterior mean weight and N is the number of data points. iiN  is 

the i
th

 diagonal element of the posterior weight covariance computed with the current  

and 2 . 

The noise variance is re-estimated from,  

ii

new

N

t











2

2 )( .                           (3.10)                               

The learning algorithm proceeds by repeated application of (3.9) to (3.10), 

together with updating the posterior statistics   and   until some specified convergence 
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criterion is met. It is found that value of i  generally approaches to infinity, which 

implies that ),,( 2twp i
becomes highly peaked at zero. This makes the model sparse 

(Tipping 2001). The relatively nonzero weights correspond to the input vectors that form 

the sparse core of the RVM model. These input vectors are called relevance vectors 

(RVs). This sparsity is an effective method to control model complexity, avoid over-

fitting and control computational characteristics of model performance (Tipping and Faul 

2003). 

The predictions are made based on the posterior distribution over the weights, 

conditioned on the maximizing values MP  and
2

MP . The predictive distribution for a 

new input *x  is given by, 

 dwtwpwtpttp MPMPMPMPMP ),,(),(),,( 22

*

2

*  .                           (3.11) 

This is easily computable because both terms in the integral are Gaussian, 

,),(),,( 2

***

2

*  ytNttp MPMP 
                                                             (3.12)

 

with, 

)( ** xy T ,                                                          

)()( **

22

* xx T

MP   .                                   

The total variance consists of sum of the variance of data and uncertainty in 

estimating weight. Interested readers for Relevance Vector Machine are referred to 

Tipping (2000), Tipping (2001), Tipping and Faul (2003), Thayananthan (2005), and 

Thayananthan et al. (2008). 
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3.5 Data Collection and Description 

3.5.1 Streamflow 

Unimpaired streamflow data were obtained for Weber River near Oakley, Chalk 

Creek at Coalville, Sevier River at Hatch, and Muddy Creek near Emery. Monthly 

average discharges for 1950- 2009 were collected from the U.S. Geological Survey 

(USGS). The values were then converted to annual flow volume using appropriate 

conversion factors. 

3.5.2 Pacific Decadal Oscillation (PDO) 

Pacific Decadal Oscillation (PDO) is a climate phenomenon associated with 

persistent, bi-modal climate patterns in the North Pacific Ocean. It is an interannual 

climate index which can be used as an integrator of overall winter climate condition in 

the North Pacific. The PDO also refers to a numerical climate index based on sea surface 

temperatures in a particular region of the North Pacific which has an interannual 

signature (Mantua and Hare 2002). The pattern of PDO is similar to Pacific climate 

variability of ENSO however it has longer persistence. The warm phase of PDO has 

similar effects as those of the warm phase of ENSO, and the cold phase PDO has similar 

effects as those of the cold phase of ENSO. PDO usually persists for 20 to 30 years (a 

particular phase of PDO typically persists for 25 years). Both indices have similar spatial 

climate fingerprints, but they have different behavior in time 

(www.jisao.washington.edu/pdo). The climatic fingerprint of PDO is most visible in the 

North Pacific region and a secondary signature exists in the tropics. This is opposite for 

ENSO. Monthly PDO data were obtained from the Joint Institute Study of Atmosphere 

http://www.jisao.washington.edu/pdo
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and Ocean, University of Washington (www.jisao.washington.edu/pdo), and annual 

averages were computed for 1945-2009 (Figure 3.2a). 

3.5.3 El-Niño Southern Oscillation (ENSO) 

The El-Niño Southern Oscillation is a complex ocean/atmospheric interaction that 

causes cyclical patterns of warming and cooling of the sea surface in the tropical Pacific 

with pronounced global climatic teleconnection (Daly 2008). El-Niño is a warm-phase, 

and La Niña is a cold phase. ENSO has characteristic return frequency of 4 to 6 years, 

and usually persists for 1 to 2 years. The Southern Oscillation is the oscillation of surface 

air pressure between the eastern and western tropical Pacific. When the surface pressure 

is high in the eastern tropical Pacific, it is low in the western tropical Pacific, and vice-

versa. El-Niño is responsible for flooding in some regions, while at the same time 

producing droughts in other regions. Several studies show it is associated with the 

streamflow variability in the western United States (Piechota et al. 1997). Not all El-Niño 

events are of the same intensity nor does the atmosphere always react in the same way 

from one El-Niño to another. There are several ways ENSO may be represented. 

Southern Oscillation index (SOI) is one way to represent it (Poveda et al. 2001), which is 

used in this chapter. The SOI is computed from the monthly fluctuation in air pressure 

difference between Tahiti and Darwin, Australia. The monthly SOI values were collected 

from www.cdc.noaa.gov/ENSO/ for 1945-2009. Annual averages were computed from 

the monthly value for the entire analysis period (Figure 3.2b). 

 

 

http://www.jisao.washington.edu/pdo
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3.5.4 Atlantic Multi-decadal Oscillation (AMO) 

The AMO index was introduced by Enfield et al. (2001) as a simple basin average 

of North Atlantic Ocean (0-70
o
) sea surface temperature (SST) anomaly. It consists of 

detrended SST anomalies for the previously defined Atlantic Ocean region. It is a near-

global scale mode of observed multi-decadal climate variability with alternating warm 

and cool phase over large parts of the Northern Atlantic Ocean, with cool and warm 

phases that may last for 20 to 40 years at a time and a difference of about 1°F between 

extremes. Many prominent examples of regional multidecadal climate variability have 

been related to AMO.  It affects air temperature and rainfall and river discharge over 

much of the Northern Hemisphere, in particular, North America and Europe (Enfield et 

al. 2001; McCabe et al. 2004; Sutton and Hodson 2005). When the AMO is in its warm 

phase, droughts tend to be more frequent and severe and vice-versa for negative AMO for 

North America. The unsmoothened monthly AMO data were obtained from 

www.cdc.noaa.gov/ClimateIndices/List/. The annual average of AMO was computed for 

1945-2009 (Figure 3.2c). 

3.5.5 North Atlantic Oscillation (NAO) 

NAO is a dominant mode of winter climate variability in the North Atlantic 

region ranging from Central North America to Europe and much into Northern Asia 

(http://www.ldeo.columbia.edu/res/pi/NAO/). This is a large scale see-saw in 

atmospheric mass between the subtropical high and polar low. The positive NAO means 

below normal pressure across the high latitudes of the North Atlantic, and above normal 

pressure over the Central North Atlantic, Eastern United States, and Western Europe. 

http://www.cdc.noaa.gov/ClimateIndices/List/
http://www.ldeo.columbia.edu/res/pi/NAO/
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This is opposite for its negative phase. The positive phase of NAO is associated with 

above-average temperature in the Eastern United States and across Northern Europe and 

below average temperature in Greenland and Europe. It has pronounced effect in regional 

changes in precipitation patterns (Dai et al. 1997; Hurrell 1995). The NAO index varies 

from year to year, but also exhibits a tendency to remain in one phase for intervals lasting 

several years. Monthly average NAO data were obtained from the National Center for 

Atmospheric Research (www.cgd.ucar.edu/cas/jhurrell/indices.html), and its annual 

averages were computed for 1945-2009 (Figure 3.2d).   

3.6    Model Development and Performance Criteria 

Inputs and output to the model are preprocessed according to the model 

requirements. The input consists of different combinations of annualized ocean-

atmospheric oscillation indices and output is annualized streamflow volume. The 

oscillation indices at time step t is used to predict annual streamflow volume at time step t 

+ i, where i= 1, 2, …5, in years. The data is divided into two parts: Training and Testing. 

The period 1950 to 1999 is used for training the model, and the period 2000 to 2009 is 

used for testing. The model parameter is optimized in the training phase and the 

performance of the model is measured based on root mean square error, correlation 

coefficient, and efficiency in the test phase. A Gaussian kernel is used in all model types. 

This is a widely used kernel function in learning machines. The input is feed to the 

Multivariate Relevance Vector Machine and annualized streamflow volume is predicted 

at specified lead time (t + i).  

http://www.cgd.ucar.edu/cas/jhurrell/indices.html
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Different model types are developed based on the different combination of 

oscillation modes in the input. Model 1 consists of using all four oscillation indices 

(PDO, ENSO, AMO, and NAO). This produces one model run for each lead-time. Model 

2 consists of dropping one oscillation index and using the remaining three oscillations to 

develop the model. This results in four model runs for each lead-time. Model 3 consists 

of dropping two oscillation indices and using remaining pair to develop the model. This 

results in a total of six model runs for a given lead-time. Model 4 consists of using only 

one oscillation index at a time. This results in four model runs for each lead-time. Model 

1 is a base case, while Model 2 to Model 4 gives the relative influence of ocean-

atmospheric oscillation indices for annual streamflow volume prediction for each selected 

gage. For each model type, the combination of oscillation indices and lead time 

corresponding to the best test result is identified. This optimal combination is used to 

develop forecast model for long lead-time annual streamflow volume prediction. For each 

lead time, the combination of oscillations that develops the best prediction is also 

determined. This shows the relative influence of oscillation for each lead time for each 

selected gage. The sensitivity analysis is performed to categorize the signal strength of 

each oscillation index for each selected stream gage. The prediction result from 

Multivariate Relevance Vector Machine is compared with Artificial Neural Network and 

Support Vector Machine. The comparison shows the relative performance of MVRVM to 

SVM and ANN. 

The performance of the model is evaluated based on RMSE, correlation 

coefficient and efficiency in test phase. 
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3.6.1 Root mean square error (RMSE) 

RMSE is a commonly used measure for model accuracy. Smaller the RMSE 

value, better the prediction result is. The best value of RMSE is zero.  

RMSE = 
n
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3.6.2 Pearson correlation coefficient (r) 

The correlation coefficient (r) measures the linear dependence between two 

variables. It may take any value between -1 and 1. The correlation coefficient close to ±1 

indicates strong correlation and close to zero indicates weak correlation. The correlation 
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where t  and 
*t are mean observed value and mean modeled value, respectively. 

3.6.3 Nash-Sutcliffe efficiency 

The Nash-Sutcliffe efficiency is commonly used to evaluate the performance of 

hydrologic models. It is mathematically expressed as (Nash and Sutcliffe 1970), 
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Nash-Sutcliffe efficiency ranges from negative infinity to 1. An efficiency of 1 

corresponds to a perfect match of model prediction to observed data. An efficiency of 

zero indicates that the model prediction is as accurate as the mean of the observed data. 

The negative efficiency indicates the observed mean is a better predictor than the model.  

3.7 Results  

3.7.1 Correlation coefficients 

The absolute value of correlation coefficient between ocean-atmospheric 

oscillation indices and annual streamflow volume for 1 to 5 year lead is shown in Figure 

3.3. The strength of the observed correlations suggests that large-scale climate indices 

may be useful predictors for future annual streamflow volume prediction. PDO has the 

highest correlation coefficient at a 3-year lead for the gage at Weber River near Oakley 

and that of Chalk Creek at Coalville, however, it is at a 1-year lead for the gage at Sevier 

River at Hatch and that of Muddy Creek near Emery. ENSO has highest correlation 

coefficient at a 1-year lead for Sevier River at Hatch and Muddy Creek near Emery, this 

is however, comparable to 3 and 4 years lead respectively. For Weber River near Oakley 

and Chalk Creek at Coalville, relatively higher correlation coefficient is obtained at the 4-

year lead. AMO has relatively higher correlation coefficient at 4- year lead for Sevier 

River at Hatch and Muddy Creek near Emery, however, relatively higher correlation 

coefficients are obtained at 1- and 2-year lead for the remaining stream gages. 

Comparison among longer lead time (3, 4 and 5 years) shows that higher correlation 

coefficients are obtained at 4 year lead. For NAO, the correlation coefficients increase 
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from 1 to 2 year lead and then drops at 3 and 4 year lead except for Chalk Creek at 

Coalville, where the correlation coefficient continuously increases from 1 to 5 year lead.  

Overall results show that relatively stronger correlation is obtained at 3- and 4 -

year lead for most of the cases. The tradeoff between the correlation coefficient and lead-

time shows a 3 or 4 year lead may be the optimal lead time for developing prediction 

models because it gives longer lead of forecast and performs better.  

3.7.2 Identification of best combination of oscillations  

and lead time for annual streamflow volume predictions 

Different models are developed based on the combination of oscillation indices in 

the input. The performance of the model for the different combinations is evaluated based 

on test phase RMSE. Figure 3.4 through Figure 3.7 shows test phase RMSE for 1- to 5-

year lead for Model 1 to Model 4 respectively. Since relatively higher correlation 

between individual oscillation index and annual streamflow volume is observed at 3- and 

4-year lead, it is quite obvious to obtain better results at similar lead times.  

Model 1  

Model 1 is a base case, where all four ocean-atmospheric oscillations are used to 

predict annul streamflow volume. For each gage, annual flow volume is predicted at 1 to 

5-year lead. Figure 3.4 shows the plot of test RMSE versus lead time for annual 

streamflow volume prediction. The smallest test RMSE is obtained at 4-year lead time for 

Weber River near Oakley and Muddy Creek near Emery. It is however obtained at 1-year 

lead for Chalk Creek at Coalville. The second and third best test RMSE are obtained at 3- 

and 4-year lead respectively. Since 1-year lead prediction is not very long lead prediction, 
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3 and 4-year lead may be used to develop the prediction model. For Sevier River at 

Hatch, the test RMSE is small at 3- and 5-year lead.  

Model 2 

Model 2 consist of dropping one oscillation index and using remaining three to 

develop prediction model. This consists of four model runs for each lead time. Figure 3.5 

shows the test RMSE for Model 2 at 1 to 5-years lead for each gage. The smallest test 

RMSE was obtained at the 4-year lead for Weber River near Oakley. This input 

corresponds to dropping NAO and using remaining three oscillation modes. Smallest test 

RMSE was again obtained at the 4-year lead for Chalk Creek at Coalville by dropping 

AMO. Dropping PDO at 4-year lead produces similar test RMSE. For Sevier River at 

Hatch, 3-year lead produces reasonable model prediction. This corresponds to dropping 

NAO and using remaining oscillation indices. The best test RMSE, however, is obtained 

at 2-year lead, where the input corresponds to dropping AMO. Comparable result is 

obtained by dropping PDO at 5-year lead. For Muddy Creek near Emery, 3- and 4-year 

lead produces relatively better result than other ones.  

Model 3 

Model 3 is developed by using a pair of ocean atmospheric oscillation modes at a 

time. This results in six model runs for each lead time. Figure 3.6 shows the test RMSE 

for Model 3 for 1- to 5-years lead. The best test RMSE is obtained from the pair of 

PDO+ENSO at 4-year lead for Weber River near Oakley. Three-year lead develops the 

best test RMSE for Chalk Creek at Coalville from ENSO+AMO pair, however, 

comparable result is obtained at 4-year lead. For Sevier River at Hatch, a pair of 
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PDO+NAO develops the best test RMSE at 2-year lead. PDO+ENSO also develop 

reasonable result at 3-year lead. PDO+NAO develop the best test RMSE at 2-year lead 

for Muddy Creek near Emery. Out of 6 combinations, 3 combinations results poor test 

RMSE at 2-year lead. The test RMSE at 4-year lead is relatively better than that of 3- and 

5-year lead, which corresponds to ENSO+AMO for input variables. 

Model 4 

Model 4 consist of using only one oscillation index at a time. This results in four 

model runs for each gage for each lead-time. Figure 3.7 shows the test RMSE for Model 

4 for each gage. ENSO develops the best model at 4 year lead for Weber River near 

Oakley. Comparable results are obtained from AMO at same lead time. For Chalk Creek 

at Coalville, AMO produces relatively smaller test RMSE than other oscillation indices. 

ENSO at 4 year lead develops comparable result.  For Sevier River at Hatch, PDO 

produces the best test RMSE at 2-year lead. Next to it, ENSO develops the best result at 

4-year lead. For Muddy Creek near Emery, ENSO, and PDO produces relatively better 

test RMSE at 1- and 2-year lead but when compared among 3-, 4-, and 5-year lead, 

ENSO and AMO predicts relatively better at 4-year lead.  

3.7.3 Prediction results from best identified combinations  

of oscillations for each model types 

The best model for each gage for each model type is presented in Tables 3.2 

through 3.5. They are evaluated based on RMSE, correlation coefficient, and efficiency 

in test phase. The table also presents the combination of the oscillation indices and lead-

time for the best model. In general, 4-year lead produces the best test results, which 
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develops reasonable model prediction and gives the long-lead forecast as well. This lead-

time is consistent with the correlation analysis performed in the earlier section. 

Using the best combinations of oscillations and corresponding lead time as shown 

in Table 3.2 through 3.5, annual streamflow volume is predicted for each gage for Model 

1 to Model 4 respectively. Prediction plots for each selected gage for Model 1 to Model 4 

are presented in Figures 3.8 through 3.11, respectively. For rows (a) to (d), the first and 

second columns show the plot for training and test phases, respectively. The third column 

shows the actual versus predicted annual flow volume for training phase, and the fourth 

column shows similar plot for the test phase. The model prediction is said to have good 

agreement with actual flow volume if the points saturates about the 45° line. The other 

line is a trend line. The first, second, third, and fourth rows corresponds to Weber River 

near Oakley, Chalk Creek at Coalville, Sevier River at Hatch, and Muddy Creek near 

Emery respectively. The fifth row shows 90 percent confidence interval of the mean 

prediction and sixth row is the residual plot for test phase. 

The results show the model has predicted annual flow volume reasonably well 

using ocean-atmospheric oscillation modes. A reasonable agreement is obtained between 

the actual volume and predicted volume. The plot of predicted versus actual streamflow 

volume shows the points are saturated about the 45-degree line, except for extreme flows. 

This is because the oscillation modes do not fully represent the underlying physical 

processes responsible for generation of streamflow. The residuals are relatively high for 

low flow but shows randomness in other flows in most of the plots, which is an indication 

that the model does not contain serious modeling problem. In general, this prediction 
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gives an idea about the future water availability which could be useful for planning and 

management of water for future in basin scale. 

3.7.4 Discussion and relative influence  

of oscillation indices 

Ocean-atmospheric oscillation indices carry important information about climate, 

hence, the hydrology of river basins in the many regions of the world can be correlated to 

those indices. These oscillation indices have long-term persistence, thus they can be used 

for long lead-time streamflow prediction. It is important to identify the influential and 

effective oscillation indices for a given stream gage location in order to predict the long 

lead-time streamflow reasonably well. Different model types were developed based on 

the combinations of those indices through a MVRVM model. Model 1 is a base case 

where all oscillations are used, while Models 2 through 4 used different combinations of 

oscillations. Results from the models show that the long lead-time streamflow is 

predicted satisfactorily for each of the selected gages. Comparing Model 2 to Model 4 

with the base case the relative influence of each oscillation index for each selected gage 

is estimated subjectively. They are categorized into weak, marginal and strong for each 

gage. The effect is said to be weak if the oscillation index doesn’t improve the prediction 

results compared to the base case (Model 1). If a particular index marginally improves 

the prediction results compared to the base case, the signal is said to have marginal 

strength.  Finally, the signal is strong if it significantly improves the prediction results. 

For the comparison, a 4-year lead time was chosen for all stream gages, except Sevier 

River at Hatch, where a 3-year lead time is chosen.  
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In Model 1, the best model prediction is obtained at a 4-year lead for all stream 

gages except the one at Sevier River at Hatch where best model prediction is obtained at 

a 3-year lead. The correlation coefficients between actual and predicted annual 

streamflow volume for the test phase are 0.53, 0.39, 0.56 and 0.38 for Weber River near 

Oakley, Chalk Creek at Coalville, Sevier River at Hatch, and Muddy Creek near Emery 

respectively. Similarly, their corresponding RMSE in test phase are 32.88, 16.76, 58.2, 

and 9.97 kilo ac-ft respectively. The best prediction result based on correlation coefficient 

is obtained at Sevier River at Hatch. The second best result is obtained at Weber River 

near Oakley, and the third best result is obtained at Chalk Creek at Coalville.  

In Model 2, the best test RMSE for the gages at Weber River near Oakley, Chalk 

Creek at Coalville, Sevier River at Hatch, and Muddy Creek near Emery are 29.44, 13.85, 

57.22 and 9.26 kilo ac-ft, respectively. Their corresponding correlation coefficients are 

0.67, 0.45, 0.62 and 0.58. In Model 2, best correlation is obtained at Weber River near 

Oakley. The second best correlation coefficient is obtained at Sevier River at Hatch. If 2- 

year lead is considered, the best test correlation coefficient (0.78) is obtained by dropping 

AMO for Sevier River at Hatch.  

For comparing Model 2 over Model 1, previously specified lead times were used. 

Based on the test RMSE, the model prediction showed good improvement over Model 1 

when NAO was dropped for the gage at Weber River near Oakley. Reasonable 

improvement was obtained when PDO was dropped. The model prediction for Model 2 

marginally deteriorates when AMO was dropped. However, the prediction deteriorated 

significantly when ENSO was dropped. For Chalk Creek at Coalville, significant 

improvement was obtained in model prediction compared to Model 1 by dropping AMO, 
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and PDO. Marginal improvement was obtained by dropping NAO, and ENSO. For Sevier 

River at Hatch, the prediction improved by dropping NAO. The result marginally 

deteriorated by dropping PDO, and it deteriorated significantly by dropping ENSO. For 

Muddy Creek near Emery, the prediction result marginally deteriorated by dropping 

PDO, and NAO individually. The result, however, significantly deteriorated when ENSO 

and AMO were dropped. If a 3-year lead is considered for the comparison, the model 

result significantly improved by dropping AMO compared to Model 1. The prediction 

marginally improved by dropping PDO and NAO, however, the result marginally 

deteriorated by dropping ENSO.  

Summarizing: 

 In the learning machine approach, the model prediction deteriorates by the use of 

trivial predictor variables. Since the prediction result improved by dropping NAO 

compared to Model 1 for Weber River near Oakley, NAO is not an influential 

ocean-atmospheric oscillation mode for annual streamflow volume prediction at 

this location. PDO and AMO have marginal influence, while ENSO has strong 

influence because the prediction results significantly deteriorated compared to 

Model 1 when it was dropped.  

 For Chalk Creek at Coalville, AMO and PDO are not influential oscillation 

indices because prediction results improved, compared to Model 1, when they 

were dropped. ENSO and NAO, however, had marginal influence as prediction 

results marginally improved compared to Model 1 when they were dropped.  

 NAO is not an influential oscillation index for Sevier River at Hatch because the 

prediction result improved when it was dropped. Since the result marginally 
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deteriorated by dropping PDO, it may have marginal influence on annual flow 

volume prediction. The prediction results, however, deteriorated significantly by 

dropping ENSO. Therefore, ENSO has a relatively stronger signal for annual flow 

volume prediction in the Sevier River at Hatch. 

 For Muddy Creek near Emery, PDO, and NAO has a marginal influence, and 

ENSO has a relatively stronger influence for annual flow volume prediction.  

Based on the correlation coefficient between actual and predicted volumes in test 

phase, the overall result of Model 3 improved over Model 1. The correlation coefficient 

in the test phase for the gages at Weber River near Oakley, Chalk Creek at Coalville, 

Sevier River at Hatch, and Muddy Creek near Emery are 0.72, 0.61, 0.87, and 0.82 

respectively. Similarly, corresponding best test RMSE for those stream gages are 33.95, 

19.01, 41.68, and 7.13 kilo ac-ft.  The best prediction was obtained from the combination 

of PDO and ENSO for Weber River near Oakley. For Chalk Creek at Coalville, ENSO 

and AMO produced the first best model, while PDO and ENSO produced the second best 

model predictions. For Sevier River at Hatch and Muddy Creek near Emery, PDO and 

NAO produced the best model prediction. Comparing, as before, at previously specified 

lead time, the combination of PDO and ENSO produced similar prediction results as 

those of Model 1, however, other pair deteriorated prediction results for Weber River 

near Oakley (Figure 3.7). For Chalk Creek at Coalville, prediction results marginally 

improved while using the ENSO and AMO combination. Other pairs of oscillation modes 

deteriorated the prediction result, in comparison. For Sevier River at Hatch, results 

significantly improved by using the PDO and ENSO pair, compared to Model 1.  The 

prediction result from the pair of ENSO and AMO was marginally different from 
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prediction results from Model 1. Other combinations of oscillation indices deteriorated 

the prediction for this particular location. For Muddy Creek near Emery, the combination 

of ENSO and AMO significantly improved the model prediction compared to Model 1. 

Next to it, the combination of PDO and AMO produced comparable results, however, this 

model was marginally poorer than Model 1. Other combinations significantly 

deteriorated the prediction result for this location. 

Summarizing: 

 For Weber River near Oakley, the combination of PDO+ENSO developed similar 

model predictions as that of Model 1. Therefore, they may be considered as 

influential ocean-atmospheric oscillation indices for this location. The 

combination of PDO with NAO, and PDO with AMO deteriorated the model 

prediction. The combination of ENSO with NAO, and ENSO with AMO also 

deteriorated the model prediction. This shows that NAO and AMO do not have 

strong influence on annual streamflow volume prediction at Weber River near 

Oakley.  However, PDO and ENSO have relatively strong influence in this 

location. 

 For Chalk Creek at Coalville, marginal improvement was obtained by using the 

ENSO+AMO pair over the base case, Model 1. The prediction marginally 

deteriorated from the combination of PDO+ENSO. Other combination pairs 

significantly deteriorated the prediction results. This shows that ENSO and PDO 

have a marginal influence, while other indices have a weak influence on annual 

streamflow prediction for Chalk Creek at Coalville. 
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 For Sevier River at Hatch, the combination of PDO+ENSO improved the model 

prediction compared to Model 1. Other combination pairs deteriorated the 

prediction results. Some pairs marginally deteriorated the prediction results, while 

other pairs did so significantly. These results show that PDO and ENSO have a 

relatively strong influence on annual flow volume prediction for Sevier River at 

Hatch, while other indices do not have such influence. 

 For Muddy Creek near Emery, the combination of ENSO and AMO improved the 

model prediction. Next to it, a combination of PDO and AMO developed the 

second best model prediction. ENSO and AMO, therefore, have relatively 

stronger influence and PDO has marginal influence. 

In Model 4, the best correlation coefficients in test phase for Weber River near 

Oakley and Chalk Creek at Coalville are 0.40 and 0.30, respectively. For Sevier River at 

Hatch, the correlation coefficient is 0.60 for the second best model, and 0.84 for the best 

model. For Muddy Creek near Emery, the correlation coefficient is 0.84 for the best 

model, and 0.35 for the second best model. The best RMSE in the test phase for Weber 

River near Oakley, Chalk Creek at Coalville, Sevier River at Hatch and Muddy Creek 

near Emery are 36.86, 19.72, 57.09, and 9.13 kilo ac-ft, respectively. Again, a previously 

specified lead time was used to compare Model 4 with the base case. 

For the gage at Weber River near Oakley, Model 4 did not improve the prediction 

results, but deteriorated them compared to Model 1. The predictions by using ENSO 

only, in this gage, were relatively better than using other oscillation modes. For Chalk 

Creek at Coalville, the result did not improve, however, the ENSO and AMO indices, 

individually, perform relatively better than other individual oscillation modes. For Sevier 
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River at Hatch, ENSO significantly improved the model prediction compared to Model 1 

for a 4-year lead. ENSO and PDO, individually, marginally deteriorated the results, while 

AMO and NAO significantly deteriorated the results for a 3-year lead. For Muddy Creek 

near Emery, there is no significant improvement in model prediction, compared to Model 

1, by using any of the oscillation indices individually.  However, for this location, the 

prediction from ENSO and AMO, used individually, performed relatively better than 

other individual oscillation indices. 

Summarizing: 

 For Weber River near Oakley, the prediction from Model 4 did not improve but 

deteriorated the results compared to Model 1. However, the model predictions by 

ENSO were relatively better than prediction from other oscillation modes. 

Therefore ENSO is said to have a relatively stronger signal than other oscillation 

modes for annual streamflow volume prediction in this location. 

 For Chalk Creek at Coalville, the prediction results did not improve compared to 

base case. However, ENSO, and AMO performed relatively better than other 

oscillation modes. Thus ENSO and AMO have marginal influences in this 

location, while PDO and NAO have weak signals. 

 For Sevier River at Hatch, ENSO, and PDO marginally deteriorated model 

predictions while AMO and NAO significantly deteriorated them. These results 

show that ENSO and PDO have marginal influence, while NAO and AMO do not 

have an influential signal in this location.  

 For Muddy Creek near Emery, ENSO and AMO performed marginally better than 

other oscillation modes. ENSO and AMO, thus, have relatively influential signals, 
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while the remaining two indices do not have influential signals for Muddy Creek 

near Emery. 

The strength of oceanic-atmospheric oscillations indices at each gage for Model 2 

to Model 4 are shown in Table 3.6 through Table 3.8. The results show that PDO and 

ENSO have relatively stronger signals than other oscillations, in general. PDO and ENSO 

possess strong to marginal influence for most of the stream gages. NAO and AMO, 

however, have weak to marginal signals for most of stream gages.  

In addition to fixing the lead time and finding the combinations of oscillation 

indices that produce the best predictions, the best combination of oscillations are also 

identified for each lead time in the range of 1- to 5-years (Table 3.9). The best predictions 

for each lead time resulted from different combinations of input indices at different 

locations of stream gages. This analysis shows that various combinations of oscillation 

indices can be used to enhance the predictions for different lead time. ENSO and PDO, 

however, frequently appeared than other oscillation indices in developing best model for 

long lead-time annual streamflow volume prediction.   

3.7.5 Comparison with SVM and ANN 

The prediction results of streamflow from MVRVM were compared to 

corresponding SVM and ANN in each model type (Model 1 to Model 4) for each selected 

gage. In general, MVRVM has predicted relatively better than SVM and ANN, however, 

the pattern of prediction are similar in each model type. The software to develop SVM 

model was obtained from SVM and Kernel Methods Matlab Toolbox (http://asi.insa-

rouen.fr/enseignants/~arakotom/toolbox/index.html). The software to develop ANN 

http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
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model was obtained from Aston University Engineering and Applied Science 

(http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/downloads/). This 

ANN model uses a Bayesian approach. Figure 3.12 shows the comparison of MVRVM 

results to SVM and ANN based on RMSE on test phase.  

 For Weber River near Oakley, MVRVM outperforms ANN and SVM in Model 3 

and Model 4, while ANN and SVM performs relatively better in Model 1. For 

Model 2, MVRVM performed better than ANN, but slightly poorer than SVM. 

 For Chalk Creek at Coalville, MVRVM outperforms ANN and SVM for Model 2, 

while SVM outforms others for Model 1. For rest of model types, prediction from 

MVRVM is better than ANN, however, prediction result for SVM and MVRVM 

are very similar.  

 For Sevier River at Hatch, MVRVM outperforms ANN and SVM for all model 

types (Model 1- Model 4). 

 For Muddy Creek near Emery, the prediction result is not very different among 

three model types, but MVRVM performs relatively betters than ANN and SVM 

in all model types. 

3.7.6 Generalization and robustness of model 

Bootstrap analysis gives the estimate of variability of test statistics with the 

change in training data. This analysis shows how robust the model is and how well it 

generalizes. It is a data-based simulation method for statistical inference (Efron and 

Tibshirani 1998). The idea is to randomly draw a large number of ‘resamples’ of size n 

from the original sample, with replacement. Although each resample has the same 

http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/downloads/
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number of elements as the original sample, it may include some of the original data 

points more than once, and some not included. The process forming the training set is 

random and the resulting data sets are treated as independent sets (Duda et al. 2000). 

Each of these resamples randomly departs from the original sample. From each bootstrap 

set, the bootstrap test statistic is computed in exactly the way as the real sample is used 

(Davidson and MacKinnon 2001). Since the elements in these resample vary slightly, the 

statistics calculated from these resample takes on slightly different value. A histogram of 

computed statistics, e.g., test RMSE is prepared. The width of the histogram is a measure 

of the robustness of the model. In this paper, bootstrap analysis was used for the best 

identified model for each selected gage for each model type. A total of 500 bootstrap runs 

were performed to construct the histograms. 2.5
th

 percentile and 97.5
th

 percentile values 

of test RMSE were computed. They are shown by the red dotted lines in Figure 3.13. The 

narrow bound of the resulting histograms shows that the model is robust. The test RMSE 

of the actual model also lies in between the two red dotted lines. This shows that the 

developed model is robust and consistent enough to use as a long lead-time streamflow 

prediction model. 

3.8 Conclusion 

The relationship between streamflow and climatic variability represended by 

ocean-atmospheric oscillation indices is a key point for annual streamflow volume 

prediction. This chapter identifies the best combination of oscillations and lead time for 

each of four selected stream gages in the state of Utah, and use them for the annual 

streamflow volume prediction. This chapter also presents the relative influence of each 
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oscillation index at each selected stream gage. The streamflow is predicted at 1- to 5-year 

leads using Multivariate Relevance Vector Machine (MVRVM), and the prediction 

results were refined using the optimal combination of oscillations and corresponding lead 

time. The model prediction showed satisfactorly results. Four Model types were 

developed. Model 1 is a base case where all four oscillation indices (PDO, ENSO, AMO 

and NAO) were used. Model 2, 3 and 4 were developed from individual or different 

combinations of oscillation indices. They may be used to evaluate the relative influence 

of oscillation indices for annual streamflow volume prediction. The best model prediction 

was usually obtained at the 4-year lead time. Although relatively better predictions were 

obtained at a 2- and 3-year lead time in some gages, the 4-year lead time produced 

comparable results.  ENSO and PDO generally predicted better than AMO and NAO for 

all gages. For the fixed lead time used in this paper (4 year, except for the gage at Sevier 

River at Hatch), ENSO and PDO showed strong to marginal influence, while AMO and 

NAO had weak signals for most of the cases, and marginal influences in some cases. The 

influencial oscillations can be useful to develop the accurate forecast model in the 

specified location of gages. In addition to this, combination of oscillations that predicts 

the best results for each lead time were also obtained. Different combinations of 

oscillations developed best predictions at different lead-time.  This information could be 

used to enhance the model prediction. In general, the model has predicted reasonably 

well from oceanic-atmospheric oscillation modes. The model however, did not perform 

well on capturing the extreme events. This shows the oscillation indices used in this 

research are not enough to represent the physical process associated with the generation 

of streamflow. The bootstrap analysis was used in order to test the robustness and 
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generalization capability of the model. The narrow bound of the resulting statistics 

histograms shows that the model is robust. Also, the actual test statistics lies in between 

2.5
th

 and 97.5
th

 percentile values, which indicates the model prediction is consistent and 

well generalized. The predictions from MVRVM were then compared to results from 

other statistical learning approaches, namely, ANN and SVM. The prediction results 

showed that MVRVM outperforms ANN and SVM. The pattern of prediction, however, 

remained the same in all machine learning models.  
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Table 3.1 Geometric characteristic of stream gages 

Site ID Name 
Basin    Stream                             Gage locations 

    Area (mi
2
) Length (mi) Slope Lat (°) Long (°) 

10128500 Weber River near Oakley 162.1 25.3 0.020 40.737 -111.247 

10131000 Chalk Creek at Coalville 248.3 37.5 0.010 40.921 -111.401 

10174500 Sevier River at Hatch 340 31.1 0.007 37.651 -112.430 

09330500 Muddy Creek near Emery   105 20.1 0.004 38.982 -111.249 
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Table 3.2 Best statistics, combination of oscillations, and lead time for Model 1 

Stream gage Correlation Test RMSE Efficiency Lead Combination of indices 

  Train  Test  (1000 ac-ft)   (year)   

Weber River near Oakley 0.43 0.53 32.88 0.08 4 All 

Chalk Creek at Coalville 0.48 0.39 16.76 - 4 All 

Sevier River at Hatch 0.34 0.56 58.2 0.22 3 All 

Muddy Creek near Emery 0.37 0.38 9.97 0.23 4 All 

 

 

 

Table 3.3 Best statistics, combination of oscillations, and lead time for Model 2 

Stream gage Correlation Test RMSE Efficiency Lead Combination of indices 

  Train  Test  (1000 ac-ft)   (year)   

Weber River near Oakley 0.39 0.67 29.42 0.261 4 Dropping NAO 

Chalk Creek at Coalville 0.94 0.45 13.85 0.202 4 Dropping AMO 

Sevier River at Hatch 0.62 0.62 57.22 0.246 3 Dropping NAO 

Muddy Creek near Emery 0.58 0.51 9.26 0.332 3 Dropping AMO 

Sevier River at Hatch 0.73 0.82 47.87 0.473 2 Dropping AMO* 

 

 

 

Table 3.4 Test statistics, combination of oscillations, and lead time for Model 3 

Stream gage Correlation Test RMSE Efficiency Lead Combination of indices 

  Train  Test  (1000 ac-ft)   (year)   

Weber River near Oakley 0.49 0.72 33.95 0.02 4 PDO+ENSO 

Chalk Creek at Coalville 0.57 0.61 19.01 - 4 PDO+ENSO 

Sevier River at Hatch 0.62 0.87 41.68 0.60 2 PDO+NAO 

Muddy Creek near Emery 0.90 0.82 7.13 0.61 2 PDO+NAO 



98 
 

 

Table 3.5 Test statistics, combination of oscillations, and lead time for Model 4 

Stream gage Correlation Test RMSE Efficiency Lead Combination of indices 

  Train  Test  (1000 ac-ft)   (year)   

Weber River near Oakley 0.41 0.40 36.86 - 4 ENSO 

Chalk Creek at Coalville 0.45 0.30 19.72 - 4 ENSO 

Sevier River at Hatch 0.49 0.60 58.26 0.218 4 ENSO 

Muddy Creek near Emery 0.14 0.35 10.15 0.199 4 AMO 

Sevier River at Hatch 0.36 0.84 57.09 0.249 2 PDO* 

Muddy Creek near Emery 0.47 0.84 9.13 0.351 2 PDO* 

*Second model 
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Table 3.6 Relative strength of oscillation modes from Model 2 

Stream gage 

Lead time 

(year) 

Signal strength 

Stronger  Marginal Weak 

Weber River near Oakley 4 ENSO PDO, AMO NAO 

Chalk Creek at Coalville 4 - ENSO, NAO AMO, PDO 

Sevier River at Hatch 3 ENSO PDO NAO 

Muddy Creek near Emery 4 ENSO PDO, NAO AMO 

 

 

 

Table 3.7 Relative strength of oscillation modes from Model 3 

Stream gage 

Lead time 

(year) 

Signal strength 

Stronger  Marginal Weak 

Weber River near Oakley 4 PDO, ENSO - AMO, NAO 

Chalk Creek at Coalville 4 - PDO, ENSO AMO, NAO 

Sevier River at Hatch 3 ENSO PDO AMO, NAO 

Muddy Creek near Emery 4 ENSO, AMO PDO  NAO 

 

 

Table 3.8 Relative strength of oscillation modes from Model 4 

Stream gage 

Lead time 

(year) 

Signal strength 

Stronger  Marginal Weak 

Weber River near Oakley 4 - ENSO PDO, AMO, NAO 

Chalk Creek at Coalville 4 - ENSO, AMO PDO, NAO 

Sevier River at Hatch 3 - ENSO, PDO AMO, NAO 

Muddy Creek near Emery 4 - ENSO, AMO PDO, NAO 
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Table 3.9 Combination of oscillations that produces best results for each lead time 

Lead time 

(year) 

Weber River near 

Oakley Chalk Creek at Coalville 

Sevier River at 

Hatch 

Muddy Creek near 

Emery 

1 ENSO and AMO PDO, ENSO, AMO, and NAO ENSO, AMO, and NAO ENSO, AMO, and NAO 

2 ENSO,AMO, and NAO PDO and ENSO PDO and NAO PDO and NAO 

3 ENSO,AMO, and NAO PDO, ENSO, and NAO PDO, ENSO, and AMO PDO, ENSO, and NAO 

4 PDO, ENSO and AMO PDO, ENSO, and NAO PDO, ENSO, and AMO ENSO and AMO 

5 ENSO and AMO ENSO, AMO, and NAO ENSO and AMO AMO 
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Figure 3.1 Location of the stream gages. 
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(a) 

 
  

(b) 

 
  

(c) 

 
 

  (d) 

 
Figure 3.2 Ocean Atmospheric Oscillation indices (a) PDO, (b) ENSO, (c) AMO, and (d) 

NAO. 
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(a)                                                                 (b) 

  
 

(c)                                                                   (d) 

  
Figure 3.3 Absolute value of correlation coefficient between the annual oscillation 

modes and annual flow volume for (a) PDO, (b) ENSO, (c) AMO, and (d) NAO. 
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(a)                                                                       (b) 

 
 

(c)                                                                     (d) 

 
Figure 3.4 Test RMSE at 1 to 5 year lead for annual streamflow volume prediction for 

Model 1. (a) Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River at 

Hatch, and  (d) Muddy Creek near Emery. 
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(a)                                                                 (b) 

 
 

(c)                                                                 (d)  

 
Figure 3.5 The test RMSE at 1 to 5 year lead for annual streamflow volume prediction 

for Model 2. (a) Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River 

at Hatch , and (d) Muddy Creek near Emery. 
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(a)                                                                  (b) 

 
 

(c)                                                                  (d) 

 
Figure 3.6 The test RMSE at 1 to 5 year lead for annual streamflow volume prediction 

for Model 3. (a) Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River 

at Hatch, and  (d) Muddy Creek near Emery. 
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(a)                                                                     (b) 

 
 

(c)                                                                       (d) 

 
Figure 3.7 The test RMSE at 1 to 5 year lead for annual streamflow volume prediction 

for Model 4. (a) Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River 

at Hatch, and  (d) Muddy Creek near Emery. 
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Figure 3.8 The plot of actual versus predicted annual flow volume for Model 1. (a) 

Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River at Hatch, (d) 

Muddy Creek near Emery, (e) 90% confidence interval of prediction in test phase for all 

gages, and (f) Residual plots of test phase for (a) to (d). 
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Figure 3.8 Cont. 
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Figure 3.9 The plot of actual versus predicted annual flow volume for Model 2. (a) 

Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River at Hatch, (d) 

Muddy Creek near Emery, (e) 90% confidence interval of prediction in test phase for all 

gages, and (f) Residual plots of test phase for (a) to (d). 
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Figure 3.9 Cont. 
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Figure 3.10 The plot of actual versus predicted annual flow volume for Model 3. (a) 

Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River at Hatch, (d) 

Muddy Creek near Emery, (e) 90% confidence interval of prediction in test phase for all 

gages, and (f) Residual plots of test phase for (a) to (d). 
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Figure 3.10 Cont. 
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Figure 3.11 The plot of actual versus predicted annual flow volume for Model 4. (a) 

Weber River near Oakley, (b) Chalk Creek at Coalville, (c) Sevier River at Hatch, (d) 

Muddy Creek near Emery, (e) 90% confidence interval of prediction in test phase for all 

gages, and (f) Residual plots of test phase for (a) to (d). 
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Figure 3.11 Cont. 
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Figure 3.12 Comparison between MVRVM, SVM and ANN based on RMSE in test 

phase. 
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Figure 3.13 The bootstrap analysis for the best models. First column is for Weber River 

near Oakley, second column is for Chalk Creek at Coalville, third column is for Sevier 

River at Hatch, and fourth column is for Muddy Creek. Similarly first row is for Model 1, 

second row is for Model 2, third row is for Model 3, and fourth row is for Model 

respectively.  
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CHAPTER 4  

4 MACHINE LEARNING REGRESSION APPROACH FOR PREDICTION OF 

GREAT SALT LAKE WATER SURFACE ELEVATION  

Abstract 

A data-driven model based on machine learning approach is used to predict the 

water surface elevation time series for the Great Salt Lake (GSL) at bi-weekly time step. 

For data-driven models, even if the data are scarce and the underlying processes are 

poorly understood, it is still possible to develop a model that produces reasonable 

predictions as demonstrated herein for the GSL. Support Vector Machines (SVM) and 

Relevance Vector Machines (RVM), popular data-driven models based on a machine-

learning approach, are used in this paper. The concept of phase construction is used to 

represent the underlying dynamics of the process, i.e., the reconstruction of a single 

dimensional series into a multi-dimensional phase space using two parameters, 

‘Embedding Dimension’ and ‘Time Delay’, which are estimated for GSL elevation 

series. The model is able to extract the dynamics of the system by using only a few 

observed data points for the training phase. The reliability of the algorithm in learning 

and forecasting the dynamics of the system is measured in the test phase. The GSL is 

divided into two arms by a rock-filled causeway which results in significant differences 

in water level between them. The water surface elevation is, therefore, predicted for both 

arms of the lake for two time periods; 1982 to 1987, and 1991 to 2008. The period of 

1982 to 1987 is used to test the model performance for a dramatic rise of GSL water 

surface elevation, while the period of 1991 to 2008 is used to test the performance of the 
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model for the normal rise-fall of lake elevation. Results indicate that the predicted lake 

level is in good agreement with the actual lake level measured. The bootstrap analysis 

shows the model is robust and well generalized. 

4.1    Introduction 

Record breaking rises of the Great Salt Lake (GSL) water levels were observed 

between the years 1982 to 1987. These lake level rises resulted in severe economic 

impact to the State of Utah because the resulting floods damaged highways, railways, 

recreation facilities and industries located in the exposed lake bed. More precise 

predictions of GSL level may provide crucial information for planning and decision 

making processes in order to reduce the impact of the rising lake level. This process 

necessitates the development of a model capable of predicting the lake elevation 

accurately well ahead of the time. Lall et al. (1996) predicted GSL volume series in a 

short-term basis. The present research predicts the GSL elevation at biweekly time step 

for next few months.  

Lorenz (1963) stated that time series of chaotic systems carry enough information 

about the system’s behavior in order to predict its future behavior. Chaotic systems are 

nonlinear, dynamic, highly sensitive to initial conditions, fully deterministic, and can be 

modeled using state-space reconstruction according to the time-delay embedding theorem 

(Koutsoyiannis and Pachakis 1996). Many hydrologic systems have been observed to be 

chaotic, therefore, the analysis of chaotic systems is nowadays an important tool in 

hydrology.  

 In this paper, one-dimensional time series of the lake elevation is used to develop 
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a multi-dimensional phase space using the embedding dimension and time delay 

parameters. This reconstruction is a way of approximating the unknown function that 

describes the state evolution of the chaotic system (Abarbanel 1996). The multi-

dimensional phase space is used to predict the lake elevation through a data-driven model 

based on the machine learning approach. 

Prediction of lake elevation using physically-based model requires modeling 

complex physical processes. The complexities inherent in these models, and the 

difficulties associated with the corresponding data acquisition, limit the applicability of 

such models. Usually, the underlying process may not be fully understood, resulting in 

the use of a simplified approach. The data driven model is hence used for the GSL 

elevation prediction. Support Vector Machines (SVM) and Multivariate Relevance 

Vector Machines (MVRVM) are used to predict the GSL time series using reconstructed 

multi-dimensional phase space. Both of these models have strong regularization 

capability, ability to quickly capture the underlying physics of the system by relating 

input and output and provide accurate predictions of system behavior. Using these 

models, the GSL water level is predicted for two time periods: 1982 to 1987, and 1987 to 

2008. The GSL is divided into two arms by a rock-filled causeway which results in 

significant differences in water level between them. The lake level, therefore, is predicted 

on both arms of the GSL. 

4.2    Study Area and Data Collection 

The Great Salt Lake is the largest U.S. Lake West of the Mississippi River and is 

the world’s fourth largest terminal lake. It is about 75 mile long and 28 mile wide. It has 
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maximum depth of about 35ft. It is a remnant of Lake Bonneville, a prehistoric 

freshwater lake that was 10 times larger than the current GSL size. The GSL drains water 

from three states: Utah, Idaho and Wyoming. The drainage area of the GSL is 90,000 

km
2
. The lake has three major rivers draining into it: the Bear River, the Weber River, 

and the Jordan River. The lake is divided into two arms by a rock-fill causeway: the 

northern arm and the southern arm. There exists an elevation difference between two 

arms due to unequal rate of inflow and evaporation loss (water balance) from each arm of 

the lake. The difference in elevation started building up, and became significant, from the 

mid-1980s on. The U.S. Geological Survey (USGS) operates gages that collect water-

surface elevation data in the southern arm of the lake at the Boat Harbor Gage (USGS 

station 10010000), and on the northern arm of the lake at the Saline Gage (10010100)  

(http://ut.water.usgs.gov/greatsaltlake/). Water surface elevation data was collected from 

both stations for the training and prediction time periods used in the present study. The 

details of GSL elevation data and its characteristics are shown in the Appendix.  A map 

of the GSL is shown in Figure 4.1. 

4.3    Model Description 

4.3.1 Support Vector Machine 

Support Vector Machine is a supervised machine learning model used for 

regression in this research. Vapnik and his co-workers developed SVMs regression 

(Vapnik 1995), which is the extension of SVM classification developed in 1990’s. SVMs 

are very specific class of algorithms, characterized by usage of kernels, absence of local 

minima, and sparseness of the solution. SVM utilizes a small subset of training points 

http://ut.water.usgs.gov/greatsaltlake/
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which gives enormous computational advantages. The use of epsilon-insensitive loss 

function ensures the existence of a global minimum and the optimization of reliable 

generalization at the same time. In SVMs, a non-linear function is produced by a linear 

learning-machine mapping into a high-dimensional kernel-induced feature space. The 

basic requirement of the kernel is that it must satisfy the Mercer’s theorem (Vapnik 1995, 

1998). A global optimum is ensured through the formulation of a quadratic optimization 

problem which makes SVMs superior to traditional learning machine algorithms. The 

capacity of the system is controlled by parameters that do not depend on the 

dimensionality of the feature space.  

SVM has been successfully used in a variety of hydrological problems. They have 

been used from multi-time scale streamflow prediction to groundwater head observation 

networks design ( Asefa et al. 2004, 2006). A description of the SVM approach is given 

next. 

For a given data set )},(..........),........,{( 11 ll yxyx , where X denotes the space 

of the input patterns, the goal is to find a functional dependency )(xf  between inputs x 

and target y taken from the set of independent and identically distributed observations. 

The SVM regression is formulated through the minimization of the following objective 

function: 

Minimize 



L

i

iiCw
1

*2
)(

2

1
                                       (4.1)                        

Subject to,    

iii bxwy   ,                                
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where
 

bxwxf  ,)( , xw,  denotes the dot product of w and x, x is the input vector, 

w is the weights vector norm,   is Vapnik’s insensitive loss function, C is the cost 

parameter, and  b is the bias.  

The first term of Eq. 4.1 is a regularization term which avoids the ill-posedness of 

the estimation problem (Gill et al. 2006; Tychonoff and Arsenin 1977). The second term 

is the epsilon-insensitive loss function, which represents a discrepancy between the actual 

measurement and estimated values. SVM performs the regression using  -insensitive 

loss functions and, at the same time, tries to reduce model complexity by 

minimizing
2

w . The loss function can be described by introducing (non-negative) slack 

variables *, ii 
 

ni ,...1  to measure the deviation of training samples outside the  -

insensitive zone (Figure 4.2). The slack variables determine the degree to which samples 

with error greater than   are penalized. The formulation imposes sparseness in the 

solution as errors that are less than   are ignored (Figure 4.2). For any error smaller 

than , i =0 and
*

i =0. The corresponding point, thus, does not enter into the objective 

function. This makes the model sparse. The procedure has computational advantages and 

important implications in hydrological applications.  

The Lagrange function (L) is constructed from the objective function and the 

corresponding constraints by introducing a dual set of variables (Vapnik 1995) (Eq. 4.2),  
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where ,
** ,,   are Lagrange multipliers. The saddle-point condition states that the 

partial derivative of L with respect to primal variables (
*,,, bw ) have to vanish for 

optimality. Differentiating L with respect to primal variables and substituting, we can 

obtain the minimum value of L. The resulting minimum-L is then maximized with respect 

to the dual variables. The Lagrange multipliers  and *  are found by maximizing the 

dual functional subject to constraints. The dual maximization problem then can be written 

as follows: find  and * to  

Max   
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Subject to, 
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The approximating function is then written as, 

bxxxf
N

i

iii 
1

* ,)()(  ,                                                              (4.4) 

where ix ’s are support vectors. The number of support vectors (N) is much smaller than 

the total number of data points in training (L).  

Non-linearity is introduced by preprocessing the training data into a higher 

dimension through a kernel function. By replacing the inner product through an 

appropriately chosen kernel function, one can implicitly perform a nonlinear mapping to 

a high dimension feature space without increasing the number of tunable parameters. 
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The approximating function can be upgraded to, 

,),()()(
1

*
bxxkxf

N

i

iii 



       (4.5)

 

where ),( ixxk  is the kernel function that replaces the dot product of the input data. It 

approximates the transformation of input data into high dimension feature space and 

corresponding dot product in feature space. From the Kuhn-Tucker condition, the product 

between the dual variable and constraints should vanish for optimality. This shows that 

the Lagrange multiplier is zero inside the  -tube and non zero outside of it. The sample 

points with non-vanishing coefficients fit the data, which are called support vectors. The 

number of support vectors is small relative to the size of data set, yielding a sparse 

solution. The support vectors carry all the information necessary to determine the optimal 

solution.  

There are mainly three model parameters in SVM. They are the cost parameter 

(C), the insensitive parameter ( ), and the kernel parameter used in the kernel function. 

Parameter C determines the trade off between minimizing the regularization and 

minimizing the loss function. Increasing the cost parameter increases the cost of error and 

forces the creation of a more accurate model, however, this may not generalize well. 

Epsilon () controls the width of insensitive zone in training data set. The data points with 

error values less than epsilon are ignored hence don’t enter into the objective function. 

This ensures the sparseness solution that leads computational advantage over other 

models. Higher values of epsilon produce a few support vectors resulting in flat 

estimation while small value of epsilon produces large number of support vectors. 

Optimum combinations of model parameters are estimated from the grid search method 
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of cross validation.  Selecting a particular kernel function and corresponding kernel 

parameter is usually based on knowledge of the application domain. The choice of kernel 

function is usually heuristic; however, it may be selected by comparing the test result 

from different kernel types. In hydrological problems, the Gaussian kernel is commonly 

used (Tripathi and Govindaraju 2006). Interested readers for SVM are referred to Vapnik 

(1995, 1998). The software to develop SVM model was obtained from SVM and Kernel 

Methods Matlab Toolbox (http://asi.insa-

rouen.fr/enseignants/~arakotom/toolbox/index.html). 

4.3.2 Relevance Vector Machine 

Relevance Vector Machine is a supervised learning model based on Bayesian 

learning. RVM has been successfully applied to resolve water resource management 

problems (Khalil et al. 2005a, 2005b; Ticlavilca 2010). The software to develop the 

model was obtained from Thayananthan (2005), at the University of Cambridge, 

England. This is an extension of the sparse Bayesian model developed by Tipping and 

Faul (2003). 

For the given input-target pair N

nnn tx 1},{ 
 in a training data set, the model learns 

the dependency of the targets on the inputs with the objective of making accurate 

predictions of the target t for previously unseen values of input x (Tipping 2000, 2001).  

The targets are assumed to be samples from the model (y) with additive noise 

( ). The target can be written as sum of an approximation vector 

T

Nxyxyy )](...),........([ 1  and the error vector T

N ),........( 1   .  The errors are 

http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
http://asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html
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independent samples from some noise process, assumed to be mean-zero Gaussian with 

variance 2 .  The target vector can be written as, ,).......( 1

T

Nttt   

where  , yt   

             . w                          (4.6) 

The weight vector (w) is expressed as T

Ni wwww ).....,...( 1 , and   is the 

design matrix of size N× (N+1). The design matrix is expressed as 

T

Nxx )]().....([ 1  , wherein )(x is a basis function which is expressed with 

kernel as parameterized by the training vectors. The basis function is thus given by,  

T

Nnnnn xxKxxKxxKx )],(),.....,,(),,(,1[)( ,21 . 

The target nt is assumed to be independent, therefore, the likelihood of the 

complete data is written as, 

 ),( 2wtp = }
2

1
exp{)2(

2

2

2/2 wtN 


 .             (4.7) 

Let i be the i
th

 component of the target vector t, and iw  be the weight vector for the i
th 

component of the output target vector t such that T

Ni wwww ).....,...( 1 . This is a 

Gaussian distribution which can also be written as, 

),( 2wtp 
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iii wN
1

.

2
.),( 

 

The model has roughly as many parameters as in the training set. This causes the 

maximum likelihood estimation of w  and 2  of the model to be severely over-fitted.  To 

avoid this, Tipping (2001) imposed an explicit prior probability distribution over them, 

which ultimately leads the sparsity of the model. The prior probability is given by, 
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where T

N )....,.........( 0    is a vector of N+1 hyper-parameters. Each i  controls 

the strength of the prior over its associated weight (Tipping and Faul 2003). Bayes’ rule is 

used to compute the posterior over all unknowns given the data, 
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  .                   (4.9) 

This term can not be computed in fully analytical form, therefore, some approximation is 

used. The posterior term is decomposed as: 

),(),,(),,( 222 tptwptwp   .                        (4.10) 

Given the data, the posterior distribution over the weights is given by (Tipping 2001), 
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The posterior covariance and mean of the weight are 12 )(   AT and tT 2  

respectively, where ),........,,( 10 NdiagA  . The key point is that if any m , the 

corresponding 0m . 
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An approximation for the hyper-parameter posterior is adapted by using a delta 

function at its mode,  i.e., at its most probable values 
2, MPMP   (Tipping 2001), 

  222

*

222

* ),(),(),(),(  ddtptpddtp MPMP .               (4.12) 

The learning process then becomes the search for the hyper-parameter posterior 

mode, i.e. the maximization of )()(),(),( 222  pptptp  with respect to  and 

2 . For uniform hyperpriors over log and logσ, ),(),( 22  tptp  , which is further 

given by, 

 dwwpwtptp )(),(),( 22  ,                                                                     

                  })(
2

1
exp{)2( 112

2/1
122/ tAItAI TTTN 


   .           (4.13) 

This quantity is known as marginal likelihood and its maximization is known as the type-

II maximum likelihood method (Berger 1993). Eq. 4.13 is solved by iterative re-

estimation which gives,  

2

i

inew
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  ,                            (4.14)                             

where  iiii N  1 . 

The term i  
is the i

th
 posterior mean weight and N is the number of data examples. iiN  

is the i
th

 diagonal element of the posterior weight covariance computed with the current  

and 2 . The noise variance is re-estimated from, 
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The learning algorithm proceeds by repeated application of (4.14) to (4.15), 

together with updating of the posterior statistics   and   until specified convergence 

criteria are met. The value of i  generally approaches to infinity which implies that 

),,( 2twp i
becomes highly peaked at zero that makes the model sparse. The relatively 

nonzero weights correspond to the input vectors that form the sparse core of the RVM 

model. These input vectors are called relevance vectors (RVs). This sparsity is an 

effective method to control model complexity, avoid over-fitting and control 

computational characteristics of model performance (Tipping and Faul 2003). 

The predictions of output are made based on the posterior distribution over the 

weights, conditioned on the maximizing values MP  and
2

MP . The target ( *t ) for new 

input *x , 

 dwtwpwtpttp MPMPMPMPMP ),,(),(),,( 22

*

2

* 
 

This is readily computed because both terms in the integral are Gaussian, 

),,(),,( 2

***

2

*  ytNttp MPMP         (4.16)                                 

with, )( ** xy T ,                             

         )()( **

22

* xx T

MP   .      

The total variance consists of sum of the variance of data and uncertainty in estimating 

the weight.  

Interested readers for Relevance Vector Machine are referred to Tipping (2000; 

2001), Tipping and Faul (2003), Thayananthan (2005), and Thayananthan et al. (2008).         
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4.4 Model Formulation and Application 

The time series of a chaotic system itself carries enough information about the 

behavior of system in order to make predictions (Lorenz 1963). They can be modeled 

using state-space reconstruction via a time-delay embedding theorem (Koutsoyiannis and 

Pachakis 1996).  This theorem states that, given a recognized state-space representation 

of chaotic time series, a full knowledge about the system behavior can be obtained 

through estimation of the time delay and the embedding dimension (Takens 1981). 

Traditional linear time series analysis models are insufficient to adequately describe the 

dramatic rise and fall of GSL elevation/volume (Lall et al. 1996) that occurred in the 

period 1982-1987. One reason for such inadequacy may be the fact that there is not 

enough information prior to this event within just one-dimensional time series output of 

the system. This opens up the possibility of investigating whether there is a set of 

differential equations that are responsible for generation of the single time series hence 

investigation of chaos by unfolding the dynamics through representation of the data in 

multi dimensional state space (Khalil et al. 2006). 

The underlying physical and other processes responsible for the evolution of GSL 

elevation dynamics are not considered in this paper. The observed past water surface 

elevations of the lake are used as input. From the one dimensional variable )(ty , a 

multivariate state space is constructed in which the dynamics unfolds by creating vectors 

of dimension d at time delay ( ). This is called reconstruction space where the dynamics 

of the original chaotic system can be reconstructed, i.e.,   

)).(()1( tyFty   
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This implies, 

).....,,( )1(    dtttt yyyfy ,                                                                      (4.17) 

where d is embedding dimension, which is total number of time delay co-ordinates 

required to develop phase construction, and   is the time delay. The mapping function 

f is estimated by minimizing the regularized risk functional. Both SVM and MVRVM 

have strong regularization capability. The objective of the learning machine is to estimate 

an unknown real valued function, ty , that is capable of making accurate predictions of 

output for previously unseen value of input. Using this model, the GSL water surface 

elevation can be predicted at biweekly time steps, t+  in future. 

4.4.1 Estimating time delay and system dimension 

This paper uses the Average Mutual Information (AMI) function and the False 

Nearest Neighbor method for the estimation of time delay and dimension of chaotic 

system respectively. In Average Mutual Information, the regular measurements and time 

lagged measurements is easy to evaluate directly from the time series and easy to 

interpret (Abarbanel 1996). False Nearest Neighbor method is commonly used and 

matured method for estimating system dimension. This is simple and fast method. 

Average Mutual Information 

The mutual information between measurement ia  drawn from a set A= { ia } and 

measurement jb  drawn from a set B= { jb } is the amount learned by the measurement of 

ia  about the measurement of jb . In bits, this information is measured as 
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where ),( baPAB is the joint probability density for measurements A and B resulting in 

values a and b. )(aPA  and )(bPB are the individual probability densities for the 

measurements of A and B, respectively. If the measurement of a value from A resulting 

in ia  is completely independent of measurement of a value from B resulting in 
jb , then 

),( baPAB = )(aPA )(bPB  and amount of information between the measurements, the 

mutual information is zero. The average over all measurements of this information 

statistic, called the average mutual information between A measurements and B 

measurement, is  
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This is a theoretic idea which connects two sets of measurements with each other and 

establishes a criterion for their mutual dependence based on the notion of information 

connection between them. In our case, the average mutual information between 

measurement )(ty  at time t are connected in an information-theoretic fashion to 

measurements )( ty at time t  by 
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By general arguments, 0)( I  (Gallager 1968). When   becomes large, the 

chaotic behavior of the signal makes the measurements )(ty  and )( ty  become 

independent in a practical sense, and )(I will tend to zero. The   must be large enough 
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that independent information about the system is in each component of vector, however, 

it must not be too large that the components of the vectors y(t) are independent enough 

that they will not contain any new information (Abarbanel 1996). The practical way of 

choosing   is when the average mutual information has its first minimum (Fraser 1989; 

Fraser and Swinney 1986). 

False Nearest Neighbor 

The global embedding dimension, or actual system dimension, d, is the minimum 

number of time delay coordinates needed so that the trajectories y(t) do not intersect in d 

dimension. In dimension less than d, trajectories can intersect because they are projected 

down into too few dimensions. Subsequent calculations, such as predictions, may then be 

corrupted. When embedding dimension is large (>>d), noise might occupy the 

embedding space (Khalil et al. 2006) which eventually may deteriorate the prediction.   

A false nearest neighbor is a widely used method to estimate the optimum 

embedding dimension for phase space reconstruction. This method increases the 

embedding dimension by one at each step (from embedding dimension d to d+1),  and 

counts the percentage of points for which its nearest neighbor falls apart with the addition 

of a new component and, therefore, these points are called false nearest neighbors. This 

means the points apparently lying close together due to projection are separated in higher 

embedding dimensions. The estimated d is the one that first gives the insignificant 

percentage of false nearest neighbors. We state this criterion by designating as a false 

nearest neighbor, any neighbor for which the following is valid (Kennel et al. 1992), 
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where t and rt are the times corresponding to the neighbor and reference point, 

respectively. dR  denotes the distance in phase space with embedding dimension d, and 

totR  is the tolerance threshold.  

The output produced by the function is the percentage of FNN versus increasing 

d.  This function has monotonic decreasing graph. The optimal d usually can be found 

near the crossing of the 10 to 20 percent threshold (Kennel et al. 1992). The “fractal” 

package in R is implemented to estimate the system dimension of Great Salt Lake water 

surface elevation. 

4.4.2 Performance Criteria 

Model validation is defined to mean “substantiation that a computerized model 

within its domain of applicability possesses a satisfactory range of accuracy consistent 

with the intended application of the model” (Schlesinger 1979). Statistical measures, 

which are objective in nature, can be employed for evaluating the performance of the 

model in testing phase, hence validating the model. Among the various statistical 

measures, the Nash-Sutcliffe efficiency, the root mean square error, and the bias are used 

in this paper. 

Root Mean Square Error (RMSE)  

Mathematically, the root mean square error (RMSE), is expressed as, 
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where it is observed value, *

it  is prediction from the model and n is number of sample 

size. The smaller the value of RMSE, the better the prediction result is. The ideal value of 

RMSE is zero. 

Bias 

Bias is a mean difference between the actual and predicted values, i.e.,   

Bias= .)(
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The ideal value of the bias is zero. 

Nash-Sutcliffe efficiency 

The Nash-Sutcliffe efficiency index is used to evaluate the predictive power of the 

hydrologic models. Mathematically it is expressed as, 
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where t  is mean observed value. Nash-Sutcliffe efficiency ranges from negative infinity 

to 1. An efficiency of 1 corresponds to a perfect match of model prediction to observed 

data. An efficiency of zero indicates that the model prediction is as accurate as the mean 

of the observed data. The negative efficiency indicates that the observed mean is a better 

predictor than the model.  
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4.5    Results 

4.5.1 Parameter estimations 

Average Mutual Information function is used for the estimation of . Figure 4.3 

shows that the AMI function hits its first minimum at  =10 for north arm. Therefore   is 

estimated to be approximately 10 for GSL elevation series. For the sake of GSL elevation 

prediction, a range between 8 and 14 is, therefore, used.  

Past researchers (Abarbanel 1996; Sangoyomi 1993; Sangoyomi et al. 1996)  

estimated system dimension of GSL volume series approximately 4. Using False nearest 

neighbor method, the actual system dimension of GSL elevation is estimated to be 

approximately 3 (Figure 4.4). 

Usually, the use of an embedding dimension smaller than 3 deteriorates the model 

prediction, while an embedding dimension larger than 3 improves. The embedding 

dimension of 2d+1 is sufficient to unfold the trajectories (Sangoyomi et al. 1996). The 

embedding dimension is selected in order to sufficiently describe the evolution of the 

system. When the embedding dimension is too small, the state-space is said to be not 

fully unfolded, and when it is large, noise might occupy the embedding space (Khalil et 

al. 2006) which eventually deteriorates the prediction.  

Table 4.1 shows the example for multivariate state space construction from a 

single dimensional series consisting 40 observations using d=5 and τ=8. The first four 

columns are inputs and the last column is output. These data are further divided into 

training and a testing set. In the example problem, the first five rows are used for training 

and the last three rows are used for testing.  
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The parameters d and   for the GSL elevation time series are estimated to be 3 

and 10, respectively. Therefore the values of embedding dimension (d) used is between 3 

and 9 and values of time delay ( ) is used in between 8 and 14. Using the combinations 

of d and , a multi-dimensional phase space is constructed from the single dimensional 

series of lake elevation. The value  =8 predicts the lake elevation for the next 4 months 

at biweekly time step, while  =14 predicts the lake elevation for the next 7 months. The 

model is trained and its performance is evaluated in the test phase based on the Nash-

Sutcliffe efficiency, the RMSE, and the bias.  

4.5.2 Support Vector Machine 

GSL elevation was predicted for multiple lead times using different combinations 

of time delay and embedding dimension. The combination of d=3 and τ=8 predicted 

better, which corresponds to prediction at biweekly time step for next 4 months. The 

result is shown in Figure 4.5.  We can see that SVM predicts the GSL water level fairly 

accurate. The predicted water surface elevation has reasonable agreement with observed 

water surface elevation of the lake. The model developed, therefore, has appropriately 

captured the evolution of lake elevation. The plot of predicted versus actual elevation are 

tightly grouped around the 45° line, which shows their values are fairly similar. Residual 

plots (Figure 4.5e) appear to be random, which is persuasive evidence that the model has 

no serious deficiencies. Table 4.2 summarizes the training and testing periods, resulting 

bias, RMSE, and efficiency for the results presented in Figure 4.5. South and North refer 

to the southern and northern arms of the GSL. In all the cases, high values of efficiency 
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(>0.85) were obtained, and the test results were consistently good. This supports the idea 

that the SVM model developed is consistently accurate and reliable.  

4.5.3 Effect of embedding dimension in model  

prediction for SVM 

Figure 4.6 shows test RMSE versus embedding dimension for SVM for each time 

delay. The plot shows that the best test RMSE is usually obtained at d=3. This dimension 

is equal to the actual dimension of the GSL elevation series. With the increase of d to 5, 

the model result did not improve. This may be because the dynamic of the system is not 

fully unfolded. When d is increased to 7, which correspond to 2d+1, where the dynamics 

of the system fully unfold, the test result improved.  

Figure 4.7 shows the efficiency versus embedding dimension for the GSL 

elevation prediction. Good predictions were normally obtained using  =8 and 10, where 

10 is the estimated time delay for GSL elevation series. The prediction using  =13 and 

14 are poor. When   is large, the chaotic behavior of the signal makes the measurements 

)(ty  and )( ty  independent in a practical sense. Therefore, GSL water level prediction 

using  =13 and 14 are not used for the analysis.  

As before, the efficiency is high at d= 3. With the increase of d to 5, the test 

results slightly deteriorated. The test result is improved at d=7. Further increase in d 

deteriorated the prediction because of intrusion of noise in the system.  

4.5.4 Relevance Vector Machine 

MVRVM model was again used to predict GSL elevation for multiple lead times 

using different combination of time delay and embedding dimension. Some results are 
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shown in Figure 4.8, where lake level was predicted at biweekly time step for next 4 

months. MVRVM predictions of the GSL water level are reasonably accurate. The 

predicted water surface elevations have reasonable agreement with observed water 

surface elevation of the lake. The model has appropriately captured the evolution of lake 

elevation. The plot of predicted versus actual elevation are tightly saturated around the 

45° line, which indicates their values are fairly similar. Uncertainty is captured through 

confidence interval of predictions. The residual plots are random, which indicates there is 

no serious problem in the modeling lake elevations. Table 4.3 summarizes the training 

and testing periods, resulting bias, RMSE, and efficiency for the results presented in 

Figure 4.8.  In all the cases, high values of efficiency were obtained (>0.80). This shows 

the MVRVM model is consistently accurate and reliable for predicting water surface 

elevation of the lake.   

4.5.5 Effect of embedding dimension in model  

prediction for MVRVM 

Figure 4.9 shows test RMSE versus embedding dimension for each time delay for 

GSL elevation prediction using MVRVM. The plot shows the best test RMSE is usually 

obtained at d=3. With the increase of d to 5, the test RMSE did not improve but slightly 

deteriorated. When d was increased to 7, the test RMSE improved relatively because the 

dynamic of the system is fully unfolded. When d was further increased, the results 

eventually deteriorated, which may be because of noise. Better results were usually 

obtained at  =8 and 10. Relatively poorer results were obtained for higher  (say 14) 

which may be because the GSL elevations are practically independent at higher . 
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Figure 4.10 shows the efficiency versus embedding dimension for the GSL 

elevation prediction. As before, better results were obtained at d=3. With the increase of 

d, the prediction result did not improve until the dynamics of the system is fully unfolded. 

When the embedding dimension is 7, a relatively higher value of efficiency was obtained. 

With the further increase in the embedding dimension, the efficiency of the prediction 

results deteriorated because of intrusion of noise in the system. Good predictions were 

normally obtained using   = 8 and 10.  =14 deteriorated the prediction because of weak 

correlation between water surface elevations.   

4.5.6 Generalization and robustness of models 

The bootstrap method was used to estimate the measure of variability of test 

statistics with the change in nature of input data. This method measures the robustness 

and generalization capability of the model. This is done by randomly drawing a large 

number of “resamples” of size n from the original sample, with replacement. Although 

each resample will have the same number of elements as the original sample, it could 

include some of the original data points more than once, and some points will not be 

included. This process for forming the training set is random and the resulting sets are 

treated as independent sets  which depart from the original sample (Duda et al. 2000). 

The statistics calculated from these resampling processes takes on slightly different 

values for the different samples. Having computed statistics each time, a histogram of test 

statistics of GSL water elevation prediction is prepared. The narrow bounds shown in the 

histograms indicate that the model is robust. This result indicates there was not much 

variability in prediction results with the change in the nature of the input data. Figure 
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4.11 shows the histogram of bootstrap analysis from the SVM model for each arm of the 

lake for 1991-2008. The horizontal axis of histogram shows the value of test statistics 

while the vertical axis shows frequency. The histogram of test statistics has narrow 

bounds which indicate the model is robust. The test statistics of the original model lies in 

between the 2.5
th

 and the 97.5
th

 percentiles for the bootstrap results. This result shows the 

model is consistent and well generalized. Figure 4.12 shows the bootstrap analysis of 

MVRVM model for each arm of the lake for 1991-2008. The test statistics for this case 

also shows narrow bounds in the histograms. The actual model test statistics also lies 

within the 2.5
th

 and 97.5
th

 percentiles of the bootstrap results (shown by dotted line in 

Figure 4.12). These results show that the proposed model is robust and consistent, hence 

it can be used reliably as a prediction model for Great Salt Lake water surface elevation. 

4.6    Discussion and Conclusion 

The one-dimensional time series of the Great Salt Lake (GSL) elevation was used to 

develop a multi-dimensional phase space using the concept of phase construction to 

represent the underlying dynamics of the system. This reconstruction is a way of 

approximating the unknown function that describes the state evolution of the chaotic 

system. The actual system dimension and time delay were estimated for GSL elevation 

series. Based on that, different combinations of embedding dimension and time delay 

were used to develop multi-dimensional phase space, which was used to predict the lake 

elevation using data driven model that uses machine learning approach. Support Vector 

Machine (SVM) and Multivariate Relevance Vector Machine (MVRVM) were used in 

this paper. Relatively better prediction of GSL water surface elevations was obtained at 
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time delay () 8 and 10. Similarly the embedding dimension (d) of 3 and 7 produced 

relatively better predictions. The optimal combination is used to develop the final 

prediction model for GSL water surface elevation. The data were analyzed on both arms 

of the lake at two time periods: 1982 to 1987, when a dramatic rise of the GSL was 

observed, and 1991 to 2008, when the normal rise/fall of the lake level was observed. The 

model parameters were optimized in the training phase and its performance was 

evaluated in the test phase based on Bias, RMSE and efficiency. Both SVM and 

MVRVM models were able to extract the dynamics of the system using only few past 

observed data points out of the training samples. The results show good agreement 

between the actual and predicted values of GSL water surface elevation. This good 

performance in the testing phase shows that the model has good predictive abilities. The 

GSL elevation predictions from the past researchers are concentrated for the lake volume. 

The USGS website has a hypsographic curve which translates the GSL volume to the 

elevation of southern arm, however, there is no official hypsographic curve for the 

northern arm of the lake. This research independently predicts the lake elevation for both 

arms. The previous research estimates the embedding dimension and time delay 

parameter for the total lake volume, based on which predictions are made. This paper 

estimates those two parameters for the lake elevation, which may be used for predicting 

lake elevation of two arms independently for well ahead of time. Bootstrap analysis was 

used to test the reliability and robustness of the model. The narrow bound of test statistics 

of water surface elevation prediction in the histograms shows that the model is robust and 

well generalized. The test statistics from the original model lies within the 2.5
th

 and the 
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97.5
th

 percentile for the bootstrap test statistics. This proves the model is robust and good 

enough to use as a forecast model for GSL water surface elevation. The prediction results 

of both the SVM and the MVRVM models were comparable. The MVRVM model was 

able to capture the uncertainty in both data and model in the form of confidence intervals 

of GSL water surface elevation prediction in test phase; however the SVM model was 

able to accurately predict only the mean value of GSL water surface elevation. 
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Table 4.1 Construction of multivariate state space out of single measurement using d=5 

and τ =8 

  Inputs Output 

Training 

x1 x9 x17 x25 x33 

x2 x10 x18 x26 x34 

x3 x11 x19 x27 x35 

x4 x12 x20 x28 x36 

x5 x13 x21 x29 x37 

Test 

x6 x14 x22 x30 x38 

x7 x15 x23 x31 x39 

x8 x16 x24 x32 x40 
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Table 4.2 Results for Figures 6(a)-6(d) 

------------------------------------------------------------------------------------------------------------ 

Figure      Training       Test   

number          Period       Period        Bias       RMSE        Efficiency 

------------------------------------------------------------------------------------------------------------ 

 6(a)      09/01/1982   09/15/1985    0.034 m    0.113 m           0.89 

South     09/01/1985   06/15/1987   (0.11 ft)  (0.37 ft) 

------------------------------------------------------------------------------------------------------------ 

6(b)       09/01/1991   09/15/2004    0.006 m    0.095 m           0.92 

South     09/01/2004   12/15/2008   (0.02 ft)  (0.31 ft)  

------------------------------------------------------------------------------------------------------------ 

6(c)       09/01/1981   09/15/1985    0.006 m    0.104 m           0.90 

North     09/01/1985   12/15/1987   (0.02 ft)  (0.34 ft) 

------------------------------------------------------------------------------------------------------------ 

6(d)       09/01/1991   09/15/2004    0.012 m    0.098 m           0.91 

North     09/01/2004   12/15/2008   (0.04 ft)  (0.32 ft)      
------------------------------------------------------------------------------------------------------------------------------ 
 

 

 

Table 4.3 Results from Figures 9(a)-9(d) 

------------------------------------------------------------------------------------------------------------ 

Figure     Training         Test   

number      Period             Period      Bias        RMSE       Efficiency 

------------------------------------------------------------------------------------------------------------ 

 9(a)      09/01/1982    09/15/1985    0.076 m    0.149 m        0.81 

 South     09/01/1985    06/15/1987   (0.25 ft)  (0.49 ft) 

------------------------------------------------------------------------------------------------------------ 

 9(b)      09/01/1991    09/15/2004    0.009 m    0.091 m        0.92 

 South     09/01/2004    12/15/2008   (0.03 ft)  (0.30 ft)  

------------------------------------------------------------------------------------------------------------ 

 9(c)      09/01/1981    09/15/1985    0.012 m    0.082 m        0.94 

 North     09/01/1985    12/15/1987   (0.04 ft)  (0.27 ft) 

------------------------------------------------------------------------------------------------------------ 

 9(d)      09/01/1991    09/15/2004    0.013 m    0.082 m        0.93 

 North     09/01/2004    12/15/2008   (0.04 ft)  (0.27 ft)      

------------------------------------------------------------------------------------------------------------ 
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Figure 4.1 The Great Salt Lake. 
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Figure 4.2   - sensitive loss function in Support Vector Machine. 
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Figure 4.3 Average Mutual Information versus Time lag for GSL water level. 

 

 

 
Figure 4.4 Estimating embedding dimension from False Nearest Neighbor method. 
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Figure 4.5 The prediction of GSL water level from SVM. For (a)-(d), first column shows 

training phase, second column shows testing phase, third column shows predicted versus 

actual elevation for training phase, and fourth column shows similar plot for test phase. 

(a) Southern arm of the lake for 1982 to 1987, (b) Southern arm of lake for 1991 to 2008, 

(c) Northern arm of the lake for 1982 to 1987, (d) Northern arm of lake for 1991 to 2008, 

and (e) Residual plots for (a) to (d).   
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(a)                                                                     (b) 

 
 

(c)                                                                      (d) 

 
Figure 4.6 RMSE versus embedding dimension for southern arm of lake for (a) 1982 to 

1987, (b) 1991 to 2008, and northern arm of the lake for (c) 1982 to 1987, and (d) 1991 to 

2008. 
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(a)                                                                             (b) 

 
(c)                                                                              (d)        

 
Figure 4.7 Efficiency versus embedding dimension for southern arm of the lake for (a) 

1982 to 1987, (b) 1991 to 2008, and northern arm of the lake for (c) 1982 to 1987, (d) 

1991 to 2008. 
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Figure 4.8 The prediction of GSL water level from MVRVM. For (a)-(d), first column 

shows training phase, second column shows testing phase, third column shows predicted 

versus actual elevation for training phase, and fourth column shows similar plot for test 

phase. (a) Southern arm of the lake for 1982 to 1987, (b) Southern arm of lake for 1991 to 

2008, (c) Northern arm of the lake for 1982 to 1987, (d) Northern arm of lake for 1991 to 

2008,  (e) 90 percent confidence interval for (a) to (d), and (f) Residual plots for (a) to 

(d). 
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Figure 4.8 Cont. 
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(a)                                                                     (b) 

 
 

(c)                                                                      (d) 

 
Figure 4.9 RMSE versus embedding dimension for southern arm of lake for (a) 1982 to 

1987, (b) 1991 to 2008, and northern arm of the lake for (c) 1982 to 1987, and (d) 1991 to 

2008. 
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(a)                                                                       (b) 

 
 

(c)                                                                       (d) 

 
Figure 4.10 Efficiency versus embedding dimension for southern arm of the lake using 

MVRVM model for (a) 1982 to 1987, (b) 1991 to 2008, and northern arm of the lake for 

(c) 1982 to 1987, (b) 1991 to 2008. 
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Figure 4.11 Bootstrap analysis for RMSE and Efficiency for SVM model for 1991-2008 

(a) southern arm of the lake, and (b) northern arm of the lake. 
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Figure 4.12 Bootstrap analysis for RMSE and Efficiency using MVRVM for 1991-2008 

(a) southern arm of the lake, and (b) northern arm of the lake. 
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CHAPTER 5 

5 SUMMARY, CONCLUSION, AND RECOMMENDATION 

5.1   Summary and Conclusion 

This dissertation has shown the applicability of machine learning models for 

identifying the influential climate indicators and forecasting different hydrological 

variables in river basin scale as an alternative to physically based models. The research is 

conducted in three different areas where data-driven models based on machine learning 

approach are used to choose appropriate climate indicators and develop the prediction 

model in order to solve the water resource planning and management problems at the 

basin scale. The models showed promising results. They are accurate and robust. They 

are capable of providing valuable information about the future water availability and 

future state of water resource system in the basin scale. 

Support Vector Machine (SVM) and Multivariate Relevance Vector Machine 

(MVRVM) were used in this dissertation. The MVRVM model (Thayananthan 2005) is 

an extension of traditional Relevance Vector Machine developed by Tipping and Faul 

(2003). It retains all properties of conventional RVM such as accuracy, robustness, and 

sparseness. Using the Bayesian approach, the uncertainty in both data and model was 

captured and presented in the form of confidence interval of prediction. The MVRVM 

model was applied for monthly, seasonal and annual streamflow prediction at each 

selected stream gages of Utah that spatially covers the state from southern to northern 

region. The input variables (climate indicators) that produce the best test statistics were 

identified for each selected gage, and then used them to develop the final forecast model. 
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The MVRVM model was also used for multiple lead-time prediction of water surface 

elevation of Great Salt Lake along with SVM, which provides the opportunity to compare 

the results.  

In Chapter 2, influential locations of circulation indicators (sea surface 

temperature) were identified for five stream gages in Utah that spatially covers the state 

from North to South. Using the sea surface temperature (SST) of selected locations along 

with other local inputs, monthly average discharge and total volume of water passing the 

stream gage was predicted for next six months. The local inputs to the model were 

represented by past streamflow data, snowpack in the mountain, and local meteorological 

condition while the regional climatic condition was represented by sea surface 

temperatures in the Pacific and Atlantic oceans. The input variables were integrated into 

the machine learning framework to develop a streamflow forecast model. The MVRVM 

successfully transformed the input variables into reasonably accurate forecasting of 

outputs. The performance of the model was evaluated based on RMSE and the Nash-

Sutcliffe efficiency in the test phase. The result shows the sea surface temperature of 

Pacific Ocean predicts better than that of Atlantic Ocean. Since the Pacific Ocean 

represents the majority of ocean-atmosphere climate influence in Western U.S. (Ting and 

Wang 1997; Wang and Ting 2000), the results make reasonable sense. Although the 

physical processes responsible for the streamflow generation are not represented, 

machine learning model predicted accurately from the available inputs by learning the 

relationship between input and output in a training phase. The accurate and reliable 

predictions of streamflow are crucial information for farmers and water managers, 

therefore, the models developed in this dissertation can be useful for those stakeholders. 
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The reliability and robustness of the model was evaluated from the bootstrap analysis. 

The narrow bound of histograms resulting from bootstrapping confirms the model is 

consistent and robust. The successful application of machine learning models in 

hydrological modeling shows they can be alternatives to expensive and cumbersome 

physically-based models.  

Chapter 3 presents the long lead-time annual streamflow volume prediction at 

four selected unimpaired stream gages in Utah using oceanic-atmospheric oscillation 

modes. The correlation between streamflow and climatic variability represented by 

oceanic-atmospheric oscillation indices is the key point for the prediction. Popular 

oscillation modes are used as input variables. They are the Pacific Decadal Oscillation 

(PDO), the El-Nino Southern Oscillation (ENSO), the Atlantic Multi-decadal Oscillation 

(AMO), and the North Atlantic Oscillation (NAO). Different combinations of oscillation 

modes are developed and best combinations and corresponding lead-times are identified 

for each selected gage, which were used to develop the prediction model. PDO and 

ENSO predicted relatively better than other oscillation indices. The best combinations of 

oscillations were also identified for each lead time. The performance of the model was 

evaluated based on the RMSE, efficiency, and correlation coefficient in the test phase. 

The MVRVM model predicted annual flow volume reasonably well from the oscillation 

indices. Due to long persistence of these oscillation indices, it is possible to predict the 

streamflow for long lead-times. The model, however, is not good enough in capturing the 

extreme events. This shows the oscillation indices used in this paper are not enough to 

represent the physical processes associated with the generation of streamflow. The 

bootstrap analysis was used to test the generalization capability of the model. The narrow 
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bound of resulting histograms shows the model is well generalized (i.e. robust). The 

RMSE of actual model prediction lies in between 2.5
th

 percentile and 97.5
th

 percentile 

values of the prediction. This shows prediction is good enough for practical use. The 

comparison of MVRVM to SVM and ANN shows MVRVM outperforms other machine 

learning models. The pattern of prediction, however, is similar in all machine learning 

models. 

In chapter 4, SVM and MVRVM were used to predict water surface elevation of 

the Great Salt Lake using past water surface elevation data. The actual system dimension 

and time delay parameters of GSL water surface elevation series were estimated. Using 

those parameters, a multivariate input space was constructed from the single variable 

which unfolds the dynamics of the system. The output was predicted in the form of future 

water surface elevation of the lake using reconstructed input space. The model was 

applied for two time periods. One represents the dramatic rise of GSL elevation (1982-

1987) while other period represents the normal rise-fall of lake elevation (1991-2008). 

The test result shows both SVM and MVRVM are able to extract the dynamics of the 

system using only few observed past water surface elevations from training phase. The 

prediction results from both SVM and MVRVM were accurate and comparable. The 

optimum combination of embedding dimension and time delay was also estimated, which 

may be used to refine the forecast model. The advantage of MVRVM over SVM is that it 

estimates the uncertainty of the prediction in the form of confidence intervals. The 

narrow bound in the histograms resulting from the bootstrap analysis shows the model is 

robust and well generalized.  
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This dissertation shows the successful application of learning-machines approach 

in water resource planning and management. Even with the limited knowledge of 

physical processes, one can come up with a reasonable model using data driven model 

based on learning machine approach. These models are easy to use and provides accurate 

and efficient forecast. Since physically-based models are complex and acquires huge 

amount of data, data-driven models are being used as an alternative to physically based 

models. Data-driven models are capable of learning dynamic behavior of complex system 

while accounting for uncertainties (Khalil et al. 2005). The nonlinearity of dynamics of 

system is learned in the training phase, where the model parameters are optimized, and 

performance is evaluated in the test phase. The models were tested in a wide range of 

problems: Monthly and seasonal streamflow prediction, annual streamflow volume 

prediction, and water surface elevation prediction of the Great Salt Lake. The accuracy of 

the models was evaluated based on the RMSE and efficiency in the test phase. In all 

those diverse problem types, MVRVM performed accurately. In Chapter 2 and 4, high 

accuracy of the prediction was obtained while reasonable accuracy was obtained in 

Chapter 3. MVRVM also computes the uncertainty of both model and data for the 

predicted result. In Chapter 3, the results from MVRVM were compared to the results 

from SVM and ANN. Comparison shows MVRVM outperformed both SVM and ANN.  

SVM was also used for the GSL water surface elevation prediction. The prediction results 

of SVM were reasonably accurate and comparable to that of MVRVM.  

Developing an accurate model in a complex water system is important, and 

making it robust is also equally important. The robustness of the model is evaluated from 

the bootstrap analysis. The narrow bound of the resulting histogram means the model is 
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robust. This implies the model prediction will not change much with the changes in 

nature of input data. In all chapters, bootstrap analysis shows the narrow bound of 

resulting histogram where the actual test statistics lies in between 2.5
th

 percentile and 

97.5
th

 percentile values. This confirms the models herein developed were robust and 

consistent.  

The dissertation shows MVRVM and SVM are applicable in a wide range of 

problems in hydrology, and are capable of making accurate and robust predictions. The 

data driven model based on machine-learning approach are, therefore, useful in water 

resource planning and management. 

5.2   Recommendation and Future Direction 

The selection of the kernel function is heuristic in machine learning models. More 

scientific ways of selecting kernel function are preferred. There are at least two model 

parameters in SVM. Optimizing the model parameters need cross validation, which 

requires considerable data and time. Auto search of optimal model parameters is highly 

preferred, and is recommended. Both SVM and RVM make predictions using only few 

data points in training phase. They are called Support Vectors (SV’s) and Relevance 

Vectors (RV’s) in SVM and RVM, respectively. The physical meaning of these points is 

not yet fully explained. A detail research behind the selection of SV’s and RV’s is 

recommended. This may lead to new approaches in data collection, since only few points 

are necessary to explain the dynamic of the system, and hence to make predictions. This 

research promises to cut the expenses of data collection that would not be required to 

explain the input-output relationship of the system. Future research will show the optimal 
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spatial and temporal location of the data to be collected. In addition, this will reduce 

model run time, hence saving computer analysis time too.  

Autoregressive moving average (ARMA) models are suitable for short range 

dependence processes. This model also requires considered time series to be stationary. 

The autocorrelation function (ACF) for the Great Salt Lake elevation decays gradually, 

which means the time series is non-stationary (Appendix). The estimate of Hurst 

parameter indicates GSL elevation series has long range dependence (LRD). The decay 

of autocorrelation function for LRD process is slower than exponential decay, and area 

under the autocorrelation function is infinite (Sheng and Chen 2011). Fractional 

autoregressive integrated moving average (FARIMA) time-series model is capable of 

capturing long range dependence (LRD) as well as SRD, and forecast the process.  Non-

convergence of variance of GSL elevation series indicates GSL elevation series is non-

Gaussian. Therefore, FARIMA with stable innovations model is also suggested as a 

means of modeling GSL elevation. This is capable of modeling time series which has 

infinite variance, long-range dependence characteristics, and non-Gaussian signals 

(exhibit sharp spikes or occasional bursts of outlying observations than Gaussian 

distribution signals). 

References 

Khalil, A. F., McKee, M., Kemblowski, M., and Asefa, T. (2005). "Sparse Bayesian 

learning machine for real-time management of reservoir releases." Water Resour. 

Res., 41(11), W11401. 

 

Sheng, H., and Chen, Y. (2011). "FARIMA with stable innovations model of Great Salt 

Lake elevation time series." Signal Processing, 91(3), 553-561. 

 



168 
 

 

Thayananthan, A. (2005). "Template-based pose estimation and tracking of 3D hand 

motion." PhD Dissertation, University of Cambridge, Cambridge, UK. 

 

Ting, M., and Wang, H. (1997). "Summertime U.S. precipitation variability and its 

relation to Pacific sea surface temperature." J. Climate, 10(8), 1853-1873. 

 

Tipping, M. E., and Faul, A. C. (2003). "Fast marginal likelihood maximization for 

sparse Bayesian models." Proc., Ninth International Workshop on Artificial 

Intelligence and Statistics. 

 

Wang, H., and Ting, M. (2000). "Covariabilities of  winter U.S. precipitation and Pacific 

sea surface temperatures." J. Climate, 13(20), 3711-3719. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



169 
 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

APPENDIX 

 

 

 

 

 

 

 

 

 

 

 

 



170 
 

 

The Great Salt Lake elevation data 

The Great Salt Lake (GSL) is divided into two arms by rock-fill causeway. There 

exists an elevation difference between two arms of GSL due to unequal rate of inflow and 

evaporation loss from each arm. The U.S. Geological Survey (USGS) operates gages that 

collect water-surface elevation data in the southern arm of the lake at the Boat Harbor 

Gage (USGS station 10010000), and on the northern arm of the lake at the Saline Gage 

(10010100)  (http://ut.water.usgs.gov/greatsaltlake/). USGS collected data at biweekly 

time step before 10/01/1989 and at daily time step after that. In order to make the analysis 

compatible, biweekly time step is used over entire analysis period in this paper. Water 

surface elevation data was collected from both stations in the present study. Two time 

periods are considered for the analysis. They are: 1982-1987, which represents the 

dramatic rise of GSL elevation, and 1991-2008, which represents the normal rise-fall of 

the lake elevation. To reduce the effect of flooding, West desert pumping was launched 

from the April 1987 to June 1989. Therefore, the data before 1987 and after 1991 is used 

to avoid the disturbance of pumping in the lake elevation. 

 
Figure A.1 GSL elevation for south and north arm for 1982-1987. 

http://ut.water.usgs.gov/greatsaltlake/
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Figure A.2 GSL elevation for south and north arm for 1991-2008. 

The GSL elevations for 1982-1987, and 1991-2008 are shown in Figure A.1 and 

Figure A.2 respectively. Their mean values and variances are shown in Table A.1. The 

autocorrelation function and partial autocorrelation function for each arm for each time 

period are shown in Figure A.3. The decay of autocorrelation function (ACF) for GSL 

elevation time series is gradual, which indicates the GSL elevation time series is non-

stationary. For non-stationary process, time dependence exists and matters, unlike 

stationary process where the effects of the shocks are temporary and the time series 

reverts to it long-run level (Sheng and Chen 2011). The aggregated variance method and 

absolute variance method are used to estimate the Hurst parameter for GSL elevation 

series. The Hurst parameters from two methods for North arm for 1982-2008 are 0.9981 

and 0.9866 respectively. This is 0.9981 and 0.9889 for South arm from above two 

methods respectively. This indicates (0 < H <1) the GSL elevation series has LRD 

characteristic. The variance of GSL elevation series for each arm is shown in Figure A.4. 

Non-convergence of variance show the GSL elevation series has non-Gaussian stable 

distribution. Histogram of GSL elevation for each arm for each time period is shown in 

Figure A.5. 
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Table A.1 Observed mean and variance for GSL elevation 

  

1982-1987 1991-2008 

south arm north arm south arm north arm 

mean (ft) 4206.61 4205.33 4198.98 4198.05 

variance (ft
2
 ) 15.98 21.28 6.42 6.26 
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Figure A.3 Autocorrelation and partial autocorrelation function for GSL elevation for 

each arm of the lake for two time periods: 1982-1987 and 1991-2008. 
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Figure A.4 Variance trend for GSL elevation time series, (a) North arm for 1982-1987, 

(b) North arm 1991-2008, (c) South arm 1982-1987, and (d) South arm 1991-2008. 
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(b)                                                                       (d) 
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Figure A.5 Histogram of GSL elevation for 1982-1987:  a) southern arm, b) northern 

arm, and for 1991-2008: c) southern arm, d) northern arm. 
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