6,434 research outputs found

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Location-Quality-aware Policy Optimisation for Relay Selection in Mobile Networks

    Get PDF
    Relaying can improve the coverage and performance of wireless access networks. In presence of a localisation system at the mobile nodes, the use of such location estimates for relay node selection can be advantageous as such information can be collected by access points in linear effort with respect to number of mobile nodes (while the number of links grows quadratically). However, the localisation error and the chosen update rate of location information in conjunction with the mobility model affect the performance of such location-based relay schemes; these parameters also need to be taken into account in the design of optimal policies. This paper develops a Markov model that can capture the joint impact of localisation errors and inaccuracies of location information due to forwarding delays and mobility; the Markov model is used to develop algorithms to determine optimal location-based relay policies that take the aforementioned factors into account. The model is subsequently used to analyse the impact of deployment parameter choices on the performance of location-based relaying in WLAN scenarios with free-space propagation conditions and in an measurement-based indoor office scenario.Comment: Accepted for publication in ACM/Springer Wireless Network

    Location-aware computing: a neural network model for determining location in wireless LANs

    Get PDF
    The strengths of the RF signals arriving from more access points in a wireless LANs are related to the position of the mobile terminal and can be used to derive the location of the user. In a heterogeneous environment, e.g. inside a building or in a variegated urban geometry, the received power is a very complex function of the distance, the geometry, the materials. The complexity of the inverse problem (to derive the position from the signals) and the lack of complete information, motivate to consider flexible models based on a network of functions (neural networks). Specifying the value of the free parameters of the model requires a supervised learning strategy that starts from a set of labeled examples to construct a model that will then generalize in an appropriate manner when confronted with new data, not present in the training set. The advantage of the method is that it does not require ad-hoc infrastructure in addition to the wireless LAN, while the flexible modeling and learning capabilities of neural networks achieve lower errors in determining the position, are amenable to incremental improvements, and do not require the detailed knowledge of the access point locations and of the building characteristics. A user needs only a map of the working space and a small number of identified locations to train a system, as evidenced by the experimental results presented

    Understanding collaborative workspaces:spatial affordances & time constraints

    Get PDF
    Abstract. This thesis presents a generic solution for indoor positioning and movement monitoring, positioning data collection and analysis with the aim of improving the interior design of collaborative workspaces. Since the nature of the work and the work attitude of employees varies in different workspaces, no general workspace layout can be applied to all situations. Tailoring workspaces according to the exact needs and requirements of the employees can improve collaboration and productivity. Here, an indoor positioning system based on Bluetooth Low Energy technology was designed and implemented in a pilot area (an IT company), and the position of the employees was monitored during a two months period. The pilot area consisted of an open workplace with workstations for nine employees and two sets of coffee tables, four meeting rooms, two coffee rooms and a soundproof phone booth. Thirteen remixes (BLE signal receivers) provided full coverage over the pilot area, while light durable BLE beacons, which were carried by employees acted as BLE signal broadcasters. The RSSIs of the broadcasted signals from the beacons were recorded by each remix within the range of the signal and the gathered data was stored in a database. The gathered RSSI data was normalized to decrease the effect of workspace obstacles on the signal strength. To predict the position of beacons based on the recorded RSSIs, a few approaches were tested, and the most accurate one was chosen, which provided an above 95% accuracy in predicting the position of each beacon every 3 minutes. This approach was a combination of fingerprinting with a Machine Learning-based Random Forest Classifier. The obtained position results were then used to extract various information about the usage pattern of different workspace areas to accurately access the current layout and the needs of the employees

    DeepPos: Deep Supervised Autoencoder Network for CSI Based Indoor Localization

    Get PDF
    The widespread mobile devices facilitated the emergence of many new applications and services. Among them are location-based services (LBS) that provide services based on user's location. Several techniques have been presented to enable LBS even in indoor environments where Global Positioning System (GPS) has low localization accuracy. These methods use some environment measurements (like Channel State Information (CSI) or Received Signal Strength (RSS)) for user localization. In this paper, we will use CSI and a novel deep learning algorithm to design a robust and efficient system for indoor localization. More precisely, we use supervised autoencoder (SAE) to model the environment using the data collected during the training phase. Then, during the testing phase, we use the trained model and estimate the coordinates of the unknown point by checking different possible labels. Unlike the previous fingerprinting approaches, in this work, we do not store the {CSI/RSS} of fingerprints and instead we model the environment only with a single SAE. The performance of the proposed scheme is then evaluated in two indoor environments and compared with that of similar approaches.Comment: 10 pages, 15 Figure

    Efficient management of industrial electric vehicles by means of static and dynamic wireless power transfer systems

    Get PDF
    Industrial companies are moving toward the electrification of equipment and processes, in line with the broader energy transition taking place across the economy. Particularly, the energy efficiency and, consequently, the reduction of environmental pollution of intralogistics activities have become a competitive element and are now an actual research and development objective. A wireless power transfer is a contactless electrical energy transmission technology based on the magnetic coupling between coils installable under the ground level and a coil mounted under the vehicle floor, and it represents an excellent solution to decrease the demand for batteries by reducing vehicle downtimes during the recharge. This work aims to define a methodology to determine the optimal positioning of wireless charging units across the warehouse, both for static and dynamic recharging. To this aim, firstly, a mathematical model of the warehouse is proposed to describe transfers and storage/retrieval operations executed by the forklifts. Then, an integer linear programming problem is applied to find the best possible layout of the charging infrastructures. The optimal solution respects the energetic requirements given by the customer and minimizes the overall system cost. The proposed approach was applied to optimize the installation in a real-size warehouse of a tire manufacturing company. Several scenarios were computer generated through discrete event simulation in order to test the optimizer in different warehouse conditions. The obtained results show that integrated dynamic and static WPT systems ensure a constant state of charge of the electric vehicles during their operations
    • …
    corecore