695 research outputs found

    Representation learning in finance

    Get PDF
    Finance studies often employ heterogeneous datasets from different sources with different structures and frequencies. Some data are noisy, sparse, and unbalanced with missing values; some are unstructured, containing text or networks. Traditional techniques often struggle to combine and effectively extract information from these datasets. This work explores representation learning as a proven machine learning technique in learning informative embedding from complex, noisy, and dynamic financial data. This dissertation proposes novel factorization algorithms and network modeling techniques to learn the local and global representation of data in two specific financial applications: analysts’ earnings forecasts and asset pricing. Financial analysts’ earnings forecast is one of the most critical inputs for security valuation and investment decisions. However, it is challenging to fully utilize this type of data due to the missing values. This work proposes one matrix-based algorithm, “Coupled Matrix Factorization,” and one tensor-based algorithm, “Nonlinear Tensor Coupling and Completion Framework,” to impute missing values in analysts’ earnings forecasts and then use the imputed data to predict firms’ future earnings. Experimental analysis shows that missing value imputation and representation learning by coupled matrix/tensor factorization from the observed entries improve the accuracy of firm earnings prediction. The results confirm that representing financial time-series in their natural third-order tensor form improves the latent representation of the data. It learns high-quality embedding by overcoming information loss of flattening data in spatial or temporal dimensions. Traditional asset pricing models focus on linear relationships among asset pricing factors and often ignore nonlinear interaction among firms and factors. This dissertation formulates novel methods to identify nonlinear asset pricing factors and develops asset pricing models that capture global and local properties of data. First, this work proposes an artificial neural network “auto enco der” based model to capture the latent asset pricing factors from the global representation of an equity index. It also shows that autoencoder effectively identifies communal and non-communal assets in an index to facilitate portfolio optimization. Second, the global representation is augmented by propagating information from local communities, where the network determines the strength of this information propagation. Based on the Laplacian spectrum of the equity market network, a network factor “Z-score” is proposed to facilitate pertinent information propagation and capture dynamic changes in network structures. Finally, a “Dynamic Graph Learning Framework for Asset Pricing” is proposed to combine both global and local representations of data into one end-to-end asset pricing model. Using graph attention mechanism and information diffusion function, the proposed model learns new connections for implicit networks and refines connections of explicit networks. Experimental analysis shows that the proposed model incorporates information from negative and positive connections, captures the network evolution of the equity market over time, and outperforms other state-of-the-art asset pricing and predictive machine learning models in stock return prediction. In a broader context, this is a pioneering work in FinTech, particularly in understanding complex financial market structures and developing explainable artificial intelligence models for finance applications. This work effectively demonstrates the application of machine learning to model financial networks, capture nonlinear interactions on data, and provide investors with powerful data-driven techniques for informed decision-making

    An empirical study on the various stock market prediction methods

    Get PDF
    Investment in the stock market is one of the much-admired investment actions. However, prediction of the stock market has remained a hard task because of the non-linearity exhibited. The non-linearity is due to multiple affecting factors such as global economy, political situations, sector performance, economic numbers, foreign institution investment, domestic institution investment, and so on. A proper set of such representative factors must be analyzed to make an efficient prediction model. Marginal improvement of prediction accuracy can be gainful for investors. This review provides a detailed analysis of research papers presenting stock market prediction techniques. These techniques are assessed in the time series analysis and sentiment analysis section. A detailed discussion on research gaps and issues is presented. The reviewed articles are analyzed based on the use of prediction techniques, optimization algorithms, feature selection methods, datasets, toolset, evaluation matrices, and input parameters. The techniques are further investigated to analyze relations of prediction methods with feature selection algorithm, datasets, feature selection methods, and input parameters. In addition, major problems raised in the present techniques are also discussed. This survey will provide researchers with deeper insight into various aspects of current stock market prediction methods

    Multidimensional Time Series Methods for Economics and Finance

    Get PDF
    Questa tesi mira ad affrontare le questioni inferenziali e interpretative nei modelli ad alta dimensione e multidimensionali nel contesto dell'Economia e della Finanza. La crescente integrazione economica e finanziaria ha reso di fondamentale importanza considerare i Paesi e i Mercati Finanziari come un'unica, grande e interconnessa entitĂ . Le principali sfide indotte da questo quadro riguardano la stima e l'interpretazione di ampi Panel data, in cui le unitĂ  possono essere rappresentate da paesi o attivitĂ  finanziarie, osservate attraverso diversi indicatori nel tempo. Questa tesi propone tecniche di stima Bayesiana per nuovi modelli matriciali e tensoriali e utilizza tecniche della Teoria dei Grafi per facilitare l'interpretazione di network ad alta dimensione. I contributi sono presentati in tre capitoli. Nel Capitolo 2, vengono proposti approcci della Teoria dei Grafi per studiare le strutture e le interazioni in Network direzionali e pesati. Nel Capitolo 3, viene proposto un approccio Bayesiano di variable selection per gestire il problema della sovrapparametrizzazione nei modelli di Autorregressione Matriciale di grandi dimensioni. Nel Capitolo 4, viene esplorata la relazione dinamica tra rendimenti, volatilitĂ  e sentiment nel settore delle criptovalute attraverso un modello Autoregressivo Matriciale, che rappresenta il primo tentativo di considerare i dati sugli asset finanziari come strutture multidimensionali.This thesis aims to address the inferential and interpretational issues in high and multi-dimensional models in the context of Economics and Finance. The growing economic and financial integration has made imperative the need to conceive Countries and Financial Markets as a single, large, interconnected entity. The main challenges induced by this framework concern the estimation and interpretation of large panels, where units can be represented by countries or assets, observed via several indicators across time. This thesis proposes Bayesian estimation techniques for novel matrix and tensor-valued models and employs new methodological tools from Graph Theory to facilitate interpretation of high-dimensional networks. The contributions are presented in three chapters. In Chapter 2, Graph Theory approaches are proposed to study the structures and interactions of weighted directed networks of multivariate time series observations/relationships. In Chapter 3, a Bayesian variable selection approach is proposed to handle the over-parametrization problem in large Matrix Autoregressive models. In Chapter 4, the dynamic relationship among returns, volatility, and sentiment in the cryptocurrency class is explored through a Bayesian Matrix Autoregressive model, which is the first attempt to consider financial asset data as multi-dimensional structures

    Combining Enterprise Knowledge Graph and News Sentiment Analysis for Stock Price Prediction

    Get PDF
    Many state of the art methods analyze sentiments in news to predict stock price. When predicting stock price movement, the correlation between stocks is a factor that can’t be ignored because correlated stocks could cause co-movement. Traditional methods of measuring the correlation between stocks are mostly based on the similarity between corresponding stock price data, while ignoring the business relationships between companies, such as shareholding, cooperation and supply-customer relationships. To solve this problem, this paper proposes a new method to calculate the correlation by using the enterprise knowledge graph embedding that systematically considers various types of relationships between listed stocks. Further, we employ Gated Recurrent Unit (GRU) model to combine the correlated stocks’ news sentiment, the focal stock’s news sentiment and the focal stock’s quantitative features to predict the focal stock’s price movement. Results show that our method has an improvement of 8.1% compared with the traditional method

    Discovering the hidden structure of financial markets through bayesian modelling

    Get PDF
    Understanding what is driving the price of a financial asset is a question that is currently mostly unanswered. In this work we go beyond the classic one step ahead prediction and instead construct models that create new information on the behaviour of these time series. Our aim is to get a better understanding of the hidden structures that drive the moves of each financial time series and thus the market as a whole. We propose a tool to decompose multiple time series into economically-meaningful variables to explain the endogenous and exogenous factors driving their underlying variability. The methodology we introduce goes beyond the direct model forecast. Indeed, since our model continuously adapts its variables and coefficients, we can study the time series of coefficients and selected variables. We also present a model to construct the causal graph of relations between these time series and include them in the exogenous factors. Hence, we obtain a model able to explain what is driving the move of both each specific time series and the market as a whole. In addition, the obtained graph of the time series provides new information on the underlying risk structure of this environment. With this deeper understanding of the hidden structure we propose novel ways to detect and forecast risks in the market. We investigate our results with inferences up to one month into the future using stocks, FX futures and ETF futures, demonstrating its superior performance according to accuracy of large moves, longer-term prediction and consistency over time. We also go in more details on the economic interpretation of the new variables and discuss the created graph structure of the market.Open Acces

    Tensor-variate machine learning on graphs

    Get PDF
    Traditional machine learning algorithms are facing significant challenges as the world enters the era of big data, with a dramatic expansion in volume and range of applications and an increase in the variety of data sources. The large- and multi-dimensional nature of data often increases the computational costs associated with their processing and raises the risks of model over-fitting - a phenomenon known as the curse of dimensionality. To this end, tensors have become a subject of great interest in the data analytics community, owing to their remarkable ability to super-compress high-dimensional data into a low-rank format, while retaining the original data structure and interpretability. This leads to a significant reduction in computational costs, from an exponential complexity to a linear one in the data dimensions. An additional challenge when processing modern big data is that they often reside on irregular domains and exhibit relational structures, which violates the regular grid assumptions of traditional machine learning models. To this end, there has been an increasing amount of research in generalizing traditional learning algorithms to graph data. This allows for the processing of graph signals while accounting for the underlying relational structure, such as user interactions in social networks, vehicle flows in traffic networks, transactions in supply chains, chemical bonds in proteins, and trading data in financial networks, to name a few. Although promising results have been achieved in these fields, there is a void in literature when it comes to the conjoint treatment of tensors and graphs for data analytics. Solutions in this area are increasingly urgent, as modern big data is both large-dimensional and irregular in structure. To this end, the goal of this thesis is to explore machine learning methods that can fully exploit the advantages of both tensors and graphs. In particular, the following approaches are introduced: (i) Graph-regularized tensor regression framework for modelling high-dimensional data while accounting for the underlying graph structure; (ii) Tensor-algebraic approach for computing efficient convolution on graphs; (iii) Graph tensor network framework for designing neural learning systems which is both general enough to describe most existing neural network architectures and flexible enough to model large-dimensional data on any and many irregular domains. The considered frameworks were employed in several real-world applications, including air quality forecasting, protein classification, and financial modelling. Experimental results validate the advantages of the proposed methods, which achieved better or comparable performance against state-of-the-art models. Additionally, these methods benefit from increased interpretability and reduced computational costs, which are crucial for tackling the challenges posed by the era of big data.Open Acces

    Generative Adversarial Network to evaluate quantity of information in financial markets

    Get PDF
    Nowadays, the information obtainable from the markets are potentially limitless. Economic theory has always supported the possible advantage obtainable from having more information than competitors, however quantifying the advantage that these can give has always been a problem. In particular, in this paper we study the amount of information obtainable from the markets taking into account only the time series of the prices, through the use of a specific Generative Adversarial Network. We consider two types of financial instruments traded on the market, stocks and cryptocurrencies: the first are traded in a market subject to opening and closing hours, whereas cryptocurrencies are traded in a 24/7 market. Our goal is to use this GAN to be able to “convert” the amount of information that the different instruments can have in discriminative and predictive power, useful to improve forecast. Finally, we demonstrate that by using the initial dataset with the 5 most important feature useds by traders, the prices of cryptocurrencies present higher discriminatory and predictive power than stocks, while by adding a feature the situation can be completely reversed

    Measuring contagion risk in international banking

    Get PDF
    open3We propose a distress measure for national banking systems that incorporates not only banks’ CDS spreads, but also how they interact with the rest of the global financial system via multiple linkage types. The measure is based on a tensor decomposition method that extracts an adjacency matrix from a multi-layer network, measured using banks’ foreign exposures obtained from the BIS international banking statistics. Based on this adjacency matrix, we develop a new network centrality measure that can be interpreted in terms of a banking system's credit risk or funding risk.openAvdjiev S.; Giudici P.; Spelta A.Avdjiev, S.; Giudici, P.; Spelta, A

    Enhancing Deep Learning Models through Tensorization: A Comprehensive Survey and Framework

    Full text link
    The burgeoning growth of public domain data and the increasing complexity of deep learning model architectures have underscored the need for more efficient data representation and analysis techniques. This paper is motivated by the work of (Helal, 2023) and aims to present a comprehensive overview of tensorization. This transformative approach bridges the gap between the inherently multidimensional nature of data and the simplified 2-dimensional matrices commonly used in linear algebra-based machine learning algorithms. This paper explores the steps involved in tensorization, multidimensional data sources, various multiway analysis methods employed, and the benefits of these approaches. A small example of Blind Source Separation (BSS) is presented comparing 2-dimensional algorithms and a multiway algorithm in Python. Results indicate that multiway analysis is more expressive. Contrary to the intuition of the dimensionality curse, utilising multidimensional datasets in their native form and applying multiway analysis methods grounded in multilinear algebra reveal a profound capacity to capture intricate interrelationships among various dimensions while, surprisingly, reducing the number of model parameters and accelerating processing. A survey of the multi-away analysis methods and integration with various Deep Neural Networks models is presented using case studies in different application domains.Comment: 34 pages, 8 figures, 4 table
    • 

    corecore