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ABSTRACT

REPRESENTATION LEARNING IN FINANCE

by
Ajim Uddin

Finance studies often employ heterogeneous datasets from different sources with

different structures and frequencies. Some data are noisy, sparse, and unbalanced

with missing values; some are unstructured, containing text or networks. Traditional

techniques often struggle to combine and effectively extract information from these

datasets. This work explores representation learning as a proven machine learning

technique in learning informative embedding from complex, noisy, and dynamic

financial data. This dissertation proposes novel factorization algorithms and network

modeling techniques to learn the local and global representation of data in two specific

financial applications: analysts’ earnings forecasts and asset pricing.

Financial analysts’ earnings forecast is one of the most critical inputs for

security valuation and investment decisions. However, it is challenging to fully

utilize this type of data due to the missing values. This work proposes one

matrix-based algorithm, “Coupled Matrix Factorization,” and one tensor-based

algorithm, “Nonlinear Tensor Coupling and Completion Framework,” to impute

missing values in analysts’ earnings forecasts and then use the imputed data to predict

firms’ future earnings. Experimental analysis shows that missing value imputation

and representation learning by coupled matrix/tensor factorization from the observed

entries improve the accuracy of firm earnings prediction. The results confirm that

representing financial time-series in their natural third-order tensor form improves

the latent representation of the data. It learns high-quality embedding by overcoming

information loss of flattening data in spatial or temporal dimensions.

Traditional asset pricing models focus on linear relationships among asset

pricing factors and often ignore nonlinear interaction among firms and factors. This



dissertation formulates novel methods to identify nonlinear asset pricing factors and

develops asset pricing models that capture global and local properties of data. First,

this work proposes an artificial neural network “autoencoder” based model to capture

the latent asset pricing factors from the global representation of an equity index. It

also shows that autoencoder effectively identifies communal and non-communal assets

in an index to facilitate portfolio optimization. Second, the global representation is

augmented by propagating information from local communities, where the network

determines the strength of this information propagation. Based on the Laplacian

spectrum of the equity market network, a network factor “Z-score” is proposed to

facilitate pertinent information propagation and capture dynamic changes in network

structures. Finally, a “Dynamic Graph Learning Framework for Asset Pricing”

is proposed to combine both global and local representations of data into one

end-to-end asset pricing model. Using graph attention mechanism and information

diffusion function, the proposed model learns new connections for implicit networks

and refines connections of explicit networks. Experimental analysis shows that the

proposed model incorporates information from negative and positive connections,

captures the network evolution of the equity market over time, and outperforms

other state-of-the-art asset pricing and predictive machine learning models in stock

return prediction.

In a broader context, this is a pioneering work in FinTech, particularly in under-

standing complex financial market structures and developing explainable artificial

intelligence models for finance applications. This work effectively demonstrates

the application of machine learning to model financial networks, capture nonlinear

interactions on data, and provide investors with powerful data-driven techniques for

informed decision-making.
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CHAPTER 1

INTRODUCTION

“Big data will become a key basis of competition, underpinning new waves of

productivity growth, innovation, and consumer surplus—as long as the right policies

and enablers are in place.” – Mckinsey. The amount of data has exploded in the

last decade around the globe. The fundamental question is how to analyze the

data efficiently. The data structure can be complicated. Some are too sparse and

incomplete; some are noisy; and some are not even numerical, but in the forms

of text or graphs. Machine learning (ML) technologies pave the way for dealing

with big and unstructured data, solving data inconsistency problems, and learning

proper representation to make accurate predictions. Although most of these ML

techniques are initially proposed to solve a specific problem, their applications are

never constrained to the original domain, e.g., convolutional neural network (CNN)

was initially proposed for image prediction [1], over the years it has been proved also

effective for natural language processing [2,3], health care [4], game playing [5,6], and

time series forecasting [7–9].

The advancement of machine learning-based technologies also brings a seismic

shift in the business processes of financial industries. Rapid technology integration,

the evolution of sharing economy, fierce competition, and ever-increasing customer

expectation bring this industry to a tipping point to embrace revolutionary changes

in business practice. Technological innovations and the application of machine

learning create opportunities for financial institutions to develop and grow and, in the

meanwhile, increase risks and make them susceptible to failure. Digital banking and

mobile payment system eliminate the need for cash and neighborhood bank branches.

Automated trading and app-based brokerage service, e.g., Robinhood, created a new
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domain for financial service while making some traditional services obsolete. Today

more than 75% of the stocks traded in the United States (U.S.) exchanges originate

from automated trading systems orders that take various names, including mechanical

trading, algorithmic trading, etc. The emergence of automatic trading results from

the exceptional capability of ML techniques, i.e., high-frequency trading by detecting

profitable trading opportunities at the tick level.

The scope and application of ML in finance are broad and diverse. In this

dissertation, I focus on applying a specific aspect of ML – Representation Learning

– in finance. Representation learning attempts to extract useful representation

from the data and use the extracted representation for downstream classification

or prediction [10]. The success of machine learning techniques generally depends

on extracting the proper representation from the data. Different representations

capture different aspects of the data, resulting in different downstream classifi-

cation/prediction performance. Traditionally, feature engineering has been used to

ensure proper data representation for machine learning algorithms. Nevertheless,

feature engineering relies on hand-craft techniques. Consequently, it is inflexible for

new application domains and often not scalable for big data. Recent breakthroughs

in machine leanings make it possible to design algorithms that automatically learn

proper representation from data without depending heavily on feature engineering.

Machine learning techniques learn effective representations from data by capturing

the posterior distribution of hidden explanatory factors of the input data. Principal

component analysis (PCA), independent component analysis (ICA), matrix factor-

ization (MF), linear discriminant analysis (LDA), manifold learning, autoencoders,

deep belief networks, and CNN are the examples of representation learning and

have been successfully applied in computer vision [11–13], health care [14–16], voice

recognition [17], natural language processing [18–20], and sentiment analysis [21,22].
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All these techniques essentially try to extract key information from the input data

and transform them into lower-dimensional simplified embedding.

Similar to many types of real-world data, financial data are often complex, noisy,

high-frequency, big in volume, unstructured, and unbalanced. These representation

learning techniques are proven to reduce dimensionality, mitigate complexity, and

used successfully to extract valuable information from big-noisy financial data. In this

work, I try to solve two specific problems in finance through representation learning:

(i) representation learning for firm earnings prediction, and (ii) representation learning

for asset pricing.

1.1 Representation Learning for Firm Earnings Prediction

Earnings per share (EPS) is the ratio of a firm’s earnings to its number of common

shares outstanding. It conveys vital information about a firm’s future performance

and is one of the fundamental inputs for security pricing [23]. Investors, regardless of

investment banks, fund managers, and individuals, all rely on the market expectation

of a firm’s EPS in the future, i.e., the next quarter EPS, to make investment decisions:

buying (selling) the stock of a firm if its future EPS is projected to be high (low).

Analysts’ consensus (mean or median) forecast of EPS is considered as the

common and plausibly dominant measure of market expectation.1 Unlike institutional

investors (e.g., mutual funds, pension funds, and insurance companies), most

individual investors do not have the necessary skills, information, and time to

conduct their own analysis. They simply make their investment decisions based

on financial analysts’ forecast of EPS that is available to the public. In addition

to individual investors, institutional investors also use analysts’ forecast as the

benchmark to gauge their pricing models or as the complementary predictor variables

to their models. Moreover, firm managers might also pay attention to analysts’

1Following industry practice, the “consensus forecast” is defined as the average of all the
analysts forecasts for a firm at a given quarter and referred to as “mean forecast”.
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forecast to learn the market expectation to their firms and adjust their business

operations accordingly. Financial analysts apply their domain knowledge to generate

their earnings forecast using large sets of information, such as proxy statements,

published financial reports, conference calls, management communications, behavioral

assumptions, and macro-economic conditions [24–27]. Therefore, analysts’ earnings

forecast has a superior value in finance as it has human-in-the-loop for combing

through a variety of data sets. Early studies in both finance and accounting show

that analysts’ earnings forecast is a better estimator of firm earnings than time series

models due to their information and timing advantage [23, 28–30].

The analysts’ forecasts of EPS data nevertheless holds several challenges to

perform traditional regression-based analysis. First, analysts’ forecast of EPS is not

balanced. At a given time, multiple analysts follow one firm and generate individual

reports. Analysts only track a limited set of firms and generate reports for only

these firms while skipping all other firms. Even for the limited set of firms, analysts

occasionally skip reporting at some time breaks and change the firms that they follow.

As a result, the EPS forecast dataset is highly sparse and has a high number of

missing values in the dataset, i.e., over 99%. Second, the EPS announcement only

comes quarterly along with individual forecast of hundreds of analysts, resulting in

more predictors (each analyst generates one predictor) than observations. Third,

the EPS dataset has three dimensions, time, firm, and analysts. The common time-

series practice is to aggregate information from individual analysts based on average,

personal judgment or analysts’ past performance and flatten the third-order tensor

into a firm-time matrix to ease the data complexity [31–33]. Such a practice only

provides information from time-domain while neglecting important information from

the spatial-domain that encapsulates analyst correlation and implicit interactions

between analyst and firms [34, 35]. In this case, it ignores the useful information of

an individual analyst who follows multiple firms concurrently and firms’ commonality
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within the same group. In addition, literature also suggests that analysts vary in their

forecasting accuracy [36, 37] and may show a systematic bias [37, 38]. Aggregating

all the efficient and inefficient analysts forecast indiscriminately will contaminate the

information content of efficient analysts’ forecast.

To overcome these three challenges, this dissertation investigates the scope of

representation learning on analyst earnings forecast data and proposes novel matrix

and tensor techniques for data integration and completion. The first technique is

Coupled Matrix Factorization (CMF), and the second technique is neural network

enabled Nonlinear Tensor Coupling and Completion Framework (NLTCC). Matrix

(tensor) factorization identifies the low-rank representation of matrix (tensor) from

the observed entries and then reconstructs the complete matrix (tensor) from the

low-rank representation. The goal is to learn a better representation from available

sparse data to impute missing values while preserving the data properties, patterns,

structure, and distribution, and then using this imputed data to build a better

predictive model for firms’ future earnings.

In the analyst forecast data, the percentage of missing value is very high, and

a straightforward application of matrix or tensor factorization may not always be

enough to learn high-quality embedding. To overcome this, I supplement the analysts’

EPS forecast with two additional data sources: firm characteristics and daily return

data. The firm characteristics data provide fundamental information of a firm and

have much fewer missing values. Return data provide up-to-date market performance

and expectations. Studies also show that firm characteristics and market expectations

affect analysts’ forecast accuracy [39–42].

The proposed CMF supplements the imputation of the sparse analysts forecast

with firm characteristics data. By fusing two data sets with CMF, I incorporate their

comprehensive information into the imputation process. CMF uses customized loss

functions and regularization concerning specific finance applications and selectively

5



incorporates information from two datasets to learn a better representation. Many

existing approaches use the common alternating least-squares minimization (ALS)

approach that incurs significant computation and memory expenses and fails to

scale to large datasets. Instead, I design a novel stochastic gradient descent (SGD)

based CMF and attain significant improvements over the standard (coupled) matrix

factorizations in terms of accuracy, simplicity for implementation, and computing

speed for extremely large datasets [43].

To examine the quality and usefulness of the learned representation, I apply

advanced ML methods to the complete matrix to predict firms’ next quarter earnings

once the data is imputed. Those ML methods include Least Absolute Shrinkage and

Selection Operator (LASSO) [44], eXtreme Gradient Boosting (XGBoost) [45], and

Support Vector Regression (SVR) [46]. I show that all these ML methods predict

better with imputed data. The performance of XGBoost is the best, slightly better

than that of SVR, whereas both are much better than the consensus (mean) forecast.

More interestingly, I find that the most advanced ML method, XGBoost, cannot even

beat the consensus forecast without the help of our data imputation method. The

finding suggests the necessity of imputing missing values before applying advanced

ML methods.

Although CMF provides a useful starting point for understanding the importance

of imputing missing value in predicting firm earning forecast accurately, it has

some limitations. It cannot overcome the third challenge - efficiently capturing

Spatio-temporal dependency from three-dimensional data. To apply matrix factor-

ization, we either need to apply it to firms individually or flatten the tensor

along any two dimensions to convert it to a matrix. Analyzing individual firms

cannot capture intra-company information and lose important information about

the market, industry, and economic condition. On the other hand, flattening the
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(a) Matrix (b) Tensor

Figure 1.1 Representing financial analysts earning forecast data in matrix and in
tensor format.

third-order tensor into a firm-time matrix loses the important information from the

spatial-domain [34,35].

To overcome this problem, I propose a nonlinear tensor decomposition-based

model NLTCC. By projecting analyst EPS forecast in time, firms and analyst

dimension, we can efficiently represent panel data as a third-order tensor (as shown in

Figure 1.1). The tensor representation captures information from both the spatial and

temporal domains and thereby, overcome the panel data problem of missing critical

information. The propose NLTCC is a convolutional neural network-based nonlinear

tensor coupling and completion framework for heterogeneous data. It performs an

intelligent data fusion process by leveraging the synergistic knowledge embedded

in three financial data sets, firm characteristics, daily returns, and analysts’ EPS

forecasts and couples them into one multi-dimensional tensor. The approach uses

latent information from the time and firm dimension of the complete return and

characteristics data sets to impute missing values in sparse forecast data. Once the

data is imputed, I use machine learning techniques, including simple linear regression,

SVR, and XGBoost, to build a predictive model for firms’ future earnings.

The experimental analysis shows that the tensor-based approach is superior

to the traditional approaches including consensus forecast and CMF. In addition to
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imputing analysts’ missing forecasts, NLTCC can also distinguish influential analysts

from ineffective ones and excel even more at the sectors with high heterogeneity

and volatility. The portfolio analysis shows that NLTCC based prediction is better

at identifying good (bad) performing stocks and offers more profitable investment

opportunities.

1.2 Representation Learning for Asset Pricing

Asset pricing is a fundamental problem of predicting assets risk premia.2 Because

risk premia are the conditional expectation of assets future realized excess return,

I define risk premia as the task of predicting an appropriate value or a ‘price’ for

a financial asset [47]. Traditional asset pricing models, e.g., capital asset pricing

model (CAPM), arbitrage pricing theory (APT), and Fama-French factor models

have important implication in asset pricing literature. These models help us develop

the initial understanding of risk factors and risk premia. Factor models have been used

as the primary yardstick for explaining the assets risk premia over the years [48–51].

They explain a large portion of return variability on assets. Nevertheless, they have

some serious limitations. CAPM is too simple and assumes a mean-variance efficient

market portfolio. On the other hand, APT fails to specify the factors. In theory, an

infinite number of factors can affect the risk premium of an asset, but it is nearly

impossible to identify the most significant factors upfront [52, 53].

After the inception of APT [53] in 1976, researchers have proposed over a

hundred factors based on empirical evidence, market influence, personal belief, and

specific research needs. For building a perfect model, one brute-force solution may

be to include the highest number of factors possible to maximize the model fit. This

2The risk premium is the conditional expected return (excessive return) over the risk-free
rate. Although there are some minor technical differences, I use the term “risk premium”
and “expected return” interchangeably in this dissertation.
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practice of including a high number of factors without proper justification has several

drawbacks that we will detail in the subsequent paragraphs.

Traditional predictors are highly correlated. For example, in a standalone

analysis, both GDP and GNP of a country will significantly impact individual asset

returns. However, including both factors will introduce multicollinearity in the model,

as one can be expressed with a linear combination of another. The same is true

for including the total assets and total liabilities plus owner equity as predictors of

the model. The inclusion of these highly correlated factors introduce variance and

significantly impacts the model performance because the beta of the risk factor will

behave erratically for small changes in the data or the model. Besides, for each

additional predictor, the model will lose one degree of freedom [54]. Including a high

number of predictors with a small number of observations can significantly diminish a

model’s degree of freedom, resulting in an overfitted model. In such a case, a perfect

in-sample model will perform poorly for out-of-sample data. That is also true for

correlated predictors in nonlinear form. As shown in [47], a large number of factors

reduce the out-of-sample R2 to be negative.

Traditional asset pricing models assume a linear relationship between the factors

and returns. Nevertheless, the assumption of linearity rarely holds in real-world

financial data and ignores time-variance volatility. When compounded with the

frequent factor selection problem, this assumption unavoidably limits linear models’

applicability in real-world data. Studies proved that incorporating nonlinear elements

can significantly improve the explanatory power of asset pricing models [47, 55].

The third challenge in asset pricing is that firms do not operate independently in

the marketplace. They influence each other through multiple channels, including but

not limited to their supply chain networks, board of directors, fundamentals similarity,

industry sector, and market condition. As a result, the performance of a firm depends

on not only its own operation but also other relevant firms, i.e., the interconnection
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among firms affects each other and their market prices. This interconnectedness

among firms through contemporaneous links forms the firms’ network. Previous

studies suggest that the structure, properties, and dynamism of a network provide

important insights into how information flows and shocks are transmitted across

firms and thereby affect their stock prices [56–60]. There is a general consensus

about the importance of network in asset pricing. Meanwhile, most traditional asset

pricing models mainly focus on firm-specific and market/macro factors, overlooking

the indispensable interconnection among firms.

In this dissertation, I used advanced machine learning techniques to tame the

large factor universe and incorporate network information into asset pricing models.

Machine learning facilitates data-driven models for learning proper representation

from hundreds of input features and turns into simple informative embedding that

can easily be used for the downstream regression model. The graph algorithm and

network modeling techniques allow learning efficient embedding (representation) for

the equity market network and improve the prediction accuracy in asset returns.

In addition, nonlinear activation functions helps capture any nonlinear interaction

among the features and cross-section of firms in the high dimensional latent space.

First, I propose an “autoencoder” based representation learning method for

learning latent factors for asset pricing. Autoencoder takes daily returns for

both input and output and generates a compressed representation for the daily

returns of all stocks in an index. The compressed representation stores both linear

and nonlinear correlations, reduce dimensionality and provides a feature map best

resembling the original data [61]. I use these latent factors generated from the

autoencoder to identify communal assets (representative stocks) and non-communal

assets (non-representative) in an index. The overarching idea is that the return of

more representative stocks can be easily explained by the other stocks in the same

index and demonstrates less return volatility. On the other hand, the return of
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non-representative stocks of an index will be difficult to explain by the other stocks

in the index and therefore are more likely to have high return volatility.

Extensive analysis of all the stocks in three major indices, i.e., S&P-500, Russel-

3000, and NASDAQ-100, reveal that the latent factors identified using autoencoder

efficiently explain the return difference between the high communal assets and low

communal assets. On average, non-communal stocks earn 0.05% higher than the

communal ones. However, the risk associated with these non-communal stocks is

also 0.8% higher than communal stocks. Combined with the Fama-French factor

model, the daily average return difference between small-high-non-communal stocks

and big-low-communal stocks is at 0.10%.

Second, I develop a novel network factor based on the Laplacian spectrum of

the U.S. equity market. The network factor incorporates both positive and negative

connections of firms in the equity market and provide a vector representation of

the market. The encoded representation of the network structure also incorporates

the changing market condition, economic environment, and uncertainties in a macro

context. Moreover, to capture the dynamic evolution and detect change points

in networks, I construct the network factor “Z-score” by measuring the difference

between the current network state and network states of previous months. I evaluate

the importance and implication of the network factor in equity pricing by examining

the factor in relation to the market, macro, and other asset pricing factors. The

empirical results confirm that the network factor Z-score aligns well with significant

market events and reveals information that is not captured by traditional asset pricing

models. The Z-score has a significant negative risk premium and can be incorporated

into conventional asset pricing models to reduce asset pricing anomalies.

Finally, I propose a novel two-step graph learning model to capture the dynamic

nonlinear interconnections among firms and investigate their contributions to the

stock price movement. In the first step, I use an attention function to learn
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network connections among firms at each time point. In the second step, I model

spatial-temporal relationships among firms by combining graph convolutional neural

network and recurrent neural network to predict future returns. The architecture

of the model is inspired by two advanced machine learning techniques for graph

learning and panel data modeling. The first one is the attention mechanism. The

attention function learns the interaction (inter-dependency) coefficient between each

firm and its neighbors in a pre-selected network at each time point based on the

observed features, historical return, and return correlation. As a result, the learned

network is dynamic and captures multiple aspects of firm connectedness, including

their explicit and implicit interactions. Attention function also denoises the network

by removing less important connections. The second is the diffusion mechanism to

model Spatio-temporal information. It has roots in physics and is extensively used in

financial derivatives to model the stochastic process in asset pricing, interests rates,

and bond pricing. Diffusion processing in the continuous space can be extended to the

discrete space (graph) in the format of random walk in networks [62] and inspires a

series of graph neural networks: Graph diffusion convolution (GDC) that incorporates

diffusion mechanism to improve graph learning [63], node classification [64], and traffic

prediction [65,66]. In this work, I follow the recurrent convolutional diffusion process

proposed in [66] to propagate firms’ information to their neighbors. In this method,

we apply the convolutional operation on firm features to model spatial dependency

among each firm and the Gated Recurrent Units (GRU) [67] framework to capture

temporal patterns in each time series. In addition, the convolutional diffusion function

facilitates the model to incorporate firms’ characteristics as node features into the

learning process.

By combining the attention and diffusion mechanism, my model discovers

multiple interesting findings. The proposed graph learning model is superior in

prediction accuracy compared to the traditional asset pricing methods and other
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off-the-shelf machine learning models. I design an intelligent mechanism to learn

positive and negative networks separately. This learning mechanism shows that the

networks learned from the model are meaningful and capture the dynamic equity

market movement over time.

The network representation learning in asset pricing is related to three streams

of literature. The first one is the network study in computer science and information

system. A number of seminal works on graph and network representation learning

initially appear in computer science and are sequentially adopted by other domains.

These efforts include network spectral analysis, node embedding, node classification,

edge embedding, edge dynamics modeling, and their applications in various domains,

including image processing, protein-protein interactions, and social network analysis

[68–70]. The advancement in machine learning and deep learning paves the way for

developing neural networks on large-scale complex graphs [71]. Specially, a surge

of spectral-based graph neural network follows the seminal work in [72]. These

Graph Convolutional Network models (GNN) focus primarily on static networks with

predefined topologies and are mainly used for node classification and link prediction

[73]. A detailed review of the literature is referred to [74]. The success in network

classification (predicting categorical values) motivates researchers to apply graph

neural networks in regression problems (predicting continuous values). In recent years,

several spatiotemporal models enhanced by graph neural networks attain impressive

results in traffic prediction [65, 75, 76], ride-hailing demand forecasting [77, 78], and

COVID-19 trend prediction [79]. Motivated by these successes, I apply graph neural

networks to forecast asset returns in my work.

The second stream is related to the network representation of firms. A handful

of recent finance research attempts to understand the network dynamics of financial

assets. These efforts include developing graph representation for financial market

[59, 60, 80] and modeling information flow and shock transmission among financial
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assets [81–83] and their corresponding institutions [84]. Among various techniques

used for representing firms networks, the correlation of historical return is the most

dominant. This technique constructs the initial networks based on the Pearson

correlation of historical returns and applies a threshold function or minimum spanning

tree to sparsify the correlation network. Because most popular graph techniques are

developed for unsigned graph with no negative connetions, to extend those techniques

in any network, researchers often use only positive correlation or absolute value of

the correlation in these cases [60, 80]. Cohen and Frazzini [56] and Herskovic [59]

study the customer-supplier network at the industry level and construct new pricing

factors from the network. Muslu et al. [57] suggest that the stock price of one firm

be affected by other stocks within the same analysts’ coverage. Study also shows

firms are affiliated with investment banks, then the information of investment banks

produces an underwriter network of initial public offering (IPO) and seasoned equity

offering (SEO) [58]. Studies also show that firms can be linked through managers

who have connections via prior employment, education, or memberships in social,

cultural, and charity organizations [85, 86].

Those studies also provide essential insights into the significance of networks

on the information flow between financial entities. A large body of literature

documents the importance of the network in contagion effects and systematic risks

[81, 82, 84, 87–91]. Carvalho [92] shows that local shocks occurring in the production

network might propagate across the economy and stimulate aggregated fluctuations.

Ozdagli and Weber [93] finds that the effects of monetary policy shocks are largely

driven by the production networks, suggesting that the network be an important

propagation mechanism of monetary policy to the real economy. Hou [94] suggest that

the structures of product markets affect managers’ equilibrium operation decisions.

These decisions affect the risk of a firm’s cash flow and sbsequent stock prices.
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The third stream is related to the studies on using machine learning models to

predict asset prices. Predicting the asset price is of great importance to academic

research and real-world investment. Traditional asset pricing models mainly focus on

uncovering risk factors [48,49]. Over the years, economists identify hundreds of factors

to explain the variability in returns among assets [51]. The advancement in machine

learning and deep learning allows researchers to include the full spectrum of these

factors (for example, market, macroeconomic, and firm’s accounting fundamentals) to

predict returns or asset prices [47,66,95–99]. One advantage of deep learning models

is to select and learn crutial factors automatically. Among them, auto-encoder is

applied in [96] and [97] to forecast stock returns from historical data. Gu, Kelly, and

Xiu [47] use Multi-layer-perceptron (MLP) on 94 characteristics variables to predict

stock returns. Chen, Pelger, Zhu [100] use generative adversarial network to propose

a non-linear asset pricing model based on no-arbitrage condition.

Given the importance of networks in financial entities, incorporating network

information in asset pricing is surprisingly scant. There are only a few studies that

attempt to fill the gap and examine how the network enhances the predictability

of the future stock returns [59, 101–103]. My works differ from these network-based

approaches in multiple aspects. A temporal graph convolutional neural network is

proposed to rank assets for portfolio optimization in [102]. Different from my work,

[102] use feature similarities to learn the initial graph. Herskovic [59] introduce the

multi-sector information to build a static input-output network. In contrast, my

models capture the time-varying information and overcomes the drawback associated

with the assumption of sector similarity. Li et al. [103] propose LSTM Relational

Graph Convolutional Network to predict overnight stock movement. They use a fixed

correlation network among firms that fails to capture both the latent components

and the dynamic changes in the network. The stock prediction model in [101] applies

hierarchical attention in learning node representations with only spatial convolution.
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Also, they do not consider any temporal dynamics. By contrast, my model in the

recurrent diffusion step captures both spatial and temporal dependencies.

1.3 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 first discusses the problem with

missing values in financial analyst earning forecast data. This chapter proposes

a coupled matrix factorization algorithm to solve the missing value problem in

analyst earning forecast. Finally, it provides the experimental results and important

implications of the proposed methods in predict future firm earnings.

Chapter 3 extends the matrix factorization algorithm in tensor form. It

discusses the importance of representing financial time-series as a tensor. This chapter

introduces a novel nonlinear couple tensor completion model for heterogeneous data

integration and missing value imputation. It also provides detailed experimental

results and discusses the significance of the findings.

Chapter 4 starts with a brief discussion on the traditional asset pricing theories

and their limitations, provides a brief survey of applying popular machine learning

techniques in developing asset pricing models, and then proposes an autoencoder-

based novel latent factor model for asset pricing.

Chapter 5 introduces the importance of networks on asset pricing. This chapter

presents a signed graph Laplacian approach to construct a network factor “Z-score”

that reflects the change points in market network. We test the implication of this

network factor on equity prices.

In Chapter 6, I combine two state-of-the-art machine learning techniques

method to develop an end-to-end graph neural network model and shows its

applicability in asset pricing. This chapter also presents extensive experiments

concerning the proposed approach and its application on asset return predictability.
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Finally, Chapter 7 provides concluding remarks and discusses future research

direction.
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CHAPTER 2

MATRIX FACTORIZATION FOR REPRESENTATION LEARNING

2.1 Introduction

Earnings forecast conveys the expectation of firms’ future cash flow and is one of

the fundamental inputs for security pricing. Both academic researchers and market

participants devote significant time and efforts to produce their ‘best’ forecast.

Among them, analysts’ forecast is plausibly the most common and important one. It

serves as a benchmark for other prediction models and provides information to those

who do not conduct their own analysis.

Over a given time period (e.g., over a quarter), multiple analysts follow one

firm and generate individual reports. To capture the market overview, the mean or

median forecast across analysts, also known as analysts’ consensus forecast, is widely

used.A large body of research shows that analysts’ forecast is superior to time-series

models due to analysts’ knowledge and business insights and the timing advantage

of the forecast [104, 105]. Despite the advantages, analysts’ consensus forecast may

not be the ‘best’ proxy for the market overview. Studies have shown that analysts’

forecast accuracy is affected by their abilities, incentives, and previous experiences

[32,106–109]. As individual biases are systematic [105,110], they cannot be offset by

aggregating. Some general practices attempt to assign different weights to analysts

based on their past performance. More recent papers propose to incorporate crowd-

sourcing data and data with different frequencies [31, 111]. These papers attempt to

produce better earnings forecast by utilizing available information. Nevertheless, none

of them address the problem of missing values in the individual analyst’s forecast.

The issue of missing data is common in the analysts’ forecast: an individual

analyst does not always generate financial reports for the same firm, resulting in a
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highly incomplete and unbalanced dataset. There are different reasons behind: some

are systematic whereas others are caused by randomness. Analysts may intentionally

skip reporting for a firm for personal or professional interests resulting in systemic

missing values [105, 110]. On the other hand, analysts enter, exit, re-enter this job

market, follow one firm, stop following, and re-follow, resulting in randomly missed

values. In the sample from 2000 to 2016, the average percentage of missing values

for 2082 U.S. firms is 78.83% (see details in Section 2.3), which is too high to be

negligible.

In this work, I aim to complement current research by investigating whether

missing values in the individual analyst’s forecast can reveal additional information

after imputation and consequently improve the prediction of firms’ future earnings.

In doing so, I also evaluate how to efficiently impute missing values while preserving

data properties, patterns, structure, and distribution.

In practice, there are two approaches to deal with missing data problems:

marginalization and imputation. Marginalization is a list-wise deletion approach

to exclude the data instances with missing values. It is not viable to the analysts’

earning forecast dataset where the majority of data instances has missing values and

will be eliminated by marginalization. Imputation involves replacing missing values

with estimated values, for example, zero imputation, average imputation, and class

mean imputation [112, 113]. These imputation techniques have several drawbacks:

zero imputation on a highly sparse dataset significantly skews data towards zero

and changes distribution; mean imputation is very sensitive to outliers [112]. To

overcome the limitations of single imputation, [112] proposes multiple imputation

(MI). More recently, machine learning techniques have been applied to handling

missing data, including the k-nearest neighbor imputation (k-NNI) [114], singular

value decomposition (SVD) [115], nuclear norm minimization [116], and matrix

factorization (MF) [117].
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These techniques work well for simulated data. However, their performance may

vary for real data [118, 119]. In this chapter, I compare the imputation performance

among zero imputation, mean imputation, MI, iSVD, k-NNI, and MF and show

that MF consistently performs the best. The imputation accuracy captured by R2

reaches 96%, even when the missing rate is about 90%. MF factorizes the sparse

analysts forecast matrix into two low-rank factor matrix, i.e., quarter matrix U and

analysts matrix V . By extracting low-rank representations as latent factors, MF

simultaneously learns both individual analyst’s bias and the firm’s earnings trend over

time that are implicitly encoded or modeled by these latent factors. Subsequently,

the captured information in the latent factors is used to impute the missing values.

I also propose a coupled matrix factorization (CMF) to further improve the

standard MF approach and impute the sparse analysts forecasts with another dataset

of firm characteristics. The firm characteristics from quarterly financial statements

provide fundamental information of a firm and have much fewer missing values. The

decision to use firm characteristics as the additional dataset is motivated by previous

research findings that showed firm characteristics affect analysts’ forecast accuracy

[39–42] and firms’ earnings capacity [41,111,120]. By fusing two data sets with CMF,

I incorporate their comprehensive information into predicting firms’ future earnings.

Many existing approaches use the common alternating least-squares minimization

(ALS) approach that incurs significant computation and memory expenses and fails

to scale to large datasets. Instead, I design a novel stochastic gradient descent

(SGD) based coupled matrix factorization and attain significant improvements over

the standard (coupled) matrix factorizations in terms of accuracy, simplicity for

implementation, and computing speed for extremely large datasets [43].

To examine the quality and usefulness of imputation, I apply advanced machine

learning methods in the downstream predictions of firms’ actual earnings. Those

methods include Least Absolute Shrinkage and Selection Operator (LASSO) [44],
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eXtreme Gradient Boosting (XGBoost) [45], and Support Vector Regression (SVR)

[46]. To evaluate the prediction performance, I apply three measures: R2, mean

squared errors (MSE), and mean absolute percentage errors (MAPE). I show that all

these machine learning methods predict better with imputed data. Interestingly, I

find that the most advanced machine learning method, XGBoost, without imputed

data, cannot beat consensus forecast. Conversely, with the help of CMF imputed

data, XGBoost beats analysts’ consensus forecast by 34%. This finding confirms the

necessity of data imputation and the effectiveness of the proposed CMF method.

To ensure the reliability of the results, I group all firms based on the number of

analysts following and the level of forecast dispersion individually and jointly. The

first one measures the quantity of input data and the latter captures the associated

noise of the data. Compared with the consensus forecast, the improvement of the

prediction using imputed data and machine learning methods increases as the number

of analyst increases and/or analyst dispersion increases. On the other hand, the

prediction performance using machine learning cannot beat the consensus forecast

when the number of analysts following is small and analyst dispersion is the lowest.

Those findings have several implications: first, the quality of imputing missing values

depends on the amount of data; Secondly, imputing missing values is more important

when available data is volatile; Third, the effectiveness of advanced machine learning

methods is determined by the quantity and quality of input data, which confirms the

importance of imputing missing values right before applying any advanced machine

learning method.

This work contributes to the finance and accounting literature in several ways.

In contrast to previous research focusing on utilizing available analysts’ forecasts

or combining analysts’ forecasts with other factors, we, for the very first time,

investigate the importance of missing values in the individual analyst’s forecast. I

show that with properly imputed values, the prediction accuracy of firms’ future
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earnings is significantly improved. This finding helps us understand better about

financial analysts from two perspectives. First, missing values in the individual

analyst’s forecast can reveal additional and useful information about firms’ future

earnings. Second, available/observed analysts’ forecasts do not fully reflect the

firm-level information. If all fundamental information has been involved in the

observed analysts’ forecasts, imputed values should not contain additional information

and earnings prediction will not be improved with imputed values. The results are

opposite to this case and confirm the necessity of imputing missing values. Moreover,

this work enriches the application of machine learning techniques in finance and

accounting. Data-driven studies depend on the quality of input data. Machine

learning can help to improve data quality and facilitate the following research. Using

this work as an example, CMF is able to recover missing values with high quality and

consequently benefits earnings prediction model. It also shows that machine learning

models are imperative when data have high heterogeneity and sparsity.

The rest of the chapter is organized as follows: Section 2.2 presents the details

of the models that I use for missing value imputation and earnings prediction. It

also presents the criteria to evaluate model performances. Section 2.3 discusses the

data used for this study and hyperparameters for experimental settings. Section 2.4

elaborates on the result of the analysis. Finally, Section 2.5 summarizes the findings

of this chapter.

2.2 Methods

I align the methodology with the two distinct objectives of this work: missing value

imputation and earnings prediction. I first discuss two state-of-the-art missing value

imputation techniques –MF and CMF– alongside their implementations based on the

SGD algorithm. Then, I detail three widely used machine learning models, including
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XGBoost, LASSO, and SVR, for predicting firms’ actual earnings from the imputation

results.

2.2.1 Missing Value Imputation Methods

Imputing missing value for real data is always challenging because real data often

involves complex distributions and interactions that must be preserved to retain the

original data structure and knowledge. Accurate imputation is also essential for

building successful downstream predictive models. Over the years, several machine

learning-based data imputation techniques were proposed for missing data. In

this chapter, I compare two advanced imputation methods, MF and CMF, with

other six benchmarks. These include four traditional techniques, zero imputation,

mean imputation, random-walk imputation, and multiple imputation (MI), and

two machine learning-based techniques, k-NNI and i-SVD. Zero imputation involves

replacing the missing values with zero. The mean imputation replaces the missing

value with the average of existing values from the same class, here, the average

forecast of all the non-missing analysts in the same quarter. Random-walk imputation

replaces the missing value with the analyst’s last available value. If the analyst’s last

forecast is unavailable, it will be replaced with the last reported actual Earning Per

Share (EPS). MI creates multiple predictions for each missing value considering the

uncertainties involved with missing values [112]. For MI imputation, I use the widely

used framework for robust MI – Multiple Imputation with Chained Equation (MICE)

algorithm. k-NNI imputes the missing value with the average value of its k-nearest

neighbors [115]. Finally, i-SVD uses singular value decomposition to approximate

missing values [121]. More details about all these benchmark methods are presented

in Appendix A.1.

Matrix Factorization MF came to fame after its success in the Netflix competition

in 2006. MF directly factorizes the original incomplete matrix into two low-rank
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factor matrices. These low-rank factor matrices learned from observed entries in

the original matrix constitute the compact representation of the underlying data

structure. Therefore, they can be used to reconstruct the entire dense matrix from

only a fraction of matrix entries [117]. To estimate the missing values in the original

quarter-analysts’ forecast matrix X ∈ RT×N , I factorize it into U ∈ RT×K and V ∈
RK×N as X = UV (shown in Figure 2.1). The U ∈ RT×K contains the temporal latent

factors with one row for each quarter, and V ∈ RK×N represents the analysts’ latent

factors with each column corresponding to each analyst. Throughout the chapter, I

use t = 1, ..., T to represent quarters and n = 1, ..., N to represent analysts.1 K is

the number (rank) of latent factors and K < T and K < N . The earnings forecast

by analyst n in quarter t is imputed as follows:

MF (Xtn) =

⎧⎪⎪⎨⎪⎪⎩
∑K

k=0 UtkVkn if Xtn is missing value

Xtn otherwise

(2.1)

The latent factors Ut: and V:n are the embeddings of the respective quarter t or

analyst n. If two analysts’ forecasts are similar to each other, their embeddings will

be close to each other. It is also the case for the time periods. Figure 2.1 shows that

to estimate X3,2, MF uses the latent factors from the 3rd row of U and 2nd column

of V . U and V are modified by minimizing the difference between U · V and X on

the observed entries. The objective of the matrix factorization is represented by a

1Follwoing standard practice, throughout the chapter, I use upper case letter for matrix,
e.g., X, and range, e.g., T , and lower case letter for index, e.g., t.
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Figure 2.1 Matrix Factorization (MF) to predict missing entries. An incomplete
matrix X represent all existing forecasts for N analysts and T quarters. MF adopts
the machine learning paradigm and applies SGD to factorize and reconstruct the
incomplete matrix element-by-element. It iterates the following steps: calculate the
error between the predicted values and known values (the ground truth), apply a
gradient descent optimization algorithm to estimate individual analyst’s embedding
(the column in gray ) and a firm’s temporal behaviors (the row in gray), adjust the
learned embeddings in factor matrices U and V . To impute the entry marked by ‘?’,
MF performs a dot product on the corresponding row and column in gray.

function of the parameters (U, V ) and defined as follows:

min
U,V
L(X;U, V ) = min

U,V
‖(X − U · V )� 1X‖2F + α(‖U‖1,1 + ‖V ‖2F )

= min
U,V

T∑
t=1

N∑
n=1

(((Xtn − Ut: · V:n)� 1X)
2 + α(

‖Ut:‖1
T

+
‖V:n‖22
N

))

(2.2)

Herein, 1X is an indicator matrix, (1X)tn = 1, if Xtn has value, else (1X)tn = 0. I

use the Hadamard product � between (X − U · V ) and 1X to select the elements

with the valid values because the loss function only considers the non-missing values

and ignores the imputed values that have no ground truth for validation. The hyper-

paramter α controls the relative impact of regularization on factor matrices U and

V . Following [117], it is determined by cross validation. I use different regularization

on the factor matrices, �1,1 norm for matrix U and Frobenius norm �2,2 for matrix V ,

to derive desired properties from analysts and quarters. On one hand, U encodes the

timing information with K latent time factors and adopts sparsity to focus on the

most relevant time factors and ensure the best generalization capability in prediction.
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On the other hand, V represents analysts who tend to generate consistent forecast

reports for the same firm due to the herding affect and Efficient Market Hypothesis

(EMH). Consequently, I apply the ridge regularization on V to penalize any large

deviation in analysts’ underlying embedding factors and ultimately smooth across

the future earning forecasts for the same firm.

To take the advantage of the powerful Stochastic Gradient Descent (SGD), I

decompose the matrix norm into the regularization on the rows or columns in a matrix

in Equation (2.2), each row in U is regularized by an �1-penalty
2 and each column in V

by an �2-penalty.
3 Equation (2.2) helps understand the machine learning-based Matrix

Factorization, with all values in non-empty cells of matrix X becoming the training

targets and their indices being the input variables. When the training algorithm

iterates over each training sample, it performs the regularization on the relevant row

and column simultaneously.

I set aside 10% of the non-missing data as the validation sample set, and train

the model through the SGD on the remaining 90% non-missing data (training sample).

The SGD based MF is presented in Algorithm 1. SGD minimizes the given loss

L(X;U, V ) by descending on the gradient with respect to the parameters θ = (U, V ).

With the initial starting point θ0, SGD iterates over the stochastic difference equation

θm+1 = θm − εm
∂L
∂θ
|θ=θm to update the parameter values, where m is the index of

the current step and εm, 1 ≤ m ≤ M is a sequence of the decreasing step sizes

[122]. Instead of summarizing the gradients of all training data, I apply the SGD to

decompose the loss function L into the individual loss term Ltn in Equation (2.2) for

each data element in the training set Z. Algorithm 1 reaches the convergence once

the minimum improvement in the validation set is ≤ 0.0001.

2The �1, the sparsity penalty, uses the absolute value of magnitude to penalize the loss
function.
3The �2 norm used a square of the magnitude to penalize a large deviation from the ground
truth.
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Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values U0 and V0

while not converged do {step}
Select a training point (t, n) ∈ Z uniformly at random.
U

′
t: ← Ut: − εm

∂
∂Ut:
Ltn(X;U, V )

V ′
:n ← V:n − εm

∂
∂V:n
Ltn(X;U, V )

Ut: ← U
′
t:

V:n ← V
′
:n

end while

Algorithm 1 uses only one data sample each time to evaluate the gradient of

the loss function and leads to an unstable statistical estimation and long convergence

time, particularly when the optimization process fluctuates around the minimum

of the objective function. To mitigate the problem, I use the mini-batch size b

bigger than one during each training iteration. The concept of stochastic gradient

descend, adaptive step-size (for example, Adam Optimizer), and the mini-batchsize

lays the foundation of deep learning. I leverage one popular deep learning framework,

Keras [123], for a cost-effective implementation of the Distributed Stochastic Gradient

Descent Matrix Factorization that is elaborated in [122]. Keras has the built-in

capability of supporting distributed programming within each mini-batch and ensure

the scalability of the MF model. With the help of the distributed SGD (DSGD) and

the Keras deep learning framework, MF works with datasets that contain millions

of rows and columns and billions of missing entries [122] and run on multiple GPUs

simultaneously, resulting in faster convergence and higher scalability than the MF in

Algorithm 1.

MF in Algorithm 1 only factorizes one matrix and does not use any other

information except the known values in matrix X. Besides, for new quarters or for an

analyst who make forecast for the very first time, it is difficult to associate the novel

quarters or analyst to a reference point, resulting famous cold start problem4. In the

4In recommender systems, the cold start occurs when the model cannot make any inferences
for users (analysts) or items (quarters) because of insufficient information. In other words,
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Figure 2.2 Couple Matrix Factorization (CMF). It allows the information to
propagate along the temporal factor U from matrix Y to matrix X as U is shared as
the temporal factor matrix for both X and Y .

following section, I discuss a novel approach to use external information to overcome

the problem associated with the single dataset MF.

Coupled Matrix Factorization A variety of financial datasets are related to firms

and their quarterly earnings: daily stock data show short-term returns in the market,

the accounting fundamental data reflect a firm’s health condition, finance news reports

any major event of a company, and analysts consensus forecast reveals the general

market expectation of firms’ future earnings. These datasets offer different views

concerning a firm and any one source alone, e.g., analyst forecast, might not provide

the true representation of a firm.

In this work, I hypothesize that the internal accounting information provides

objective insights of a firm’s earnings. Once incorporated in the MF-based data

imputation, it helps filling in absent details and reduces analysts’ bias in earnings

forecasts. In addition, the missing value imputation algorithms often suffer the

cold start and data sparsity problems [126]. Under these circumstances, the time

and analysts’ latent factors learned from the analysts’ matrix are less informative

lack of reference point for an analyst or quarter to be associated with other users or quarters
[124,125].
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Algorithm 2 Coupled Matrix Factorization

Require: Training set Z, Analyst matrix X, Characteristics Y, initial values U0, V0,
and S0.
while not converged or reach the maximum steps do {Alternating Gradient
Descent}
while not converged do {step}
Select a training point (t, p) ∈ Z uniformly at random.
U

′
t: ← Ut: − εm

∂
∂Ut:
Ltp(Y ;U, S)

S ′
:p ← S:p − εm

∂
∂S:p
Ltp(Y ;U, S)

Ut: ← U
′
t:

S:p ← S
′
:p

end while
while not converged do {step}
Select a training point (t, n) ∈ Z uniformly at random.
U

′
t: ← Ut: − εm

∂
∂Ut:
Ltn(X;U, V )

V ′
:n ← V:n − εm

∂
∂V:n
Ltn(X;U, V )

Ut: ← U
′
t:

V:n ← V
′
:n

end while
end while

because of insufficient signals and even missing critical data in the incomplete analyst

forecast dataset. Machine learning algorithms alone cannot make up the weak

signal. Therefore, I introduce the additional dataset of firm characteristics that share

the same time dimensionality with the forecast dataset and provide more complete

information about a firm, its operational environment, and growth pattern to regulate

imputation process.

The traditional matrix completion algorithm treats two datasets separately and

generates two matrices for each dataset, i.e., analyst and temporal factor matrices

for forecast data, and fundamental and temporal factor matrices for characteristics

dataset. On the contrary, a coupled matrix factorization algorithm (CMF) attempts

to enforce the same time factor matrix during factorization and decomposition [126,

127]. By sharing the time factor, the information propagates from the dense matrix

(firms accounting data) to the sparse matrix of the forecast dataset during data

imputation (shown in Figure 2.2).
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I use firm characteristics matrix Y ∈ RT×P , with T representing quarters

and P representing characteristics, to regularize the reconstruction of analysts’

earnings forecast matrix X. Both X and Y share the time dimension in the

unit of quarter U . The combined objective (loss) function of coupled matrix

factorization is defined on the variables U, V , and S and written as follows:

L(U, V, S) = λ‖(X − U · V )� 1X‖2F + (1− λ)‖(Y − U · S)‖2F + α(‖U‖1,1 + ‖V ‖2F + ‖S‖2F )

= λL(X;U, V ) + (1− λ)L(Y ;U, S) (2.3)

where λ controls the weights between the two matrices and α control the relative

impact of the regularizations on factor matrices U, V and S. I split the loss function

into the reconstruction losses (and associated regularization penalties) L(X;U, V ) for

X and L(Y ;U, S) for Y , and alternately process them in Algorithm 2. Similar to

MF, I apply �1,1 norm for matrix U and Frobenius norm for matrices V and S.

Algorithm 2 minimizes the objective function in Equation (2.3). I alternately

apply the same SGD introduced in section 2.2.1 to factorize the analysts’ forecast

and characteristics matrices. I first factorize the dense matrix of firm characteristics

Y into the time latent factor matrix U ∈ RT×K and characteristics latent factors

S ∈ RK×P , and iterate until convergence. Afterward, I factorize the sparse matrix X

into the time latent factor matrix U ∈ RT×K and analyst latent factors V ∈ RK×N ,

and iterate until convergence. For factorizing X, I use the trained time latent factors

U of Y to set the time factor matrix U of X and apply random initialization on

the analysts’ factor matrix V . The shared matrix U overcomes the challenge of the

cold start and data sparsity and imputes data with the high-quality key performance

factors of a firm.
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2.2.2 Earnings Prediction Methods

The capability and effectiveness of missing value imputation using the proposed

method can be evaluated by the ability of using imputed values to predict firms’ future

earnings. An improvement in prediction accuracy with imputation over those without

will validate the importance of MF and CMF. In this chapter, I compare MF and

CMF models’ performance in predicting future earnings against MI, Random-walk,

and analysts’ consensus forecast. I take advantage of MF and CMF and apply

three widely used machine learning algorithms –XGBoost, LASSO, and SVR– on

the imputed matrix to estimate firms’ future earnings. The next quarter earning of

a firm ŷt is the function of analyst earning forecasts.

ŷt = f(xt1 · · · xtN ; θ) (2.4)

where xtn is the actual forecast if available, otherwise imputed value using MF or

CMF imputation function for time period t and analyst n, f(·) denotes the machine

learning algorithms, i.e., XGBoost, LASSO, and SVR and θ is the model parameters

of respective algorithms.

XGBoost XGBoost is a gradient boosting algorithm based on the tree-based

machine learning model and the first and second order derivatives in Equation

(2.7) [45]. XGBoost becomes a dominant algorithm for prediction problems in various

fields, especially for small to medium-size structured data where deep learning might

easily overfit data. Given T data samples with N features X ∈ RT×N , a decision

or regression tree f(·) defines a mapping q : RN → M,w ∈ RM . q maps a sample

xt ∈ RN to one of M leaf nodes in the regression tree by following a decision path

from root to the leaf. Here, q is the tree structure and M is the index of tree leaves.

XGBoost ensembles K trees with the final prediction being the sum of the regression
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results by each regression tree.

ŷt = φ(xt) =
K∑
k=1

fk(xt), fk ∈ F . (2.5)

F = {f(X) = wq(X)} is the space of regression trees. Each fk is associated with a

different tree structure q and leaf weights w. Instead of using a fixed tree structure,

XGBoost adds a new function tree fk and generates a prediction ŷ
(k)
t =

∑T
t=1 fk(xt) for

xt at iteration k. To mitigate the overfitting problem, XGBoost penalizes the model

in the magnitude of the weight w and depth of all constituency trees by optimizing

the following objective function of variable ŷt:

L(φ) =
∑
t

l(yt, ŷt) +
∑
k

Ω(fk) (2.6)

The first term in the loss function is the fitness of the model, and the second part

Ω(f) = γM + 1
2
λ‖w‖2 is a regularization term to control the model complexity and

penalize large and complex model parameters. During each iterative, a Taylor series

of Equ. 2.6 expands the loss function into the constant term that is fixed in the

previous k − 1 stages and the first and second-order derivatives of the loss function.

The new objective function for the current iterative k is defined as follows:

L̃(k) =
T∑
t=1

[gtfk(xt) +
1

2
htf

2
k (xt)] + Ω(fk), (2.7)

where gt =
∂l(yt,ŷt)

∂ŷt
|
ŷt=ŷ

(k−1)
t

and ht =
∂2l(yt,ŷt)

∂ŷ2t
|
ŷt=ŷ

(k−1)
t

are the first and second order

gradient statistics of the loss function respectively. XGBoost essentially builds a

regression tree to minimize the new objective function in Equ. 2.7 with the optimal
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Figure 2.3 XGBoost tree structure with default (gray) directions.

weight w∗
m for leaf m that is calculated by w∗

m = −
∑

t∈Im
gt

∑
t∈Im

ht+λ
. However, the

computational complexity of enumerating all possible trees is steep. Starting from a

single terminal node tree, [45] uses a greedy algorithm to iteratively add branches to

the tree (For details see [45]).

XGBoost has a built-in sparsity awareness and, therefore, can handle missing

values in data analysis, which prompts us to evaluate it as a downstream predictive

model as well. Figure 2.3 demonstrates that XGBoost adds a default path in each

tree node: when the model encounters a missing value, the path takes the default

route to descent. As a result, the algorithm automatically learns the best path to

take in processing missing values [45]. In the experiment, I apply XGBoost to predict

from both the original data with missing values (XGBoost) and the imputed data

by MF (MF+XGBoost) and CMF (CMF+XGBoost). This enables us to compare

the performance improvement from the imputation on financial analysts’ earnings

forecast by MF and CMF.

Least Absolute Shrinkage and Selection Operator (LASSO) I use LASSO

as the second model for evaluating the downstream prediction task. LASSO is a

regression analysis method that has the capacities of automatically selecting variables

and regularizing the model complexity. By using �1-penalty in the loss function,

LASSO shrinks the weights of multiple input feature variables toward zero and
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essentially performs an automatic feature selection. As a result, the model removes

correlated features and avoids overfitting (For details see [44]).

L(w) =
T∑
i=1

(yt −
∑
n

xtnwn)
2 + λ

N∑
n=1

|wn| (2.8)

where λ is the shrinkage parameter that controls the strength of the �1 penalty.

Support Vector Regression (SVR) The final predictive machine learning

techniques use for predicting firms earning is SVR [46]. Instead of minimizing the

error rate, SVR tries to fit the error within a certain threshold α. For this study,

I use a nonlinear SVR with the radial basis function (RBF) kernel, also known as

the Gaussian kernel. The nonlinear SVR minimizes the loss function as the follows:

L(α) = 1

2

T∑
t=1

T∑
i=1

(αt − α∗
t )(αi − α∗

i )G(xt, xi) + ε

T∑
t=1

(αt − α∗
t )−

N∑
t=1

yt(αt − α∗
t )

subject to
T∑
t=1

(αt − α∗
t ) = 0; ∀t : 0 ≤ αt ≤ C and ∀t : 0 ≤ α∗

t ≤ C (2.9)

where, αt and α∗
t are non-negative Lagrange multipliers for each observation xt,

and G(xt, xi) = exp(−‖xt−xi‖2
2σ2 ) is the RBF kernel function. SVR predicts the actual

EPS as follows:

ŷt = f(x) =
N∑

n=1

(αn − α∗
n)G(xn, x) + b. (2.10)

2.2.3 Evaluation Metrics

I adopt three evaluation criteria to compare the performance between the proposed

method and other reference methods: R-Squared (R2), mean squared error (MSE),

and mean absolute percentage error (MAPE). To evaluate the imputation algorithms,
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I compare the observed analyst-quarter forecast (ground truth) with the imputed

analyst-quarter forecasts. The R2 and MSE are defined as follows:

R2 = 1−
∑T

t=0

∑N
j=0(xtn − x̂tn)

2∑T
t=0

∑N
n=0(xtn − x̄)2

(2.11)

MSE =
1

TN

T∑
t=0

N∑
n=0

(xtn − x̂tn)
2 (2.12)

where, x̂tn is the imputed value for time period t for analyst n, xtn is the actual

forecast, and x̄ is the mean forecast among all analysts’ of the firms. A higher value

of R2 indicates a better prediction accuracy, i.e., the estimated value is closer to the

original value. R2 = 0 signifies that the model is unable to explain any variability

of the data around mean. Whereas, a negative R2 < 0 signifies that the model

performance is worse than the mean. On the other hand, a smaller value for MSE

indicates better prediction accuracy. MSE = 0 denotes that the model accurately

estimates the original values.

Although R2 and MSE are the two most popular measures in evaluating machine

learning model performance, large values in the data set might influence these two

metrics. These two metrics are sensitive to the analysts’ EPS forecast data because

the EPS of some firms can be very large. Therefore, I apply a third measure, Mean

Absolute Percentage Error (MAPE), defined as follows:

MAPE =
1

TN

T∑
t=0

N∑
n=0

‖(xtn − x̂tn)‖
‖xtn‖ × 100 (2.13)
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To avoid the unexpected divided-by-zero error, I use a small constant (0.005) to

the denominator in the equation if the scale of actual earnings is smaller than

0.005. A smaller value for MAPE indicates better prediction accuracy. The matrix

imputation and the downstream earning predictions are all supervised machine

learning algorithms with the regression target. Their evaluation metrics are identical.

To evaluate the performance of the downstream earning prediction, I make a slight

modification in the above three Equation (2.11, 2.12, and 2.13) to compare the

prediction result ŷt for each quarter with the actual EPS of that quarter yt.

R2 = 1−
∑T

t=0(yt − ŷt)
2∑T

t=0(yt − ȳ)2
(2.14)

MSE =
1

T

T∑
t=0

(yt − ŷt)
2 (2.15)

MAPE =
1

T

T∑
t=0

‖(yt − ŷt)‖
‖yt‖ × 100 (2.16)

Similar to the imputation MAPE, I set the minimum of the denominator to 0.005.

2.3 Data and Hyperparameters

The quarterly financial analysts’ forecast of earnings per share (EPS) data is collected

from I/B/E/S, Thomson Reuters. I consider the time from quarter 1, 2000 to quarter

4, 2016. This data contains almost 10,000 firms and 14000 analysts. Because machine

learning models require a large amount of data, I perform some filtering procedures

on all the available firms and analysts while retaining the maximum number of firms
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Table 2.1 Data Description

Missing Value No. of Analysts

Data Group N Average STD Max Min Average STD Max Min

Original Data 2082 78.83% 4.66% 90.88% 60.64% 45.68 27.95 173 11

High Analysts 687 76.27% 3.92% 86.40% 60.84% 75.98 26.19 173 30

Moderate Analysts 702 78.81% 4.11% 88.18% 61.06% 39.41 10.41 76 14

Low Analysts 693 81.39% 4.46% 90.88% 61.85% 21.99 6.82 45 11

High Volatility 687 80.36% 4.73% 90.88% 60.84% 37.78 23.71 171 11

Moderate Volatility 702 79.02% 4.39% 90.19% 62.88% 44.70 27.88 170 11

Low Volatility 693 77.13% 4.28% 89.25% 61.85% 54.51 29.39 173 11

Note: N denotes number of firms. Firms are divided into tercile based on the average number of
analysts following (middle panel) and the average standard deviation among analysts forecasts over
time (bottom panel).

with the maximum observed data instances. First, I only select firms that appear

at least 48 quarters out of the total 68 quarters, which allows us to have sufficient

historical records. Second, I remove firms with less than ten different analysts during

the sample period. Third, I remove analysts who make less than three forecasts

in the considered period. This helps us eliminate some potential noises. The final

sample involves 2082 firms and 9785 analysts. The relevant statistics of the dataset

is presented in Table 2.1.

However, the data distribution of the analysts’ earnings forecast is not uniform

across firms. Not all firms receive the same level of attention from financial

analysts: big firms with high-growth potential attract more analysts than small

firms. In addition, a firm’s earnings forecasting varies in terms of complexity. The

EPS forecasts for big and mature firms generally have lower variance compared to

those for small firms. Table 2.1 also reports the statistics for different groups. I

consider two grouping criteria: the number of analysts following and the analysts’

dispersion/volatility. The number of analysts following is the average number over

time for a given firm, a proxy for data quantity. The analysts’ volatility is measured

as the average value of standard deviation among analysts’ forecasts over time for a
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Table 2.2 Firm Characteristics

Variable Description and calculation procedure

FV1 Inventory = ΔInventory (INVTQ)−ΔRevenue (REVTQ)

FV2 Account receivable = ΔAccount receivable (RECTQ)−ΔRevenue

FV3 Capital expenditure = ΔIndustry CAPX−ΔFirm CAPX (CAPXQ)

FV4 Gross margin = ΔRevenue−ΔGross margin (REV TQ− COGSQ)

FV5 SG&A expenses = ΔSG&A(XSGAQ)−ΔRevenue

FV6 log(Total assets (ATQ))

FV7 Dividend payment (DVY)

FV8

Divd = 1 if the firm at a given year has dividend information and dividend

payment is greater than zero, otherwise 0.

FV9 Net income (IBQ)

FV10 negNI = 1 if the firm at a given year has negative earnings, otherwise 0.

FV11 IBQ−OANCFQ

FV12 Investment = ΔATQ

FV13 BM = log( CEQQ
PRCCQ×CSHOQ

)

FV14 ME = log(PRCCQ× CSHOQ)

FV15

Firm-specific stock return from CRSP during month m less the same-industry

portfolio return in month m before actual earnings announcement t.

FV16/17 Most recent daily/monthly close price before the date of earnings announcement t

FV18

Standard deviation of (stock daily return minus market return) in month m

before actual earnings announcement t.

FV19 Leverage = long-term debt (DLTTQ)/total equity (CEQQ)

given firm, a proxy for data complexity. I then sort firms into tercile based on those

two criteria, respectively, top 33%, bottom 33%, and remaining 34%.

As briefly mentioned in the introduction, the missingness in analysts’ forecast

data can be both random and systematic. Analysts may intentionally skip reporting

for a firm for personal or professional interests. For example, analysts choose not to

report when there is a bad news happening to a given firm, which results in multiple

missing values for that firm at the same time period, i.e., systemic missing values [105,

110]. On the other hand, analysts enter, exit, re-enter this job market, follow one firm,

stop following, and re-follow, resulting in randomly missed values. The existence of

systemic missing value justifies that analysts’ forecast data is not Missing Completely
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at Random (MCAR) but Missing at Random (MAR). The MAR assumption is built

based on the premise that the missingness on the data can be estimated by the

other analysts’ available observations and the analyst’s historical forecasts. One can

argue that the systematic missing values may provide optimistic predictions of unseen

values as analysts sometimes choose not to report a bad forecast to maintain a good

relationship with management [128,129]. These may qualify the data as Missing Not

at Random (MNAR). However, these types of missing values are very few compared

to the total number of missing values for a firm. In addition, practical applications

show that MF can work reasonably well for MNAR data too [117, 130], and the

incorporation of firm-level information into the missing data imputation process by

CMF can tackle this systematic bias.

To augment highly sparse data of analysts’ earnings forecasts with the auxiliary

firm characteristics information in CMF, I adopt 19 widely used firm characteristics

following the literature [33, 41, 120]. The firm characteristics data mainly come

from two sources, quarterly accounting variables from COMPUSTAT and daily and

monthly stock prices and returns from CRSP. I fix some recording errors such as

negative stock prices and remove the observations with missing total assets. Table

2.2 provides a detailed description of each selected variable.

To evaluate the imputation performance of different imputation algorithms, I

pre-select a small subset of these 2082 firms. For assessing the stability of imputation,

I increase the missing values by randomly removing some observed values from the

data. The goal is to select firms with highly populated data to ensure that I can still

choose a reasonable amount of sample data when the percentage of missing values

increases. To meet the requirement, I select firms with at least 1300 forecasts in

the entire period. After applying the criterion, I obtain 51 firms for analyzing initial

imputation performance.
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Table 2.3 Hyperparameter Settings

Model Hyperparameter Values

MF and
CMF

Latent factors (K) 3, 5, 10, 15, 20

Weight (λ) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Learning Rate (e) 1e-5, 1e-4, 1e-3, 1e-2

Regularization (α) 1e-4, 1e-3, 1e-2, 1e-1

LASSO Regularization (λ) 1e-5, 1e-4, 1e-3, 1e-2, 1e-1

XGBoost
Learning Rate (e) 1e-5, 1e-4, 1e-3, 1e-2

Regularization (λ) e-4, 1e-3, 1e-2, 1e-1

SVR
Epsilon (ε) 1e-5, 1e-4, 1e-3, 1e-2

Constant (C) 1, 2, 3, 5, 10

The performance of machine learning models often depends on hyper-parameters.

To find the hyper parameters’ optimal configuration for each model, I use 10-fold

cross-validations and perform a grid search on hyper-parameters in Table 2.3. The

potential grid values are selected according to the common practice in machine

learning and the original model designer’s choices (e.g., [45, 117]). For the rolling

window analysis in Section 2.4.5, I perform the grid search for the first model of the

rolling window, i.e., Q1-2015. The best parameters are then used for the remaining

models throughout the rolling window process. The low-rank representation of data

depends on data complexity. As a result, it is tricky to set the dimensionality of latent

factors, a.k.a. rankK for MF and CMF. The computational complexity increases with

a large K. For optimal performance, K must be substantially lower than the number

of analysts and quarters. I apply a sampling approach and attempt to perform a grid

search using the value on Table 2.3 on a small subset of firms. Although the actual

rank required for different firms can vary, my assessment shows that the marginal

benefits of a rank higher than ten are very low. Therefore, to ensure consistency, I

select rank K = 10 for both MF and CMF analysis. Finally, to avoid overfitting, I

use multiple random seeds, i.e., ten, for the train-test split and average the ten trials’
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results. Using multiple random seeds also allows us to overcome the spurious effect

of outliers in the test data.

2.4 Results and Discussion

There are two sequential objectives in my primary analyses: missing value imputation

and earnings prediction. I first evaluate MF in imputing missing values along with

other baseline methods. Next, I apply three machine learning models to both

in-sample and out-of-sample predictions with MF imputed data. The in-sample

prediction involves the imputation to the entire data sample and a prediction model

with 90% training set and 10% test set. In-sample prediction intends to demonstrate

the usefulness of imputing missing values without considering the prediction, and

therefore, involves the entire sample in the imputation step. By contrast, the

out-of-sample prediction focuses more on earnings forecast, i.e., it only imputes the

up-to-date observations and then predicts one-quarter ahead earnings. Finally, to

argue that single dataset is not enough for missing value imputation, I use the

out-of-sample approach to impute missing values with a coupled matrix factorization

(CMF) and predict one-quarter ahead earnings based on CMF imputed data.

2.4.1 Missing Value Imputation

In this section, I perform robustness tests to evaluate the proposed missing value

imputation’s efficiency and superiority to the other available techniques. To show

this, I randomly remove entries from the available EPS forecast data and create a

series of datasets with 70%, 75%, 80%, 85%, 90%, 95%, and 99% missing values for

each firm. The randomly removed values from original data are set aside to use as

the benchmark values to evaluate and compare the calculated values by the given

imputation techniques. I compare the performances of the proposed MF with Zero

imputation, mean imputation, MI, random-walk imputation, k-NNI, and i-SVD.
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Table 2.4 Imputation Performance at Different Percentage of Missing Value

Metrics Algorithm 70% 75% 80% 85% 90% 95% 99%

R2

Zero 0.8253 0.6400 0.4378 0.2684 0.0653 -0.1307 -0.2857

Random-Walk 0.7081 0.6801 0.4863 0.4526 0.3204 0.1106 0.0640

Mean 0.9594 0.9215 0.8705 0.8289 0.7709 0.5588 0.1550

MI 0.9954 0.9845 0.9756 0.9576 0.9129 0.4442 -1.0044

iSVD 0.9915 0.9839 0.9564 0.8970 0.6881 0.2383 -0.2904

k-NNI 0.9920 0.9885 0.9711 0.9570 0.8987 0.4070 -0.2787

MF 0.9934 0.9931 0.9824 0.9772 0.9607 0.8593 -0.0134

MSE

Zero 0.0474 0.0987 0.1527 0.1990 0.2553 0.3081 0.3521

Random Walk 0.0070 0.0165 0.0200 0.1434 0.1869 0.2807 0.3311

Mean 0.0089 0.0182 0.0289 0.0385 0.0515 0.0764 0.1705

MI 0.0006 0.0016 0.0037 0.0069 0.0213 0.0816 0.1840

iSVD 0.0011 0.0030 0.0077 0.0222 0.0771 0.1947 0.3598

k-NNI 0.0008 0.0019 0.0037 0.0065 0.0174 0.1282 0.3511

MF 0.0005 0.0010 0.0018 0.0026 0.0055 0.0283 0.1504

MAPE

Zero 4.3210 9.0601 14.0404 18.3212 23.3001 28.3131 32.1421

Random-Walk 2.6212 5.4829 9.1386 12.3305 15.1359 25.6746 34.3193

Mean 4.5912 9.5592 14.9589 19.9721 25.6145 33.0763 40.4842

MI 0.9437 2.1685 3.9593 6.9882 12.6171 34.3544 69.1211

iSVD 1.0021 2.2858 3.9646 6.6562 12.7212 22.5952 31.9931

k-NNI 1.0031 2.3412 4.1742 6.6457 11.6842 24.6332 32.5212

MF 0.7321 1.5702 2.5452 3.4637 5.1496 9.0416 27.8907

Note: The columns represent the total percentage of missing value after randomly deleting some existing
observations. R2, MSE, and MAPE are calculated using Equation (2.11), (2.12), and, (2.13), respectively.
Smaller MSE, MAPE and larger R2 indicate better accuracy..

Table 2.4 reports the performance of the different algorithms with the same

setting of evaluation scenarios where the best performing algorithm is in bold font.

Almost in all data settings, MF outperforms other imputation techniques in all three

performance metrics. Notably, the reduction in MSE by MF over the mean imputation

is 94% for 70% missing values, 93% for 80% missing values, 89% for 90% missing

values, 62% for 95% missing values, and 12% when 99% data is missing. Among all

studied methods, the zero imputation and random-walk imputation have the worst

performance. MI outperforming the mean imputation in all three performance metrics
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Figure 2.4 Imputation performance at different level of missing values.

for up-to 90% missing values, and under-performing with 95% and 99% missing values.

The poor performance of zero imputation is understandable as replacing missing

values with zero does not improve the information rather adds noises [112, 113].

The results from the random-walk model signify that the firm performance and EPS

change over time, and consequently, the historical performance can not surrogate the

current ones.

Table 2.4 and Figure 2.4 also show that most imputation techniques perform

well up-to 90% missing value. Specially, when the missing percentage increases

to 99%, data becomes extremely sparse, rendering the performance decline of all

techniques. This findings show that without enough data, almost all sophisticated

machine learning models fail to impute missing values effectively. It is also evident

that with 99% missing values, MF retains its superiority over the mean and zero

imputations in regards to MSE and MAPE. Other techniques, such as MI, iSVD, and

k-NNI, lose their advantage over the mean forecast under extremely sparse conditions.

Because these techniques approximate the missing values using a linear combination of

known values and are sensitive to the number of known values. It might be interesting

to note that, with 99% missing value, all imputation techniques have negative R2,

except the mean and random-walk imputation. However, the seemingly good R2

performance of the mean imputation at a high percentage of missing value comes

from the definition of R2. R2 compares the imputation performance with the mean

value of the entire matrix. Therefore, the R2 of mean imputation never falls below
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zero. On the contrary, other methods including MF get a negative R2. They suffer

from the randomness and noises under such an extremely sparse dataset and cannot

outperform a simple mean algorithm in term of R2. This is an extreme case and might

be unlikely for real data; meanwhile, it also suggests that missing value imputation

methods for such sparse data might not be optimal. Overall, MF provides the best

performance in all cases with just one exception.

(a) Quarter (b) Analyst

Figure 2.5 Pairwise cosine similarities among (a) ‘Quarter’ factors and (b)
‘Analyst’ factors learned from the ‘Apple Inc.’ analyst EPS forecast data. The
precise dividing line in December 2009 between the two groups in the ‘Quarter’ factors
represents the impact of the 2008-09 global financial crisis.

The superior performance of MF model in imputing missing value comes from

the model’s underlying architecture. MF solves the problem of missing value by

first learning the bias of analysts and the seasonal behaviors from individual data

instances, and then applying the learned factors to recover the remaining target

values. The rationals come from the observations that individual analysts have

a bias on corporate earnings and tend to over-/under-estimate their values. The

ML-based algorithm encodes these biases in the embedding (vector representation)

that represent individual analysts and can be used to measure the similarity among

analysts, as shown in Figure 2.5b. Moreover, a firm’s earnings might have seasonality

that affects its actual earnings at different quarters and is subject to the global

economic environment. Figure 2.5a shows that the machine learning algorithm also
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Table 2.5 Predicting Firm Earnings

Method R2-Train R2-Test MSE-Train MSE-Test MAPE-Train MAPE-Test

Mean 0.7676 1.2607 41.3800

Random-Walk 0.2340 2.6447 114.2348

XGBoost 0.9943 -1.7070 0.0038 0.8527 29.2431 62.2416

MI+LASSO 0.6045 0.5777 0.4082 0.4205 45.9482 59.1836

MI+XGBoost 0.9987 0.7117 0.0016 0.2912 10.257 47.1694

MI+SVR 0.7784 0.7038 0.0682 0.3201 42.2457 48.6601

MF+LASSO 0.8419 0.7557 0.1439 0.5429 31.1921 41.4667

MF+XGBoost 0.9997 0.8097 0.0003 0.0873 20.2296 24.4457

MF+SVR 0.9139 0.7974 0.0492 0.0866 20.6630 24.6801

Note: This Table shows the training and testing performances. I use the values in the columns
labeled “-Test” to evaluate the real model performance. R2, MSE, and MAPE are calculated using
Equation (2.14), (2.15), and, (2.16) respectively. Smaller MSE, MAPE and larger R2 indicate better
accuracy. Values in MAPE are in percentage term.

produces the latent representation of a firm’s temporal behavior and displays two

temporal regions in the heat maps of the pair-wise similarities among quarter factors.

The two temporal regions have a boundary at 2009∼2010 and expose significant

events in the local and global economic environment of a company.

2.4.2 In-Sample Prediction of Firm Earnings

In this section, I show the necessity to impute missing values. I use the MF-

imputed data along with three prediction methods, LASSO (MF+LASSO), XGBoost

(MF+XGBoost), and SVR (MF+SVR) and compare the result with MI-imputed

(Multiple Imputation) data using the same three prediction methods (MI+LASSO,

MI+XGBoost, and MI+SVR), the analyst consensus forecast (Mean), historical EPS

forecast (Random walk), and XGBoost on the original data without data imputation

(XGBoost). The use of XGBoost helps us understand the effect of the imputation

method on the same prediction algorithm. Table 2.5 reports the average prediction

performance of all tested models in all 2082 studied firms. For each firm, I divide its

data into the training and test subsets with a 90:10 split ratio and no overlapping

between training and test data subsets.
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The MF data imputation significantly improves the performance in all three

evaluation metrics of R2, MSE, and MAPE. For example, XGBoost with complete

matrix, i.e., MF+XGBoost, makes almost 80% (in MSE) and 60% (in MAPE)

improvements over a simple XGBoost alone. The XGBoost with missing value has

the negative R2, indicating it is worse than the mean prediction. Even for the

current industry best practice, a.k.a., the mean prediction with available analysts

forecasts in a given quarter (R2= 76%), my imputation technique is still able to

outperform it. MF+XGBoost improves performance by 5% in R2, 93% in MSE, and

41% in MAPE. Among the two imputation methods (MI and MF), the superiority

of MF is significant: MF+LASSO outperforms MI+LASSO by 30%, MF+XGBoost

outperforms MI+XGBoost by 14%, and MF+SVR outperforms MI+SVR by 13%, all

in R2.

In Table 2.5, the two most sophisticated machine learning models, MF+XGBoost

and MF+SVR have almost identical performance in all three metrices. Confirming

that a complete matrix by MF already provides the majority of knowledge from

data and the selection of a downstream prediction model is less important. Table

2.5 also demonstrates another important aspect of machine learning models, i.e., the

overfitting of models. XGBoost with missing data has severe overfitting problem, e.g.,

99% training R2 with negative test R2. However, with imputation, this overfitting

problem is reduced significantly. In MF+XGBoost, the R2, MSE, and MAPE of

test data are greatly improved. I observe that the difference between SVR’s training

and testing performance is relatively small, signifying that SVR has a much smaller

overfitting error than does XGBoost.

2.4.3 Impact of Analysts’ Size and Volatility on Earning Prediction

To ensure the reliability of the results, I investigate whether the imputation

performance varies across firms. Earlier studies reveal that analysts’ attributes, firm
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(a) No. of analysts’ and performance (b) Volatility and performance

Figure 2.6 Forecast accuracy in relation to average analysts’ and forecast volatility.

size, and the variance of analyst forecasts can affect the forecast accuracy [42,107,131].

Figure 2.6 depicts how the mean prediction accuracy is influenced by the number of

analysts who follow a firm in each quarter (Figure 2.6a) and the variance of forecasts

by the analysts for a firm (figure 2.6b). In Figure 2.6a, when the number of analysts for

a firm increases, the volatility caused by the random errors of individual analysts will

be averaged out, leading to higher prediction accuracy. For firms with less than five

analysts per quarter, theR2 values are scattered, some of which even have negativeR2.

In contrast, theR2 values of the firms with more than 15 analysts per quarter never fall

below 0. Figure 2.6b shows the relationship between the variance of analysts forecast

for a firm and the mean prediction accuracy. Ignoring the outliers in the image, the

steep slope in the top-left corner (red line) of figure 2.6b depicts the adverse effect

of volatility on the prediction accuracy. To study the impact of these phenomena

discussed in Section 2.3, I partition firms with two grouping criteria: the number of

analysts following and the analysts’ forecast dispersion/volatility. For each criterion,

I further sort firms into three groups: top 33%, bottom 33%, and remaining 34% and

obtain nine groups. Table 2.1 elaborates on the data distribution in each group.

Table 2.6 presents the double sorted performance metrics of all methods in

both grouping criteria. I sort firms into three by three groups independently based

on the number of analysts following and the analysts’ volatility. Not surprisingly,
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Table 2.6 Impact of Analysts Size and Forecast Volatility on Earning Prediction

High Analysts’ Moderate Analysts’ Low Analysts’

Method R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE

High
Volatility

Mean 0.7826 0.2135 67.5901 0.6657 1.5503 79.3914 0.5159 0.6911 94.3921

Random-Walk 0.2035 1.0273 192.0067 0.0057 3.6096 209.0410 0.0707 1.4846 207.4898

XGBoost 0.5004 0.1209 85.1803 -3.9704 5.0733 113.1449 -3.4969 1.2255 139.5506

MI+LASSO 0.7801 0.3306 71.9107 0.4871 0.9218 98.5722 0.0558 1.1696 135.2802

MI+XGBoost 0.8201 0.1482 52.1654 0.7021 0.6348 87.3713 0.2272 0.9938 105.0198

MI+SVR 0.8514 0.1952 54.9430 0.6970 0.6741 86.0145 0.2225 1.0959 116.9838

MF+LASSO 0.8506 0.2353 61.2345 0.6886 1.4303 69.9521 0.5330 0.4022 77.5301

MF+XGBoost 0.8762 0.0544 27.3921 0.7562 0.1530 39.4568 0.6016 0.1771 53.4145

MF+SVR 0.8662 0.1322 27.4797 0.7424 0.1539 41.1751 0.6093 0.1595 51.7828

Moderate
Volatility

Mean 0.8358 0.2373 29.9278 0.7742 0.8337 33.9312 0.6732 0.9551 37.1662

Random-Walk 0.3021 0.9073 101.1423 0.2225 2.2389 107.6158 0.0242 13.6891 114.0054

XGBoost 0.7023 0.1249 44.1773 0.5124 0.3345 64.8611 -1.6620 0.7404 61.4155

MI+LASSO 0.7986 0.2824 28.1589 0.4340 0.3308 47.6859 0.3598 0.5949 69.7596

MI+XGBoost 0.8695 0.0610 24.0066 0.7533 0.1839 34.6138 0.4103 0.5004 62.4213

MI+SVR 0.8948 0.0455 21.3093 0.7713 0.1279 33.6817 0.4494 0.5230 66.5452

MF+LASSO 0.8430 0.2306 25.1546 0.7937 0.8000 31.1773 0.5563 1.1749 41.7411

MF+XGBoost 0.9150 0.0273 17.3154 0.8191 0.1075 23.4957 0.7064 0.2087 28.3048

MF+SVR 0.9168 0.0298 16.3782 0.8077 0.0744 23.3349 0.6617 0.1491 30.4434

Low
Volatility

Mean 0.9348 0.0236 8.7145 0.9100 0.0098 9.9303 0.8159 0.0316 11.4230

Random-Walk 0.5577 0.0938 30.2582 0.5119 0.0774 31.8188 0.4212 0.1380 29.8386

XGBoost 0.8958 0.0141 14.0510 0.6229 0.0181 15.3146 0.5327 0.0227 22.5111

MI+LASSO 0.8962 0.0143 10.5973 0.8064 0.0567 21.1950 0.6055 0.1107 48.1015

MI+XGBOOST 0.9405 0.0091 9.8323 0.8446 0.0319 17.8272 0.7570 0.0746 37.0430

MI+SVR 0.9320 0.0100 7.0174 0.8578 0.0484 16.6871 0.6873 0.0744 35.3539

MF+LASSO 0.9279 0.0429 10.2301 0.8158 0.0352 14.4540 0.6721 0.2444 16.7980

MF+XGBoost 0.9574 0.0052 7.0121 0.8876 0.0100 10.6410 0.7681 0.0429 12.9903

MF+SVR 0.9549 0.0043 6.8800 0.8809 0.0107 10.8807 0.7363 0.0651 13.8117

Note: R2, MSE, and MAPE are calculated using Equation (2.14), (2.15), and, (2.16) respectively. Smaller MSE, MAPE and larger R2

indicate better accuracy. Values in MAPE are in percentage term. The reported values are from test data set. Firms are sorted into 3 by
3 groups independently based on both number of analysts following and analysts dispersion/volatility.

when data are sufficient and consistent, almost all model performs exceptionally well,

as shown in the group of high analysts and low volatility. In contrast, as I move

from the lower-left panel to the upper right, the prediction accuracy deteriorates,

with the worse performance in the group of low analysts and high volatility at the

other end of the spectrum. In most cases, the combination of MF with advanced

machine learning techniques (MF+LASSO, MF+XGBoost, and MF+SVR) performs

significantly better than other models. The magnitude of improvement is significant

when the analysts’ forecasts have high volatility. The improvement can be further

enhanced when a high number of analysts follow the firm and generate enough data.
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The mean prediction performs better than the imputation based methods in

the lower right panel of Table 2.6. I attribute the observation to the central limit

theorem and confidence interval. When enough analysts make forecasts for a firm

and the forecast variation is low, the sample mean closely approximates to the real

mean. The R2 value for all high-analysts group (93%) is higher than that of the

moderate (91%) and low-analysts groups (81%), which is the evidence of the central

limit theorem. In addition, the 95% confidence level for analysts forecast of firms

for high-volatility, moderate-volatility, and low-volatility group is ±82.99%, ±32.03%
and ±9.36% respectively. When the data volatility is low, the mean prediction has

a narrow confidence interval to encompass the true earning. Therefore, without any

additional information, it is extremely hard to surpass the mean prediction. These

findings are also consistent for single sorted groups. The discussion on the single

sorted groups are available in Appendix A.2.

Overall, I show that the MF+XGBoost and MF+SVR consistently perform

well across different groups, less sensitive to the number of analysts following and

the analysts’ dispersion. MF imputation with advanced machine-learning techniques

improves the forecast accuracy most when the data is very volatile. The experiment

results confirm that the MF model with its latent factors mitigates the inherent

volatility, reduces the uncertainty, and improves the information quality in forecast

data.

2.4.4 Out-of-Sample Prediction of Firm Earnings

In-sample prediction analysis mainly confirms the necessity to impute missing values

and the consistent out-performance of MF as the imputation technique. However,

the issue of ‘information leak’ can be a concern for the earnings prediction in

practice. Here, ‘information leak’ is referred to that in-sample prediction uses future

information, which is not available at the moment to make a prediction. In the
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Figure 2.7 Rolling Analysis. The complete time series is divided into several
overlapping windows (W ). For each w first, I factorize and impute the total window
and then use the first few quarters (green) for training and last quarter (red) for
testing.

in-sample analysis, the prediction takes advantage of the data entries that are imputed

with future information, thereby containing the leaked information not available

to actual prediction and inferences. Any model trained with leaked information

underestimates the generalization errors and becomes overfitting. Once I use the

newest data, the model performance drops significantly. In the earlier settings,

information leakage occurs in two ways: first, using matrix factorization for missing

value imputation in the total data set might induce information leakage into the

earlier quarters from the later quarters. Second, training the predictive model with

mixed current and future quarters data provides an ‘artificially’ crafted good fit for

model parameters [97].

To overcome the information leakage problem, I conduct the out-of-sample

forecasts based on the rolling analysis, shown in Figure 2.7. First, I perform

factorization and imputation to the first 60 quarters (Q1-2001 to Q4-2014) and then

train the prediction model on the first 59 quarters and test the model performance

only in the last quarter. I then iteratively increase the window size by one quarter,
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impute data again, and then perform with the same training and test split. Instead of

setting the constant window size, I increase the window size by one at each iteration

to ensure the maximum utilization of the available data. Finally, I report the average

result of the eight out-of-sample forecasts across firms. The iterative rolling process

prevents information leakage by only employing the information in the past and

present.

2.4.5 Coupled Matrix Factorization Results

Table 2.7 reports the rolling window analysis result with both MF and CMF. In

the rolling window analysis, I factorize and predict for every firm at every quarter,

resulting in high computational complexity. To overcome this problem in the

out-of-sample analysis, I only consider the firms with more than 50 analysts and

obtain a total of 117 firms. In the rolling window analysis, the performance of MF

that solely relies on analysts’ data decreases significantly. Except for LASSO, both

MF+XGBoost and MF+SVR perform worse than the simple mean prediction. But

once I integrate firm characteristics information with analysts’ forecast by CMF, I

observe significant performance improvements. Measured by the R2 metric again,

the three prediction algorithms based on CMF (CMF+LASSO, CMF+XGBoost,

and CMF+SVR) outperform the mean prediction by 42%, 11%, and 8% respectively.

Besides, the three algorithms also reduce MAPE by 60%, 34%, and 31%, respectively,

in comparison with the mean prediction. Similar to in-sample prediction, both

MF+XGBOOST and CMF+XGBoost outperform the simple XGBoost in all three

performance measurements. Among the studied firms, simple MF based algorithms

outperform the mean prediction in 67% (MF+LASSO), 47% (MF+XGBOOST) and

52% (MF+SVR) of firms, whereas the percentage of firms in which the CMF based

algorithms outperform the mean prediction increase significantly, i.e., 95% (CMF +

LASSO), 56% (CMF+XGBoost), and 68%(CMF+SVR).
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In addition, I perform the paired two-sample t-test and evaluate whether

the prediction improvement based on CMF imputed data is statistically significant

compared to analysts’ consensus forecasts. The results in Table 2.8 confirm that

the CMF models can refine the quality of imputation and further improve firms’

EPS prediction performance. The mean difference of MAPE between CMF +

LASSO/XGBoost/SVR and analysts’ consensus forecast (Mean) is negative and

significant at least at five percent, which indicates that the forecast errors of

algorithms decrease significantly. The significant mean difference between MF-

LASSO and MI-LASSO indicates the proposed model’s superiority over other

imputation methods, i.e., MI. Moreover, I show that the mean difference of MAPE

between CMF and MF using the same prediction models is also significantly negative.

Once the analysts forecast data is imputed with auxiliary firm characteristics

information, the accuracy of earnings prediction can be further increased. This finding

shows the effectiveness of the proposed CMF and implies that the imputed values

effectively absorb the firms’ fundamental information that is not fully reflected by

analysts’ forecast data. My results are robust when using MSE and R2.

In Table 2.7, LASSO performs better than both SVR and XGBoost when I

apply coupled matrix factorization and extract high-dimensional data representations

from two datasets. This finding is in contrast to the in-sample analysis on single

dataset in Section 2.4.2. LASSO is a more straightforward approach than SVR and

XGboost. Combined datasets unavoidably introduce data redundancy, inconsistency,

noise, variances, and skewness. For predicting firms’ EPS from the imputed

data, LASSO mainly performs feature selection and eliminates data redundancy by

enforcing �1-penalty. LASSO’s simplicity allows for learning parameters with superior

generalization capability, reflected in its better out-of-sample prediction performance.

On the other hand, both SVR and XGBoost attempt to fit indiscriminately data and

the associated noise with non-linear kernel functions and sophisticated models. When
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Table 2.7 Earning Prediction Using
Rolling Window Method

Method R2 MSE MAPE

Mean 0.5809 0.0228 34.4740

Random-Walk 0.3146 0.2125 69.1041

XGBoost 0.3991 0.0340 27.2207

MI+LASSO 0.3955 0.0358 37.5226

MI+XGB 0.3709 0.0810 58.8945

MI+SVR 0.3934 0.0891 41.9782

MF+LASSO 0.7098 0.0151 16.5738

MF+XGBoost 0.4707 0.0378 31.1051

MF+SVR 0.3281 0.0486 35.4197

CMF+LASSO 0.8275 0.0070 13.4689

CMF+XGBoost 0.6451 0.0216 22.7810

CMF+SVR 0.6292 0.0223 23.9471

Note: Smaller MSE, MAPE and larger R2 indicate
better accuracy. Values in MAPE are in percentage
term. The reported values are from test data set.

Table 2.8 Mean Difference Test of MAPE

Method Difference

MF+LASSO - Mean -51.92%***

MF+LASSO - MI+LASSO -55.82%***

CMF+LASSO - Mean -60.93%***

CMF+XGBoost - Mean -34.92%***

CMF+SVR - Mean -30.54%**

CMF+LASSO - MF+LASSO -18.73%*

CMF+XGBoost - MF+XGBoost -26.76%***

CMF+SVR - MF+SVR -32.39%***

Note: The Difference is the percentage difference in
MAPE between the groups on the earning prediction
using rolling window method. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels,
respectively.
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Table 2.9 Impact of Analysts’ Forecast Volatility on Out-of-Sample Prediction

Low Volatility High Volatility

Method R2 MSE MAPE R2 MSE MAPE

Mean 0.7384 0.0043 9.2907 0.4237 0.0419 59.7913

Random-Walk 0.4232 0.1041 46.1046 0.2062 0.3224 92.0814

XGBoost 0.5002 0.0146 11.5604 0.3070 0.0539 40.7714

MI+LASSO 0.5012 0.0105 10.1100 0.2912 0.0610 65.2445

MI+XGBoost 0.4581 0.0127 30.9800 0.2831 0.1501 86.6459

MI+SVR 0.5212 0.0254 14.8400 0.2666 0.1534 69.1087

MF+LASSO 0.7526 0.0030 5.5504 0.6605 0.0277 26.6010

MF+XGBoost 0.6901 0.0076 9.7446 0.2656 0.0681 51.4781

MF+SVR 0.5233 0.0122 9.9145 0.1782 0.0842 56.0801

CMF+LASSO 0.8988 0.0020 4.8748 0.7574 0.0120 21.9246

CMF+XGBoost 0.7426 0.0059 8.0746 0.5493 0.0370 37.2381

CMF+SVR 0.7185 0.0058 8.1649 0.6004 0.0663 39.4700

Note: Firms are sorted on descending order based on the average standard deviation
of analysts earning forecast for a firm at a given quarter. Top 50% represents the high
analysts’ group and bottom 50% represents the low analysts’ group. R2, MSE, and
MAPE are calculated using Equation (2.14), (2.15), and, (2.16), respectively. Smaller
MSE, MAPE and larger R2 indicate better accuracy. Values in MAPE are in percentage
term. The reported values are from test data set.

I apply out-of-sample training, the number of available training data becomes much

smaller than that of in-sample training. Data coupling adds complexity to data and

causes advanced machine learning models to overfit. As a result, their performance

drops significantly in out-of-sample predictions and when data coupling is used.

This finding suggests the best practice in training machine learning models:

when training dataset is highly-skewed and highly-complex (the number of data

points is much smaller than the dimensionality of data), simple linear models and

regularization are adopted to improve the generalization capability. Once the training

data size increases, which is the case reported in Tables 2.5 and 2.6, the complex

models, such as XGBoost and SVR, gain their superiority over the simple LASSO
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model. The relationship between the training data size and the model performance

of different machine learning models is described in [132].

I also analyze the impact of the volatility in analyst forecasts on the out-of-

sample prediction and report results in Table 2.9. I group the studied firms into two

groups: high volatility (firms with an average standard deviation among analysts

forecasts in each quarter being greater than or equal to 0.03) and low volatility

(firms with an average standard deviation among analysts forecast in each quarter

being less than 0.03). I find that the rolling prediction is consistent with the result

discussed in section 2.4.3, i.e., the forecast volatility plays a vital role in performance

improvement. For those firms with low volatility, some CMF-based algorithms

barely outperform the mean prediction (CMF+LASSO = 22%, CMF+XGBOOST

= 0.6%, CMF+SVR = -2%) while for high volatility, the performance improvement

is nearly doubled: CMF+LASSO = 79%, CMF+XGBOOST = 30%, CMF+SVR

= 41%. The benefit of including additional dataset on the high volatile firms

is also evident in Table 2.9. Without the firm characteristics, the performance

of MF+XGBOOST and MF+SVR deteriorates significantly for the out-of-sample

prediction. Particularly, firm characteristics improve the performance by 15%

(CMF+LASSO vs. MF+LASSO), 107% (CMF+XGBoost vs. MF+XGBoost), 236%

(CMF+SVR vs. MF+SVR).

Overall, the findings confirm that it is important to impute missing values of

individual analysts’ forecast as it can reveal useful information which is orthogonal to

the available analysts’ forecast. Also, I show that single dataset is not sufficient and

the proposed CMF technique helps to improve the imputation quality and further

enhances the accuracy of EPS prediction by incorporating another dataset, i.e., firm

characteristics.
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2.4.6 Discussion

In this chapter, I conduct both in-sample and out-of-sample prediction. The intention

of the two analyses is different. In-sample prediction mainly explains the importance

of imputing missing values because the missed individual analysts’ forecasts conceal

useful information on firms’ future earnings. Given that it analyzes the entire

sample with sufficient observations, in-sample prediction shows the effects of size

and volatility in analysts’ forecast accuracy. It sheds light on how machine learning

techniques help filter out anomaly analysts’ forecasts and improve prediction accuracy.

On the contrary, out-of-sample prediction overcomes the ‘information leakage’

issue and is more applicable and practical. Naturally, the out-of-sample prediction

performance does not match with that of in-sample prediction that takes advantage

of both up-to-date and future information for missing value imputation. However,

an out-of-sample approach generalizes better and is more suitable in real-world

applications than the in-sample one because the available information for the

out-of-sample training and inference is consistent.

There may be some concerns about the selection of firm characteristics. In

this chapter, I focus on the data-driven approach, use firm characteristics, as a

whole, as an example of one additional dataset for CMF imputation, and design

an intelligent regularization mechanism to allow machine learning models to choose

the most relevant features instead of manually analyzing each variable’s impact. It

might be interesting to examine whether different variables will generate different

results and some are more important than others. However, given that this is not

my focus and there can be numerous combinations of imputation techniques and

firm characteristics, I select variables following three pieces of literature [41,111,120]

(see Table 2.2). These papers are published in the well-acknowledged top journals in

finance and accounting. I assume that they have already examined multiple variables

and select those with high impacts on firms’ earnings. With the help of the current
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techniques, the useful information from firm characteristics is automatically and

implicitly extracted from the learning and regularization procedure.

In terms of machine learning techniques, this chapter focuses on missing values

and improves the quality of imputing one dataset (analysts’ forecast) with another

dataset (firm characteristics). It will be interesting to investigate whether and how

multiple heterogeneous datasets will improve data imputation. Also, the explicit or

hidden relationship and networks within and across datasets remain unexplored and

leave great potentials for future research in designing new methodology and applying

data imputation and machine learning in other finance areas. For example, applying

tensor imputation instead of matrix imputation. Financial panel data is essentially

a tensor. Tensor imputation incorporates the information from time dimension,

different firms and analysts into the same framework. Another direction is to use

the imputed data as the inputs to compute the optimal weights among analysts or to

combine with other information, i.e., stocks prices.

2.5 Conclusion

Analysts’ earnings forecast serves a vital role in the financial market. Both

institutional and individual investors use information from analysts’ earnings forecasts

for augmenting their investment decision. A vast literature has been devoted to

developing a better way to forecast firms’ future earnings. In this chapter, I show

the importance of imputing missing values and propose a novel way to impute

missing forecasts with high quality, i.e., CMF. CMF significantly improves the quality

of imputing missing analysts’ forecast by incorporating additional dataset (firm

characteristics). Combined with the data imputation technique, advanced machine

learning algorithms provide a superior prediction of firms’ earnings. Compared to the

traditional mean predictions, my approach performs consistently well, less sensitive

to data quantity and quality.
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The findings are of great importance with several implications: first, the

quality of input data, the selection of relevant datasets, and the way on how to

integrate datasets are indispensable to predict a firm’s future earnings. Second, the

imputation of missing data and using external data, such as firm characteristics,

to gauge the imputation process, are necessary. Third, even though analysts have

access to the entire firm accounting information, their forecasts only utilize some

aspects of such information, which leaves room for further improvement by ensemble

methods. Fourth, advanced machine learning techniques have vital implications in

finance research. Moreover, this chapter sheds light on a general research challenges,

i.e., how to improve data quality. The improved data quality with CMF gives rise to

the impressive accuracy of the downstream machine learning models for the prediction

of firms’ future earnings.
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CHAPTER 3

PREDICTING FIRM EARNINGS USING NONLINEAR TENSOR
COMPLETION ON HETEROGENEOUS DATA

3.1 Introduction

Finance studies often employ heterogeneous datasets from different sources with

different structures. Some datasets are noisy, sparse, and unbalanced with missing

values; some are unstructured containing text or networks; some with high frequencies,

intraday and daily, whereas others with low frequency such as quarterly and annually.

A simple combination of multiple datasets thus induces many challenges, including the

curse of dimensionality, i.e., having more variables and features than the number of

observations, neglecting interactions among data attributes, and suffering significant

information loss when aggregating data from high to low dimension or from high to

low frequency. In addition, conventional econometric analyses, such as regressions,

require input data to be complete and balanced, which is often not true in real-world

applications.

To overcome those challenges, this chapter proposes a nonlinear tensor coupling

and completion framework (NLTCC). NLTCC uses (sparse) tensor (also known as

multi-dimensional array) to represent input data, design machine learning techniques

to disentangle the complex multi-way relationships among input data and decompose

the input tensor into latent (often compact) vectors, and then employ neural networks

to impute missing values and reconstruct the entire tensor for earning prediction.1

The key novelty of NLTCC is to perform nonlinear tensor factorization on multiple

datasets simultaneously and extract low-rank embedding representations. Compared

to traditional linear tensor factorizations, i.e., CANDECOMP/PARAFAC (CP) [133]

and Tucker decomposition [134] the neural network of NLTCC allows it to capture

1The basics and development related to NLTCC can be referred to section 3.3.
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nonlinear interactions among datasets. As a result NLTCC extract more meaningful

information to impute missing values and mitigate the curse of dimensionality.

To investigate the advantage and the usefulness of the proposed NLTCC, I use

financial analysts’ forecast of earnings per share (EPS) data as the experiment for

two reasons: its importance in the business world and its complex data structure.

EPS is the ratio of a firm’s earnings (i.e., profits) to its number of common shares

outstanding, it reflects a firm’s performance and is one of the fundamental inputs

for security pricing [23]. Market investors are highly interested in predicting a firm’s

future EPS to make their investment decision. Analysts’ consensus (mean or median)

forecast of EPS is considered as the most common and plausibly the dominant measure

of market expectation. It serves as a benchmark for advanced yet complex prediction

models and provides information to individual investors who do not have the necessary

skills, knowledge, and time to conduct their own analysis. Studies in both finance

and accounting show that analysts’ earnings forecast is a better estimator of firm

earnings than time series models because analysts incorporate their skills, experience,

and timely information in their forecast [23, 28–30].

Besides the importance, several challenges exist in harnessing analysts’ earnings

forecast data. First, analysts’ forecast of EPS is highly sparse and unbalanced.

At a given time, multiple analysts follow one firm and generate individual reports.

Analysts only track a limited set of firms and create reports for only these firms while

skipping all other firms. Even for the limited group of firms, analysts occasionally

miss reporting and change the firms that they follow. As a result, the EPS forecast

dataset is highly sparse and has a high number of missing values in the dataset,

e.g., over 99% in the original sample. Second, the EPS announcement only comes

quarterly or lower frequency along with individual forecast of hundreds of analysts,

resulting in more predictors (each analyst generates one predictor) than observations.

Meanwhile, EPS can be affected or captured by factors other than analysts’ forecasts
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such as firm characteristics, stock markets, and macroeconomics. Those factors may

have higher frequencies, monthly or even daily, and therefore contain more timely

information.

Moreover, the EPS dataset has three dimensions, time, firms and analysts.

The common practice to ease the data complexity is aggregating information from

individual analysts to the firm-level and flatten the third-order tensor into a firm-time

matrix, as in Figure 1.1a [31–33]. The firm-time matrix only preserves information

from the time domain and neglects important inter-firm relationship in the spatial

domain [35]. Previous studies suggest that complex relations exist among analysts,

firms, and industries. Analysts from the same company or with a similar background

tend to demonstrate nearly identical forecasting behaviors [37, 38]. Firms in the

same industry or having similar characteristics also show similar patterns in their

earnings growths [42]. Besides, analysts vary in their forecasting accuracy [36, 37]

and may show a systematic bias [37, 38]. Aggregating all the efficient and inefficient

analysts’ forecasts indiscriminately will contaminate the information content of

efficient analysts’ forecasts. NLTCC, however, represents panel data in their natural

multi-dimensional format, i.e., a third-order tensor (Figure 1.1b), to capture the

inter-dependency of both the spatial and temporal domains and distinguish between

efficient and inefficient analysts.

I show the superiority of NLTCC from three perspectives. First, I use

NLTCC to impute missing values in individual analysts’ forecasts based on various

complementary data: firm characteristics and daily stock returns. NLTCC reduces

the error of missing value imputation by 57% compared to the standard matrix

factorization (MF) [117] and by 48% compared to the linear tensor factorization

algorithm (CPWOPT) [135].

Second, given the high-quality imputed data, I apply advanced machine-learning

(ML) techniques to capture nonlinear interaction among firms, analysts, and time,
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learn powerful data representations, and then predict the next quarter’s earnings.

Results show that NLTCC improves the prediction accuracy by 5% for R2, 65% for

MSE, and 6% for MAPE compared with analysts’ consensus forecasts. NLTCC can

also distinguish influential analysts from ineffective ones and excel even more at the

sectors with high heterogeneity and volatility.

Finally, to confirm the economic significance of NLTCC, I construct a long-short

portfolio based on NLTCC predictions. I sort firms into decile at each fiscal quarter

based on the difference between the NLTCC prediction and the consensus prediction,

and then treat the top 10% as the “winner” group to take long position and the

bottom 10% as the “loser” group for short position.2 When NLTCC provides a

more accurate prediction of a firm’s next quarterly earnings, the positive (negative)

difference between the NLTCC prediction and the consensus prediction might serve as

a strong indicator for the under- (over-) estimating a firm’s performance and generate

a higher (lower) portfolio return. The average daily return of the long-short portfolio

for three-day holding period is 0.75% (15% per month). This finding shows that

NLTCC prediction is better at identifying stocks with good (bad) performance and

therefore, offers more accurate foundation for profitable investment.

The main contributions of this work are as follows:

• I propose a nonlinear tensor framework (NLTCC) to address the challenges:
heterogeneous data integration, missing values imputation, different data
frequencies, and high dimensional complexity. This is more practical to both
researchers and industry practitioners who use multiple datasets with different
structures.

• I demonstrate how embedding learning with spatial-temporal regularization and
state-of-the-art convolutional neural network can harness maximum information
from heterogeneous data without compromising quality. By incorporating
orthogonal regularization on temporal dimension and enforcing local similarity
on the spatial dimension, I ensure high-quality embedding for data imputation
and downstream prediction.

• The ablation studies confirm the stability of NLTCC and the benefits of
integrating multiple datasets. My findings reaffirm that the success of advanced

2A long position is purchasing an asset with an expectation that it will increase in value.
A short position is selling an asset on a borrowed account with an intention to buy it later
at a lower price.
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machine learning techniques depends on the quality of input data, a key area
where NLTCC can contribute.

• My findings contribute to the earnings prediction literature in finance and
accounting. Once NLTCC is applied to integrating multiple datasets, it
enhances earnings-related information and improves prediction accuracy. This
suggests that latent information such as interactions among firms and analysts
captured by NLTCC is useful for firms earning prediction and nevertheless is
omitted by conventional methods.

The rest of the chapter is organized as follows: Section 3.2 provides a brief

introduction to the mathematical and machine learning techniques I use as the

cornerstone for building the model. Section 3.3 presents the details of the NLTCC

model. Section 3.4 discusses the data, experimental setup, and hyperparameters

used for this study. Section 3.5 includes the detailed analysis and discussion of the

experimental results. Section 3.6 discusses long-short portfolio strategies based on

the proposed model. Section 3.7 provides sensitivity analysis regarding regularization

and ranks, and discusses computational complexity of the model. Section 3.8 offers

conclusions.

3.2 Background

In this section, I introduce notations, definitions, and machine learning techniques

used throughout this chapter. I first introduce the baseline methodologies, including

matrix-based factorization and missing value imputation techniques. Then I evaluate

the extension of these techniques for higher-order tensors and how it can be used

effectively for missing value imputation. Table 3.1 presents the symbols and notations

used in this chapter.

3.2.1 PCA and Matrix Factorization

Principal Component Analysis (PCA) is widely used in finance and economics as

the prominent factor analysis and dimension reduction technique. PCA uses the

covariance matrix of variables to estimate the factors and their betas from the panel

of the observed variables [136]. PCA linearly maps p variables into k factors where

63



k ≤ p. In other words, for a data matrix X ∈ Rn×p, PCA decomposes it into

U ∈ Rn×k and W ∈ Rp×k where U consists of the k principal components with the

largest variance ofX, andW is the factor loadings. U andW are orthogonal matrices.

Matrix completion gains significant attention for missing value imputation after

the successful implementation of matrix factorization (MF) in recommender systems

[117]. As discussed in Chapter 2 to estimate the missing values in X ∈ Rn×p, MF

directly factorizes the original incomplete matrix into two low-rank factor matrices

U ∈ Rn×k and V ∈ Rk×p with the following objective:

L = min
U,V

L(X,U, V ) = min
U,V
‖(X − U · V )� 1X‖F (3.1)

Herein, 1X is an indicator matrix, (1X)i,j = 1, when Xi,j has value, else (1X)i,j = 0.

MF can be applied to impute the missing values of a single firm. Both PCA and MF

only handle matrix data and are inadequate for multi-way data arrays with higher

order (≥ 3) [137]. To impute missing value for multiple firms in the panel data

settings, MF inevitably has the problem of the undesired contamination of firm-level

information when the forecasts from different firms are indiscriminately mixed as the

columns or the rows of the resulting matrix.

3.2.2 Tensor Factorization and Completion

Tensor factorization/decomposition can be viewed simply as an extension of matrix

factorization/PCA and low-rank approximations for higher-order data. The idea of

tensor decomposition dates back to [138]. In recent years, tensor decomposition has

become a prevalent dimensionality reduction technique in signal processing, computer

vision, and graph analysis [139–141]. Figure 3.2 provides a graphical representation

of the advantage of tensor factorization over PCA.

64



Table 3.1 Notations

Symbol Description

x, x, X a scalar, a vector, a matrix

X ∈ Rd1×d2×d3 a tensor of order 3 and shape d1 × d2 × d3

Xi,j,k tensor entry value at index (i, j, k)

Xi,:, X:, j i-th row, j-th column of matrix X

A� B element-wise tensor multiplication (Hadamard product)

‖X‖2F Frobenius norm of tensor X
1X indicator matrix, 1Xi,j,k

= 1, when Xi,j has value, else 1Xi,j,k
= 0

1X indicator tensor, 1Xi,j,k
= 1, when Xi,j,k has value, else 1Xi,j,k

= 0

q, f, c, a, d number of quarters, firms, characteristics, analysts, and days.

Figure 3.1 CP decomposition.

CP is one of the most popular low-rank tensor factorization models [133, 142].

Figure 3.1 shows that CP factorizes a tensor into a series of rank-one tensor and

approximates the original tensor with the sum of the r rank-one component tensors.

For a 3rd-order tensor X ∈ Rd1×d2×d3 and a given rank r, CP factorization essentially

consists of three-factor matrices U ∈ Rd1×r, V ∈ Rd2×r andW ∈ Rd3×r and is expressed

as:

X ≈ �U, V,W � ≡
r∑

s=1

us ◦ vs ◦ ws (3.2)

For a more comprehensive discussion on tensor decomposition, please see [139].

Tensor completion first applies factorization on a partially observed tensor X
to learn low-rank factor-matrices from the observed entries, and then reconstructs

missing entries and completes the target tensor X̂ from the factor matrices. I define
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(a) PCA based embedding. (b) CP based embedding.

Figure 3.2 The comparison between the representation learning by PCA and CP
on 100 randomly chosen firms from the service sector. Sub-Figure (a) represents
spectral clustering based on the first ten principal components estimated from PCA
and Sub-Figure (b) represent spectral clustering based on the latent factors learn
from the CP decomposition.

the element-wise CP reconstruction as follows:

X̂i,j,k =
r∑

s=1

UsiVsjWsk (3.3)

The objective function tries to minimize the following equation:

f(U, V,W ) = ‖(X − X̂ )� 1X‖2F

I propose a coupled tensor method that jointly factorizes two tensors concurrently.

The underlying assumption is that two Nth-order tensors X ∈ Rd1×d2×...×dn and

Y ∈ Rd1×d2×...×dn share at least one common dimension. Coupled tensor algorithms

propagate the information from one tensor to the other by enforcing the same latent

factor matrices for the shared dimensions during the factorization process [127, 143].

For two third-order tensors X ∈ Rd1×d2×d3 and Y ∈ Rd1×d2×d3 with one common

dimension d1, the objective function for coupled tensor is to minimize the mean
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square error of two tensor factorizations as follows:

f(U, V,W,Q, T ) =
∣∣∣∣X − [[U, V,W ]]

∣∣∣∣2
F
+ λ
∣∣∣∣Y − [[U,Q, T ]]

∣∣∣∣2
F

Here, λ is the hyper-parameter to adjust the relative importance between the two

coupled tensors. The low-rank factor matrices are U, V,W, T,Q with U shared by

both tensors. Similarly, the coupled tensor completion imputes a missing value in

tensor X as X̂i,j,k =
∑r

s=1 UsiVsjWsk and in tensor Y as Ŷi,j,k =
∑r

s=1 UsiQsjTsk,

where r is the tensor rank.

3.2.3 Neural Network

The neural network is a nonlinear predictive technique that gains considerable

attention in recent years. Inspired by human brain, neural networks consist of highly

connected neurons organized in multiple layers. The input layer takes ‘raw features’,

and the output layer predicts the ‘ultimate outcomes’ with one or more hidden layers

in between. A neural network can be designed either shallow or deep based on the

task requirements by varying the hidden layers. An activation function in each layer

adds non-linearity in the networks. Because of their flexibility in network construction

and superiority as a predictive model, neural networks are widely used in computer

vision, signal analysis, traffic prediction, game playing, natural language processing,

and finance [97,144–146].

I use a specific type of neural network for tensor reconstruction: Convolutional

Neural Network (CNN). CNN is initially developed to overcome the overfitting

problem by fully connected layers [1]. The connection between neurons in CNN

resembles animals’ visual cortex where individual neuron only responds for stimuli

on the specific region of a receptive field [147, 148]. The hidden layers in CNN also

perform convolution operation [148]. Figure 3.3 shows a typical convolutional neural
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Figure 3.3 Convolutional neural network architecture.

network architecture, with each convolutional layer followed by a max-pooling layer

and two fully connected layers. The filters in the convolutional layer scan input data,

take a specific portion (5 × 5 × 1 for the first layer in Figure 3.3) of the tensor each

time and perform a convolution operation with data within the receptive field. The

subsequent pooling layer reduces dimensionality by pooling and extracting the most

dominant features. Finally, the network flattens the convolution outputs and and

uses it as the inputs to fully connected layers for classification or regression.

3.3 Methodology

3.3.1 The Model Architecture

The nonlinear tensor completion architecture for heterogeneous data (NLTCC)

consists of four modules (a data fusion module, an embedding module, a nonlinear

mapping module, and an aggregation module as shown in Figure 3.4), each of which

implements one step in the forward propagation.

Data fusion module: In the data fusion module, the model takes three different

tensors as input: firm characteristics C ∈ Rq×f×c, analysts’ EPS forecasts A ∈ Rq×f×a,

and firm daily return R ∈ Rf×d′ . One order – the number of firms (f) – is the same

across the three tensors. The firm characteristics and analyst EPS forecast have the

quarterly (q) dimension (the first order). The return data has a daily frequency, but
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by folding the two-dimensional return tensor (R ∈ Rf×d′) on the second-order (d′), I

convert it into a three-dimensional tensor (R ∈ Rq×f×d), whereas d = d′/q. I partition

the daily returns in quarters and represent the days within a quarter as features of

that quarter, resulting in a third-order (quarter× firm× day) tensor. For example,

if for firm XXX, the EPS announcement for the first quarter comes on March 31 and

the second quarter comes on June 30, I consider all the trading day returns between

March 31 and June 30 as features for the second quarter. Such folding operation

will make the first order (quarter) of all three tensors identical. I set the maximum

number of days in a quarter to 65.3 I treat the remaining days as “missing” for

quarters with less than 65 trading days and let our learned factor matrices from the

model to guide the imputation on these days.

Firm characteristics are measured at different scales and skewed. Therefore, I

apply data standardization on the firm characteristics tensor. Mainly, a feature-wise

Yeo–Johnson transformation [149] is used to stabilize the variance and make the data

distribution approximately normal.

x
(λ)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[(xi+1)λ−1]
λ

if λ �= 0, xi ≥ 0,

ln (xi + 1) if λ = 0, xi ≥ 0,

− [(−xi+1)2−λ−1]
2−λ

if λ �= 2, xi < 0,

− ln(−xi + 1) if λ = 2, xi < 0

(3.4)

λ is estimated with a maximum likelihood method. I also standardize the return data.

These data preprocessing procedures ensure heterogeneous data from three tensors

within a standard range and help overcome unwanted effects due to large values in

the imputation process.

3I only consider the trading days. On average, there are 21 trading days in a month.
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Figure 3.4 Model architecture nonlinear tensor coupling and completion
framework.

All three 3rd-order standardized tensors: firm characteristics (quarter×firms×
characteristics), firms’ daily returns (quarter × firms × daily returns), and the

analysts’ earnings forecast (quarter×firms×analysts) have two identical dimensions

and can then be concatenated along the third dimension of tensors. I treat the

characteristics, returns, and analysts’ earnings forecast in the concatenated tensor as

the firm’s unified features.

X = A‖C‖R (3.5)

where X ∈ Rq×f×z, z = characteristics + analysts + daily returns, and ‖ the

concatenation operation. By doing so, I ensure the subsequent tensor completion

uses complete knowledge from both daily return and characteristics data to regulate

the imputation procedure performed on the analysts’ forecast data. The tensor-based

data representation allows a simple concatenation, and thus provides a convenient

sampling and ensemble strategy on the firm-level data.

Embedding module: The success of any machine learning technique largely

depends on learning the proper representation (embedding) of the data. The
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embedding module in Figure 3.4 learns latent embeddings from multiple integrated

tensors, imputes the missing values to be aligned with various data sources, and

ensures the prediction of firm future earnings.

NLTCC first fuses three tensors into one third-order tensor X ∈ Rq×f×z and uses

it as training data to learn three factor matrices U ∈ Rq×r, V ∈ Rf×r and W ∈ Rz×r

that consist of trainable parameters. Instead of performing a simple linear aggregation

as in Eqn 3.3, I adopt the non-linear aggregation method proposed in CoSTCo [150],

and design the neural networks that essentially implement the following parameterized

function on the domain of tensor space, and map the indices of a tensor cell and

associated embedding to the corresponding tensor element X̂i,j,k:

X̂i,j,k = f(i, j, k) = f(Ui:, Vj:,Wk:, {θi, . . . , θn}) (3.6)

where 1 ≤ i ≤ d1,1 ≤ j ≤ d2, 1 ≤ k ≤ d3 and θi, . . . , θn are the weights

of convolutional layers, dense layers, and regularization, respectively. Equation

(3.6) defines an element-wise tensor completion based on the embedding matrices

and the neuron weights. During network training, given an entry index i, j, k,

the neural network first forward-propagates to obtain the function value and then

back-propagates the loss to the embedding layers for updating the elements in U, V,W .

Nonlinear mapping module: NLTCC uses a neural network, in particular

CNN, to perform element-wise tensor reconstruction and completion for the sparse

input tensor. Liu et al. (2019) prove that convolutional layers are more efficient

in terms of the number of parameters than the MLP-based neural networks,

especially for learning high-quality nonlinear embeddings in factor matrices [150].

The subsequent reconstruction uses the embeddings to estimate a sparse tensor’s

unobserved entries with higher accuracy than other available linear/nonlinear tensor
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completion methods. The nonlinear mapping module uses two 2-D convolutional

layers with filter size of (1, 3) and (r, 1). The output of each convolutional layer is:

H1
conv = σ(Conv(Henv : (1, 3))) ∈ RC×1×3

H2
conv = σ(Conv(H1

conv : (r, 1))) ∈ RC×1×1

(3.7)

where C is the channel number and σ(·) is the nonlinear activation function ReLU

σ = max(·, 0).

Aggregation module: The aggregation module first takes the second convolu-

tional layer H2
conv’s output, flattens into a length-C vector and uses fully connected

network layers to aggregate the vector into a scalar as the reconstructed entry i, j, k

in the output tensor X̂ . Because the tensor entries have both positive and negative

values, the final output layer consists of a dense layer and a linear activation function.

3.3.2 Objective Function and Regularization

I first define the objective to minimize the mean squared loss between the observations

in X and the reconstructed values in X̂ . Then I back-propagate the gradient of

the objective function to the embedding layer and update all affected parameters in

Ui,:, Vj,:, and Wk,:. I define the objective function as follows:

L = min
U,V,W

‖(X̂ − X )� 1X‖2F +R(U, V,W, θ) (3.8)

= min
U,V,W

∑
(i,j,k,y)∈s

(f(i, j, k)−Xi,j,k)
2 +R(U, V,W, θ) (3.9)

Here s = {(i, j, k, yijk)|1ijk = 1} represents the training and testing data. The

Hadamard product (X̂ −X )�1X is applied to select the observed values because the
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loss function only considers non-missing values and ignores the imputed values that

have no ground truth for comparison. ‖ · ‖F is the Frobenius norm. Equation (3.9) is

the loss function in the Tensor Factorization defined on the data s. The regularization

term L in Equation (3.9) consists of the embeddings of factor matrices U, V , and W

and the neural network parameters θ.

Regularization on time dimension: The main advantage of factorization based

tensor completion frameworks is that the learned low-rank factor matrices contain

condensed information. The success of such methods always lies in the ability to

learn high-quality factor matrices. Simple concatenation among multiple tensors

allows useful information to propagate from one tensor to another. However,

the concatenation might also introduce noises, inconsistency, and redundancy with

information. Similar to other data-driven models, tensor completion cannot eliminate

all noises from the information. Explicit regularization is required to impose penalties

on unwanted information (noise), redundancy, and discrepancies. One of the major

goals for learning high-quality low-rank representation is that the individual features

of the embedding matrix should be as different as possible. The regularization

in the proposed objective function imposes the orthogonality constraints on the

time dimension to eliminate the redundancy among learned features and associated

undesired artifacts (high sensitivity and high variance) in the downstream learning

tasks. When two features are orthogonal, they share no information, reduce

redundancy and covariance, and facilitate the reliable induction of models. The

orthogonal regularization ensures that U:i ⊥ U:j when U:i �= U:j. It also makes sure

that all individual features in the embedding matrix are as different as possible.

The new objective function with orthogonality constraint is defined as follows:

∑
‖(X − X̂ )� 1X‖2 + λ1‖U�U � (11� − I)‖1,1 (3.10)
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where 11� is the matrix of all ones. The L1,1 norm regularizes the element-wise

sparsity in a matrix. The second term of the objective penalizes the inter-dependency

(correlation) among the latent features, i.e., the column vectors U:i and U:j in the

quarterly matrix U . As a result, the embedding features in U are as distinct as

possible. The rationale behind this is to capture as much significant information as

possible from the temporal dimensions without inducing collinearity among features.

Regularization to enforce return similarity and locality: A high-quality

embedding must preserve the internal data structure and locality property of the

objects to be represented. In this case, the embeddings for closely related firms

must be similar, while different from those unrelated firms. I use the similarity

regularization in the embedding matrix to enforce this condition. For example, the

embedding space of Google should be similar to that of Apple but different from

that of TJ Maxx. The correlation between two firms’ returns is a strong indicator of

similarity and might be closely related to the explicit characteristics of firms (industry

sector, firm size, revenues, and markets) and latent features to be learned during

tensor completion. To build the similarity matrix, I compute the pairwise correlation

between firms and build the cut-similarity matrix using a threshold function.

ρ(m,n) =
cov(rm, rn)√
var(rm)var(rn)

Sm,n = ρ(m,n) if ρ(m,n) ≥ p otherwise 0, where Sm,n represents the similarity

between firm m and firm n. Many values are close to zero in the original correlation

and do not provide any useful information about firm similarity. Although I

acknowledge the significance of negative correlations among firms, my goal is to

develop an embedding matrix for firms that represents firms’ similarity, and a negative

correlation indicates difference. Therefore, for efficiency, I use a threshold p = 0.30
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to make S sparse by eliminating both trivial and negative correlation. Finally, I

normalize the cut similarity matrix as:

S ← D− 1
2SD− 1

2 (3.11)

where D is the diagonal matrix of D = diag(d1, ..., dN), dn =
∑N

l=1 Snl. Incorporating

normalized-cut similarity matrix in the objective function helps enhance the total

similarity between the related firms and dissimilarity between unrelated firms in

the embedding matrices of firms. The new objective function with the orthogonal

regularization on the time dimension and similarity on the firm dimension is defined

as follows:

∑
‖(X − X̂ )� 1X‖2 + λ1‖U�U � (11� − I)‖1,1 + λ2‖S − V V T‖2F (3.12)

3.4 Data and Experimental Details

3.4.1 Data

There are three primary sources for the data: quarterly earnings per share (EPS)

and individual analysts’ forecast data from Thomson Reuters I/B/E/S, firm charac-

teristics from COMPUSTAT, and the stock information from CRSP. These data are

available at https://wrds-www.wharton.upenn.edu/. I consider the period from

Q1-2009 to Q4-2017.

To compare the performance of NLTCC with other benchmarks, I tested all

models on a combined data set of 300 firms with 173 analysts following. In addition,

I also analyzed the model performance in firm groups according to their industry

sub-sector. I use the SIC (Standard Industrial Classification) to group firms into

eight broad industry divisions. I perform a simple data cleaning procedure to make
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Table 3.2 Data Description

Industry class Firms Analysts Tensor Shape Missing (%) Analysts STD EPS STD

Combined 300 173 (36, 300, 173) 96.65 2.8471 0.9232

Mining 57 152 ( 36, 57, 152) 88.36 3.6396 3.2796

Construction 18 81 (36, 18, 81) 87.29 2.0617 0.9084

Manufacturing 306 170 (36, 306, 170) 97.03 2.0969 0.8335

Transportation 85 62 (36, 85, 62) 88.66 3.8768 1.0187

Wholesale trade 21 20 (36, 21, 20) 78.41 2.2829 0.4074

Retail trade 84 119 (36, 84, 119) 90.07 3.2147 1.4486

Finance 192 159 (36, 192, 159) 95.50 4.2137 1.9697

Service 122 101 (36, 122, 101) 93.68 2.4531 0.9849

Note: To avoid the high computation costs of large tensors, I chose a random sample of 300 firms for
the combined data. Analysts STD represents the standard deviation of individual analyst’s EPS forecast
of a firm at a given quarter and is then averaged over quarters for each firm. EPS STD represents the
standard deviation of a firm’s realized EPS over time for each firm. I then report the mean STD within
the industry.

the imputation and the downstream prediction task meaningful and useful. I remove

firms with time lapses in the complete time series and analysts who have predicted

for less than four years or made less than 200 predictions in their entire career. This

allows us to have consistent data sets for sound performance evaluation. Table 3.2

shows data description for the combined group and different industry sub-groups,

including the number of firms (Firms), the number of analysts (Analysts), tensor

shape, missing percentage of third-order tensors, the volatility of individual analyst’s

forecast (Analysts STD), and the volatility of realized EPS (EPS STD). To avoid the

size effect, I scale the two standard deviations by their respective means.

Following previous literature [33,41,120], I incorporate nineteen firm character-

istics and monthly and daily stock returns into the analysis. Some recording errors,

e.g., negative stock price, are replaced with the absolute value. A detailed description

of each characteristic variable are presented in Table 2.2.
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Table 3.3 Hyperparameter Settings

Model Hyperparameter Values

MF

Rank (K) 5, 10, 15, 20

Learning Rate (e) 1e-5, 1e-4, 1e-3, 1e-2

Regularization (λ) 1e-4, 1e-3, 1e-2, 1e-1

CPWOPT Rank (K) 5, 10, 15, 20

NLTCC

Rank (K) 5, 10, 15, 20

Learning Rate (e) 1e-5, 1e-4, 1e-3, 1e-2

Regularization (λ) 1e-4, 1e-3, 1e-2, 1e-1

SVR
Epsilon (ε) 1e-5, 1e-4, 1e-3, 1e-2

Constant (C) 1, 2, 3, 5, 10

XGBoost
Learning Rate (e) 1e-5, 1e-4, 1e-3, 1e-2

Regularization (λ) 1e-4, 1e-3, 1e-2, 1e-1

Note: The final selected parameters are in bold front.

3.4.2 Experimental Setup and Hyperparameters

The NLTCC model is implemented using Keras [123] with the TensorFlow [151]

at back-end. Keras is a popular deep learning framework for a cost-effective

implementation of the Distributed Stochastic Gradient Descent (SGD). Keras has

the built-in capability of supporting distributed machine learning models within

each mini-batch and ensuring models scalability. For SGD, I use Adam. Adam

is a gradient-based optimization of stochastic objective functions that continuously

adjusts the learning rate based on the adaptive estimates of lower-order moments. As

a result, it easily escapes saddle points while providing fast convergence [152].

I initially tune the hyperparameters (reported in Table 3.3) using a grid search

on 10% validation data for the first window of the rolling window process, i.e., Q1-

2009 to Q4-2015. The best parameter set (bold font in Table 3.3) is then used

for the remaining windows. The initial values in the grid search are selected by

following the common practice in academia and the values used in the original paper
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of those models (e.g., [45,117,135,150]). For the neural network, the batch size is 128.

The maximum training Epochs is set to 500 with the early stopping criteria where

the program finishes training if the validation loss stops decreasing for ten Epochs.

For consistency, I use the same grid configurations of tensor ranks (K), learning

rate (e), and regularization hyperparameters (λ) for other benchmark models, i.e.,

MF and CPWOPT. Section 3.7 details the ablation studies regarding the impact of

regularization and rank and presents the running time and convergence evaluations.

As discussed in Section 2.4.4 information leakage can significantly influence the

outcome of any machine learning model. Therefore, to overcome the leakage problem,

I conduct the experiments based on the rolling window with the window size of 28,

shown in Figure 2.7. First, I perform the tensor imputation to the first 28 quarters

(Q1-2009 to Q4-2015) and then train the prediction model on the first 27 quarters

and test the model performance only in the last quarter. I then iteratively move the

rolling window forward by one quarter, impute data again, and then perform with the

same training and test split. Finally, I report the average value of the test quarters.

The iterative rolling window process prevents information leakage by only employing

the information in the past and present.

3.5 Results and Discussions

To investigate the superiority of NLTCC, I conduct a two-step analysis in this section.

First, I evaluate multiple methods to impute missing values of individual analysts’

forecasts with and without complementary datasets (firm characteristics and stock

markets) and demonstrate that NLTCC consistently shows higher accuracy in the

imputation than baselines. Second, I apply machine learning techniques on the

NLTCC imputed data to predict the next quarter earnings (EPS) of the entire

industry (prediction based on the combined group) and sector by sector (prediction

based on individual industry-level subsamples).
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Table 3.4 Tensor Completion Results

Additional Missing 10% 20% 40% 60%

Total Missing 96.09% 96.52% 97.39% 98.26%

Metric Model/Rank 5 10 20 5 10 20 5 10 20 5 10 20

TCS

MF 0.0689 0.0553 0.0522 0.1680 0.1538 0.1532 0.3244 0.3322 0.3351 0.7575 0.7964 0.7815

CPWOPT 0.0495 0.0315 0.0303 0.1371 0.1259 0.1592 0.3752 0.2579 0.4079 0.8353 0.6543 0.8942

NLTCC(A) 0.0723 0.0430 0.0302 0.1462 0.1209 0.1120 0.2853 0.2572 0.2158 0.5702 0.5410 0.5143

NLTCC 0.0646 0.0292 0.0289 0.1362 0.1102 0.1009 0.2653 0.2002 0.1914 0.4011 0.3422 0.3212

MSE

MF 0.0113 0.0092 0.0082 0.0280 0.0209 0.0208 0.0576 0.0580 0.0556 0.2067 0.1775 0.1774

CPWOPT 0.0107 0.0062 0.0050 0.0156 0.0736 0.0559 0.3733 0.3573 0.6573 0.2833 0.8265 0.8308

NLTCC(A) 0.0122 0.0104 0.0042 0.0181 0.0188 0.0106 0.0461 0.0359 0.0252 0.0769 0.0570 0.0436

NLTCC 0.0109 0.0056 0.0039 0.0161 0.0172 0.0101 0.0381 0.0309 0.0212 0.0569 0.0270 0.0236

Note: MF represents matrix factorization; CPWOPT indicates CP based tensor factorization; NLTCC(A) is the proposed model that is
applied only to analyst data. NLTCC is the proposed model for all available data combined, including analyst, firm characteristics, and return
data. A lower value of TSC and MSE indicates better performance.

3.5.1 Tensor Completion

At first, I compare the imputation performance of the NLTCC against two well-known

missing value imputation techniques; MF [117] and CP based tensor completion

CPWOPT [135]. To evaluate the algorithms’ robustness, I first randomly sample the

available EPS forecast data by 90%, 80%, 60%, 40% to create a series of tensors with

the additional missing values from an already sparse tensor and then evaluate data

imputation on these tensors with an increasing level of sparsity. The performance

is evaluated in terms of mean squared error (MSE) and tensor completion score

(TCS) [135]. TCS is calculated as follows:

TCS =
‖((1− 1W)�X )− ((X̂ � 1X )� (1− 1W‖

‖(1− 1W)�X‖ (3.13)

where, 1X and 1W are binary tensors with 1Xi,j,k
= 0 representing original missing

values, and 1Wi,j,k
= 0 represents both original and randomly created additional

missing values. TCS captures the relative error that is always nonnegative and stands

for a good performance when the error value is small.

The tensor completion results are presented in Table 3.4. Both MF and

CPWOPT only complete a single tensor; therefore, to get a fair comparison, I use two
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(a) TCS (rank =10) (b) Data Distribution

Figure 3.5 (a) TCS at different levels of missing data. (b) The original data
distribution and the data distributing after imputing with MF, NLTCC, and
CPWOPT. Here, NLTCC(A) represent imputation with only analyst dataset, and
NLTCC represent imputation with analyst, characteristics and return data. The
green triangle represent the mean of the data.

versions of NLTCC. NLTCC(A) is the nonlinear tensor completion with only analysts’

forecast data whereas NLTCC further incorporates firm characteristics and stock

market information. All three tensor completion methods outperform the matrix

completion by a significant margin. Table 3.4 shows that the performance difference

among these models is minimal at 10% additional missing value. As the percentage

of missing value increases, the superior performance of NLTCC becomes highly

evident in both TCS and MSE. When 98% entries are missing, at rank 10, NLTCC

outperforms MF by 57%, and CPWOPT by 48%. Even with only a single dataset, my

approach NLTCC(A) outperforms MF and CPWOPT by 32% and 17%, respectively.

The importance of using auxiliary information is visible in the performance difference

between NLTCC(A) and NLTCC (Figure 3.5a). By fusing two additional datasets

(firm characteristics and stock returns), I further improve tensor completion accuracy

by 36%.

Besides, Figure 3.5b shows that the tensor completion with NLTCC also retains

the original data distribution precisely comparing to MF and CPWOPT. Especially,

CPWOPT inter-quartile range and whiskers are much wider than those of the original

data. In comparison to NLTCC(A), NLTCC, after incorporating the other two
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datasets, slightly widens the distribution of imputed data. However, this change

reflects the heterogeneity among different datasets and is still much smaller than the

variance incurred by CPWOPT.

3.5.2 Predicting Firms Earnings Across All Industries

To examine if NLTCC imputation can improve earnings prediction, I compare the

prediction quality of the complete EPS data imputed by NLTCC against those

imputed by matrix factorization and CPWOPT. I also directly compare the prediction

model with the industry benchmark mean prediction.

Two prediction methods, Support Vector Regression (SVR) [46] and XGBoost

[45], are applied in predicting future earnings. I integrate different imputation

methods (including NLTCC) with these two prediction models. Because XGBoost

has built-in sparsity awareness and handles missing values in datasets, I also use

XGBoost to predict earnings from the original dataset with missing values directly.

XGBoost allows us to compare the performance improvement with/without the tensor

completion for data imputation. For evaluating model performance, I use three

performance metrics, R2, MSE, and MAPE as defined in Chapter 2 in Equations

2.11, 2.12, and 2.13, respectively.

Table 3.5 shows that both NLTCC+SVR and NLTCC+XGBoost outperform

the mean prediction in all three performance measurements. NLTCC+XGBoost

exceeds the mean prediction (Mean) in R2 by 5%, in MSE by 65%, and in MAPE

by 6%. Meanwhile, the other two imputation techniques MF and CPWOPT can

not beat the mean prediction due to those models’ inherent limitations (distortion

to the original data distribution). Particularly, to impute data, MF collapses

three-dimensional tensor into two dimensions by flattening time and firm into one

dimension. Consequently, it fails to capture important information in the temporal

dimension. Besides, firm-specific latent information is also lost when the data is

81



Table 3.5 Predicting Firms Earnings

A: Performance Evaluation

Model R2 MSE MAPE

Mean 0.9320 0.0498 55.1690

XGBoost 0.8712 0.0502 71.5423

MF+SVR 0.8451 0.0611 64.0114

MF+XGBoost 0.8526 0.0521 62.3044

CPWOPT+SVR 0.7616 0.0819 94.5147

CPWOPT+XGBoost 0.8133 0.0749 89.8420

NLTCC+SVR 0.9665 0.0195 54.1246

NLTCC+XGBoost 0.9765 0.0172 51.6342

B: Mean Difference Test of R2

Model Difference

NLTCC+XGBoost - Mean 0.0445**

NLTCC+XGBoost - XGBoost 0.1053***

Note: This table reports the average value of three
performance measures over time for each model. Mean
indicates consensus forecast, MF, CPWOPT, and NLTCC
indicate matrix factorization, CP based linear tensor
completion, and the proposed nonlinear tensor completion
model, respectively. Smaller MSE, smaller MAPE, and
larger R2 indicate better accuracy. Values in MAPE are
in percentage term. **, ***, represent significant at 5%,
and 1% level of significance, respectively.

flattened across firms into a matrix. Similarly, CPWOPT is a linear model and fails

to capture nonlinear interactions among analysts and firms. As shown in Figure 3.5b,

the wider the data distribution, the higher the variance of imputed values, the less

accurate the model predictions, which explains why the prediction using CPWOPT

is worst among all models.

The advantage of imputation with NLTCC and data fusion is evident in the

performance comparison between XGBoost and NLTCC+XGBoost. XGBoost, with

its internal data imputation alone, can not outperform the simple mean. Nevertheless,
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Table 3.6 F-Test and P-Value Significance Test

Model Adj R2 F-Value P-value Significant Analysts

MF 0.647 69.02 1e-5 94

CPWOPT 0.101 5.158 3e-5 20

NLTCC 0.916 405.0 1e-5 87

with NLTCC based imputed data, the same machine learning model with similar

hyper-parameters increases the prediction performance by almost 12% (R2). Unlike

XGBoost, MF+XGBoost, and CPWOPT+XGBoost, the XGBoost combined with

the imputation model NLTCC (NLTCC+XGBoost) is the only one better than the

mean prediction. This finding suggests that the advantage of a prediction model is

conditional on the quality of input data, i.e., it is crucial to impute missing values

with high quality where the NLTCC plays an important role.

To test the imputed data’s quality, I perform a multivariate panel regression

of a firm’s actual EPS on the imputed values of analysts’ forecasts. The results

of the F-test and P-values reported in Table 3.6 show that the information gain of

the tensor completion with NLTCC is significant. Even a simple panel regression

with the imputed analysts’ earnings forecast explains the 91% variance of actual

earnings, whereas MF explains only 65% and CPWOPT explains only 10%. Besides,

87 analysts out of 173 are significant (effective) at 1% by NLTCC, whereas MF has 94

significant analysts. A larger R2 with a lower number of significant features (analysts)

suggests that the proposed model does not impute data indiscriminately. Instead, it

distinguishes efficient analysts from inefficient ones and only keeps efficient forecasts

while filtering out noises, resulting in better imputation accuracy than linear models.

3.5.3 Predicting Firms Earnings in Individual Industry Sectors

Tensor completion on all analysts’ forecasts for all firms may cause some issues. First,

on average, an individual analyst only focuses on eleven firms for a given period,

83



Table 3.7 Earnings Prediction for Industry Groups

Industry Model R2 MSE MAPE

Mining

Mean 0.8061 0.1306 103.5411
XGBoost 0.7527 0.1578 137.0901
NLTCC+SVR 0.8732 0.0509 51.5701
NLTCC+XGBoost 0.8660 0.0689 25.1641

Construction

Mean 0.9297 0.6754 54.5707
XGBoost 0.9482 0.5560 57.0514
NLTCC+SVR 0.9519 0.5265 49.3445
NLTCC+XGBoost 0.9692 0.4015 48.5945

Manufacturing

Mean 0.8927 0.0689 24.4744
XGBoost 0.6977 0.1888 106.6645
NLTCC+SVR 0.8918 0.0922 32.5341
NLTCC+XGBoost 0.8854 0.1023 39.6142

Transportation and
public utilities

Mean 0.7973 0.0845 24.3018
XGBoost 0.8116 0.0666 29.1281
NLTCCC+SVR 0.8954 0.0589 13.5846
NLTCCC+XGBoost 0.9352 0.0501 13.5108

Wholesale trade

Mean 0.9468 0.0111 13.9946
XGBoost 0.9329 0.0268 18.7945
NLTCC+SVR 0.8783 0.0355 21.3545
NLTCC+XGBoost 0.8919 0.0370 23.4045

Retail trade

Mean 0.8939 0.2120 62.3345
XGBoost 0.8538 0.2143 69.5145
NLTCC+SVR 0.9298 0.1944 57.3745
NLTCC+XGBoost 0.9465 0.1675 55.5448

Finance, insurance
and real estate

Mean 0.5221 0.4799 24.9981
XGBoost 0.4168 0.6443 59.2015
NLTCC+SVR 0.6998 0.3315 23.8848
NLTCC+XGBoost 0.7206 0.3293 20.4585

Service

Mean 0.9005 0.1128 52.2945
XGBoost 0.9134 0.0986 55.6301
NLTCC+SVR 0.8935 0.1203 41.2801
NLTCC+XGBoost 0.9323 0.0951 40.4948

Note: Smaller MSE, MAPE and larger R2 indicate better accuracy. Values in
MAPE are in percentage term. Boldface indicates the best model.

which leaves the three-dimensional tensor of all analysts and all firms over the entire

history excessively sparse. I observe the EPS tensor has a high percentage of missing
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data, i.e., over 99%. Second, the computational cost of tensor completion increases

exponentially with the tensor order and each order size. Third, NLTCC attempts

to learn the embedding for time, firms, and analysts from the relevant time, firms,

and analysts. Previous literature suggests that firms in different industries likely

are experiencing different business cycles. For example, firms in the manufacturing

industry are expanding with high growth rates during a given time, whereas firms

in the service industry are not, and vise versa. Therefore, combining different

types of firms in the same imputation tensor introduces data inconsistency and adds

complexity in learning.

To overcome the first two problems, I have to perform a rigorous filtering

procedure to select only a small subset of firms that ensure a high number of valid

observations with the small tensor shape. However, it is still not sufficient to tackle

the last problem of data inconsistency. Therefore, I group firms into their related

industry sectors following the Standard Industrial Classification (SIC) codes and

perform industry-wise tensor completion. It ensures the consistency of information

among firms that share the same earning trend. The strategy also helps to overcome

the curse of dimensionality and reduces the percentage of missing values. Table 3.7

reports the result of predicting the next quarter earnings for firms in each industry

group. There are several interesting findings as follows.

First, the performance of NLTCC is relatively stable and consistent across

groups. Except for the manufacturing and wholesale trade groups, the imputation

based models (NLTCC+SVR and NLTCC+XGBoost) outperform the mean and

simple XGBoost predictions in all three performance metrics for all other groups.

For the manufacturing industry, the mean prediction is better than NLTCC+SVR

and NLTCC+XGBoost. However the performance difference is negligible, as the R2

is 0.8927 (Mean), 0.8918 (NLTCC+SVR), and 0.8854 (NLTCC+XGBoost).
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Second, the performance improvement of NLTCC over the mean prediction is

more prominent for groups with high analysts’ dispersion. For example, the analysts’

dispersion of the mining, transportation, and finance industries is 3.64, 3.87, and

4.21, respectively (based on the Analysts STD in Table 3.2), all of which are higher

than others. Those industries enjoy more improvement from the proposed prediction

model than others. In terms of R2, the gain is 8% for mining, 17% for transportation,

and 38% for finance. This result can be explained with the central limit theorem

and confidence interval. It is challenging to surpass the simple yet, effective mean

prediction because when the data volatility is low, the mean prediction has a narrow

confidence interval to encompass the actual earnings. By contrast, for industries with

a high analyst dispersion because of insufficient information or information being

too complicated, individual analysts have different interpretations and, therefore, are

less likely to agree with others. Under these circumstances, NLTCC helps select

efficient information from analysts without introducing too much noise. As a result,

it improves the quality of imputed data and further enhances the prediction accuracy

by machine-learning techniques.

Third, the performance improvement of tensor completion is positively correlated

to firms’ realized EPS volatility. For firms with less variation in their actual earnings,

the mean algorithm attains perfect prediction, as shown in Figure 3.11, and the

sophisticated ML models with data imputation hardly exceed the mean prediction.

The wholesale trade has the lowest earnings variance among all groups (0.4047) (The

last column in Table 3.2), and as a result, they have an excellent mean prediction

(R2 = 0.95). It is also true for other stable industry groups, such as construction and

manufacturing. These industries are mature, and in the last few years, companies in

these sectors experience relatively steady growth. When the growth rate is stable,

analysts can easily estimate future earnings at a high accuracy level. The value

added by any sophisticated prediction model for these categories is marginal. These
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Figure 3.6 The t-distributed stochastic neighbor embedding (t-SNE) of the spectral
clustering based on firm learned latent factors. All the firms in the service industry are
grouped into five clusters. The adopted tensor completion model learns meaningful
embeddings for firms according to their size, service type, and the client groups they
serve. Both color and space represent differences in embedding.

experiments suggest that the advanced imputation model (such as NLTCC) and

machine learning models (such as SVR and XGBoost) deliver the benefits to firms

whose standard deviation of earnings is over 1.00 and nevertheless, have marginal

improvements for firms with a standard deviation of less than 0.80. The area with

variance ranging between 0.80 to 1.00 is somewhat mixed where the gain from NLTCC

is reasonable, yet less convincing than that in the highly volatile section

Forth, with the high-quality data preprocessed by NLTCC imputation, two

prediction models (NLTCC+XGBoost and NLTCC+SVR) have a small performance

difference. The finding confirms that data preprocessing based on data fusion and

imputation plays a vital role in data analysis, reveals the majority of knowledge from

data, and eases the selection of downstream prediction models. In addition, the

performance of XGBoost without explicit data imputation fluctuates significantly

across all sectors. For some industries, such as construction, transportation, public

utilities, and service, XGBoost is better than the mean prediction but worse

than the mean prediction for all other sectors. Compared with my proposed
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Table 3.8 Data Description of Manufacturing Sub-Sectors

Sub-sector Firms Analysts Missing (%) Analysts STD EPS STD

Food 21 55 81.38 3.1452 1.0493

Textile 32 75 91.28 2.6940 0.9587

Papers 12 29 73.49 2.3089 1.9054

Chemicals 57 146 94.55 2.7495 1.6615

Glass and metals 60 140 94.08 2.5267 0.7339

Computers 72 89 93.22 3.0194 1.4772

Automobile 56 86 92.75 2.2095 1.2185

Note: Analysts STD represents the standard deviation of individual analyst’s EPS
forecast of a firm at a given quarter and is then averaged over quarters for each firm.
EPS STD represents the standard deviation of a firm’s realized EPS over time for each
firm. I then report the mean STD within an industry.

NLTCC+XGBoost, the simple XGBoost is inferior in all industries except the

wholesale trade. This observation signifies the importance of data imputation effort

and nonlinear tensor completion model.

Fifth, as I claim in Section 3.3, the factor matrices obtained from NLTCC

factorization contain meaningful embedding vectors for the respective dimensions,

i.e., quarter, firm, and analyst. High-quality latent embedding of NLTCC will greatly

benefit the downstream machine learning prediction models. Figure 3.6 provides a

useful demonstration of this. I use the t-distributed stochastic neighbor embedding

(t-SNE) to visualize the learned latent factor and their embedding space. For brevity,

I use the clustering result of the service sector as an example. NLTCC learns multi-

dimensional embedding for firms based on their size, service type, and the client

groups they serve. For example, Citrix Systems, ANSYS, Check Point Software

Technologies are IT companies and belong to the same group as Microsoft, Google,

IBM, Oracle, and SAP, but their embedding space in the lower green group is slightly

different from the large IT firms in the upper green group. High-quality embedding

offers better grouping and classification accuracy and provides useful information
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Table 3.9 Sub-Sector within Manufacturing Industry

Industry Model R2 MSE MAPE

Food

Mean 0.8585 0.0471 49.9463
XGBoost 0.8979 0.0435 50.7263
NLTCC+SVR 0.9243 0.0237 47.7413
NLTCC+XGBoost 0.8719 0.0473 42.1763

Textile

Mean 0.8613 0.0483 66.1538
XGBoost 0.8330 0.0443 61.9275
NLTCC+SVR 0.8887 0.0225 51.9138
NLTCC+XGBoost 0.8513 0.0410 65.4938

Paper

Mean 0.8570 0.0132 21.7800
XGBoost 0.8189 0.0202 18.4225
NLTCC+SVR 0.8746 0.0100 18.7638
NLTCC+XGBoost 0.8760 0.0101 17.3750

Chemicals

Mean 0.8204 0.7047 0.6498
XGBoost 0.8157 0.2947 0.7465
NLTCC+SVR 0.8601 0.1502 0.5068
NLTCC+XGBoost 0.8540 0.1598 0.5221

Glass and
metals

Mean 0.9296 0.0219 35.5488
XGBoost 0.8041 0.0615 80.6163
NLTCCC+SVR 0.9038 0.0420 59.9600
NLTCCC+XGBoost 0.8982 0.0424 58.4575

Computers
and electronics

Mean 0.9062 0.0389 30.5213
XGBoost 0.8756 0.0350 52.0375
NLTCC+SVR 0.9137 0.0318 28.5525
NLTCC+XGBoost 0.9283 0.0279 26.2750

Automobile
and air-crafts

Mean 0.9078 0.0536 29.0275
XGBoost 0.8517 0.0754 44.7750
NLTCC+SVR 0.9386 0.0472 24.7925
NLTCC+XGBoost 0.9259 0.0512 26.5388

Note: Mean indicates consensus forecast, NLTCC indicates the
proposed model. Smaller MSE, MAPE and larger R2 indicate better
accuracy. Values in MAPE are in percentage term.

about firms’ inherent structure and hidden representations that are otherwise difficult

to capture with simple data mining techniques.
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3.5.4 Robustness Test

To check the robustness of my findings within industry groups, I further investigate

one industry at a micro-level. Compared to other sectors, manufacturing initially

comprises of a large number of firms. I hypothesize that the under-performance of

NLTCC in this sector results from heterogeneous information in the firm dimension. I

further divide all manufacturing firms into seven subgroups based on their SIC codes,

i.e., food, textile, paper, chemicals, glass and metals, computers and electronics,

and automobile and air-crafts. Table 3.8 presents the details of sub-sectors. The

prediction results with tensor completion for each sub-sector are reported in Table 3.9.

The results of the sub-sectors support my initial hypothesis: once firms are grouped

into a more refined category, the tensor completion and subsequent prediction models

on sub-sectors perform much better than the simple mean method. NLTCC takes

advantage of consistent knowledge in sub-sectors to improve performance over the

initial grouping with a coarse granularity of industry sectors. It also reaffirms the

understanding that the prediction with complete tensor has a much higher prediction

accuracy than the mean method and XGBoost for the cases in which the analysts’

forecast variance and the standard deviation of actual earnings are high.

3.6 Portfolio Analysis

3.6.1 Portfolio Based on the Difference Between NLTCC and Mean
Prediction

To evaluate the proposed NLTCC model’s investment feasibility, I build portfolio

strategies based on the assumption that bias exists in analysts earning forecast. I

hypothesis that over-optimistic analysts’ forecasts for a firm will lead the current

market price of its share higher than the true value, and once actual earnings

announcement comes, its share price will go down to reflect the fair price; and on

the other hand, over-pessimistic forecasts for a firm will lead the current price of its

share to be lower than the true value, and once actual earnings announcement comes,
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Table 3.10 Returns on Long-Short Portfolio Constructed Based
on the Difference Between NLTCC and Mean Prediction

Holding periods 3 days 5 days 10 days 21 days 42 days

Average (%) 0.7487 0.4777 0.2500 0.0780 0.0451

STD (%) 0.7499 0.5039 0.3230 0.1882 0.1086

Sharpe Ratio 15.8474 15.0489 12.2834 6.5806 6.5971

Note: Average is the daily average return and STD is the daily standard
deviation of return of long-short portfolios. I adopt the formula from
Morningstar, Inc. to calculate the yearly Sharpe ratio from daily returns.

SR =
∑D

d=1 PRd

σPRd
×√252; where PRd is daily portfolio return and D is the

total number for days.

its share price will go up to reflect the fair price. If these upward or downward biases

in analysts’ forecasts can be detected with high confidence, investors can earn a high

return by designing their portfolios in accordance to the predicted over-estimation or

under-estimations. NLTCC prediction is more accurate than the mean EPS forecasts

and provides an excellent indicator to these earning expectation bias. To confirm the

superiority of the NLTCC prediction, I construct a long-short portfolio based on the

difference between NLTCC predicted EPS and the mean consensus forecast. At each

quarter, I first calculate the difference between NLTCC and the mean estimates for

each firm and scale the difference by the respective share price on the prior day t− 1

(Δ =
NLTCCiq−Meaniq

Pt−1
) where t stands for the date of the earnings announcement for

each firm at a given quarter. I take a long position on the top 10% firms with the

most positive difference and take a short position on the bottom 10% stocks with the

most negative difference. I hold the position for three trading days (t to t + 2), five

trading days (t to t+4), 10 trading days (t to t+9), 21 trading days (t to t+20), and

42 trading days (t to t+41), respectively, where 21 (42) trading days is equivalent to

one (two) month holding period.

Machine learning based NLTCC model provides a low bias estimation of a firm’s

future earnings [153] whereas analyst forecast tends to have a high bias [37,38,40,154,
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(a) Long-short portfolio. (b) Long side and short side separately.

Figure 3.7 Cumulative returns on long-short portfolio build based on the difference
between the EPS prediction by NLTCC and Mean. Subfigure 3.7a is the long-short
portfolio as a whole, and subfigure 3.7b is the individual component of the long-short
portfolio.

155]. The positive (negative) difference indicates that those firms are under- (over-)

estimated by analysts. During the time window over earnings announcement, the

stock price increases (decreases) correspondingly when a firm’s realized earning beats

(misses) the analysts’ consensus forecasts. Table 3.10 shows that the NLTCC portfolio

earns a positive return with impressive Sharpe ratios in all five holding periods. The

Sharpe ratio is the highest for the three-day holding period followed by the five-day

holding period.

One interesting finding is that as the holding period increases, the average

daily return decreases. This is intuitive: upon the earnings announcement, investors

respond to the new information, resulting in volatility in stock price. Afterwards,

the positive and negative information is gradually reflected by stock prices, and the

magnitude of price changes (returns) diminishes. My results are consistent with the

literature that the financial market is efficient to some extent and suggests that a

short-term investment strategy is more profitable. Figure 3.7a depicts the cumulative

return from the long-short portfolios of different holding periods and shows a similar

pattern. The cumulative return declines over a more extended holding period, i.e.,

the cumulative return earned from a three-day holding is 25% compared to 2% for

forty-two days.
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I are also interested in understanding whether the outperformance mainly comes

from the long-position, short-position, or both. I construct the long-side and the

short-side portfolio separately. The results in Figure 3.7b indicate that the long

position contributes more to superior performance than the short position does. For

example, the average daily return during the three-day earning announcement window

for a long position is 0.5075 (68%), whereas that for a short position is only 0.2411

(32%). For a 42-day holding period, the average daily of a short position is even

negative. One plausible reason is that the U.S. stock markets’ restriction makes

short selling more difficult than long positions and incurs higher costs and extra

requirements. Consequently, investors choose not to take a short position even though

there exists a profitable opportunity.

3.6.2 Continuous Trading Strategy

In Subsection 3.6.1, I construct a long-short portfolio strategy and show that without

considering any transaction cost and practicability, the proposed model offers high

profit potential by identifying “winner” and “loser” stocks. Nevertheless, the different

announcement dates for each stock make the implementation of this portfolio strategy

hardly practical.

Therefore, I propose a practical trading strategy to hybrid the S&P500 index

and the “winner” or “loser” stocks identified by the NLTCC prediction. I initially

hold the S&P500 index ETF until appropriate “winner” (“loser”) stocks are identified,

and then take long (short) positions on selected stocks during the designated holding

window around earnings announcement dates. At the end of the assigned holding

window, I will cash out the positions, reinvest on S&P500 and repeat the same process.

One day before each announcement day (t-1), I categorize stocks into “winner”,

“loser”, and the rest, based on the difference between NLTCC prediction and mean

forecast scaled by the share price at t-1. When the scaled difference of a stock is
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higher than 0.5%, it is considered a “winner”, and on the other hand, a ‘loser” when

the difference is less than −0.5%. The daily return for each stock is calculated as:

rit =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
log(Pt + dividend)− log(Pt−1), if Δ > 0.005

log(Pt−1)− log(Pt + dividend), if Δ < −0.005

NA, otherwise.

(3.14)

where Δ =
NLTCCiq−Meaniq

Pt−1
is the scaled difference of each stock. I calculate the

portfolio return as follows:

PRt =

⎧⎪⎪⎨⎪⎪⎩
rS&P,t if ∀rit = NA

∑p
i rit
n

, otherwise.

where p is the number of stocks in the “winner” or “loser” group based on Equation

(3.14). If multiple stocks meet the investment design for any given day, I hold an

equally weighted position across all of them. No transaction cost is considered:

whenever a new stock is added, the old portfolio’s weights are rebalanced to

accommodate the new stock(s) with the same weights for all stocks. For example, the

previous portfolio has four stocks with equal weights of 25% each. After identifying

a new stock, the portfolio consists of five stocks with equal weights of 20% each.

Table 3.11 reports the results of the continuous portfolio for three-, five-, ten-,

21-, and 42-day holding period, respectively. I compare my mixed portfolio returns

to S&P500 return. The mixed portfolios for the five holding periods generate much

higher returns than the simple holding on S&P500. Similar to Section 3.6.1, the

continuous portfolio also demonstrates that the majority of the above-average return

comes from the information advantage on and right after the announcement day.
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Table 3.11 Continuous Portfolio

Holding periods S&P500 3 days 5 days 10 days 21 days 42 days

Average (%) 0.0451 0.3893 0.3334 0.2049 0.0845 0.0459

STD (%) 1.0996 2.3019 1.5496 0.8790 0.4245 0.2980

Sharpe Ratio 0.6507 2.6846 3.4159 3.7015 3.1602 2.4470

Note: Average is the daily average return and STD is the standard deviation of
daily return of long-short portfolios over the time period. Average and STD are
daily, where Sharpe ratio is annualized. I adopt the formula fromMorningstar, Inc.

to calculate the yearly Sharpe ratio from daily returns. SR =
∑D

d=1 PRd

σPRd
×√252;

where PRd is daily portfolio return and D is the total number for days.

(a) Long-shot portfolio. (b) Long side and short side separately.

Figure 3.8 Cumulative returns on long-short portfolio hybrid with S&P500. In this
trading strategy, I hold S&P500 unless I find any undervalued or overvalued security
in the market. I take long positing in the under-estimated security and short positing
in the over-estimated security. Subfigure 3.8a is the long-short portfolio as a whole,
and subfigure 3.8b is the individual component of the long-short portfolio.

Holding stocks for a longer period does not necessarily provide more additional

benefits. Instead, the return for long holding periods shows a mean reversal trend.

For 42 days holding period, the portfolio return is almost the same as S&P500.

Figure 3.8 depicts the cumulative returns over the studied period from the

hybrid long-short portfolios as a whole (Figure 3.8a) and long side and short side

separately (Figure 3.8b). Initially, the hybrid portfolio earns a lower return than

S&P500, and the low return is mainly associated with the negative return in the

short-side of the portfolio. Figure 3.8b shows that, from the beginning of 2009 to

almost the end of 2012, the short portfolio return is above zero, indicating that I

receive a loss in short-selling. This is intuitive: during this period, because the market
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recovered fast, the stock price had a significant upward trend. Nevertheless, over

time, both the short and long positions of the portfolio become profitable and earn

significantly higher returns than S&P500. This also explains why the contribution of

the short-side is lower than that of the long-side in the long-short portfolio on average.

In the studied period (2009-2018), the US market experienced high growth, a recovery

from the great financial crisis, and the bull market afterward. As a result, the long

positions in any stocks became more profitable compared to the short positions.

3.7 Ablation Study

3.7.1 Impact of Regularization and Ranks

In this subsection, I analyze the impact of combining multiple data sets, regular-

ization, and different ranks on the earnings prediction performance and evaluate the

impact of hyperparameters on the robustness of data integration results. A variety

of financial datasets are related to firms and their quarterly earnings: stock prices

capture the market responses to a firm’s information, accounting data document a

firm’s fundamental information, finance news reports any major event of a company,

and analysts consensus forecast reveals the general market expectation of firms’

future earnings. These datasets offer different views concerning the same underlying

firm, and any single source alone might not provide the complete representation of

a firm. NLTCC delivers an efficient approach to combine multiple datasets and

build a comprehensive model for earning prediction. I evaluate several versions of

the proposed NLTCC model on the 300 firms analyzed in Section 3.5.2. These

models include only financial analysts data (NLTCC(A)), financial analysts and

firm characteristics data (NLTCC(A+F)), financial analysts, firm characteristics, and

return data with no regularization (No reg), all three datasets with the orthogonal

regularization on the temporal dimension (Time reg in Equation (3.12)), all three

datasets with similarity clustering regularization on the firm dimensions (Sim reg),
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Figure 3.9 R2 (left panel) and MSE (right panel) for different models at different
ranks. Mean represents consensus forecast; NLTCC(A) is the proposed model
with only analysts forecast data; NLTCC(A+F) with both analysts forecasts and
firm characteristics data; No reg with analysts forecast, firm characteristics and
return data without any regularization; Time reg with all three datasets and the
orthogonal regularization on the time dimension; Sim reg with all three datasets and
the similarity regularization on the firm dimension; and finally, Both reg with all three
datasets and two regularizations on both the time and firm dimensions.

and all three datasets with both orthogonal and similarity clustering regularization

(Both reg).

Figure 3.9 signifies the importance of using auxiliary information from multiple

datasets and applying regularization on earning prediction. The ML-based prediction

with only the sparse and noisy EPS forecast data, even enhanced by advanced

data imputation method and sophisticated predictive models (i.e., XGBoost, SVR),

cannot beat the simple mean prediction. Combining firm characteristics and return

information improves prediction performance, but it is still inferior to the mean

forecast due to the discrepancy, noise, and inconsistent quality in heterogeneous

datasets. Figure 3.9 also demonstrates that the performance improvement of

adding third datasets, i.e., stock return data, along with analyst forecast and

firm characteristics, is insignificant. This observation confirms that simple data

integration can not maximize data value, and the reconciliation on different datasets

is indispensable. Once I introduce regularization on the time and firm dimensions

to reconcile the data heterogeneity and discrepancy, the performance improvement
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becomes significant. Notably, the similarity clustering regularization on the firm

dimension results in the highest reduction in forecasting error by 30%. Compared

to those models without regularization, the orthogonal regularization on the time

dimension reduces the prediction error by 9%, and the regularizations on both firm

and time dimensions further reduce the prediction error by 43%.

Similar to the low-rank configuration on many representation learnings, the

choice of rank has a significant impact on NLTCC’s performance. Figure 3.9 illustrates

the effects of different ranks on the earning prediction of different versions of NLTCC.

With a small rank (= 5), all models’ performance is low. Once the rank increases

to ten, the performance improves significantly. Nearly all versions of the proposed

model reach the peak performance with a rank between 15 and 20. Simultaneously, a

higher rank incurs more computational complexity. In addition, once the performance

peaks, further increasing rank has no benefit, which is consistent across models.

Overall, these findings signify that advanced ML methods can be applied to

finance applications to reap the benefits of heterogeneous information from multiple

datasets. However, before using these techniques, we must carefully consider

the restriction and limitations of these techniques. A simple concatenation of

heterogeneous data might not work because of the different measurements scales,

noise, and inconsistency. Regularization enforces consistency in the data structure,

separates the unwanted noise from the signals, and induces meaningful embeddings

for the downstream modeling and predictions.

3.7.2 Impact of EPS Volatility on Prediction

As discussed in Section 3.5.3 that the performance improvement by NLTCC is

marginal for firms that have low dispersion in available analyst forecast or firms with

very stable historical earnings. I plot the EPS data distributions and demonstrate

why it is difficult for advanced machine learning models to outperform the consensus
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Figure 3.10 The EPS data distribution of the top ten most frequently analyzed
firms in four major sectors.

forecast regarding some firms. Figure 3.10 shows the EPS data distribution of the

top ten most frequently analyzed firms in four major sectors, i.e., manufacture,

transportation, wholesale trade, and finance. For firms in Manufacturing and

Wholesale trade sectors, the median of analysts forecasts almost equals the mean

value that serves as a simple yet highly accurate prediction model for earnings. In

contrast, for firms in the Finance industry, the analysts forecast distribution is highly

spread, and the mean deviates from the median, which indicates the potential benefits

of the ML-based prediction.

Figure 3.11 represents the actual EPS along with the analysts forecasted

EPS for each quarter of some large companies i.e., Nvidia (manufacturing), CSX

(transportation), Henry Schein (wholesale trade), Morgan Stanley (finance), and

Netflix (service). It is challenging to outperform the mean prediction for firms whose

actual EPS almost always aligns well with the analysts’ EPS forecast, e.g., Nvidia or

Henry Schein. In contrast, incorporating auxiliary information (firm characteristics

and return) improves the prediction performance for firms whose analysts’ forecasts

deviate significantly from actual EPS, e.g., Morgan Stanley or Netflix.
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Figure 3.11 The actual EPS (red line) along with the analysts forecasted EPS
(marked with blue dots) for each quarter of several large companies from different
sectors.

3.7.3 Running Time Comparison and Convergence

Machine learning models often computationally expensive for large training datasets.

However, the convolutional neural network (CNN) used for building NLTCC is

renowned for faster convergence. Unlike traditional tensor algorithms, CNN does

not use heavy operation steps, such as the Kronecker product or Gram matrix [150].

As a result, NLTCC does not incur steep computation/memory costs in the training

process. Figure 3.12b presents the running time of two benchmark machine learning

models and NLTCC for different tensor ranks. Among these models, CPWOPT

is the most computationally efficient. It is expected because CPWOPT performs

a simple CP decomposition for latent representation learning rather than involving

a complex deep learning model. Another observation is that Both MF and NLTCC
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(a) Convergence plot (b) Running time comparison

Figure 3.12 (a) Convergence plot of NLTCC (b) Running time of different tensor
completion algorithms at different ranks. NLTCC(No Reg) is with all three data
set but without any regularization, NLTCC(Both Reg) is with both orthogonality
and similarity regularization.

incur similar computation time while MF is slightly faster than NLTCC. It also shows

that regularization reduces the computation time for NLTCC because regularization

facilitates a rapid learning process. With a Linux system with 16GB GPU memory,

3854 CUDA cores, and 40 CPU cores, it took NLTCC almost 50 minutes to converge

for rank 15. In addition, the mini-batch gradient descent based on Keras’s deep

learning framework allows the model to be trained without explicitly storing the

whole tensor. In [150], Liu et al. proved that the convolutional neural network-based

tensor factorization has a fast convergence rate and a tight bound on generalization

error [156] by showing the connection of their model with one shallow but efficient

neural net. Figure 3.12a shows the convergence plot in training the NLTCC model.

With a learning rate of 0.0001, the model converges around about 400 epochs.

3.8 Conclusion

This chapter presents a convolutional neural network-based nonlinear tensor coupling

and completion framework, named NLTCC. NLTCC integrates firm-level charac-

teristics, market return data, and analysts’ earnings forecast to overcome the data

quality problems of noise, sparsity, and heterogeneity. I first apply NLTCC to impute

missing values in individual analyst’s forecasts and then predict the firm’s next
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quarter earnings with popular machine-learning algorithms (SVR and XGBoost).

The accuracy of NLTCC-based earnings prediction is significantly higher than

the analysts’ consensus forecasts. The majority of prediction improvement comes

from the superior performance of NLTCC for data pre-processing and imputations,

data integration and noise removal, and the discrepancy reconciliations among

heterogeneous datasets. Extensive experiments on industry sectors and subsectors

confirm the effectiveness of NLTCC model. Particularly, NLTCC works exceptionally

well in industry sectors with high variance in analysts’ forecasts, indicating a volatile

market and involving complex information for forecasts and predictions. The findings

imply the importance of data quality (data quality is the value added by missing values

imputation) and the advantage of NLTCC. The backtesting shows that the long-short

portfolio based on NLTCC prediction generates much higher returns than that of the

S&P500 index and the portfolio strategy based on analysts’ consensus forecast. The

experiments also reveal that ML models have limitations in some circumstances. A

straightforward technique, such as the mean (analysts’ consensus) forecast, is effective

in those stable sectors. Accordingly, I propose a hybrid deployment strategy for

industry practitioners to reap maximum benefits: using mean prediction for firms

with ≤ 0.8 earnings volatility and switching to advanced techniques for firms with

higher earning volatility.
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CHAPTER 4

LATENT FACTOR MODEL FOR ASSET PRICING

4.1 Introduction

Recent advancements in machine learning (ML), and the success stories of applying

ML models to solve many real-life problems, encourage financial economists to apply

ML in asset pricing. The ML-based model also enables researchers to tackle the

asset pricing prediction problem from different aspects, e.g., working with high

dimensional and high-frequency data [157, 158], incorporating news and text-based

information [159], and considering behavioral aspects [160] into asset pricing models.

Evidence suggests, compared to traditional econometrics models, e.g., ARIMA, VAR,

and GARCH, ML-based models are superior in predicting the future price of an

asset [161–164]. Studies also show that portfolios developed based on ML models

could earn positive alpha [165–167]. Most of this work focus on applying ML methods

directly to predict the future price while paying less attention to the interpretability

of models for explaining risk premia.

Machine learning models, especially those based on artificial neural networks

(ANN), are often criticized for their high obscurity. In neural networks, the weight and

biases are discovered automatically; as a result, the explanation of how the network

functions remain obscure. In addition to superior performance, the interpretability

of the model is imperative for the successful real-world application of any model.

In the business decision-making process, investors need interpretability of the model

to understand what they are doing; policymakers want to understand the causal

relations and know its implications. The traditional linear models are both easily

interpretable and empirically examined; therefore, they are reliable and have more

widespread use. For ML models, investors also need a similar level of interpretability
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and understanding behind their investment decisions. The inability of earlier ANN-

based models of asset pricing in explaining positive alpha motivates this work. To

address the burgeoning requirements and facilitate the adoption of advanced ML

models and neural networks in finance, I propose to identify why ML methods work

better or what significant hidden relations they uncover for earning positive alpha.

In contrast to other contemporary ML applications in this field, here I explain the

risk premia of an asset-based on the factor model. I propose a latent factor model to

explain the return difference among a group of similar assets.

I use an ANN-based model - autoencoder - to learn latent representation

from the return data [61]. Over time, autoencoder becomes a very successful tool

for nonlinear principal component analysis [61]. The autoencoder generated latent

factors is used to identify representative and non-representative stocks in an index.

The measure of representativeness - communal difference - is the L2 norm of the

difference between the original and constructed data from the latent factors [95]. This

communal difference is then used to define communal assets (representative stocks)

and non-communal (non-representative) assets in an index. I combine the latent

factors with Fama-French characteristic factors, develop 18 portfolios, and define the

communal factor as the daily average return difference between six non-communal

and six communal portfolios.

In addition to explaining the risk premia of assets, the latent factor model

derived from autoencoder also has a better prediction performance. I apply the

estimated next-month latent factors from a rolling window of two years in the next-day

return prediction. The resultant model outperforms both Fama-French factor models.

The Sharpe ratio of the latent factor model exceeds traditional factor models and

justifies the economic significance of the proposed model. The excellent predictive

power of the latent factor model comes from the communal factor. To check the

robustness of the proposed model, I conduct several multivariate regression analysis
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on the communal factor along with the Fama-French five factors for each index. The

result confirms that the communal factor has a statistically significant impact on

stock returns. The panel regression analysis also shows that the effect of communal

factors is no less than that of many other characteristics based factors. In some cases,

the inclusion of the communal factor reduces the artifacts of the characteristics based

factors.

Although the latent factor model involves considerable complexity while a

simple model like Sharpe ratio [168] can provide similar risk-return trade-off

information, the latent factor model is still superior to the Sharpe ratio in retaining

information form the cross-section of assets. Sharpe ratio is based only on the

historical risk and return of individual assets [168]. It fails to consider the covariances

of the cross-section of assets return, and for different assets the Sharpe ratio alone

cannot provide any relative information. The ANN-based model captures the

covariances and any nonlinear interaction within the cross-section of all returns in

a high dimensional latent space. It gains an edge in interpreting the risk and return

of an asset concerning the other assets in the index.

This works contributes to asset pricing and finance literature in the following

ways. First, traditional factor models, including PCA, are unable to predict the

time-varying volatility in the profit return structure. The latent factor model based

on autoencoder overcomes this issue by capturing both nonlinearity and time-varying

volatility in the assets returns. Second, the proposed model uses daily data with a

two-year rolling window and accurately detects the short term variation in stock

returns. On the other hand, all other factor-based models for asset pricing use

monthly data. While they can efficiently identify the long-term trend in stock return,

nevertheless, they fail to detect short-term variations. Third, this work combines

multiple latent factors into a single evaluative factor – communal factor – to better

explain the return variances among the member stocks in an index. Fourth, the
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superior performance of non-communal stocks come from the high risk associated with

these stocks. Investors can use the communal factor to design a trade-off strategy

between diversifying their assets portfolio and focusing on a few stocks from the index

to outperform the index return. The proposed model helps an investor in improving

his/er portfolio performance while reducing the transaction cost by investing in a

small number of stocks.

The remainder of the chapter is organized as follows: Section 4.2 discusses

traditional asset pricing theories followed by a brief discussion on the developments of

machine learning based model in Section 4.3. Section 4.4 describes the autoencoder

model architecture along with the data and hyperparameters settings. Section 4.5

provides experimental results and discusses the model implications for asset return

prediction and portfolio optimization. Finally, Section 4.6 summarize the findings

and concludes the chapter.

4.2 Traditional Asset Pricing Theories

CAPM [52, 169–171] provided the original and straightforward explanation of the

return difference between assets. Based on Markowitz’s portfolio theory [172], CAPM

asserts that the expected return of an asset is a function of market risk premium and

sensitivity of its return to the return on the market portfolio. However, to overcome

the simplistic assumption of – the existence of mean–variance efficient market portfolio

– and provide flexibility to investors, [53] proposed arbitrage pricing theory (APT).

According to the APT, asset return can be expressed as a linear function of a variety

of macroeconomic, market, and security-specific factors. APT allows users to include

multiple risk factors and serves as an effective model for managing a portfolio and

evaluating its performance concerning various factors. However, one major problem

of the APT is there is no specification on which factors to use. In theory, an infinite

number of factors can affect the risk premium of an asset, but it is impossible to
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know the most significant factors upfront. A straightforward solution is to include the

highest number of factors available to maximize the model fit. However, including a

high number of factors without a proper justification can introduce multicollinearity

and overfitting. Therefore, the success of applying APT in portfolio management

depends on the analyst’s experience, judgment, prior knowledge, and some random

bias.

Historically, researchers use two primary approaches to overcome this issue.

First, pre-specify factors based on prior knowledge, and second, analyze all available

factors and identify latent factors. The collection of factors that impact an asset’s

expected return is vast and diverse. Over the years, hundreds of factors have been

reported in empirical asset pricing literature. Researchers have identified factors

based on empirical evidence, market influence, personal belief, and specific research

needs. The most successful application of this approach is the Fama–French factor

models [49, 173]. Initially, Fama and French proposed that the market, size, and

book-to-market equity can successfully capture the cross-sectional variation in average

stock returns [173]. The proposed three-factor model expands the CAPM model by

adding the size risk and the value risk to market risk.

Eit = rft + αi + βi1(Emt − rft) + βi2SMBt + βi3HMLt + εit (4.1)

In Equation (4.1), SMB is the risk premia for small stock and can be calculated

as the return on a diversified portfolio of small stocks minus the return on a diversified

portfolio of big stocks. HML is the value risk premia and is equal to the average

return on the value portfolios minus the average return on the growth portfolios. In

later empirical tests, it is found that these three factors β1, β2, and β3 are unable to

capture a significant amount of variation in the average return [174–176]. Therefore,
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it appears to be an incomplete model for measuring risk premia. In 2015, Fama and

French offered a new five-factor model that includes the profitability and investment

factors to the three-factor model [49].

Eit = rft+αi+βi1(Emt−rft)+βi2SMBt+βi3HMLt+βi4RMWt+βi5CMAt+εit (4.2)

where RMW is the difference between the return on the portfolio of robust versus

weak profitability stocks and CMA is the difference between returns on the portfolio

of low versus high investment stocks.

One major shortcoming of these factor models is that the prior knowledge used

to identify relevant factors came from empirical analysis on the average returns

from historical data. Factors are assumed to be fully observable from historical

data, but in reality, historical return at best provides partial observation. The

choice of factors is made mostly based on practical experience and is somewhat

arbitrary [177]. In addition to Fama–French models, some other factor models are

available, including multifactor-model [178], Carhart four-factor model [179],1 and the

six-factor model [180].2 These models are nevertheless the extensions of Fama–French

models and essentially have the same limitations as the Fama–French factor models.

The second approach to overcome the problem of APT’s high-dimensional factor

space adopt a factor analysis approach to reduce the dimensionality of the observed

factors and derive latent variables. The most common technique for identifying latent

factors is the Principal Component Analysis (PCA) that simultaneously estimates the

latent risk factors and their betas from the panel of the realized returns [136]. PCA

is much simpler in terms of basic concepts and computation costs and provides an

1The four-factor asset pricing model incorporates the momentum in Fama–French three-
factor model [179].
2The six-factor asset pricing model introduced the human capital component to the Fama–
French five-factor model [180].
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approximate factor structure without requiring any prior knowledge. PCA uses the

covariance matrix of returns to develop a factor model. Until recently, PCA was

the most sophisticated dimension reduction technique for big financial data. PCA

linearly map N individual returns into K factors where K < N . However, PCA

still fails to capture nonlinearity among those observed factors. Furthermore, PCA

only accommodates the static loadings (beta) and lacks the flexibility to incorporate

additional data beyond the initial returns for constructing the covariance matrix. On

the other hand, asset return is highly volatile in time, requires a dynamic model to

incorporate the conditioning information continuously and incur a prohibitive cost to

many static models, including PCA.

To overcome the problem associated with the factor-based modes and the

factor analysis model (PCA), [48] recently proposed the instrumented PCA (IPCA).

IPCA incorporates the idea of instrumental variables from the generalized method of

moments (GMM) [181]. It uses observable asset characteristics (L) as an instrumental

variable for latent conditional loading. As a result, the factors beta partially depends

on the characteristics of observable asset and establish a relationship between the asset

characteristics and expected return. IPCA also assumes that the mapping from L

asset characteristics to K betas is linear. However, the assumption of linearity rarely

holds in financial data. Many leading asset pricing models predict nonlinearity in

the return dynamics [182–184]. Nonlinearity causes significant bias on the prediction

of all asset pricing models mentioned above – CAPM, APT, Fama–French factor

models, PCA, IPCA – as these models assume linearity and normality in the return

distribution. Relaxing the linear restriction from the model will significantly improve

model performance. For example, [55] outperforms the original linear model and

achieves a zero intercept portfolio by incorporating the CDS spread and its associated

quadratic term in the model. By incorporating nonlinear predictors, these models

will substitute Fama–French’s linear size and value risk exposure. Besides, it is
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evident that financial time series exhibit time-varying volatility and regime-switching

behavior [185–188]. Therefore calculating only one beta from the regression of

historical data will not capture the dynamic risk exposure of predictors on the asset

return.

4.3 Machine Learning in Asset Pricing

Machine learning (ML) based approaches can tackle the issues related to traditional

asset pricing models discussed in Section 4.2, i.e., reducing dimension and modeling

the time-varying volatility. ANN can perform nonlinear transformations on the input

predictors, learn the effective data representation in a latent space, and offer several

advantages over traditional linear asset pricing models. The application of ML-based

model in asset pricing is not new; it can be traced back to the early 90’s [189–192]. The

use of ANN was also common in that period. ANN is applied to recognize patterns

in the ‘candlesticks’ chart [189], to develop a composite synthesized rule for trading

S&P-500 future contract [190,191], neural network-based genetic algorithm for feature

selection and topology optimization [192], and rule-based neural network for trading

S&P-500 future contracts [193]. In this earlier stage, most studies are conducted to

predict the direction of the future price movement [164,194,195]. Studies are mainly

focused on predicting the binary outcomes in the next time step, i.e., ‘0’ indicating

next time step price will be lower than current time step, and ‘1’ meaning the opposite

and developing investment strategy based on the prediction [191,192,194,196].

Studies also use support vector machine (SVM) to predict the daily direction of

price change [194,195,197]. Kim [194] uses both polynomials and the Gaussian Radial

Basis Function as SVM kernels to predict the direction in the Korea composite stock

index price, compare the performance with ANN and case-based reasoning of [193],

and conclude that SVM performs better, but is sensitive on hyperparameter settings.

Huang et al. [195] analyze the performance for NIKKEI 225 index and compare it
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with linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and

Elman backpropagation neural networks (EBNN). The result of these two efforts

signify the importance of selecting hyperparameters.

In asset pricing, the task essentially boils down to predicting the final price or

return; therefore, regression-based approaches are preferable over classification-based

approaches. Recent advancement in ML techniques allow researchers to design

regression-based approaches that can directly predict return or price. The use of

neural networks is especially noticeable for predicting actual price [161, 198–200].

These works widely vary based on purpose, sampled data, and variables used. Efforts

include, feature selection, optimization [199, 201], explaining curve dynamics [202],

and application of reinforcement learning that supports prescriptive analysis and

decision making in the automated trading scenario [203]. Kondratyev [202] use

multi-layer perceptrons to capture the dynamic of the curve in nonlinear space. The

model is tested on 300 monthly Brent crude oil forward price curves and 250 monthly

USD swap curves. The testing results confirm that ANN offers superior prediction

capabilities on the long term curve transformation that is impossible with PCA.

The majority of these models attempt to predict the price or the price movement

of only one or a couple of indices. Gu et al. [47] first addresses the need for an

overreaching generalized model, incorporates all the stocks listed in all three major

US exchanges: NYSE, AMEX, and NASDAQ, and compares the performance of

ANN-based approaches with traditional techniques (i.e., linear regression, generalized

linear regression, principal component regression (PCR), partial least square (PLS),

LASSO, and random forest). They conclude that the ANN-based approach is superior

in explaining the return behavior of assets.

Autoencoder, a successful ANN approach for non-linear dimension reduction,

nevertheless is rarely used in asset pricing. Two rare, but successful examples

that apply autoencoder for better prediction and portfolio management strategy
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are [95, 96]. An autoencoder based deep portfolio management strategy is proposed

in [95]. Inspired by Markowitz’s classic portfolio theory, [95] outline a four-step deep

portfolio routine: encode, calibrate, validate, and verify. The deep portfolio theory

first reconstructs the values of the stocks in an index, ranks the stocks according to

the degree of communal information3, and then creates deep portfolios based on this

ranking. Similar to PCA, the standard autoencoder proposed in [95] only depends

on the returns and does not leverage the conditioning variables.

Gu et al. [96] proposed an augmented conditional autoencoder that uses

information from covariates to reduce the dimensionality directly. Following [48], they

augmented the standard autoencoder with the asset-specific covariates in the factor

loading specification. Their conditional autoencoder uses two input layers: the first

input layer takes individual asset characteristics and the second input layer receives

individual asset returns. In the final step, the conditional autoencoder multiplies

the output betas from the first network and the factors of the second network and

produce the estimation of each asset return.

Inspired by the successes of autoencoder in [95] and [96], I use the autoencoder to

calculate the communal information and create a latent factor model similar to to [49,

177]. As a result, the proposed model captures both nonlinear interaction and time-

varying volatility without depending on any observable asset-specific characteristic.

4.4 Latent Factor Model

4.4.1 Autoencoder

It is common in finance to estimate asset returns based on the linear latent factors

and static loadings [204,205].

rt = βft + u′
t (4.3)

3Same as the communal difference defined in 4.1, the l2 norm differences between every
stock in an index and their reconstructed returns generated by the autoencoder.
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Where rt is the vector of excess return, ft is the K-dimensional vector of factor

returns, β is an N × K matrix of factor loadings, and ut is the N × 1 vector of

idiosyncratic errors. The matrix representation of Equation (4.3) in the PCA analysis

is R = βF +U . The factor loading is estimated via the singular value decomposition

(SVD) on returns [206,207]:

R = PΛQ+ Û (4.4)

where P is the N ×K matrix of the left singular vectors, Q is the K × T matrix of

the right singular vectors and Û is an N × T matrix of residuals.

Section 4.2 states that a linear factor model, for example, PCA, cannot capture

the nonlinearity and time-varying volatility in time series data. Autoencoder is a

neural network model for learning nonlinear representation of latent factors. The close

connection between autoencoder and PCA is well recognized in finance literature [96,

208]. Autoencoder learns to encode and decode data while moving data from its input

layer to the output layer through a bottleneck. Autoencoder with one hidden layer

and no activation function is essentially equivalent to PCA. The simplest autoencoder

is a feedforward neural network with one input layer, one output layer, and one or

more hidden layer(s). The input layer takes input variables and passes them to a small

number of the hidden layer(s) (bottleneck) to generate a compressed representation

of inputs (encoding). The output layer decodes the compressed codes into the closest

possible representation of the original data (decoding). The input and output layers

of an autoencoder have the same number of nodes.

I follow the common practice in the finance ML literature to use the cross section

of excess return as the input in the input layer of the network. Let Xi,t be the price

of stock i at time t, where 1 ≤ i ≤ N is the stock index and 1 ≤ t ≤ T is the time

index. The return for stock i at time t is defined as ri,t = log(Xi,t/Xi,t−1). For N
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Figure 4.1 Autoencoder model.

stocks in an index, the input layer takes r0 = r = (r1, . . . , rN), the recursive output

of each neuron at layer l > 0 is rlk = f(b(l−1) + r(l−1)�W (l−1)), with the final output

as latent factors:

F (r, b,W ) = b(L−1) +R(L−1)�W (L−1) (4.5)

where W (l−1) is K(l)×K(l−1) matrix of the weight parameters and b(l−1) is the K(l)×1

vector for bias parameters. For the purpose of this work, I use three hidden layers

and the rectified linear unit (ReLU)4 as the nonlinear activation function.

Figure 4.1 shows the architecture of the autoencoder. For each time period

t, the model takes return r for N stocks as both input and output and learn the

latent factors z’s. An autoencoder contains two components, encoder and decoder.

During the encoding stage, the encoder maps the input vector r ∈ RN to a latent

representation z ∈ RH (H is the dimensionality of latent vector.) with a deterministic

mapping function z = fθ(r) = ReLU(Wr + b) parameterized by θ = {W, b}. During
the decoding state, the decoder network transforms the latent representation back to

4A rectifier linear unit (ReLU) is a nonlinear activation function that allows a model to
capture non-linear interactions among input variables. It is defined as: f(x) = max(0, x),
for more details please see [209,210]
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a reconstructed vector y ∈ RN , where y = gθ′(z) = ReLU(W ′z+ b′) parameterized by

θ′ = {W ′, b′}. During the training stage, I apply the built-in training algorithms to

optimize parameters θ and θ′ with the following objective of minimizing the average

reconstruction error:

argmin
θ,θ′

1

n

n∑
i=1

‖ri − gθ′(fθ(ri))‖2 (4.6)

4.4.2 Data and Optimization Techniques

I analyze three indices, S&P-500, NASDAQ-100, and RUSSELL-3000, from the U.S.

stock market for this study and use the daily data for all the stocks in the indices from

January 1st, 1990 to December 31st, 2018. I collect daily stock returns and company-

specific characteristics from Bloomberg Terminal. To calculate excess returns, I use

U.S. treasury bill rates. I use Fama–French factors data from the Kenneth French

Data Library. S&P-500, NASDAQ-100, and RUSSELL-3000 are three major indices

in the U.S., considered as the representatives of the U.S. stock market, and offer

enough diversification opportunities for investors. As the model’s primary goal is

to identify representative and non-representative stocks among a group of stocks,

applying to stocks on an individual index serves the purpose better than using all the

listed stocks irrespectively.

Table 4.1 presents different network structures used in experiments, each of

which have different parameter settings. The performance difference among many

parameter configurations is insignificant except when batch size = 100 and epoch =

10. I report the results generated from the following experiment configuration: batch

size = 20, the numbers of neurons in three hidden layers are 32-8-32, and epochs =

100.
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Table 4.1 Parameters

Parameters Level

Batch size 10 20 50 100

Number of hidden node 8-8–8 16-8–16 32-8–32 56-8-56

Epochs 10 50 100 200

Training deep neural networks to reach an acceptable minimum with the vanilla

version of the stochastic gradient descent method is time consuming. It uses a fixed

learning rate and is not efficient in reaching the training target [211]. Adam is a

gradient-based optimization of stochastic objective functions and continuously adjusts

the learning rate based on the adaptive estimates of lower-order moments. To train the

deep neural network, I used Adam that easily escapes saddle points while providing

fast convergence [152].

4.4.3 Prediction Using Rolling Window

Predictive models for financial data use time-sensitive information and are prone

to information leakage. Information leakage might occur when training data have

unexpected access to information that is available during training, nevertheless not

available during real-world deployment and use. For time series, even carefully

designed train and test data may have information leakage if time continuity is not

explicitly considered. Only can the present and past states determine the state of

a future period. If the model already knows the future state (future return), it can

easily identify the features from future observations for the training phase and make

estimation and prediction under information leak. In the current setting, information

leakage can occur in two ways, using future return data for generating latent factors

and developing the predictive model using future data points. Training the latent

factor models with mixed current and future return data can provide an “artificially”

crafted good fit for model parameters. To overcome the leakage problem in identifying
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Figure 4.2 Rolling window for asset pricing model, with w = 504 days.

latent factors, I conduct a rolling window analysis of 24 months on the daily data.

I use the first 24 months (504 days) as the training dataset and the next month (21

days)5 as the test dataset (See Figure 4.2). I conduct a two-phase prediction function

based on the auto-encoder framework.

In the rolling window system, first I train the autoencoder using the 24 months

training data and estimate one month ahead latent factors Zt to Zt+21 based on the

trained weights. After that, I use the latent factors Zt to predict the next day’s return

for each assets ri,t+1. I define the predicted return as follows:

ri,t+1 = αi(rm,t) +
8∑

j=1

(βi,jzj,t) + ei,t+1 (4.7)

where rm is the CAPM factor of the market risk premium (Rm − rf ) and ei,t+1 is

the zero mean residual. I regress the future return on the eight latent factors z’s of

training data to estimate the eight β’s, and then use these β’s along with one month

ahead latent factors to predict the next day’s return. I use the predicted returns

by linear regression to compare the performance of the latent factor model and the

5Following common literature, I use 21 as the number of trading days in a month
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established factor models: Fama–French three-factor model (FF-3), Fama–French

five-factor model (FF-5) and PCA.

4.4.4 The Communal Factor

In addition to developing a predictive model, I also explain the reason behind

the superior performance of the predictive model. Once the autoencoder model is

developed and latent factors are identified, I combine these latent factors into one

evaluative factor based on the latent factors’ ability to explain return variance. Latent

factors constitute a representation of communal information for the stocks in the

index. I follow the terminology used in [95] to define a stock communality (communal

or non-communal) as its ability to be reconstructed from the latent factors Z. The

communal difference CD is calculated as the l2 norm of the error between each stock’s

returns between t = 1 and T (the input of autoencoder) and the reconstructed version

(the output of the autoencoder).

CDi =
T∑
t=1

‖ri,t − F (ri,t, b,W )‖2 (4.8)

At the beginning of each month, each stock’s communal difference is calculated

based on the last two years’ latent factors and rank all stocks based on it.

As [95] points out, the stocks in the same index share some common charac-

teristics. The communal information has some connection to the shared charac-

teristics: stocks that have many common features in an index demonstrate less

communal differences, whereas stocks with less common characteristics will have

higher communal differences. I categorize the stocks sorted on ascending order of

communal differences into three categories: communal (top 20%), non-communal

(bottom 20%), and moderate (remaining 60%).
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Table 4.2 Daily Out-of-sample Stock-level Prediction
Performance (Percentage R2

oos)

Index FF-3 FF-5 PCA Latent Factors

S&P-500 0.0718 0.0817 0.0855 0.0968

RUSSELL-3000 0.0653 0.0667 0.0589 0.0854

NASDAQ-100 0.1186 0.1298 0.1275 0.1492

Finally, similar to the Fama–French factor models [49, 177], I introduce

the return difference between the noncommunal stocks and communal stocks as

noncommunal minus communal (NCMC) factor. NCMC represents a stock’s property

of constructibility concerning the index return. I also evaluate the performance of the

latent factor model by integrating them with the renowned Fama–French three-factor

model.

E(r)it = αi + βi1(Emt − rft) + βi2SMBt + βi3HMLt + βi4NCMCt + εit (4.9)

Equation (4.9) also enables us to test the latent factors’ ability to explain the return

difference among assets. A significant value for β4 will indicate that the latent factors

contribute to the expected return of an asset and reduce the unexplained variance. As

non-communal assets are less representative than the communal assets, they should

demonstrate a higher risk than communal assets while being rewarded with a higher

return. Therefore, I hypothesize that the coefficient (β4) of NCMC is significant, and

its sign is positive.

4.5 Results and Discussion

4.5.1 Prediction Performance

The latent factor model has a better predictive capacity compared to traditional

factor models in predicting the next day’s returns. I compare the proposed model in
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Equation (4.7) with the Fama–French three-factor (FF-3) model in Equation (4.1),

the Fama–French five-factor (FF-5) model in Equation (4.2), and PCA. I evaluate

the prediction performance in terms of the out-of-sample predictive R2 (R2
OOS) and

Sharpe ratio. Following [48], the out of sample R2 is calculated as follows:

R2
OOS = 1−

∑
(i,t)∈OOS (ri,t − β̂′

i,t−1f̂t)
2∑

(i,t)∈OOS r
2
i,t

(4.10)

The R2
OOS indicate that the metrics only assesses the fits on the testing sub-samples

that are never used to train/estimate the model. Table 4.2 shows that the latent

factor model outperforms the widely used linear factor model (FF-5) by 18%, 28%,

15%, and the PCA approach by 13%, 45%, and 17% in S&P500, Russel-3000, and

NASDAQ, respectively.

I compare the economic significance of the latent factor model with the FF-3,

FF-5, and PCA. I build a decile long-short portfolio sorted on the model-predicted

returns. During the testing period, I apply the proposed model on each day’s return

rt to predict the return of all stocks on the next day rt+1. I develop a zero investment

equally weighted long-short portfolio. For each day, I short $100 from predicted

worst-performing assets and invest this $100 on predicted best-performing assets. I

construct the portfolio as follows: I first derive the predicted return on each specific

day for each stock and then sort stocks in the decreasing order of predicted values.

I choose the top 10% of stocks with the highest predicted returns to construct the

sub-portfolio with a long position, where each stock has an equal investment. On the

other hand, I short the bottom 10% of stocks with the lowest predicted returns, each

of which has the same short amount from each stock.

Figure 4.3 presents the cumulative return of the long-short portfolio constructed

by the four models for the three indices over 26 years. In all three chosen indices, I
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(a) S&P-500 (b) RUSSELL-3000 (c) NASDAQ-100

Figure 4.3 Cumulative excess return on long-short portfolio (1992-2018).

observe that the latent factor model’s performance is better in both long and short

portfolios. The better performance of the proposed latent factor model is quite evident

for RUSSELL-3000 and NASDAQ-100. Although the performance improvement is

marginal for S&P-500, I observe a clear trend, i.e., after 2007–2008 financial crisis,

both the long only and short only portfolios based on latent factors outperform the

other two factor models. This trend confirms the idea of high uncertainty associated

with non-communal stocks. During and after the financial crisis, a significant

reshuffle took place in these indices. Several major companies, e.g., Lehman Brothers

and Bear Stearns, went bankrupt and were removed from the S&P-500 index and

several new companies, e.g., Mastercard, Visa, Salesforce, Netflix, entered into the

index. Over the last decade, these newly registered firms demonstrated superior

performance. As a result, their return structure was entirely different from existing

ones. Because the proposed model tries to detect return structure based on common

return characteristics, these new and strong stocks do not have these characteristics

yet and are identified as the non-communal stocks. The superior performance of these

newly entered firms in the index made the latent factor model outstanding after the

2007–2008 financial crisis.

The long-short portfolio created based on the latent factors model earns not

only the highest return but also shows significant improvement in the Sharpe ratio in
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Table 4.3 Long-Short Portfolio Sharpe Ratio

Index FF-3 FF-5 PCA Latent Factors

S&P-500 2.031 2.489 2.320 2.704

RUSSELL-3000 1.718 1.853 2.328 2.932

NASDAQ-100 1.096 1.253 1.877 2.094

all three studied indices. In Table 4.3, the portfolio Sharpe ratio is calculated as:

SR =

∑T
(t=1) (Prt)× 252

σPrt
×√252 (4.11)

I adopt the formula from Morningstar, Inc. to calculate the yearly Sharpe ratio from

daily return. For S&P-500, the improvement of the Sharpe ratio in the proposed

latent factors model is 33%, 9%, and 17% over FF-3, FF-5, and PCA, respectively.

For RUSSELL-300, the improvement is 71%, 58%, and 26% over FF-3, FF-5, and

PCA, and for NASDAQ-100 the improvement is 91%, 67%, and 12% over FF-3,

FF-5, and PCA.

4.5.2 The Latent Factor

In this section, I try to evaluate what contributes to the better predictive performance

of the latent factor model. At the beginning of each month, I use the last two years’

latent factors to calculate the communal differences of each stock. Stocks sorted on

communal differences are categorized communal (top 20%), non-communal (bottom

20%), and moderate (remaining 60%). I hold the stocks in each of these three groups

for the whole month and calculate the average cumulative return earned by the stocks

in each group. For example, I calculate the cumulative return for communal stocks

as follows:

Cc
i,t =

1

S

S∑
i=1

T∑
t=1

ri,t (4.12)
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(a) S&P-500 (b) RUSSELL-3000 (c) NASDAQ-100

Figure 4.4 Cumulative excess return of communal and non-communal portfolio
(1992-2018).

Table 4.4 Communal and Non-Communal Portfolio

S&P-500 RUSSEL-3000 NASDAQ-100

Variables C M NC C M NC C M NC

Mean 0.029 0.048 0.067 0.073 0.055 0.113 0.103 0.121 0.146

STD 0.872 1.157 1.597 1.854 1.186 2.536 1.818 1.575 2.007

Sharpe 0.528 0.658 0.665 0.625 0.736 0.707 0.899 1.219 1.155

Note: C denote communal stocks, M denote moderate stocks, and NC denote non-
communal stocks in the index.

The daily data shows that in all three indices, non-communal stocks outperform

both their index and communal stocks by a significant margin in Figure 4.4. The

communal stocks, on the other hand, perform worse than the index return. This

observation can be explained by the nature of the definition of communal and non-

communal stocks: communal stocks are robust with a long history of being in the

index and have less divergence from the index; in contrast, non-communal stocks

have high variation in yield and show significant deviation from the other stocks in

the index. As a result, predicting future returns of these stocks is difficult. The higher

uncertainty involved in these non-communal stocks is rewarded by superior return.

Table 4.4 reports the average daily return, standard deviation, and Sharpe

ratio of communal, moderate, and non-communal stocks of all three studied indices.

Although the non-communal portfolio demonstrates a high average excess return than

communal and moderate stocks, it also has a high standard deviation. In addition,
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Figure 4.5 Timeline of stocks existence in different portfolios.

the improvement in the Sharpe ratio is marginal. This observation signifies that

the high average return does not come from the superior performance of the stocks

in the portfolio; instead, it is the compensation of high risk associated with these

non-communal stocks.

In Figure 4.5, I evaluate some selected stocks from S&P-500 and the timeline

of being in the communal and non-communal portfolio. The dynamic nature of the

latent factor model assigns stocks in the communal, moderate, or non-communal

portfolio at the beginning of each month. A closer look reveals this assignment is

closely related to the life-cycle of the stocks and its market performance. The thick

orange and red lines in Figure 4.5 represent the cross-sectional 20% and 80% of

communal differences at any given time, respectively. Stocks that are a member of

the S&P-500 index for a long time and have stable earning patterns are more likely

to belong to the communal or moderate group, i.e., TJX (from 1985) and Exxon

mobile (from 1964). They closely mimic the cross-sectional mean. Upon its recent

introduction to the S&P-500 index, TJX was initially in the non-communal group

but eventually, moved into the moderate group, and remained there.
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Table 4.5 Ability to Explain Return Difference

S&P-500 RUSSEL-3000 NASDAQ-100

Variables C NC C NC C NC

Mkt-Rf -0.0648*** 0.016 -0.0337*** 0.2272*** -0.0612*** 0.0203**

(0.02) (0.004) (0.013) (0.066) (0.009) (0.010)

L1 0.0004*** 0.002 0.002 0.0057** -0.0008 0.0010

(0.000) (0.000) (0.001) (0.003) (0.001) (0.001)

L2 0.0008*** 0.0004 0.0021*** 00026 0.0010*** 0.0014*

(0.000) (0.000) (0.001) (0.003) (0.000) (0.001)

L3 0.0005*** 0.0006** -0.0004** 0.0018 0.0019*** 0.0002

(0.000) (0.000) (0.000) (0.002) (0.001) (0.001)

L4 0.0003** 0.0019*** -0.0003 -0.0024 0.0017** 0.0029***

(0.000) (0.000) (0.001) (0.003) (0.001) (0.001)

L5 -0.0011*** -0.0007** -0.0001 0.0034 -0.016** -0.0020***

(0.000) (0.000) (0.000) (0.003) (0.001) (0.001)

L6 -0.0001 0.0008*** 0.0006*** -0.0039 0.0020*** 0.0010

(0.000) (0.000) (0.000) (0.003) (0.000) (0.001)

L7 0.0009*** 0.0008*** 0.0005*** -0.0046*** 0.0007 0.0006

(0.000) (0.000) (0.000) (0.001) (0.001) (0.002)

L8 0.0000 0.0028*** 0.0017*** 0.0055** 0.0010*** 0.0021***

(0.000) (0.000) (0.001) (0.003) (0.001) (0.001)

r2 0.005 0.001 0.007 0.005 0.004 0.001

Note: C denote communal stocks and NC denote non-communal stocks in the index. Values
in parenthesis indicate standard error. *, **, ***, represent significant at 10%, 5% and 1% level
of significance respectively.

On the other hand, growth stocks that enter the index at a later time and have

significant fluctuation in return tend to stay in the non-communal group, i.e., Nvidia,

Netflix. Netflix has been in the non-communal group for nearly its entire lifetime in

the index. Besides, it also has significant variation in its communal information. The

impact of market performance on my categorization is visible in Apple and Nvidia.

The below-par performance of Apple in the early ’90s and the return of Steve Jobs

in the late ’90s are highlighted in the two spikes in the Apple communal information

line. The introduction of iPod (2001) and iPhone (2007) is also reflected in Apple’s
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Table 4.6 Average Daily Return on Different Factor Portfolios

Big/High Big/Medium Big/Low Small/High Small/Medium Small/Low

Communal 0.0489 0.0519 0.0306 0.0830 0.0667 0.1116

Moderate 0.0739 0.0736 0.0633 0.1090 0.0963 0.0927

Non-Communal 0.1208 0.1239 0.1286 0.1371 0.1345 0.1388

Note: Individual indices average factor return are available at Appendix B.

communal information. Following these two events, Apple rose to the non-communal

group temporarily while otherwise remaining in the moderate group. Apple’s final

appearance in the non-communal group was the result of its record-breaking revenue

for the first quarter of 2014 [212]. A similar pattern is also evident for Nvidia. Most

of the time, Nvidia remains in the non-communal group except in 2014. In 2014,

Nvidia experienced a decline in revenue and net income. However, Nvidia’s drive to

AI and deep learning from 2015 brought it back to the non-communal group.

Table 4.5 clearly explains why non-communal stocks generate higher return than

communal stocks. I regress the returns of communal or non-communal stocks on the

latent factors. In all three indices, non-communal stocks have lower r2, and fewer

statistically significant factors than communal stocks. This finding signifies that the

non-communal stocks are less stable, hard to predict, and have a higher risk. The

superior return, therefore, is the reward for bearing these highly uncertain stocks.

4.5.3 Which Factors Matter?

To analyze whether the latent factors from Autoencoders have some advantage over

traditional factors in the Fama–French model, I develop 18 (2×3×3) portfolios based
on the size,6 value,7 and communal difference. Table 4.6 shows the daily average

returns on these factor portfolios. I find a significant difference in average returns

6Following [177], in the size portfolio, stocks are identified as either big or small based on
the cross-sectional median size.
7Following [177], in the value portfolio, stocks are identified as either high value (top 30%),
low value (bottom 30%), or medium value (remaining 40%) based on the cross-section of
the book value of equity and the market value of equity. See details in [49, 173]
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Table 4.7 Average Daily Return Difference

Factor S&P-500 RUSSELL-3000 NASDAQ-100 Average

SMB 0.0221 0.0436 0.0309 0.0322

HML 0.0223 0.0194 0.0087 0.0168

NCMC 0.0562 0.0611 0.0327 0.0500

Note: SMB small minus big, indicate difference between size sorted
portfolios; HML is high minus low, indicate value sorted portfolio;
NCMC is Non-communal minus communal, indicate difference between
communal information based sorted portfolio.

between the six high communal portfolios and six non-communal ones. I find that

the average daily return on nine small portfolios is higher than that of nine big ones,

which confirms the Fama–French factor model. It is also true for high versus low

stocks. On average, the six high-value portfolios have higher average returns than

the six low-value ones do. The six non-communal portfolios are outperforming both

communal and moderate portfolios.

Interestingly, the small/low/non-communal portfolio has the maximum earnings.

All three small/non-communal portfolios have a high daily average return; the

difference among them is marginal. The observation leads to the conclusion that

among the latent and characteristics factors, size and communality explain the most

significant variance in return among the stocks in an index. The inclusion of latent

factors minimizes the return difference between the high-value vs. low-value stocks.

The finding also appears in the return difference among the factor portfolios in the

three studied indices reported in Table 4.7. In S&P-500, the return differences in the

size-sorted and value-sorted portfolios are almost identical (0.02%). In contrast, the

return difference between non-communal versus communal is the highest (0.05%).

However, in both RUSSELL-3000 and NASDAQ-100, the return difference in the

value sorted portfolios is very low. In addition, in NASDAQ-100, the average return

difference on the size and communal information sorted portfolios are almost similar

(0.03%).
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Table 4.8 Factor Significance

Variables S&P-500 RUSSEL-3000 NASDAQ-100

Const 0.0005*** 0.0008*** 0.0010***

(0.000) (0.000) (0.000)

Rm −Rf -0.0511*** -0.0640*** -0.0247***

(0.002) (0.007) (0.000)

SMB 0.0188*** 0.0586*** 0.0300***

(0.0.003) (0.013) (0.000)

HML -0.01805*** -0.0688*** -0.0588***

(0.003) (0.012) (0.000)

RMW 0.1582*** 0.0653*** 0.0964***

(0.004) (0.019) (0.000)

CMA 0.0556*** 0.0089 -0.0506***

(0.005) (0.021) (0.000)

NCMC 0.0817*** 0.0621*** 0.0245***

(0.002) (0.008) (0.005)

R2 0.011 0.008 0.010

Note: Values in parenthesis indicate standard error. *,
**, ***, represent significant at 10%, 5% and 1% level of
significance respectively.

Finally, I test the statistical significance of the proposed latent factors with

the Fama–French factor model by conducting a panel regression of individual stock

returns on the latent factors combined with the existing Fama–French factors

Equation (4.9). The results are reported in Table 4.8 concerning all three indices.

I find that the NCMC is as significant as any other factor in explaining the returns

in all three indices. Among the indices, the communal factor has the highest impact

on S&P-500 stocks. In addition, I find that both market factor (Rm − Rf ) and

value factor (HML) have a negative impact on these three indices return. Similar to

the Fama–French factor model, I am unable to find an arbitrage-free model as the

constant in all three models is statistically significant. The impact of constant is low

compared to that of the other factors.
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Table 4.9 Factor Significance in Communal and Non-Communal Stocks

S&P500 RUSSEL-3000 NASDAQ-100

Variables C NC C NC C NC

Rm −Rf -0.0585*** -0.0118 -0.0377* 0.2904*** -0.0323** 0.0410*

(0.014) (0.024) (0.023) (0.097) (0.012) (0.045)

SMB 0.0635*** 0.0292 00615*** 0.3653** 0.0712*** -0.0268

(0.023) 0.043 (0.020) (0.181) (0.020) (0.045)

HML -0.0181 -0.1238*** -0.0708*** 0.3494** 0.0194 -0.1231***

(0.024) (0.040) (0.021) (0.167) (0.042) (0.047)

RMW 0.1245*** 0.1263** 0.1180*** 0.5106** 0.1875*** 0.0852

(0.035) (0.062) (0.041) (0.251) (0.054) (0.073)

CMA 0.0421 0.0684 0.0122 -0.4549* -0.0884 -0.0585

(0.040) (0.071) (0.066) (0.277) (0.065) (0.073

NCMC 0.0427*** 0.0769*** 0.0345*** 0.2526*** 0.0323*** 0.0202*

(0.016) (0.029) 0.011 (0.101) (0.012) 0.011

R2 0.010 0.004 0.004 0.012 0.008 0.003

Note: C denote communal stocks and NC denote non-communal stocks in the index. Values
in parenthesis indicate standard error. *, **, ***, represent significant at 10%, 5% and 1%
level of significance respectively.

It is interesting to note that the impact of CMA8 varies among different

indices, i.e., CMA has a positive impact on S&P500, a negative impact on

NASDAQ-500, and is not statistically significant for RUSSELL-3000. This finding is

also obvious in evaluating the impact of Fama–French and latent factors concerning

communal and non-communal stocks (Table 4.9). Except for non-communal stocks

of RUSSELL-3000, CMA clearly shows no statistical significance to the returns of

both communal and non-communal stocks in all remaining three indices. Table

4.9 also sheds some light on why non-communal stocks demonstrate higher average

return than communal stocks do. In all three indices, non-communal stocks have

lower r2 and fewer statistically significant factors than communal stocks. Even

for S&P-500, the market excess return is not significant for non-communal stocks,

8Conservative Minus Aggressive is the average return on the two conservative investment
portfolios minus the average return on the two aggressive ones, for more details see [49]
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whereas, for NASDAQ-100, it is only significant at the 10% threshold value. Besides,

for non-communal stocks in S&P-500 and NASDAQ-100, the size factor is also

not statistically significant, whereas it is statistically and economically significant

for communal stocks. The observation confirms the claim in Section 4.5.2 that

non-communal stocks are risky and difficult to predict; thus, they must generate

a high return in compensating their uncertainty.

4.6 Conclusion

Asset pricing models are designed to identify risk measures and assign an appropriate

reward for bearing those risks. Over the years, ML has received considerable success

in predicting asset risk premia. In this paper, I use autoencoder to extract latent

factors for explaining and predicting risk premia. The proposed communal factors

help us understand the return variance among the stocks in an index. This work

confirm that stocks in an index could be categorized based on their ability to share

information, and stocks with low mutual information should earn a higher return for

the associated higher risk. Investors will take advantage of this findings to design

their trading strategies, i.e., (i) to beat the index by only investing in non-communal

stocks while accepting high risk, (ii) to diversify their portfolio by investing both

communal and non-communal stocks, or (iii) to avoid transaction costs by investing

only a small number of stocks while replicating the average index return.

130



CHAPTER 5

THE NETWORK FACTOR OF EQUITY PRICING: A SIGNED
GRAPH LAPLACIAN APPROACH

5.1 Introduction

Firms are connected through multiple types of networks. These network intercon-

nections play an important role in how information and shocks transmit from one

firm to another or to the whole system [56, 58, 59]. A single firm may generate a

large impact on the market, such as the collapse of Lehman Brothers during the 2008

financial crisis. Similarly, market changes can affect individual firms as well as the

interconnection between firms. For example, the COVID-19 pandemic has accelerated

the adoption of digital technologies and changed supply-chain interactions. The

underlying network dictating those interactions is not static, instead dynamically

changing over time. Furthermore, the direction and magnitude of the exposure

to network changes vary across firms. Empirical evidence suggests that firms’

network exposures are associated with systematic risk, can improve return prediction

[213], reduce diversification power [90], and warrant a centrality risk premium [91].

Meanwhile, most traditional asset pricing models mainly focus on firm-specific and

market/macro factors, overlooking the indispensable interconnection among firms.

In this work, I propose a novel approach to capture network information and to

incorporate it into asset pricing models.

To evaluate the importance of network changes in equity prices, the first step

is to be able to model and quantify the network change. The network representation

inspired by graph theory is popular with a broad applicability across many domains,

such as computer science and information system [72, 75, 214]. Unfortunately, those

techniques are mainly for static and unsigned graph. Directly applying those

techniques to model equity market network may produce suboptimal results. Firms
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(a) Unsigned graph (b) Signed graph

Figure 5.1 Node representation in relation to the neighbors’ proximity and
antipodal proximity. (a) In unsigned graph, firm A’s embedding should be the mean
of its neighbors X1, X2 and X3. (b) In signed graph firm A’s embedding should be the
mean of its positive neighbors X1 and X2 and antipodal points −X3 of its negative
neighbors X3.

enter into or exit from the market and change their business models, capital structures,

and supply chains. As a result, relationships among firms continually evolve. In

addition, market shocks can affect the structure of the equity market network.

A static graph built by aggregating all available information cannot capture such

time-varying information. Previous studies use the correlation of firms’ historical

returns on a rolling basis to capture network dynamism [80,215–217]. However, these

efforts adopt unsigned networks that ignore the positive/negative signs by either

using a distance function or using the absolute values of the correlation. Such

application overlooks the core idea that a positive correlation indicates similarity

and co-movement, while a negative correlation indicates the opposite. As shown in

figure 5.1, when learning representation for a firm on an unsigned network, treating

all of its neighbors indiscriminately (for a weighted network according to their edge

weight) can produce an informative embedding. However, for a signed network, an

informative representation of a firm should be similar to its positive neighbors and

antipodal to its negative neighbors [218].

Figures 5.2 and 5.3 demonstrate the importance of modeling dynamic network

changes and incorporating positive and negative connections in representing the
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(a) December 2019 (b) April 2020 (c) December 2020

Figure 5.2 The network structure of S&P-500 stocks surrounding the COVID-19.
Green (red) links represent the positive (negative) edge between two firms.

equity market network. During the normal economic period, the market consists

of a mixture of positive and negative edges (Figure 5.2a and 5.2c). However, on

the dawn of the Covid-19 pandemic (Figure 5.2b), most negative edges disappear,

positive edges multiply, and the market forms a ball-shaped structure. The negative

edges conveys information that an unsigned graph cannot reveal. For example, Figure

5.3(a)-(c) show that the smallest Eigenvalue (the rightmost λ in the parentheses) of all

unsigned graph Laplacians is zero and fails to identify different structures of networks.

Differently, for the signed graph Laplacian, only the balanced networks in Figure 5.3e

(network with two sub-clusters) contain the zero Eigenvalue. Therefore, incorporating

negative linkage helps to partition a network into multiple sub-networks (clusters),

with positive edges signifying intra-cluster cohesion and negative edges serving as

inter-cluster bridges. As shown in Figure 5.2c, the negative links are able to bisect

S&P-500 stock network into two subgroups and positive links bond firms within the

group.

In this chapter, I apply a generalized Laplacian matrix of [219] with the

modified Laplacian for a signed graph to handle both positive and negative network

connections. Particularly, the diagonal degree matrix in the modified Laplacian sums

the absolute values of each firm’s pairwise correlations with all others, and the affinity

(weight) matrix contributes to retaining the signs of correlations (details in Section
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(a) λ = (5, 5, 5, 5, 0) (b) λ = (5, 1, 1, 1, 0) (c) λ = (3.6, 3.6, 1.4, 1.4, 0)

(d) λ = (6.4, 5, 5, 3, 0.6) (e) λ = (5, 5, 3, 3, 0) (f) λ = (4, 2.6, 2.6, 0.4, 0.4)

Figure 5.3 Graph representations based on the Laplacian spectrum. Green (red)
links represent the positive (negative) edge between two nodes. λ denotes the
Laplacian spectra (the Eigenvalues of the Laplacian matrix) of the graph. Intuitively,
different network topologies have different connectivities and are accompanied by a
distinct set of Eigenvalues.

5.2.1). This modification ensures the positive-semidefinite property of the Laplacian

matrix and the benefits therein.1 I then use the signed Laplacian spectra (the

Eigenvalues of the Laplacian matrix) to encode the network structure of the equity

market at each time point. The Laplacian spectra of a graph essentially represent

the frequency domain of discrete networks and directly link to the global structures,

properties, and motif of a network [220–222]. As a result, the encoded representation

of the network structure also incorporates the changing market condition, economic

1A detailed discussion of using Eigenvalues and spectrum to represent heterogeneous
networks and the advantages can be found in [220].
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environment, and uncertainties in a macro context. Moreover, to capture the dynamic

evolution and detect change points in networks, I construct the network factor

“Z-score” by measuring the difference between the current network state and network

states of previous months.

I evaluate the importance and implication of the network factor in equity

pricing by examining the factor in relation to the market, macro, and other asset

pricing factors. The empirical analysis provides several interesting findings. First,

Z-score aligns well with significant market events, such as the 1987 Black Monday,

2008 financial crisis, and COVID-19. Those major events generate considerable and

asymmetric impacts on different firms, significantly changing the network structure.

Moreover, the correlations of Z-score with VIX and EPU are only 0.15 and 0.19,

respectively. This finding suggests that Z-score, to a large extent, reveals information

different from volatility and uncertainty.

Second, I incorporate the proposed network factor into conventional asset

pricing models and show that network is an important equity pricing factor. Following

the literature, I compare multiple factor models to assess whether adding network

factor can improve pricing models [223–225]. The two-pass cross-sectional regression

[226] and three-pass estimator [225] produce significant and negative risk premia for

the network factor. The time-series R2 for the network factor is much higher than

that of other nontradable factors, such as the macro-finance factors of [227] and the

consumption growth factor of [228]. The Wald-test rejects the null hypothesis that

network is a weak factor, confirming that network is a vital pricing factor for stocks.

In addition, time-series tests show that the network factor can enhance the return

predictability and reduce mispricing. Results are robust for different asset portfolios

with multiple performance metrics.

Third, cross-sectional analysis shows that firms with the positive (negative)

sensitivity to network changes have lower (higher) future returns. When a given firm
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reacts to the network changes in the same direction, this synchronization suggests

that this firm is capable to adjust quickly and less vulnerable. Investors, therefore,

treasure such adaptability. As a result, the demand for those stocks increases, prices

increase, and the expected returns decrease. Moreover, I discover that this negative

relation is more significant when the market network experiences substantial changes.

The proposed methodology for the network factor and its associated empirical

findings contribute to the existing literature in a number of ways. First, this

chapter proposes a novel way to capture and quantify the network dynamics in

financial markets. Current works predominantly use the historical return correlation

[60, 80, 217], industry sector similarity [59], and customer-supplier network [229] to

represent financial networks and mainly analyze how information flows among firms

and institutions during crisis and pandemic situations [81–84,230,231]. By contrast, I

apply the state-of-the-art Laplacian spectrum analysis technique in the equity market

to represent the network and construct the global network factor. Compared to

the unsigned network embedding approach, the proposed signed Laplacian approach

better represents the information property of the equity network, generates higher

risk premia, and better explains the return difference among assets with improved

R2. The general framework for the signed Laplacian spectrum detailed in this chapter

can also extend for performing graph cuts, identifying proper equity market clusters,

and analyzing other financial markets’ network structures where negative connections

exist.

Second, I explicitly construct a network index Z-score to track the aggregated

changes at the market level rather than the pairwise correlations at the firm level.

Z-score provides direct information to market participants about the network state

of the equity market. As a result, Z-score can be considered as a complementary to

the existing macro indices and asset pricing factors.
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Third, my empirical tests show that network is a vital pricing factor and uncover

how firms respond to network changes. The result also suggests that firms’ exposure

to network changes is more significant when the market network is volatile. Long-

short portfolio analysis shows that the difference between the smallest network β and

highest network β has an inverted U shape characteristics during different market

conditions. It is significantly negative when the market network is stable with very

small change and is significantly positive when the market network is volatile with

very large change. The result is robust after controlling for market, size, value, and

momentum. These findings shed light on the portfolio diversification opportunity to

investors.

The remainder of this chapter proceeds as follows. Section 5.2 first presents the

method of learning equity market network representation for the signed graph and

then details the construction of the network factor. Section 5.3 discusses the data and

the results from empirical analysis. This section provides a thorough examination of

the network factor’s application and validity, and evaluates its significance in equity

pricing. Finally, Section 5.4 summarizes the findings and discuss future direction in

regard to this method.

5.2 Methodology

5.2.1 Equity Market Network Representation with Dynamic Signed
Graph

The network structure of the U.S. equity market at time t can be represented by a

weighted graph Gt = (Vt, Et,Wt), where each node v ∈ Vt represents a firm, each

edge eij ∈ Et shows a connection between firms i and j at time t, and Wt ∈ RN×N is

a weighted adjacency matrix representing the quantitative proximity among firms at

time t with weights wij for all eij ∈ Et, otherwise wij = 0. The network structure in
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each time point (t) represents the market state at that time.2 A proper representation

of this network and the efficient extraction of network information are necessary to

understand the equity market as a whole [60,217]. An efficient equity market network

representation over time will reveal how information dissipates along with networks

and how firms react in times of crises and shocks, i.e., major economic and political

events.

Graph Laplacian and the network spectrum based analysis are heavily applied

in computer science and social science to represent and extract information from

networks. It has its origin from the graph spectrum theory [232] and can reveal the

connectivity, local and global structures, and motifs of networks [220]. Encouraged

by their success, in this work, I apply the Laplacian spectrum to extract valuable

properties of the equity network. For a simple (unweighted, undirected with no

multiple edges incident to the same two vertices) graph G = (V,E): the set of nodes

V with |V | = N , edges E ⊆ V ×V , and adjacency matrix A ∈ RN×N given by aij = 1

if i and j are adjacent and aij = 0 otherwise, the Laplacian matrix L is defined as

follows:

Lij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
deg(i) i = j

−1 if i and j are adjacent (i ∼ j)

0 otherwise

where deg(i) is the degree of node i, i.e., the number of edges incident to node i. Let,

D ∈ RN×N is a diagonal matrix with the diagonal elements as (deg(1), ..., deg(n)), L

is rewritten as

L = D − A (5.1)

2I drop the time subscript for brevity when skipping time subscript does not influence the
basic understanding of the described procedure.
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The eigenvalues 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 of the Laplacian matrix L constitute

graph’s spectrum. L is symmetric and positive-semidefinite; that is, λi ≥ 0 for

all i [232]. The eigenvalues of the Laplacian matrix reveal the critical properties

of the graph. The smallest non-zero eigenvalue of L represents the first spectral

gap. The second smallest eigenvalue of L represents the algebraic connectivity of the

graph [221]. When the graph is connected, the algebraic connectivity (Fiedler value)

is the same as the first spectral gap. The eigenvectors associated with the K smallest

eigenvalues of the graph Laplacian capture critical information content and provide

a low dimensional graph embedding [222].3

A weighted undirected graph G defines weight matrix W ∈ RN×N , where wij =

wji if i and j are adjacent, and wij = 0 if i is not adjacent to j in G. Dii =
∑

j∼i wij is

the degree of i. The unnormalized Laplacian matrix of a weighted graph G is similar

to equation (5.1), as L = D −W . The positive-semidefinite property of the graph

Laplacian spectrum also holds when the weighted graph is non-negative [232].

Following the literature, I use the correlation of historical returns to measure

firms’ proximity and capture the U.S. equity market network [233, 234]. Unlike

previous studies, instead of removing negative edges or using absolute values, I use

both positive and negative correlations to construct a signed network (see details

about network construction in the Appendix C.1). I calculate the modified signed

Laplacian matrix following [218] and [219] as L̄ = D̄ −W , where D̄ is:

D̄ii =
N∑
j=1

|Wij| (5.2)

Figure 5.4 shows a simple example of how the adjacency matrix, degree matrix, and

Laplacian matrix are constructed from a signed graph based on the method.

3Graph embedding is the process of representing an entire graph in a vector space.
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Figure 5.4 An undirected weighted signed graph, its adjacency matrix, degree
matrix, and Laplacian matrix calculated based on the proposed model.

The modified diagonal degree matrix D̄ ensures that in a signed, weighted,

undirected graph G, the modified signed Laplacian matrix L̄ is positive-semidefinite.

That is, the eignevalues λ0 · · ·λN−1 of L̄ is non-negative. This can be proved with

the incidence matrix of the signed G. For a signed graph with weights, I follow [235]

to define the |E| × |V | oriented incidence matrix of an weighted graph as follows:

Si∼j,v =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
+
√|Wi,j| if v = i

−sgn(Wij)
√|Wij| if v = j

0 otherwise

(5.3)

The diagonal and off-diagonal entries of the product S�S ∈ RV×V are:

(S�S)ii =
∑
j∼i

|Wij|

(S�S)ij = −Wij

(5.4)

where S� is the matrix transpose of S. This shows S�S = L̄. The eigendecomposition

of L̄ generates N pairs of eigenvectors xi ∈ RV and the corresponding eigenvalues λi
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with the following condition:

λi = x�
i L̄xi

= x�
i S

�Sxi

= (Sxi)
�(Sxi)

(5.5)

Essentially, λi is the inner product of Sxi with itself. ∀1 ≤ i ≤ N, λi ≥ 0.

Therefore, Equation (5.5) ensures that the Laplacian of weighted graph L̄ is also

positive-semidefinite with non-negative eigenvalues.

I take two steps to construct the network representation for equity market at

each time point t: first solve the generalized eigenvalue problem L̄x = λx, and then

choose the k lowest eigenvalues of L̄ to create the Laplacian spectrum Λt ∈ Rk of Gt

for representing the network. In comparison to PCA or the spectrum of the graph

adjacency matrix, the spectrum of the Laplacian matrix gets reordered [236]. That is,

instead of larger end, the lowest-end of the eigenvalues spectrum represent the highest

information property. An efficient representation of the network structure does not

require all N eigenvalues. [221] and [222] show that, a sufficiently large enough k

lowest eigenvalues of the Laplacian matrix are sufficient to capture all necessary graph

properties for building an efficient embedding. In addition, the Laplacian eigenmaps

theory suggests that the eigenvectors associated with the largest eigenvalues encode

high-frequency changes among nodes and noise. Therefore, ignoring the (N − k)

largest eigenvalues disentangles the noise from the useful network information [222].

The value hyperparameter k depends on the structure and rank of the data. In

order to identify the k, I use the eigengap heuristic from spectrul clustering literature

[237–239]. In this process, the goal is to identify the k that ensures λi, ..., λk are very
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small but λk+1 is relatively large.

k = argmax
i≤k≤N

|λi+1 − λi|

This denote identifying the largest eigengap in the laplacian spectrum and using the

eigenvalues before that to represent the network. The rational behind this is the

perturbation theory for identifying k completely disconnected cluster. More details

can be referred to [232, 238, 239]. For robustness test, in addition to using eigengap

heuristic, I also check with hyperparameter k = 10, 15, and 20. The sensitivity tests

of the network factor with respect to k are provided in the Appendix C.2.

5.2.2 Constructing the Network Factor Z-score

The equity market network embedding at each time point provides a snapshot of

the market structure of that time. To track the dynamic evolution of the network

over time, I compare the current network embedding with the benchmark, i.e., normal

graph behavior during a context window (m), and the difference is captured as Z-score.

In computer science literature, Z-score is a widely used measurement for the change

point detection [214,240,241]. To calculate Z-score, I perform the following three-step

procedure on the Laplacian spectra in the context window m:

• For each time period t, construct a context matrix Ct ∈ Rk×m by concatenating
previous m spectrum vectors of time t

Ct = [Λt−m Λt−m+1 · · · Λt−1], (5.6)

where m is the window size and Λt = σ[λi · · · λk]
� represents the normalized

Laplacian spectrum at time t with the k lowest eigenvalues of L and the
normalization operator σ.

• Apply Singular value decomposition (SVD) to decompose Ct = UtΣtV
�
t and

obtain the left singular matrix Ut, singular value matrix Σt, and the right
singular matrix Vt at time t. Use the first left singular vector (Ut):1 as the current
context vector Λt = (Ut):1. The current context vector represents the network’s
normal behavior in the time window ending at t. This process is also equivalent
to obtain the weighted average of m vectors in the rolling window [240].
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• Calculate the difference between current network structure Λt and normal
network structure Λt as:

Zt = 1− Λ�
t Λt

||Λt||2||Λt||2
= 1− Λ�

t Λt = 1− cosθ (5.7)

Equation (5.7) shows that Z-score essentially calculates the cosine distance

between Λ and Λ with a bound [0 ≤ Z ≤ 1]. A high Z-score reflects a significant

evolution of the current spectrum from the normal spectrum. The choice ofm depends

on the application objective and the property of a network. A large m captures the

impact of a long market evolution and business cycle, whereas a small m helps to

identify the impact of shocks in the market. A sensitivity analysis of different m is

presented in the Appendix C.2.

5.3 Empirical Results

This section details the network factor constructed by the proposed signed Laplacian-

based methodology (see Section 5.2) and shows its implication in the U.S. equity

market. First, I provide the data description and display the time-series evolution

of the network factor during the period from 1960 to 2020. Second, I examine the

relevance of the network factor in the broader macroeconomic environment and, with

a battery of tests, show its significance in equity pricing. Finally, I evaluate firms’

exposure to network risk and discuss the implications.

5.3.1 Data

To capture network structure and compute monthly Z-score, I use the daily returns

from the Center for Research in Security Prices (CRSP) of all stocks listed in the

NYSE, AMEX, and NASDAQ. The time period starts from January 1960 to December

2020, totaling 720 months. Z-score is computed at the end of each month based on

the daily returns of all available stocks during the month. For all periods, I remove

the assets with missing values to ensure that all return data in the given window
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have complete values. After this filtering, there are about 30,000 firms in total and

on average, about 3,800 firms in each month. In my sample, the minimum number

of firms for a given month is March 1960 with 716 firms, and the maximum one is

December 1997 with 5400 firms. In all analyses, equity returns are after risk free

rates, which is the one-month Treasury bill rates.

For constructing the initial signed network, I use the correlation among firms’

historical market returns. For each month, I calculate the end-of-month correlation

ρij using daily returns in that month. The top panel in figure 5.5 shows the average

correlation coefficient among studied stock returns in a given month. On average,

the mean correlation among stocks is 0.10. However, in more recent years, the mean

correlation coefficient increased to almost 0.16. The middle and bottom panels in

figure 5.5 show the time-trend for the fractions of positive edges and negative edges,

respectively. The spikes in positive edges are associated with the spikes in the mean

correlation. Figure 5.6 shows the distribution of positive and negative edges during

the studied period. In the equity network, among all possible connections (positive,

negative, and no-connection), on average, the percentage of positive edges is 12%

and negative edges is 2.5%. Compared to negative edges, the distribution of positive

edges has a long tail. In some months, the percentage of positive edges reaches 70%.

The significance of the proposed network factor is evaluated using multiple

factor models. Following the asset pricing literature, I include multiple important

and well-acknowledged factors in my analysis. These are: Capital Asset Pricing

Model (CAPM) of [52, 170] that use the value-weighted market return; Fama and

French three-factor (FF3) model that extends CAPM with the size (SMB) and value

(HML) factors [177]; Carhart four-factor (FFC) model that incorporates momentum

factor to the FF3 [179]; Pástor and Stambaug liquidity-factor (FFPS) model that

adds liquidity to the FF3 [242]; Fama and French five-factor (FF5) model that adds

operating profitability (RMW) and investment (CMA) to the FF3 [49]; industrial
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Figure 5.5 The timeline of mean correlation between equity returns, the fraction of
positive edges in a given month, and the fraction of negative edges in a given month,
respectively.

Figure 5.6 Histogram of the fraction of positive and negative edges between
January 1960 and December 2020.

production growth (IP); Ludvigson and Ng macro-finance factor (LN) that uses

principal components of 279 macro-finance variables [227]. In addition, I take

more factors into the consideration, including the first three principal components

following [225], intermediary capital factor by [243], and consumption based factor

by [228].4

4The data for CAPM, FF3, FF4, and FF5 are obtained from Kenneth French’s website; for
liquidity, from Lubos Pastor’s website; for IP, from the Federal Reserve Bank of St. Louis;
for LN, Sydney Ludvigson’s website; for intermediary capital, from Asaf Manela’s website;
for consumption based factor, from Toby Moskowitz’s website.
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To test the asset pricing models, I consider 173 anomaly portfolios. These

anomaly portfolios are the value-weighted monthly excess returns: the 30 IND

(industry) portfolios, 25 size-AC (accruals) portfolios, 25 size-β (market beta)

portfolios, 25 size-RVar (residual variance) portfolios, 35 size-CI (abnormal capital

investment) portfolios, 25 size-NI (abnormal profitability) portfolios, and 8 D10-1

(high minus low decile) portfolios. These portfolios capture a vast cross-section of

return anomalies, pose a great challenge to existing asset pricing models, and are

often used as the benchmark portfolios for evaluating and comparing asset pricing

models [223–225]. In addition, the data for these portfolios is easily accessible from

Kenneth French’s website.5

To evaluate the significance of network factors in relation to the macroeconomic

environment, I compute its correlation with multiple market and macroeconomic

indicators. These include the monthly S&P-500 index returns (S&P), monthly

Russell-3000 index returns (RUT), Chicago Board Options Exchange’s volatility index

(VIX), monthly industrial production total index (INDPRO), monthly consumer price

index (CPI), monthly unemployment rate (UNRATE), and monthly U.S. economic

policy uncertainty index (EPU).6

5.3.2 Network Factor and Macroeconomic Environment

The graph Laplacian provides essential information about the network structure at a

specific time point. The Z-score from the graph Laplacian spectrum aligns with major

events in the past fifty years. Figure 5.7 exhibits the Z-score over time in solid lines,

major events labeled by the red star, and financial crisis periods are highlighted in

gray blocks. The Z-score spikes during 1971 President Nixon’s announcement to break

5For a detailed description of all portfolio construction methodology, please see
Kenneth French’s website: https://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data_library.html.
6The data for S&P, RUT, and VIX are obtained from Yahoo Finance; for INDPRO, CPI,
and UNRATE, from the Federal Reserve Bank of St. Louis; and for EPU, from the economic
policy uncertainty website: https://www.policyuncertainty.com/.
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Figure 5.7 Z-score along with major events from Jan-1969 to Dec-2020. Financial
crisis periods are highlighted in gray blocks and major events are marked by red star.

up Bretton Woods, 1987 Black Monday, 2001 Dot-com bubble, 2008 financial crisis,

2020 COVID-19, and other major events, which have generated apparent impacts on

the market network.

It is important to note that the effects of sudden shocks, such as Black Monday,

09/11, and the 2016 U.S. election, are more prominent in the calculated Z-score

than the prolonged recession and economic stagnation. When the market experiences

recession for an extended period, the change in the Laplacian spectrum from one

month to the next month is low. In such volatile periods, the volatility becomes the

“normal” market behavior and this is why the magnitude in network change shrinks.7

Next, I examine whether the network indicator (Z-score) is highly correlated

with other macro indicators or reveals additional information complementary to

existing macro indicators. Table 5.1 reports the correlation matrix of Z-score and

other macro indicators and shows that the Z-score has a negative relationship with

7This behavior also attributes to the use of daily return data for calculating monthly Z-score.
During the experiment, I find that the Z-score changes driven by sudden shocks are less
prominent once I switch to use monthly returns to construct monthly network indicator.
In this case, changes due to the long-term recession become more prominent and severe.
For brevity, I did not report the results of correlation calculation based on monthly return
data. Results are available upon request.
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Table 5.1 Network Factor and Macroeconomic Indicators Correlation Matrix

S&P VIX RUT EPU INDPRO CPI UNRATE

VIX −0.65
RUT 0.81 −0.59
EPU −0.28 0.24 −0.26
INDPRO −0.07 0.06 −0.04 −0.06
CPI −0.03 0.05 0.01 0.05 0.16

UNRATE 0.09 −0.08 0.08 0.01 −0.70 −0.17
Network −0.23 0.15 −0.23 0.19 0.27 0.04 −0.56

Note: This table reports the correlation matrix of the proposed network factor and
other macroeconomic indicators.

Table 5.2 Asset Pricing Factors Correlation Matrix

MKT SMB HML RMW CMA Mom. Liq. LN1 LN2 LN3 Int. cap. IP gr. Cons. gr.

SMB 0.29

HML −0.22 −0.03
RMW −0.21 −0.34 0.08

CMA −0.37 −0.10 0.68 −0.02
Mom. −0.16 −0.06 −0.20 0.11 −0.03
Liq. −0.02 −0.01 0.05 0.03 0.03 −0.03
LN1 −0.09 −0.05 −0.06 0.04 0.03 −0.08 −0.03
LN2 0.28 0.13 −0.08 0.00 −0.08 −0.14 0.00 0.02

LN3 0.01 −0.01 0.01 0.03 −0.02 0.00 −0.08 0.01 −0.01
Int. cap. 0.74 0.11 0.01 −0.16 −0.19 −0.26 −0.01 −0.04 0.18 0.08

IP gr. −0.04 −0.01 0.05 −0.03 0.00 0.05 0.00 −0.36 −0.12 0.03 −0.03
Cons. gr. 0.03 0.14 0.04 −0.07 −0.02 0.00 0.08 −0.19 −0.09 −0.06 0.00 0.57

Network −0.22 −0.14 −0.08 −0.03 0.06 0.06 0.02 0.12 −0.13 0.01 −0.12 0.26 0.14

Note: This table reports the bivariate correlation between asset pricing factors including
the proposed network factor.

S&P, RUT, and UNRATE and a positive relationship with VIX, INDPRO, and

EPU. This is intuitive as Z-scores indicate the magnitude of network changes and

can be identified as a measurement of network uncertainty and risk. When market

volatility (VIX) and policy uncertainty (EPU) are high, firms tend to adjust more, and

consequently, the network structure changes more. However, the magnitude of the

positive correlations is only 0.15 and 0.19 for VIX and EPU, respectively. This finding

suggests that Z-score reflects some information other than volatility and uncertainty,

complementing current market indicators.
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5.3.3 Network Factor for Equity Pricing

Here I evaluate the significance of the proposed network factor in relation to existing

asset pricing models. To begin with, I first analyze correlation statistics. Table 5.2

reports the bivariate time-series correlation between all studied asset pricing factors,

including the network factor. The network factor has a high and negative correlation

with the market (-0.22) and a high and positive correlation with industrial production

growth (0.26). Except for the CMA, the network factor has a negative correlation

coefficient with all other FF5 factors. However, the magnitude is small, for SMB

-0.14, for HML -0.08, and for RMW -0.03. Among the other non-traded factors, the

network factor is negatively correlated with LN2 and intermediary capital factor,

and positively correlated with LN1, industrial production growth and aggregate

consummation growth. More importantly, the network factor is not highly correlated

with any other existing assets pricing factor. This indicates that network factor

captures additional information from the market that is not captured by existing

factors.

Although correlation statistics reported in Tables 5.1 and 5.2 indicate additional

and complementary information of network factor, it still needs formal statistical tests

to validate the significance of network factor in asset pricing. Therefore, I perform

a battery of tests to compare the network factor’s significance with other existing

factors. These include Fama-MacBeth cross-sectional regression [226], Giglio and Xiu

three-pass estimator [225], and time-series return predictability [223].

Two-Pass Cross-Sectional Estimator The Fama MacBeth two-pass cross-

sectional regression estimates a factor risk premium in two steps [226]. First, it

estimates the assets risk exposure β by performing a time series regression of each
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asset’s excess return onto the factor as:

Rt = α + βft + εt, t = 1, ..., T.

where ft is the factor at time t and Rt is a vector of returns on N test assets at time

t. At the second step, it estimates the risk premium by performing a cross-sectional

regression of the expected cross-section returns on the estimated β.

γ̂ = (β̂�β̂)−1β̂�R,

A rolling time-series regression can estimate the changing β throughout the sample

period. For example, [226] use prior 5-year rolling-regressions to estimate beta for

month t. One can also use two-pass cross-regression regression to estimate full-sample

β. In this subsection, I use the latter approach for simplicity. A rolling-regression

approach with changing β is used for analyzing firms’ exposure to network factor in

subsection 5.3.4.

Table 5.3 reports the results from two-pass cross-sectional regression for the

proposed network factor and other traditional factors. The test includes all 173

portfolio (n = 173) over 680 months (T = 680). The first column reports the time-

series average return for the tradable factors. This is the model-free estimator for a

factor risk premia and is only available for tradable factors. For each factor, I estimate

the risk premium without any additional control factors (No control), controlling for

the market return (w/R − m), and controlling for the Fama-French three factors

(w/FF3). For robustness, I analyze two versions of the network factor. ‘Network’

is the proposed network factor with Laplacian signed spectra with m = 36 in the

context matrix Ct of equation (5.6). ‘Network (m=12)’ is a alternative network
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Table 5.3 Two-Pass Regression: Empirical Results

No control w/Rm w/FF3

Factors Avg. Ret. γ stderr γ stderr γ stderr

Market 0.57 0.64∗∗∗ (0.18) 0.64∗∗∗ (0.18) 0.58∗∗∗ (0.17)

SMB 0.23 0.66∗∗∗ (0.19) 0.15 (0.12) 0.07 (0.08)

HML 0.25 −1.33∗∗∗ (0.44) 0.48∗∗∗ (0.13) 0.48∗∗∗ (0.13)

Momentum 0.69 −2.66∗∗∗ (0.75) 0.27 (0.29) 1.34∗∗∗ (0.26)

RMW 0.25 −0.12 (0.14) 0.00 (0.14) 0.27∗∗ (0.11)

CMA 0.26 −0.63∗∗∗ (0.18) 0.29∗∗∗ (0.10) 0.29∗∗∗ (0.09)

Liquidity −0.02∗∗ (0.01) −0.00 (0.00) −0.01 (0.00)

Interm. cap. 1.23∗∗∗ (0.39) 1.95∗∗∗ (0.54) −0.07 (0.49)

IP growth −2.67∗∗∗ (0.74) −0.03 (0.11) −0.24∗∗ (0.11)

LN PC1 0.58∗∗∗ (0.17) 0.47∗∗ (0.19) 0.19 (0.17)

LN PC2 0.15 (0.12) 0.11∗∗∗ (0.04) 0.20∗ (0.12)

LN PC3 0.48∗∗∗ (0.13) −0.08∗∗ (0.03) 0.05 (0.11)

Cons. growth 1.35∗∗∗ (0.38) 0.13 (0.17) −0.03 (0.11)

Network (m=36) −0.22∗∗∗ (0.06) −0.14∗∗∗ (0.04) −0.08∗∗∗ (0.03)

Network (m=12) −0.24∗∗∗ (0.07) −0.15∗∗∗ (0.04) −0.08∗∗∗ (0.03)

Network (+) −0.14∗∗∗ (0.39) −0.11∗∗∗ (0.36) −0.06∗∗∗ (0.31)

Note: This table reports the risk premia estimates for each factor using two-pass cross-
sectional regression with no control factor in the model, with the market as control, and
with the Fama-French three factors as control, respectively; “Avg. Ret.” is the time-series
average return of the tradable factors; Network (m=36) is the proposed signed network
factor with context window m=36, Network (m=12) is the signed network factor with
context window m=12, and Network (+) is the unsigned network factor considering all
connection as positive; ***, **, * are significant at the 1%, 5%, and 10% significance level,
respectively.

factor with m = 12. Finally, to evaluate the contribution of including both positive

and negative connections among firms, in Network (+), I consider the network factor

constructed based on the unsigned network structure, i.e., considering the absolute

value of network edge.

For most factors, the estimated risk premia are closely comparable to the values

reported in [225]. For example, in my analysis, the time-series average return for

Market factor is 57bp, the risk premia with no-control is 64bp, adding the market

induces no changes, and adding SMB and HML gives 58bp. In [225], the reported

values are 50bp, 59bp, 59bp, and 49bp, respectively. For SMB, my result for time-
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series average is 23bp, risk premium with no-control is 66bp, adding the market

gives 15bp, and adding FF3 gives 7bp, compariing with the reported values of 23bp,

63bp, 16bp and 13bp in [225], respectively. However, for a few factors, the difference

is visible. For example, according to my analysis, the risk premia estimator for

intermediary capital factor is 123bp without controls, 195bp after controlling on the

market, and -7bp after controlling for FF3. In comparison, [225] report 73bp, -18bp,

and 10bp, respectively.8

The network factor is significant in all three two-pass model specifications at 1%

level of significance. The network factor risk premium without controls is -24bp. After

controlling the market return, the risk premium is -14bp, and the risk premium with

controlling for the market, SMB, and HML return is -8bp. The result is robust with

a shorter context window (m=12). In this case, the risk premia are -24bp, -15bp,

and -8bp, respectively. In comparison to other non-tradable factors, the proposed

network factor is much more significant. Controlling for the market, SMB, and HML,

I find none of the liquidity, intermediary capital, LN PC1, LN PC3, and consumption

growth factors are significant. The industrial production growth factor is significant at

5%, and the LN PC2 factor is significant at 10% significance level. The insignificance

of these factors on risk premia according to two-pass cross-sectional regression is also

reported in [225].

The improvement in information gain by independently considering both

positive and negative edges is evident in the difference between the risk premium

of Networks (m=36) and the only positive correlation Networks (+). The risk premia

associated with a network factor based only on positive edges are -14bp, -11bp, and

-6bp in the three two-pass model specifications. The proposed signed network factor

8This difference is expected as the data used in these two works are slightly different. In
my analysis, I use 173 portfolios whereas [225] use 202 portfolios. The time period for my
analysis is from January 1960 to December 2020, whereas in [225], it is from July 1963 to
December 2015.
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increases the magnitude of the impact on equity premium by 57%, 27%, and 33%,

respectively. In addition, the standard error of the two-pass specification is also

significantly higher for only the positive network factor. These two observations

signify that, by incorporating both positive and negative networks, we can specify a

network factor that is more stable and better identifies the information property of

the equity network over time.

Three-Pass Estimator Although the evidence from two-pass cross-sectional

regression signifies the importance of network factor in equity pricing, the [226]

technique is often criticized for its associated bias. The two-pass cross-sectional

regression is affected by the omitted variable bias in the time-series and cross-sectional

steps [225]. To avoid the omitted variable bias, [225] recently propose a three-pass

method that produces valid estimates even when not all factors in the model

are specified or observed. I apply the three-pass estimator to corroborate the

two-pass regression results for validating the proposed network factor. The three-pass

estimator of [225] overcomes the omitted variable bias in the two-pass regressions and

mimicking-portfolio estimator by identifying rotation invariant risk premium of an

observed factor. In addition, it is also a powerful tool for identifying measurement

error in an observed factor and detecting spurious or useless factor [225]. Therefore,

the three-pass estimator is a better choice to evaluate the usefulness of my proposed

network factor in the asset pricing factor universe.

As the name suggests, the risk premium for a factor in the three-pass estimator

is estimated using three steps. First, perform the principal component analysis (PCA)

on the matrix n−1T−1R̄�R̄ and identify the latent factors: V̂ = T 1/2(ξ1 : ξ2 : ... : ξp̂)
�

of the normalized eigenvectors (principal components) corresponding to the largest

p̂ eigenvalues. Second, obtain the risk premia of the estimated latent factors

by performing a cross-sectional ordinary least square (OLS) regression on average
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returns. Third, identify the relation between observed factor gt and the estimated

latent factors by regressing the time-series Ḡ = (g1, g2, . . . gT )
� onto the principle

components of the co-variance matrix R̄�R̄. This regression operation essentially

projects Ḡ onto the principal components of V̂ because (V̂ V̂ �)−1 = 1
T
Ip̂×p̂.

9 This

step also removes the measurement error from gt. In the three-pass model, the risk

premium of the observed factor is estimated as:

γ̂g = ḠV̂ �(V̂ V̂ �)−1(β̂�β̂)−1β̂�r̄, (5.8)

where β̂ = T−1R̄V̂ � are the loadings on the latent factor V̂ .

In addition to estimating the risk premium of the network factor in light of

three-pass regression of [225], I also analyze two significance tests proposed in [225],

the time-series R2 for observable factor R2
g and Wald test for a weak g. The R2

g

measures the signal-to-noise ratio of the observed factor g and is calculated as follows:

R2
g =

η̂V̂ V̂ �η̂�

ḠḠ� ,

where η̂ = ḠV̂ �(V̂ V̂ �)−1 = 1
T
ḠV̂ � of the time-series regression of observed factors

onto the latent factors. The Wald test evaluates the null hypothesis that an observed

factor g is weak. Therefore, the Wald test allows me to examine whether the proposed

network factor is weak or strong and validate the necessity of incorporating it in the

asset pricing model. [225] showed that the parameters and Wald test statistics of

three-pass estimator possesses asymptotic property and when n, T −→∞, the value

converges. The detailed theorems and mathematical proof can be found in [225].

9I retains the term (V̂ V̂ �)−1 to be consistent with the formula in [225].
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Table 5.4 Three-Pass Regression: Empirical Results

Factors γ stderr R2
g Wald test p-value

Market 0.58∗∗∗ (0.17) 99.25 0.00

SMB 0.22∗ (0.12) 97.92 0.00

HML 0.20∗∗ (0.10) 63.91 0.00

Momentum 0.60∗∗∗ (0.22) 71.09 0.00

RMW 0.08 (0.06) 49.01 0.00

CMA 0.08 (0.07) 53.36 0.00

Liquidity −0.23∗ (0.13) 3.90 0.08

Interm. Cap 0.65∗∗∗ (0.23) 60.52 0.00

IP growth −0.01 (0.01) 0.97 0.25

LN PC1 0.28∗ (0.17) 2.07 0.01

LN PC2 0.12 (0.15) 5.48 0.00

LN PC3 0.06 (0.10) 2.22 0.13

Cons. growth 0.01 (0.01) 2.90 0.00

Network (m=36) −0.02∗∗∗ (0.00) 10.40 0.03

Network (m=12) −0.02∗∗∗ (0.00) 10.03 0.04

Network (+) −0.02∗∗∗ (0.00) 7.03 0.01

Note: This table reports the risk premia estimates for each factor using three
pass estimator; the R2 of the projection of factors onto the latent factors; and
the p-value of the test that factor is weak; Network (m=36) is the proposed
signed network factor with context window m=36, Network (m=12) is the
signed network factor with context window m=12, and Network (+) is the
unsigned network factor considering all connection as positive; ***, **, * denote
the 1%, 5%, and 10% significance level, respectively.

Table 5.4 reports the results from three-pass regression. Following [225], I use

seven principle components as latent factors. Similar to two-pass cross-sectional

results, the risk premia estimators from most of the factors are closely comparable

to the result reported in [225]. The risk premium of the proposed network factor is

-2bp with 1% level of significance. Among all the competing tradable and nontradable

factors, the risk premia of market, momentum, and intermediary capital are significant

at 1% level of significance. The risk premium of HML is significant at the 5%
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significant level, and risk premia of SMB, liquidity, and LN PC1 are significant at the

10% significance level.

The R2
g of the network factor is 10.40%. This is higher than other nontradable

factors like liquidity, IP growth, all three macro factors, and consumption growth

factor. In comparison to tradable factors, the R2
g of network factor is very low. [225]

also report that the R2
g for nontradable factor is much lower and, for some cases, below

1%. They attribute this finding with less measurement error for tradable factors and

associated noise of nontradable factors. The Wald test rejects the null hypothesis that

the network factor is weak at 5% significance level. The result for the network factor

is also robust for a shorter context window. The risk premium of the network factor

(m=12) is also -2bp at 1% level of significance, R2
g is 10.03%. The null hypothesis of

the weak network factor when m=12 is rejected at the 5% significance level.

Finally, the risk premium of only positive network factor according to three-pass

regression is the same as the other two versions of network factors, and the null

hypothesis of the weak factor is rejected at 1% significance level. This consistent

finding corroborates the initial conjecture that the network itself is an important

determinant of equity pricing. Even without a perfect specification (unsigned network

without considering both positive and negative edges separately), the network factor

can explain a significant portion of the variation of the equity return. However, the R2
g

of network factor with only positive connections is 7.03. This is 3.37bp lower than the

proposed signed network factor. This provides evidence of the additional contribution

of considering a signed network over the unsigned network in equity analysis.

5.3.4 Cross Sectional Return Predictability

To better understand the implication of Z-score on equity prices, in this section, I

conduct cross-sectional analyses in two ways: first sorting firms into portfolios based

on the β of network factor and second incorporating the network factor β into the
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Fama-MacBeth regressions with market, size, value, momentum βs. The analysis in

this section differs from the analysis in Section 5.3.3 in two aspects. First, instead

of using portfolio returns to test assets, I use the individual returns of stock here,

including all the listed stocks in the NYSE, AMEX, and NASDAQ. Using individual

stocks as the test assets allow me to understand how a given firm reacts to changes

in the equity market network structure. Second, instead of a single β, I estimate

changing βs. Particularly, I compute the sensitivity β for each factor using a 60-

month rolling window with a minimum requirement of 15 months and then regress

next-month future stock excess returns on those βs at each month. The independent

variables are standardized by the cross sectional standard deviations to make results

more consistent over time.

I begin the analysis by univariate sorting. At a given month, I sort firms into

deciles based on βZ (β of Z-score) estimated in last month and report the average

returns for each portfolio over time. Results are summarized in Table 5.5. With full

periods, there seems to be an inverted U shape curve of stock returns. The difference

across ten groups is not large and the return difference (1 – 10) is not significant. As

the network structure of equity market varies over time, the magnitude of structure

change may play a role here. To investigate my argument, I simply divide time periods

equally into four groups, i.e., network structure with very small change, small change,

large change, and very large change.

Results are interesting. When the market network is stable with very small

change, the future returns increase as βZ increases, almost monotonically. The return

difference between two portfolios (1 – 10) is -0.400% at five percent significance. When

the market network is volatile with very large change, the relation becomes opposite.

The return difference is 0.648% at one percent significance. Differently, the middle

two groups seem to have the non-monotonic pattern, an inverted U shape.
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Table 5.5 Univariate Portfolio Sorts by Network Beta

Sub periods

Full periods Very small change Small change Large change Very large change

1 0.591 0.389 0.184 0.297 1.501

2 0.705 0.441 0.446 0.549 1.386

3 0.755 0.503 0.569 0.673 1.279

4 0.685 0.479 0.539 0.620 1.106

5 0.692 0.469 0.632 0.604 1.063

6 0.700 0.524 0.604 0.589 1.085

7 0.695 0.575 0.662 0.545 1.000

8 0.700 0.635 0.670 0.568 0.931

9 0.719 0.755 0.569 0.512 1.045

10 0.559 0.789 0.312 0.288 0.853

1-10 0.032 −0.400 −0.128 0.010 0.648

t-test (−0.340) (−2.220) (−0.720) (−0.060) (−2.990)

Note: This table reports the average excess returns over time for each decile portfolio based
on βZ in the previous month. Excess returns are the monthly returns after risk-free rate
and in unit of percent. 1 denotes firms with smallest/most negative βZ whereas 10 denotes
firms with largest/most positive βZ . 1 – 10 stands for the long-short portfolio returns and
its t-statistics are in parentheses. Full periods are from 1965 Oct to 2019 Dec. Sub periods
are divided equally into four groups based on the level of Z-score, i.e., periods with very
small change of market network, with small change, large change, and very large change.

For robustness, I further control for several conventional pricing factors

including βmkt, βsmb, βhml, and βumd. At each month, firms are independently sorted

based on βZ and one risk beta estimated in the previous month, forming firms into 5

by 5 groups. Then for each group based on a given risk beta, I aggregate to get the

average return of five βZ groups, compute the return difference (denoted as 1 – 5),

and report the return difference for five groups with controls. As Table 5.6 shows, the

pattern is generally consistent after controlling for multiple risk factors. The return

difference 1 – 5 is significantly negative when the market network is stable with

very small change and is significantly positive when the market network is volatile

with very large change. However, the pattern seems to be stronger for the later

one. As the positive spreads are significant at one percent in all cases whereas the
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Table 5.6 Portfolio Sorts with Controls for Other Risk Factors

βmkt βsmb βhml βumd

1-5 t-test 1-5 t-test 1-5 t-test 1-5 t-test

Panel A. Periods with very small change

1 = small −0.165 (−1.940) −0.398 (−4.610) −0.529 (−7.591) −0.337 (−3.770)
2 −0.499 (−6.570) −0.262 (−3.110) −0.117 (−1.240) −0.002 (−0.020)
3 −0.206 (−2.230) −0.127 (−1.420) −0.421 (−4.370) −0.301 (−3.300)
4 −0.490 (−5.530) −0.341 (−4.380) −0.158 (−1.750) −0.579 (−7.580)
5 = large −0.645 (−7.790) −0.462 (−5.140) −0.397 (−3.900) −0.368 (−4.620)
Panel B. Periods with very large change

1 = small 0.628 (−6.340) 0.362 (−3.540) 0.365 (−4.350) 0.421 (−4.190)
2 0.501 (−5.400) 0.432 (−4.220) 0.352 (−3.970) 0.469 (−4.950)
3 0.282 (−2.950) 0.448 (−5.660) 0.445 (−4.280) 0.546 (−4.970)
4 0.519 (−5.240) 0.483 (−4.920) 0.546 (−5.010) 0.478 (−4.580)
5 = large 0.443 (−4.890) 0.525 (−5.620) 0.643 (−5.510) 0.460 (−5.700)

Note: This table reports the average return difference between firms with smallest and
largest βZ after controlling for other risk factors including βmkt, βsmb, βhml, and βumd. 1
denotes firms with smallest/most negative betas whereas 5 denotes firms with largest/most
positive betas. At each month, firms are independently sorted based on βZ and one risk
beta in the previous month, i.e., 5 by 5 groups. Then for each group based on a given risk
beta, I aggregate to get the average return of five βZ groups, compute the return difference,
denoted as 1 – 5, and report the return difference for five groups with controls. t-statistics
of the return differences are in parentheses. Only periods with very small network change
(bottom) and very large network change (top) are included.

significance of negative spreads disappears in few cases. This finding suggests when

the interconnection among firms change a lot, firms with fast adaptability (largest

βZ) are likely more attractive to investors and therefore are required with lower future

returns. When the market structure is stable, such adaptability lose its benefit and

firms moving against market change might offer additional investment opportunities.

Both patterns are reasonable. On the one hand, if a given firm responds to

the change of network in the opposite direction, it offers an option as investment

hedging against market conditions. Investors appreciate such hedging option and the

demand of those stocks increases, which results in price increase and return decrease.

If so, firms with low (negative) βZ are expected to have lower future returns, i.e., the

coefficient of βZ should be positive. On the other hand, if a given firm reacts to the
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Table 5.7 Fama-MacBeth Regression on Next Month Excess
Return

Variables 1. Full-Sample 2. Low-Z 3. High-Z

βZ −0.047∗ 0.034 −0.130∗∗∗
(−1.665) (1.073) (−3.088)

βMKT −0.000 −0.049 0.049

(−0.005) (−0.450) (0.394)

βSMB 0.115 0.142 0.087

(1.290) (1.171) (0.738)

βHML 0.143∗ 0.227∗ 0.057

(1.887) (1.909) (0.505)

βUMD −0.153∗∗ −0.132 −0.176∗∗
(−2.478) (−1.490) (−2.210)

Constant 0.677∗∗∗ 0.556∗∗∗ 0.801∗∗∗

(4.281) (2.743) (4.116)

Observations 3,355,977 1,722,132 1,633,845

R-squared 0.036 0.036 0.036

Number of groups 651 329 322

Note: This table reports the average value of Fama-MacBeth
regressions. The dependent variable is the next-month excess
returns. Independent variables are the sensitivity (β) of Z-score (βZ),
Fama-French three factors (βMKT , βSMB, βHML) and momentum
factor (βUMD). Model (1) is for full sample period. Model (2) is when
Z-score is low (below the median), and model (3) represents values
when Z-score is high (above the median). Newey-West adjusted
t-statistics are in parentheses. ***, **, * are significant at the 1%,
5%, and 10% significance level, respectively.

change of network in the same direction, it suggests that this firm is able to adjust

to market changes quickly, less vulnerable with lower risks especially when macro

environment is volatile. Investors therefore treasure such adaptability and require

lower compensation. Given this situation, firms with high (positive) βZ tend to have

lower future returns, i.e., the coefficient of βZ should be negative.

To substantiate this hypothesis, I further perform cross-sectional regression tests

with multiple controls, i.e., market, size, value, and momentum. The result is reported
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in Table 5.7. In Table 5.7 model (1), the coefficient of βZ is significantly negative

at 10%. In other words, stocks with great adjustment are valued more than hedging

option, and their future returns are lower. I then divide the time periods into two

groups: below the median Z-score (periods with small or no network changes) and

above the median Z-score (periods with large network changes). In model (2), when

network changes are minor, the significance of βZ disappears. Conversely, in model (3)

when there are big changes in network structure, the impact of the Z-score on firms’

next month returns is more significant both economically and statistically. With an

increase in βZ by one standard deviation, future returns decrease by 13bps per month.

These findings are intuitive. When Z-score is low, the interconnection between

firms is stable and firms do not change much. Its impact on equity prices is limited.

On the contrary, firms adjust accordingly when Z-score is high, i.e., the network

changes significantly due to exogenous shocks or endogenous strategic changes. As

a result, the changes in the network affect the underlying performance of a firm

and its equity prices. These results are robust across different hyperparameters and

not influence by the number of eigenvalues k or the size of sliding window m. The

robustness test results are presented in the Appendix C.2.

5.4 Conclusion

This chapter proposes a framework to quantify complex network structures consisting

of both positive and negative correlations among firms. I construct a network index

Z-score from the k-smallest eigenvalues of a well-designed signed graph Laplacian

that treats positive and negative interconnection differently. This signed framework

is technically more advanced and suitable for the complex network system and is

robust for different parameters.

Empirical results show that Z-score is an ideal representation of the dynamic

network structure in the U.S. equity market. It aligns with the major events in
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the financial markets and contains valuable information other than market volatility,

traditional asset pricing factors, and macroeconomic indicators. More importantly,

the comprehensive analysis of factor models reveals the importance of network factor

in the equity market, as it contains a significant risk premium for firms’ network risk

exposure. The network factor reduces model mispricing when used as an additional

pricing factor to existing pricing models. The result also suggests that the network

factor’s impact be not the same across firms and over time. Different events affect

the market network differently, and as a result, their influence on the asset returns

also differs.

This chapter sheds light on the fruitful future research about incorporating

network into asset pricing. My work helps market participants to better understand

the network evolution in equity market and how it can affect equity prices. In this

work, I use historical return data to construct the time-varying network structure of

the equity market without taking some static networks into consideration, such as

supply-chain and industry similarity. The importance of these static networks is well

documented, and they likely contain useful information in addition to my current

framework. Integrating heterogeneous networks to construct a network hierarchy

and understanding the aggregated network implications on equity pricing can be a

potential area for future research.
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CHAPTER 6

ATTENTION BASED DYNAMIC GRAPH LEARNING
FRAMEWORK FOR ASSET PRICING

6.1 Introduction

As the machine learning gains great successes in many applications, its application

in predicting the price of financial assets has been increasingly interesting to both

academic researchers and practitioners. Traditional pricing models mainly focus on

firm-specific and market/macro factors, which cannot capture the inter-connection

among assets. However, firms are not operating independently and one firm might

be affected by the others through multiple networks. As a result, a firm’s stock

price depends not only on its own characteristics but also on the characteristics of

other relevant firms, i.e., the interconnection among firms affects each other’s market

price. In this paper, we propose a novel two-step graph learning model to capture

the dynamic interconnections among firms (connect the “dots”) and investigate their

contributions to the stock price movement (network-aware prediction).

The idea that the interconnections in networks affect stock prices is intuitive.

However, many challenges exist in how to capture the network structure of the equity

market as it can be dynamic and complex. Recent efforts in network representation

learning and Spatio-temporal modeling show that the network information improves

traffic prediction [65,75,76,244] and COVID-19 trend forecasting [79]. These models

are largely based on the Graph Convolutional Networks proposed in [72] that focus

primarily on a static network with predefined topologies. Unlike social networks or

road networks, the equity market’s network structure is unknown. Finance studies

typically use the pairwise Pearson correlation of firms’ historical returns to represent

firms’ network structure [60,80,217]. The Pearson correlation only reveals the linear

relationship among entities and might not be sufficient to model the inter-dependency
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Figure 6.1 Rate of return from five assets over time. The timing of earning returns
by AMD (Technology) is similar to that of RJF (Financial Services) and almost
opposite to that from AEM (Materials-Mining). AMD and AAPL (Technology) are
from the same industry sector, whereas their returns vary significantly. The dynamic
nature of the changing relations among firms’ return is also visible from the trend
lines of AEM and WMT (Consumer Discount Stores). AEM and WMT started with
little correlation in the early 2017, began to have strong co-movements between early
2017 and mid-2018, and then diverged into opposite movements from mid-2018 to
December 2019.

among stocks. Moreover, it is challenging to integrate the correlation networks

in graph structure data as they contain both positive and negative coefficients.

Existing approaches typically use absolute values with the assumption that significant

correlation represents high similarity regardless of the sign. This assumption violates

the core idea that a positive correlation indicates convergence, while a negative

correlation indicates divergence. Herskovic [59] use sector similarity as the linkage

among firms. However, as Figure 6.1 shows, falling in the same sector or industry

group does not necessarily ensure similar returns. Many other latent factors, such

as institutional holdings, may affect firms’ underlying connections. Moreover, unlike
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traditional networks, financial networks are often dynamic. Firms enter or exit the

market, and change their business models, capital structures, and supply chains.

As a result, relationships among firms continuously evolve (AEM vs. WMT in

Figure 6.1). Therefore, directly applying techniques developed for static-known

graphs [65,75,76,244] into dynamic equity market network may produce sub-optimal

results.

This paper attempts to capture the time-varying networks of the equity market,

model non-linear connectivity and dependency relationships, and use them for

prediction. The main idea is: in the first step, an attention mechanism is used to learn

the dynamic network structure of the US equity market, and in the second step, a

recurrent diffusion convolution network is applied to model the spatial and temporal

dependency among firms. The first step helps overcome the problem associated with

unknown graphs. The second step considers both positive and negative connections

and learns the graph embeddings with better predictive power on stock prices. The

highlights of this paper are summarized as follows:

• To the best of our knowledge, it is the very first paper to propose the dynamic
graph learning framework that tracks and follows the global and local patterns
in the equity market over time. Our work enables financial analysis to be
network-aware and minimizes the uncertainty associated with the prediction
over stand-alone assets.

• We adopt a flexible attention mechanism to learn new networks from scratch or
improve upon initial networks. The learned network topologies are non-linear
and superior to the commonly used Pearson correlation and can capture the
relationships of assets in the complex market environment.

• Unlike previous work, we use graph neural networks to integrate heterogeneous
datasets and utilize the fundamentals, historical returns, and the US equity
market network structure to improve the asset price prediction.

• The model is superior in prediction accuracy and portfolio performance
compared to the conventional asset pricing methods and other off-the-shelf
machine learning models.

The rest of the chapter is organized as follows: Section 6.2 details the

methodology of the proposed dynamic graph learning model for asset pricing. Section

6.3 describes the experimental settings, data, and analysis results including the
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network learning capacity of the model. We provide the results of the ablation study

in Section 6.4 and offer the conclusions in Section 6.5.

6.2 Methodology

In this section, we first define the problem of asset pricing prediction and then present

the building blocks of the DYnamic Graph learning model for Asset Pricing (DY-

GAP).

6.2.1 Problem Definition

The problem related to asset pricing here is defined as how to identify the intrinsic

value of assets. One successful investment strategy is to identify undervalued (the

current market price of the asset is lower than the intrinsic value) or overvalued (its

market price is higher than the intrinsic value) stocks. Then, investors take long

positions on (buy) undervalued stocks, or short positions on (sell) overvalued stocks,

or both to make profits with the expectation that the market prices will eventually

converge to the intrinsic values. The intrinsic values are not observed and need to be

estimated by some asset pricing models. Asset pricing models can be grouped into

two broader categories based on the input used: (i) time-series models and (ii) factor

models.

Historical Return: Time series models are mainly based on historical returns.

Researchers find that there exists time-varying pattern of stock returns. Stocks can

maintain the performance in the short term named as the momentum effect, i.e.,

stocks with high (low) returns in the past are likely going to have high (low) returns

in the near future. However, in the long term, stock prices could reverse. According

to these theories, stock returns of a firm can be estimated with a function of its

historical returns.

ŷt+1 = f1(yt, · · ·, yt−K) (6.1)
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Figure 6.2 The three-stage DY-GAP model architecture. (1) PCA on the historical
return learns latent embedding for each firm. (2) Self-attention on the latent
embedding learns the network architecture. Two different attention mechanisms
are performed to learn both positive (green) and negative (blue) networks. Pearson
correlation of historical return ensures masked attention. (3) A diffusion convolution
on firms’ signals uses the learned network for learning spatial dependency, and GRU
recurrent neural network learns temporal dependency. Two diffusion layers are used:
the first one with the firm fundamentals and the second one after concatenating latent
embedding with the output of first diffusion layer. Solid arrows indicate the flow of
information.

here, K is the window size of historical return.

Factor Universe: Factor models are based on the assumptions that asset returns

can be expressed as a linear function of a variety of macroeconomic, market, and

security-specific factors. These factors include market risk premia, volatility, trading

volume, and accounting fundamentals such as firm size, profitability, and liability.

ŷt+1 = f2(x1, · · ·, xP )

Here, P are the total number of factors.
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We formulate the asset pricing problem that combines these two types of inputs,

the time-series returns and accounting fundamentals, to explain the return variability.

First, we define multivariate temporal graphs at time t as Gt = (Vt, At), where Vt is

the set of firms (nodes) |Vt| = N and At ∈ RN×N is a weighted adjacency matrix

representing firms’ quantitative proximity at time t. The value of Aij indicates

the strength of the interdependence. Aij = 0 indicates that the firms i and j are

independent to each other. The input signal on graph at time t is Xt = {xip} ∈ RN×P

and the output is Yt+1 = {yi} ∈ RN×1, where N is the number of firms (nodes).

Instead of using pre-defined networks, we use neural networks to learn the adjacency

matrix At at time t from the historical returns Yt = {yik} ∈ RN×K , where K is the

rolling window size of historical returns.

Given the observed returns of previous K timestamp Yt, · · ·, Yt−K and graph

signal Xt, the objective of the model is to learn an effective network structure Gt
at each time step and in the meanwhile to predict the next time step Ŷt+1 with

the integrated model of Graph Neural Networks and Recurrent Neural Networks.

We use neural network to implement the forecasting function f(·) with parameters

Θ = θ1, θ2, θ3 (θ1 represents the neuron weights for “connecting the dots”, θ2 contains

the parameters for the graph convolutional filter gθ2 defined on Gt, and θ3 represents

the neuron weights for transforming the input node features.):

Gt = Attn(Yt, · · ·, Yt−K ; θ1)

Ŷt+1 = f(gθ2 � Xt; θ2, θ3)

(6.2)

6.2.2 DY-GAP Model Framework

Figure 6.2 presents the architecture of our proposed model. The model consists

of three different learning functions: (i) Embedding learning, (ii) Graph learning,

and (iii) Spectral and temporal dynamics learning. We follow [245] and apply the
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self-attention function to learn dynamic network structures from the historical return

data. The return data is often noisy and large. An embedding learning layer is

used to clean the noisy data and obtain the firm’s condensed representation before

performing the attention function. Finally, a spectral-temporal recurrent convolution

function is performed on the firms’ fundamentals using the learned network.

Embedding Learning Layer Principle Component Analysis (PCA) is widely used

in finance for dimension reduction and feature extraction from time series data [246,

247]. At each time period t, we perform Singular Value decomposition (SVD) on

historical returns and extract principle components for each firm. For simplicity, we

drop the time index for the remaining discussion. Given Y ∈ RN×K , we perform SVD

on Y as follows:

Y = USV � (6.3)

where, U is a unitary matrix and S is the diagonal matrix of singular values

corresponding to the Eigenvalues in the correlation matrix and H = US is the

principle components. We perform dimension reduction and choose the first L

principal components
∑L

i=1 U:iS
�
:i as the embedding matrix of return data, where

L < K. With N firms, H = {hil} ∈ RN×L holds the initial node embeddings

(features).

Graph Attention Learning Layer The graph learning layer employs the attention

mechanism proposed in [245] to learn the edge coefficient between two nodes. The

attention function is performed on each firm’s learned embedding H. Following [248],

each node in the attention pair is first undertaken a linear transformation with weight

matrix W ∈ RL′×L before attended by shared attention mechanism a : RL′×RL′ → R.
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The learned attention coefficient is:

eij = a(Whi:,Whj:) (6.4)

The learned value eij indicates the importance of firm j’s return on that of firm

i. We adopt a nonlinear activation function to add nonlinearity to the dependence

relation among firms and apply the softmax operation to make the coefficient easily

comparable across nodes. The final network edge αij is defined as follows:

αij =
exp(σ(a�[Whi:||Whj:]))∑n
j=1 exp(σ(a

�[Whi:||Whj:]))
(6.5)

Here �, ||, and σ represent transpose, concatenation and nonlinear activation

operation, respectively. a ∈ R2L′
is a weight vector parametrizing the attention

mechanism a(Whi:,Whj:). The softmax operation satisfies
∑n

j=1 αij = 1 and

αij >= 0, and thereby, provides normalization across the learned network.

Studies suggest that the desired objective can be achieved with a simple

attention strategy attending to all node pairs while ignoring the structural information

[248]. However, as discussed in Section 6.1, the interactions among firms are

not uniform and rather complex: some of them are converging and render the

market towards the same direction, while the others are diverging and lead to the

heterogeneous behaviors in the market. Later, we show in Section 6.3.6 that the

distribution of the interaction relationships aligns with the market conditions.

A firm is not necessarily connected to all other firms, and a spurious relationship

might do more harm than no connection due to the overfitting problem and excessive

computation costs. Therefore, to expedite the graph learning process, we use the

masked attention function where only the closely relevant firms of the target firm
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are attended. We use the Pearson correlation coefficients of the historical return

data to determine a firm’s initial connection and potential neighbors. The Pearson’s

correlation, ρij, between firm i and j at time t with a rolling window K is defined as

follows:

ρij =
Cov(ri, rj)√

V ar(ri)V ar(rj)
(6.6)

We keep the rolling window size to be the same as the embedding learning

framework window for both daily and monthly data. The original return correlation

matrix is dense, with almost all firms’ returns (positively or negatively) correlated

to others. The values close to zero do not provide useful information about firms’

similarity but noise. To enhance the signal-to-noise ratio (SNR), we adopt the noise

filtering technique proposed in [60]. The signal enhancement algorithm first denoises

the empirical Pearson covariance matrix by performing an eigendecomposition and

replacing the noisy eigenvalues with their average to preserve the trace of the

correlation matrix. The denoised matrix might not be a positive definite symmetrical

matrix. Finally, the signal enhancement algorithm applies convex optimization to

construct a correlation matrix that is the closest to the denoised matrix.

As a result, the correlation matrix has positive and negative coefficients. A

positive correlation between i and j indicates that i and j reassemble to each

other, while a negative one means the opposite. A single attention head treats

both positive and negative coefficients indiscriminately and violates the correlation

property. Therefore, to learn meaningful network representations, we use two separate

attention heads, each attending the positive and negative components of the firm

correlation matrix separately. We first decompose the new correlation matrix into

two mask matrices: M+, where M+
i,j = 1 if ρi,j ≥ 0, otherwise 0; and M− where
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M−
i,j = 1 if ρi,j < 0, otherwise 0. Then we perform the following masked attentions

according to the positive and negative matrices:

α±
ij =

M±
ij exp(σ(a

�[Whi:||Whj:]))∑n
j=1 M

±
ij exp(σ(a

�[Whi:||Whj:]))
(6.7)

The learned attention coefficients αij are assembled into two new affinity matrices

A+ = {α+
ij} ∈ RN×N and A− = {α−

ij} ∈ RN×N .

Recurrent Diffusion Convolution Layer We use the recurrent diffusion function

to model the spatial relationship (network) and temporal dependency among firm

fundamentals based on the learned network structure. We follow the diffusion process

in [75] to propagate the firm information to their neighbors.

Graph Diffusion We apply two separate diffusions in two networks A± learned

from the attention function. The diffusion process consists of a random walk on Graph

G with the state transition matrix (A+ or A−) and its random walk normalization

D±−1
where D± is the diagonal matrix of the node degree, D±

ij = deg(vi) if i = j,

otherwise 0.1 Following [75], we define the diffusion convolution on graph filter fθ

and each input channel X:,p ∈ RN (1 ≤ p ≤ P ) of the graph signal consisting of firm

fundamentals as follows:

fθ �G X:,p =
S−1∑
s=0

θs,1(D
+−1

A+)sX:,p‖
S−1∑
s=0

θs,2(D
−−1

A−)sX:,p (6.8)

1In our case, all row sums in A± equal to 1, and degree matrices D± become an identity
matrix. We still keep D± in the subsequent convolutional diffusion equations and make
them generalize to any other un-normalized affinity matrix A±.
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where fθ denotes the graph diffusion filters, ‖ concatenates the positive and negative

diffusions of X, and θ ∈ RS×2 are the parameters for filter. D+−1
A+, D−−1

A− are the

(random-walk normalized) transition matrices of the diffusion process learned from

the positive and negative correlations, respectively. (D±−1
A±)sX is a s-step matrix

power iteration on input X (s-step diffusion). The weighted sum parameterized by

θ represents the learned features from the up-to-S-hop neighborhood via diffusion.

S denotes the maximum number of diffusion steps. In [75], Li et al. show that

a sufficiently large number of diffusion will converge to a stationary distribution.

The S-step diffusion network becomes a spectral graph convolutional neural network

once we replace the attention matrices A± with symmetrical matrices Â± = A±+A±�

2

and then perform symmetrical normalization. Equation (6.8), with these necessary

modifications, can be transformed into a generalized form of the polynomial filter

defined on graph filter matrix with the learnable parameters θ (Equation 3 in [73]).

It is important to note that, unlike the work in [75], our model is based

on the undirected graphs with the positive and negative relationships, performs

diffusion on these two different networks, and concatenates two outputs. Instead

of transposing the original network, the second term in Equation (6.8) employs the

negative network. The two-term diffusion allows us to learn the spatial dependencies

from the positively connected neighborhood and negatively connected neighborhood.

The diffusion convolution layer takes X ∈ RN×P as the input and generates the tensor

output H ∈ RN×Q×2, where P is the number of input channels and Q is the number

of output channels. For each output channel q ∈ 1, . . . , Q, the output contains two

components: one from the positive diffusion and the other one from the negative

diffusion, and is in the form of:

H:,q = σ

(
P∑

p=1

fΘp,q,:,: �G X:,p

)
(6.9)
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here, Θp,q,:,: ∈ RS×2. {fΘp,q,:,:} are the diffusion filters and σ is the activation function,

i.e., ReLU.

GRU for Temporal Modeling Asset pricing models suggest that past returns

(prices) of a stock have the predictive power for its future returns (prices). It

is essential to model the temporal dependency along with the spatial dependence.

Gated Recurrent Units (GRU) [67] is proved to be effective for temporal dependency

modeling. As suggested in [75], we replace the common linear transformation matrices

for all GRU gates with the graph diffusion and augment the diffusion convolution with

GRU as follows:

rt = σ(Θr �G [X t,Ht−1] + br)

ut = σ(Θu �G [X t,Ht−1] + bu)

Ct = σ(Θc�G[X t, (rt �Ht−1)] + bu)

Ht = ut �Ht−1 + (1− ut)� Ct

(6.10)

where X t, rt, ut,Ht, denote the input, reset, update gate and the hidden state at time

t, respectively. �G denotes the graph convolution diffusion and Θr,u,c contains the

parameters of the respective filters for each gate in GRU.

The embedding H serves two roles in the proposed framework in Figure 6.2:

learning attention coefficients and supplying the stock market information of each

firm. To support the second role, we design two recurrent diffusion convolution

layers to process the firm signals in Figure 6.2. The first layer performs the diffusion

convolution on the firm fundamentals and the hidden state [X t,Ht−1]. The second

layer concatenates the output Ht from the first diffusion layer and the embedding

H from the embedding learning module, and applies another recurrent diffusion

on Ht||H t. This concatenation function ensures that the return data is directly

incorporated into the recurrent diffusion convolution framework. Consequently, we
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avoid the vanishing gradient problem and significantly improve the learning process.

The recurrent diffusion using GRU defined in Equation (6.10) is applied in these two

layers, as shows in Figure 6.2.

Finally, for prediction, the diffusion network simply uses one layer MLP to

regress the prediction output Ŷt+1 ∈ RN×P on the hidden state of the second recurrent

diffusion convolution layer.

6.3 Experimental Details

6.3.1 Data

For the experiment, we collect two sets of data with different frequencies – monthly

and daily. The monthly data include 1098 stocks from Russell 3000 Index. The

sample period is from January 01, 1990, to December 31, 2019, and divided into

three folds: training (January 1990 to December 2009), validation (January 2010 to

December 2013), and test (January 2014 to December 2019). The daily data involves

all the stocks in the S&P-500 index. The sample period is from January 01, 2010,

to December 30, 2020, and divided into training, validation, and test sub-sample as

January 01-2010 to December 31-2015, January 01-2016 to December 31-2017, and

January 01-2018 to December 31-2020, respectively. For both monthly and daily

data, selected firms are based on the index constituents by October 31, 2020. Few

inconsistent firms are removed from the sample. The monthly and daily stock returns

are from CRSP, and firms’ fundamental variables are from Compustat. These two

datasets are available at https://wrds-www.wharton.upenn.edu/. Based on the

data availability, fundamental variables included in the daily and monthly analysis

are slightly different. Following the asset pricing literature, we calculate 21 monthly

features and 24 daily features from firms’ fundamentals. The detailed calculation

procedure is in Table 6.1.
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Table 6.1 Fundamentals Variables

Firm Characteristics Calculation Procedure

Total assets to market Total asset / market value of equity

Size log (pt × share outstanding)

Turnover Volume / share outstanding

Growth rate of volume Vt − Vt−1/Vt−1

Growth rate of share outstanding SOt − SOt−1/SOt−1

Closeness to past year high Pt−1 −max(Pt−1, ...pt−12)/max(pt−1, ..., pt−12)

Closeness to past year low Pt−1 −min(Pt−1, ...pt−12)/min(pt−1, ..., pt−12)

Spread pht−1 − plt−1, monthly [daily] high minus low price

Opening and closing spread (pot−1 − pct−1), daily opening minus closing price

Capital gain Value is 0, if no capital gain is recorded

EPS Earning per share

Dividend Dividend paid in cash

Total volatility Price volatility of last 60 months [last 252 days].

Idiosyncratic volatility Total volatility - market volatility

Market return Return on S&P-500 index

CAPM market Beta Beta on Fama-French market factor

Small minus big beta Beta on Fama-French size factor

High minus low beta Beta on Fama-French value factor

1 week momentum (pt−1 − pt−5)/pt−5 -daily only

2-week momentum (pt−1 − pt−10)/pt−10 -daily only

1-month momentum (pt−1 − pt−2)/pt−2 [(pt−1 − pt−21)/pt−21]

2-month momentum (pt−1 − pt−42)/pt−42 -daily only

3 month momentum (pt−1 − pt−3)/pt−3 [(pt−1 − pt−63)/pt−63]

6 month momentum (pt−1 − pt−6)/pt−6 [(pt−1 − pt−126)/pt−126]

12-month momentum (pt−1 − pt−12)/pt−12 -monthly only

6.3.2 DY-GAP Setting

We implement all machine learning-based models in Python using Pytorch [249]

and/or TensorFlow [151]. For monthly data, the window size K for historical returns

for embedding layer and for Pearson correlation is 36 months; for daily data, it is

122 days (6 months). In the embedding layer, we use embedding size L = 10. For

attention, we use eight attention heads, and for diffusion convolution, we use ten
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diffusion steps. Other hyperparameters for the attention and diffusion convolution

layer are selected based on the validation result. We use early stopping criteria for

model training and stop training if validation loss does not decrease in 10 Epoch.

6.3.3 Baselines

We first compare our model with a series of multi-factor pricing models and time-series

methods. For multi-factor pricing models, we consider the well-acknowledged Fama-

French five-factor model [49], multivariate regression using all fundamentals [250] and

recently proposed empirical asset pricing via machine learning (EAP-ML) [47] model.

For time-series models, we use the classic ARIMA and several advanced deep neural

network-based approaches, including fully connected long short-term memory (FC-

LSTM) [251] and the state-of-the-art neural basis expansion analysis for interpretable

time series forecasting (N-BEATS) [252]. Finally, as our approach is inspired and

combines two models: graph attention network (GAT) [248] and diffusion convolution

recurrent neural network (DCRNN) [75], we compare the performance of our model

with them in order to ensure the advantage of integration. For most models, we use

authors’ source codes, if available, with necessary modifications. The best hyper-

parameters are chosen based on the validation dataset. For MR, FF-5, and ARIMA,

coefficients are determined with the training and validation data, and then the learned

coefficients are used to estimate the performance values for test data.

6.3.4 Forecasting Future Returns

The model performance is first evaluated in terms of the prediction accuracy of future

returns. There are three matrices to assess the prediction performance, including

RMSE, MAE, and MAPE. The small values represent small prediction errors and

high accuracy. Table 6.2 presents the prediction performance of each model. The left

panel represents results from the monthly data (Russel-3000 Index), and the right

panel represents results from the daily data (S&P-500 Index). Reported results are
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Table 6.2 Forecasting Results

Monthly Data Daily Data

RMSE MAE MAPE (%) RMSE MAE MAPE (%)

MR 0.1211 0.0944 66.4063 0.0310 0.0251 24.5875

FF-5 0.0941 0.0843 58.9432 0.0274 0.0209 20.8055

ARIMA 0.1141 0.0852 62.8968 0.0351 0.0252 32.6051

EAP-MLP 0.0969±.009 0.0726±.007 61.5435±7.3 0.0519±.018 0.0524±.017 42.0046±9.1
FC-LSTM 0.0949±.006 0.0723±.006 56.1883±4.2 0.0254±.003 0.0183±.001 19.6615±0.9
N-BEATS 0.1065±.001 0.0739±.001 61.4771±2.3 0.0241±.008 0.0173±.002 17.3975±1.1
DCRNN 0.0912±.002 0.0727±.001 54.8688±1.2 0.0230±.005 0.0178±.002 16.8916±1.0
GAT 0.0953±.006 0.0778±.005 61.7650±5.5 0.0292±.006 0.0195±.005 17.4611±1.6
DY-GAP 0.0853±.002 0.0632±.001 52.2400±1.3 0.0233±.003 0.0161±.001 15.6098±0.7

Note: This Table reports the return prediction results from our proposed model (DY-
GAP) and other benchmarks. MR is multivariate regression with fundamentals, FF-5 is
Fama-French five-factor model, ARIMA is time series model on return, EAP-MLP is the
machine learning-based asset pricing model, FC-LSTM and N-BEATS are deep learning-
based recurrent neural networks for time series prediction, and DCRNN and GAT are two
graph convolutional neural networks. A lower value of RMSE, MAE and MAPE indicates
better performance.

Table 6.3 Portfolio Performance

Monthly Data Daily Data

Average (%) STD (%) Sharpe Ratio Average (%) STD (%) Sharpe Ratio

MR 1.0046 4.0400 0.8614 0.0120 1.7669 0.1081

FF-5 1.0980 4.4340 0.8578 0.0116 1.7450 0.1055

EAP-MLP 1.1455 5.1880 0.7649 0.0733 2.2850 0.5092

ARIMA 1.1840 4.9540 0.8279 0.0401 1.6876 0.3772

LSTM 1.1790 4.8877 0.8356 0.0322 2.0711 0.2468

N-BEATS 1.1046 4.0400 0.9471 0.0424 1.8450 0.3648

DCRNN 0.9121 5.1650 0.6117 0.0218 1.6104 0.2149

GAT 1.0820 4.7730 0.7853 0.0220 1.7669 0.1980

S&P-500 0.8236 3.2534 0.8769 0.0449 1.4892 0.4785

DY-GAP 1.5500 4.5617 1.1771 0.0854 1.9500 0.6955

Note: This Table reports the performance of long portfolios created based on the prediction
of our proposed model (DY-GAP) and other benchmarks. MR is multivariate regression
with fundamentals, FF-5 is Fama-French five-factor model, ARIMA is time series model
on return, EAP-MLP is the machine learning-based asset pricing model, FC-LSTM and
N-BEATS are deep learning-based recurrent neural networks for time series prediction, and
DCRNN and GAT are two graph convolutional neural networks.
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from the test data sets only. The stochastic nature of machine learning models may

lead to different forecasts with different initialization. Therefore, we run each model

ten times with different random seeds and report the average performance and the

standard deviation.

Our proposed model DY-GAP outperforms other models in all three performance

metrics for forecasting with monthly data. In RMSE, DY-GAP outperforms FF-5 and

EAP-MLP by 9% and 12%, respectively. The two best performing models among all

machine learning-based baseline models are FC-LSTM and DCRNN. Nevertheless,

DY-GAP still outperforms these two models by 10%, and 6% in RMSE and 7% and

5% in MAPE, respectively.

The prediction performance of our model (DY-GAP) is consistently better using

daily data with only one exception where DCRNN is the best model in terms of

RMSE. However, in terms of MAE and MAPE, our model is still the best. In the

later section, we show that DCRNN has a high risk that lowers its Sharpe Ratio.

The prediction error of DY-GAP in terms of MAPE is smaller than DCRNN by

7%, GAT by 11%, N-BEAT by 10%, and FF-5 by 25%. It is worth noting that the

superiority of sophisticated predictive models is also visible in the result of daily data.

As the data frequency and size increase, sophisticated models can take advantage of

large datasets to minimize their overfitting problem and use their increased learning

capacity to reduce bias. As a result, the state-of-the-art N-BEATS outperforms the

earlier deep learning model (FC-LSTM) by 5% in terms of RMSE with daily data

and becomes the third-best model.

The integration of two powerful methods and nonlinearity explain the superior

performance of DY-GAP. The use of both attention and diffusion function enables

our model to harness the advantage of both GAT and DCRNN and outperforms

the application of these two models individually. DY-GAP has clear superiority

over time series models, such as ARIMA, FC-LSTM, and N-BEATS, as DY-GAP
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Figure 6.3 The portfolio performance from the monthly data. At the beginning
of each month based on each model prediction, we hold the top 10% stocks and at
the end of the month, we liquidate the stocks. The thick blue line is the cumulative
return of our model in the test period and thick gray line is the S&P-500 index return
during the test period. Russel-3000 is the average return of all studied firms.

considers both time series and factor information. In addition, these time series

models are applied for individual firms and therefore, information from the market

or related firms is ignored in these models. Compared with multi-factor pricing

models, such as FF-5 and EAP-MLP, our model considers the spatial connectedness

and nonlinear interaction among asset returns and attains a great performance

improvement compared to these traditional models.

6.3.5 Portfolio Performance

In this section, we show the economic benefits of our model via the portfolio analysis.

For the monthly data, we take a long position on (i.e., buy) the top 10% stocks with

the highest predicted returns at the beginning of each month, hold the position until

the end of the month, and then liquidate (i.e., sell ) all stocks. Figure 6.3 represents

the cumulative returns of the portfolios by different models from January 2014 to

December 2019. The thick blue line represents the cumulative return of our model in

the test period, and the thick gray line is for the S&P-500 index return during the
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Figure 6.4 The portfolio performance from the daily data. For each trading day,
we take the long position at (i.e., buy) the top 10% of highest predicted stocks. The
thick blue line is the cumulative return of our model in the test period.

test period. Although in the early years, the performance of the DY-GAP portfolio is

indistinguishable from others, our model stands out over time. The cumulative return

of our model doubles both the S&P-500 index return and the weighted average return

of all stocks in the Russel-3000 index. The finding suggests a profitable investment

strategy by identifying the ”success” group (i.e., the top 10% stocks with the highest

returns) with our model. Among all other baseline models, EAP-MLP and N-BEATS

also perform well in the cumulative return.

Table 6.3 reports the monthly average rate of return, monthly standard

deviation, and annualized Sharpe ratio of different portfolios. Sharpe ratio is an

essential measure of portfolio performance because it provides the return by the unit

of risk and exposes which portfolio offers the best returns (rewards) by taking the

same amount of risk. The higher the Sharpe ratio indicates the better predictability

of a model. Following the formula from Morningstar, Inc, we calculate the annualized

(yearly) Sharpe ratio from monthly returns as SR =
∑M

m=1 rm
σrm

×√12. Our proposed

model earns a high return rate (1.5% monthly) with relatively low risk (3%). Although

DCRNN has high predictive power in Section 6.3.4, the portfolio analysis shows that
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the risk associated with DCRNN is much higher. As a result, the Sharpe ratio of

DCRNN is lower than our model. S&P-500 index portfolio has the lowest risk, but

it generates a low rate of return. The Sharpe ratio of the S&P-500 index portfolio is

similar to that of MR, FF-5, ARIMA, and LSTM. The Sharpe Ratio of our model,

DY-GAP, is the highest with 1.18 and significantly higher than that of the second-best

model, N-BEATS, with 0.95.

The performance decline of DCRNN and the improvement in N-BAEATS in

portfolio evaluation attribute to their model formulation. During training, the

models similar to DCRNN learn global parameters by minimizing errors over all

firms, whereas N-BEATS learns individualized parameters for each firm. In portfolio

analysis, only the selected (top 10%) firms are included. Other firms may have a

better prediction, but do not fall in the leading 10% group, and are excluded from the

portfolio. However, the evaluation results suggest that our model is less susceptible to

this issue, has a better prediction accuracy, and provides a good portfolio performance.

We also perform a portfolio analysis on the S&P-500 stocks using daily data.

Figure 6.4 shows the cumulative return from the portfolio constructed based on the

daily prediction. Our model, DY-GAP, maintains superior performance over all other

models throughout the test period. Our cumulative return is more than doubled

compared with the S&P-500 index return. There is an interesting pattern that the up-

down trend in the portfolio performance from all models echos the market return. All

models, including the DY-GAP, are affected by the market’s downside, particularly

for unexpected events like the COVID-19 pandemic. However, the incorporation

of network and spatial dependency allows DY-GAP to select the stock groups that

generate relatively higher returns in the middle of the pandemic. EAP-MLP is the

second-best, especially in the latter part of 2020. This finding suggests that our model

is able to identify stocks (firms) with faster recovery during recession periods.
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Figure 6.5 Histogram of the learned edges from S&P-500 daily data.

Figure 6.6 The learned positive edges from S&P-500 daily data. There are visible
spikes in the degree of positive edges during significant financial, political, and
economic events.

6.3.6 Graph Learning

This section evaluates the network learning capacity of our proposed model. The

dynamism of the US equity market is evident in the learned networks from the S&P-

500 stocks daily data. Figure 6.5 shows the distribution of positive and negative

edges during the studied period. Most of the time, the percentage of negative edges

is 5%-12%, the positive edges are 15%-30% among all possible connections. The

remaining percentages are the insignificant edges that are eliminated via the graph

183



(a) Jun 2016 (b) Jul 2016 (c) Aug 2016 (d) Sep 2016 (e) Oct 2016

(f) Jan 2020 (g) Feb 2020 (h) Mar 2020 (i) Apr 2020 (j) May 2020

Figure 6.7 The network structure of S&P-500 stocks at different point of time.
Figure 8a-8e are the market network before, during, and after the Brexit, and Figure
8f-8j are for the Covid pandemic. Green represents positive edges and red represents
negative edges.

learning process. In the equity market, many firms are positively associated, which

is also the case for large firms from the S&P-500 index. However, at some time

points, the percentage of positive edges reaches > 90%. In-depth analysis shows

that those periods with extremely high positive edges are associated with economic

or political events. Figure 6.6 shows that, during the Eurozone crisis, Chinese stock

market turbulence, Brexit, and Covid-19, the percentage of positive edges significantly

increases. A similar finding is documented by [233]. During a normal period with

a stable macro environment, the performance of a firm might be driven more by its

own financing, investment, and operation decision, rather than the global market. It

is natural to see both positive and negative linkages among firms. By contrast, when

there is a major event, most firms respond accordingly in the same direction, i.e.,

there is a similar upward or downward trend in stock prices, and therefore, positive

linkages increase. This can also be associated with contagion effects and systematic

risks during recessions and crises.

Besides, the impacts of major events are not identical. We use two events as the

example, one is the Brexit in 2016, and another is the Covid pandemic in 2020, and
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show how the market network changes before and after those two events in Figure

6.7. Figures 6.7a-6.7e represent the market structure before, during, and after Brexit

from June 2016 to October 2016. Figures 6.7f-6.7j are for the Covid-19 pandemic

impact on the market network structure from January 2020 to May 2020. During the

Brexit, the network structure changed (sub-Figure 6.7b), but all the negative edges

did not vanish overnight. The market also recovered quickly and went back to its

normal state. However, during the outbreak of Covid-19 pandemic, the almost all

edges turned to be positive (sub-Figures 6.7h and 6.7i). At the beginning of May, the

market coped with the pandemic’s initial setback and started to recover to a certain

extend. In sub-Figure 6.7j, it is also noticeable that instead of scattered negative

edges through the market, there exist a handful of companies that had negative edges.

Further investigation reveals the good performance of this handful of companies, such

as Amazon and Walmart, during the peak months of the Covid-19 Pandemic.

6.4 Ablation Study

To gain a better understanding of the contributions of individual components of our

model, we perform an ablation study with five alternative versions of our model:

(i) the proposed model with a signed network structure, attention mechanism, and

diffusion convolution (DY-GAP), (ii) without any network structure (DY-GAT), (iii)

considering both positive and negative relationships in a single network (DY-GAP-

Unsigned), (iv) replacing diffusion convolution with simple graph convolution (GCN)

as suggested in [72] (DY-GCN), and (v) with only a single diffusion layer (DY-GAP-

Single Diffusion).

Table 6.4 reports the prediction accuracy from all other alternative models.

DY-GAT ignores the constraints on network connectivity and allows all firms to

attend to all other firms. The change to the model leads to the performance reduction

by 31% (monthly) and 26% (daily) compared to the model abiding by the restrictions.
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Table 6.4 Prediction Results from Ablation Study

Monthly Data Daily Data

RMSE MAPE (%) RMSE MAPE (%)

DY-GAP 0.0853 52.2400 0.0233 15.6098

DY-GAT 0.1121 61.7160 0.0294 19.2406

DY-GAP-Unsigned 0.1072 58.4270 0.0261 17.0153

DY-GCN 0.0936 53.1476 0.0270 20.5101

DY-GAP-Single Diffusion 0.0908 52.6881 0.0240 16.9219

Note: This table reports the return prediction results from alternative versions
of our model. DY-GAP is our proposed model, DY-GAT is a model without any
network structure, DY-GAP-Unsigned is a model with unsigned networks using
absolute values, DY-GCN is a model with simple graph convolution instead
of diffusion convolution, and DY-GAP-Single Diffusion is a model with only
a single diffusion layer. A lower value of RMSE and MAPE indicates better
performance.

Figure 6.8 The loss curves of our proposed model and some other alternative
of network and convolution operation. DY-GAP with both positive and negative
network and diffusion convolution achieves the lowest validation error.

In DY-GAP-Unsigned, we provide a binary network structure for masked attention by

ignoring the sign. This version does not differentiate between positive and negative

connections and provides the same attention to both. As the result of modeling

contradictory information identically, the model achieves a sub-optimal performance.

In DY-GCN, instead of the diffusion convolutional recurrent neural network, we use

the simple graph convolution neural network. Simple convolution only models spatial
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dependency among firms, ignoring any temporal dependency. Earlier studies suggest

that the historical average excess return is an important predictor for future excess

return. Therefore, ignoring the critical temporal relation will result in sub-optimal

model performance. The performance drop in DY-GCN is 10% in monthly data and

16% in daily data. In DY-GAP-Single Diffusion, we use only one diffusion layer

and predict Ŷ from initial H, skipping the second layer of concatenating the return

embedding H. In this model, the performance decreases by 6% for monthly data and

3% for daily data. The rationale for this observation is that the concatenation of

return embedding allows the model to incorporate historical information directly into

the learning process. Although we learn initial graphs from the return embedding,

the graph learning process loses some information through masking operation and

vanishing gradient. The concatenation function and second diffusion layers help us

recover the lost information and thereby improve model performance.

Figure 6.8 shows the validation loss curves among all ablation models from the

monthly data. The validation error of all the models converges in approximately

40 epochs. DY-GAP has the lowest validation error among all alternative versions.

Both unsigned (DY-GAP-Unsigned) and the single diffusion model (DY-GAP-Single

Diffusion) suffer sporadic gradient descents initially but eventually converge. The

plausible reason for this slow convergence is that these two models access less

information than others. In the unsigned graph, the machine learning model considers

both positive and negative edges the same; therefore, learning meaningful represen-

tation becomes difficult. For single diffusion, we are only learning spatial-temporal

dependency on the features. The diffusion convolution layer has no direct access to

the historical return data; as a result, the learning process is slower.
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6.5 Conclusion

In this paper, we propose a graph neural network-based approach to asset pricing.

This work offers a novel solution to two critical problems in asset pricing: the

interrelation among the firms and the evolution of the interrelation. Our model

outperforms many traditional asset pricing models and advanced machine learning

models in terms of prediction accuracy and portfolio performance. We also conduct

analyses on several alternative models in the ablation study and show that DY-GAP

with the positive and negative correlated networks and diffusion convolution layer

performs the best. This paper confirms that the firm interconnection is bidirectional

and relevant to the market analysis. The positive and negative relations must be

treated differently because they serve different roles in the market. The incorporation

of an effective network representation and the model for spatial and temporal relations

enhances the stock price prediction and more profoundly, improves our understanding

of the network structure in the financial market. Our model is still sensitive to

some market conditions during abnormal events, e.g., COVID-19, and follows market

downturns. The future research direction includes improving the model under various

market conditions and design mitigation strategies.
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CHAPTER 7

CONCLUSION AND FUTURE RESEARCH DIRECTION

The success of machine learning algorithms largely depends on proper data repre-

sentation. In this dissertation, I show how machine learning techniques developed

by computer scientists for their specific problems are extended to solve financial

problems. I show that representation learning improves missing value imputation and

solves an aged problem in finance – analysts’ earnings forecast and associated missing

value. Experiments suggest that representing financial panel data as a third-order

tensor and imputing missing values with advanced machine learning techniques

increase the accuracy of firms’ earnings prediction. I also show the importance of

using domain knowledge for learning proper representation. Financial data comes

from multiple sources and in a variety of forms. Properly integrating heterogeneous

data from all these sources improve the quality of latent embedding significantly.

With the help of high data products and reliable representation, I explored the

capacity of machine learning and network modeling technique in developing asset

pricing models. Using a simple representation learning framework, “autoencoder”, I

proposed a latent asset pricing model that attempts to explain the return difference

between assets. Furthermore, I designed an advanced graph neural network-based

model to learn the U.S. equity network. Representation learning on the network

helps us understand the equity market network over time and learn the associated

network embedding. The learned embedding facilitates to building both global and

firm-specific asset pricing models. More importantly, the comprehensive analysis of

these models reveals the importance of network interaction in asset pricing. The

network factor contains a significant risk premium for firms’ network risk exposure.

Incorporating network information from advanced representations learning framework

189



reduces model mispricing. The result also suggests that network impact is not the

same across firms and over time. Different events affect the market network differently,

and as a result, their influence on the asset returns also differs.

The prospective future extension of the research in this dissertation has

multi-fold. First, from the representation learning perspective, it might be interesting

to examine whether different variables will generate different results and some of these

variables are more important than others for missing value imputation. Second,

this dissertation shows that combining multiple heterogeneous data sets improve

the quality of data imputation and the accuracy of return prediction. It would be

interesting to see whether the same techniques also work for other areas of finance,

including bond price estimation. Third, in the network learning framework, I use

historical return data to construct the time-varying network structure of the equity

market. This dissertation did not consider static networks information, such as

supply-chain relationships and industry affinity. The importance of these static

networks that do not change over a short period is well documented, and they

likely contain valuable information in addition to my current framework. Integrating

heterogeneous networks in constructing a network hierarchy and understanding

the aggregated network implications on equity pricing can be a potential area for

future research. Finally, the general framework for the signed Laplacian spectrum

has potential for improvement and extension, for example, performing graph cuts,

identifying proper equity market clusters, and analyzing other financial markets’

network structures where negative connections exist.
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APPENDIX A

RESULT SUPPLEMENT AND BENCHMARK METHODS

Appendix A provide the supplemental details from Chapter 2. First, section

A.1 discusses all the benchmark methods of missing value imputation that I

used to compare the performance of MF and CMF. These include four tradi-

tional techniques, zero imputation, mean imputation, random-walk imputation, and

multiple imputation (MI), and two machine learning-based techniques, k-NNI and

i-SVD. Later Section A.2 provides the additional result from the single sorted analysis

on the impact of analysts’ size and volatility on models earning prediction capacity.

A.1 Benchmark Methods for MF and CMF

Zero Imputation and Mean Imputation The most straightforward imputation

techniques are zero imputation and mean imputation. Zero imputation involves filling

the missing values with zero.

ZI(Xtn) =

⎧⎪⎪⎨⎪⎪⎩
0 if Xtn is a missing value

Xtn otherwise

Zero imputation induces a series of noise for many real data sets [112, 113]. As

a result, many researchers prefer to use mean imputation. Mean imputation involves

filling the missing values with the mean values of the data series. For the analyst

EPS forecasting with time-series data, a simple mean over the time dimension is not

effective as the firms’ financial conditions change over time. A firm EPS in the first

quarter of 2021 is the most likely to largely deviate from the reported EPS of the

first quarter of 2005. Therefore, the mean over historical data may not be a good
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proxy for the future EPS. The standard practice in this area is an augmented mean

imputation, called class mean imputation, that estimate the missing values with the

average of existing values from the same class (all the available analyst at a given

time period) as the data instances to be imputed.

Mean(Xtn) =

⎧⎪⎪⎨⎪⎪⎩
∑ |Ω|

n′=0
Xtn′

|Ω| if Xtn is missing value

Xtn otherwise

Where Ω is a set of the observed instances, and the quarter t is the class label. The

missing values are replaced by the average of set Ω with the same class label, i.e.,

quarter t. Throughout the paper, the mean imputation refers to the class mean

imputation.

Random-Walk Imputation Random-walk imputation involves imputing missing

values with the last available forecast value of an analyst. However, in the studied

data, a large number of analysts did not even have any previous forecast, and in

many cases, analysts have very old forecast for a firm, i.e., they follow one firm, stop

following, and re-follow after several quarters. Firms’ financial conditions change over

time, and as a result, an old forecast does not accurately portray the firm’s current

financial condition. To mitigate these scenarios, I use the firm’s last available real

EPS because the real EPS at t− 1 is more reliable than an analyst forecast of t− k

period for k > 1.

Random-Walk(Xtn) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
Xt−1,n if Xtn is missing & Xt−1,n is available

yt−1 if Xtn is missing & Xt−1,n is not available

Xtn otherwise
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Where y is the actual EPS value of the firm in the last reported (t− 1) period.

Multiple Imputation Multiple imputations (MI) proposed by [112] involves filling

in the missing values multiple times. The multiple imputed results for each missing

value account for the uncertainties in the imputation process and yield accurate

results. Multiple imputations work for both missing at random (MAR) and missing

not at random (MNAR). For the Bayesian theory of MI, modeling the response

mechanism and underlying assumption of MAR and MNAR are detailed in [112].

I chose the Multiple Imputation with Chained Equations (MICE) algorithm [253] for

baseline. MICE models and impute each variable with missing values as a function

of other variables in an iterative procedure. The iteration is run until the model

converges. The iterative algorithm of the chained equation process includes the

following steps:

1. Perform a simple imputation, e.g., mean imputation, to impute the missing
values in each variable with a temporary “place holder”.

2. For one variable (“var”), set the “place holder” back to missing.

3. Perform a predictive model, e.g., regression, on the observed values of “var”
using other variables in the datasets.

4. Use the fitted model in the previous step to predict the missing values in “var”.

5. Repeat step ii-iv for each variable with missing data.

6. Repeat step ii-v until convergence.

In experimental setting, I choose the mean imputation for initialization in step-i;

in step-ii, the analysts with missing values are selected for imputation based on an

ascending order; in step-iii, I use all other variables (features) to fit the predictive

model. For each imputation, I sample from the Gaussian predictive posterior of the

fitted estimator. The maximum number of iterations is 10.

k-NNI k-NNI is based on the k-nearest neighbor algorithm. It involves imputing a

missing value based on the average value of its k-nearest neighbors. k-NNI was first
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proposed by [115] and after that several variations of k-NNI have been developed.

These includes the weighted k-NNI [254], the k-NNI with mutual information [255],

and the k-NNI with penalized dissimilarity [256]. The rationale behind using k-NNI

for data imputation is that an analyst EPS forecast can be approximated by the

forecast of his/her closest analysts.

kNNI(Xtn) =

⎧⎪⎪⎨⎪⎪⎩
∑

K
k=1Xtk

|K| , if Xtn is missing value

Xtn, otherwise

The hyper-parameter K defines the number of neighbors: A low K ensures the local

effect, and is less generalizable. In contrast, a high K deemphasizes the local effect.

To select the K for this study, I perform cross-validation with multiple values (3, 5,

10, 15, 20) and select the best performing K, i.e., K = 5.

iSVD Singular value decomposition (SVD) based algorithms gained significant

attention in recent years. SVD is the eigendecomposition of a regular matrix to

two square matrices via an extension of the polar decomposition. However, SVD only

works for a complete matrix. Iterative SVD (iSVD) was proposed as a workaround for

this limitation [115]. Similar to principal component analysis, iSVD generates a set of

mutually orthogonal vectors that form a base to the original matrix and use the linear

combination of vector elements to approximate the missing values [121, 257, 258], as

shown in the following equation:

iSV D(Xtn) =

⎧⎪⎪⎨⎪⎪⎩
UttΣtnV

�
nn, if Xtn is missing value

Xtn, otherwise
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Here, matrix V � contains the right singular vector whose values are quantified

by the diagonal matrix Σ. The most significant vectors (K) are selected from V �

by sorting their corresponding singular values. A low-rank assumption means that

only a few singular vectors are necessary to explain the entire data. Here the rank

K is determined empirically [121, 259]. Finally, the missing value n for period t is

estimated by combining the K outer-products of the left and right singular vectors.

The U and V matrix represent the time period and analyst respectively. For

determining the coefficient, the nth value of period t and the nth values of the K

eigenvector are ignored. To overcome the complete matrix constraint of SVD, initially,

all the missing values are substituted with the row average of matrix X, obtaining

X ′. iSVD uses the expectation-maximization (EM), an iterative algorithm: at the

beginning of each iteration, estimating the missing values in X ′ by taking the average,

and creating a new X ′ until X ′ converges and the total change in the matrix falls

below the empirically determined threshold of 0.01 (For details see [115]).

A.2 Single Sorted Results on the Impact of Analyst Size and Volatility

Table A.1 reports the performance of the models in predicting firms’ earnings in

terms of average R2, average MSE, and average MAPE. The top panel of the table

represents the grouping based on analysts’ size and the bottom one represents the

grouping based on volatility. Consistent with the result reported in Figure 2.6a, the

performance of all models are sensitive to the number of analysts. For the high-

analysts group, the prediction accuracy of all models is satisfactory (MF+SVR ≥
90% ). However, the performance drops more than 20% for the low-analysts group.

Especially the R2 value for XGBoost becomes negative for the moderate-analysts and

low-analysts groups. In line with the findings of section 2.4.2, MF+XGBoost and

MF+SVR outperform all other models in all three firm groups. The performance

improvement in R2 over the benchmark mean prediction is 7.6% for the high-analysts
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Table A.1 Impact of Analysts Forecast Volatility on Earning Prediction (Single
Sorted)

High Analysts Moderate Analysts Low Analysts

Method R2 MSE MAPE R2 MSE MAPE R2 MSE MAPE

Mean 0.8511 0.1581 31.2331 0.7833 0.7979 41.0821 0.6683 0.5593 47.6578
Random Walk 0.4118 0.5215 82.7396 0.2425 1.9835 115.6855 0.0490 5.4194 143.9878
XGBoost 0.6995 0.0866 33.0309 -0.9450 1.8086 64.4451 -1.5421 0.6629 74.4921
MI+LASSO 0.8250 0.2091 36.8890 0.5758 0.4364 55.8177 0.3404 0.6251 84.3804
MI+XGBoost 0.8767 0.0728 28.6681 0.7667 0.2835 46.6041 0.3404 0.6251 84.3804
MI+SVR 0.8927 0.0836 27.7566 0.7754 0.2835 45.4611 0.4531 0.5644 72.9610
MF+LASSO 0.7838 0.2663 46.1921 0.6394 0.7552 40.1946 0.6438 0.6072 45.3521
MF+XGBoost 0.9162 0.0290 10.2132 0.8210 0.0902 24.5307 0.6920 0.1429 31.5714
MF+SVR 0.9126 0.0554 10.2925 0.8103 0.0797 25.1345 0.6691 0.1246 32.0147

High Volatility Moderate Volatility Low Volatility

Mean 0.6547 0.8183 80.4632 0.7611 0.6754 33.6700 0.8869 0.0217 10.0231
Random Walk 0.0024 2.0909 205.0657 0.1796 5.7024 107.8180 0.5186 0.0963 30.6905
XGBoost -2.3223 2.1399 112.6231 -0.1491 0.3999 56.8142 0.6838 0.0183 17.2941
MI+LASSO 0.4410 0.8073 101.9210 0.5308 0.4027 48.5348 0.7694 0.0606 26.6313
MI+XGBoost 0.5832 0.5923 81.5188 0.6777 0.2484 40.3472 0.8474 0.0385 21.5675
MI+SVR 0.5903 0.6551 85.9804 0.7052 0.2321 40.5121 0.8257 0.0442 19.6862
MF+LASSO 0.6907 0.6859 76.2421 0.7710 0.6018 30.3554 0.8053 0.1408 13.8207
MF+XGBoost 0.7447 0.1282 40.0821 0.8135 0.1145 23.0365 0.8710 0.0194 10.2132
MF+SVR 0.7393 0.1485 40.1456 0.7954 0.0891 23.3821 0.8574 0.0267 10.5214

Note: In the top panel, firms are sorted on descending order based on the average number of analysts following a
firm over time; top 33% represents the high analysts’ group, bottom 33% represents the low analysts’ group, and the
remaining 34% represents the moderate analysts’ group.
In the bottom panel, firms are sorted on descending order based on the average standard deviation of analysts earning
forecast for a firm at a given quarter. Top 33% represents the high volatility group, bottom 33% represents the low
volatility group, and the remaining 34% represents the moderate volatility group.
R2, MSE, and MAPE are calculated using Eqn. 2.14, 2.15, and, 2.16 respectively. Smaller MSE, MAPE and larger R2

indicate better accuracy. The reported values are from test data set.

group, 4.8% for the moderate-analysts group, and 3.5% for the low-analysts group.

The difference in performance improvement also signifies the impact of data sparsity

on the MF imputation. For the low-analysts group, too many missing values of the

original data affect the imputation performance and eventually impair the prediction

accuracy.

The bottom panel of the Table A.1 shows the influence of analysts’ volatility

in predicting earnings, which matches with the result reported in Figure 2.6b. When

analysts are in consensus about a firm’s future earnings, i.e., the forecast volatility

is low, almost all models predict the earnings in the next quarter at high accuracy.

In contrast, when analysts do not conform well with each other on a firm’s projected

earning, i.e., high volatility, the model prediction accuracy drops significantly. In
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the low-volatility group, the simple mean prediction outperforms the sophisticated

machine learning method. However, MF based models are less sensitive to analysts’

forecast volatility. Considering a 26% drop in the mean prediction and a 40% drop

in XGBoost, both MF+XGBoost and MF+SVR only experience a 14% drop from

the low-volatility group to high-volatility group, a significant improvement over all

models. Further experiments show that MF+XGBoost and MF+SVR demonstrate

superior performance over the mean prediction consistently, i.e., 6.8% and 13.3%

improvements in R2 respectively, on both moderate-volatility and high-volatility

groups.
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APPENDIX B

INDIVIDUAL INDEX RETURN

Appendix B provides the individual indices average factor return on portfolio based

on Fama-French and latent factor from Chapter 4. The 18 (2×3×3) portfolio returns

reported are developed based on the size, value, and communal difference. Table

B.1 reports the results from S&P-500 stocks, Table B.2 reports the results from

RUSSELL-3000 stocks, and Table B.3 reports the results from NASDAQ-100 stocks.

Table B.1 Daily Average Return on Factor Portfolio for S&P-500 Stocks

Big/High Big/Medium Big/Low Small/High Small/Medium Small/Low

Communal 0.0240 0.0375 0.0394 0.0357 0.0537 0.0514

Moderate 0.0531 0.0540 0.0548 0.0540 0.0785 0.0834

Non-Communal 0.0824 0.0808 0.1284 0.0808 0.1600 0.1699

Table B.2 Daily Average Return on Factor Portfolio for RUSSELL-3000 Stocks

Big/High Big/Medium Big/Low Small/High Small/Medium Small/Low

Communal 0.0385 0.0415 0.0406 0.0642 0.0466 0.1680

Moderate 0.0599 0.0642 0.0778 0.0944 0.0882 0.1023

Non-Communal 0.1057 0.1049 0.1030 0.1425 0.1301 0.1388

Table B.3 Daily Average Return on Factor Portfolio for NASDAQ-100 Stocks

Big/High Big/Medium Big/Low Small/High Small/Medium Small/Low

Communal 0.0688 0.0768 0.0271 0.1335 0.0998 0.1312

Moderate 0.1069 0.1027 0.0590 0.1493 0.1223 0.1219

Non-Communal 0.1026 0.1216 0.0473 0.1580 0.1321 0.1471
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APPENDIX C

EQUITY NETWORK CONSTRUCTION STRATEGY AND
ROBUSTNESS TEST

Appendix C first provides the details of network construction strategy in Section

C.1 form Chapter 5 and then in Section C.2 provides the robustness test result of

Fama-MacBeth Regression on Next Month Excess Return.

C.1 Network Construction

The correlations among firms market return can serve as a good proxy for a firm

network [233,234]. Following the literature, I use the correlation of historical returns

as a measurement of firm proximity and calculate the Pearson’s correlation ρij,t =

ρ(ri,t, rj,t) for firms i and j at time t. For each month, I calculate the end-of-month

correlation ρij,t using daily returns in that month. The original correlation matrix of

returns is dense, and almost all firms’ returns are (positively or negatively) correlated

with each other. The values close to zero do not provide any useful information about

firm affinity but noise. To enhance Signal-to-noise ratio (SNR), a threshold on the

correlation matrix of all firms’ returns is applied to sparsify the equity network graph

Gt, i.e., Wij,t = ρij,t if |ρij,t| ≥ ξ otherwise 0. I select ξ = 0.40 following [216, 233].

The sparcified similarity matrix also reduces the computational cost of the otherwise

complex task of dealing with a nearly complete graph.1

C.2 Robustness Test

The construction of the Z-score involves two main hyperparameters: the number of

the smallest eigenvalues k to calculate current network state λ and the size of the

sliding window m to select the number of previous months network states for building

1A complete graph is a simple undirected graph in which every pair of distinct vertices is
connected by a unique edge.
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Table C.1 Fama-MacBeth Regression on Next Month Excess Return: Robustness
Test

m = 12 m = 24 m = 36 m = 48 m = 60

Panel A: k = 10
βZ −0.13∗∗∗ (-3.39) −0.17∗∗∗ (-3.88) −0.15∗∗∗ (-3.53) −0.14∗∗∗ (-3.26) −0.14∗∗∗ (-3.36)
βMKT 0.16 (1.65) 0.16 (1.34) 0.02 (0.16) 0.07 (0.54) 0.08 (0.60)
βSMB 0.35*** (2.72) 0.22∗ (1.76) 0.08 (0.65) 0.09 (0.73) 0.16 (1.34)
βHML −0.10 (-0.88) −0.01 (-0.12) 0.11 (0.96) 0.07 (0.65) 0.04 (0.43)
βUMD −0.14∗ (-1.72) −0.20∗∗ (-2.42) −0.16∗∗ (-2.07) −0.19∗∗ (-2.32) −0.20∗∗ (-2.40)
Constant 0.82∗∗∗ (4.23) 0.84∗∗∗ (4.25) 0.75∗∗∗ (3.68) 0.78∗∗∗ (4.15) 0.81∗∗∗ (4.23)
R2 3.70 3.60 3.61 3.70 3.70

Panel B: k = 15
βZ −0.13∗∗∗ (-3.16) −0.15∗∗∗ (-3.51) −0.14∗∗∗ (-3.23) −0.15∗∗∗ (-3.45) −0.14∗∗∗ (-3.43)
βMKT 0.16 (1.62) 0.15 (1.18) 0.02 (0.15) 0.04 (0.28) 0.07 (0.56)
βSMB 0.35∗∗∗ (2.78) 0.19 (1.58) 0.08 (0.66) 0.09 (0.79) 0.14 (1.16)
βHML −0.10 (-0.94) 0.01 (0.01) 0.07 (0.62) 0.05 (0.45) 0.07 (0.63)
βUMD −0.14∗ (-1.70) −0.17∗∗ (-2.06) −0.19∗∗ (-2.38) −0.21∗∗ (-2.52) −0.19∗∗ (-2.28)
Constant 0.84∗∗∗ (4.43) 0.80∗∗∗ (4.13) 0.77∗∗∗ (3.96) 0.79∗∗∗ (-4.19) 0.82∗∗∗ (4.37)
R2 3.71 3.63 3.61 3.70 3.72

Panel C: k = 20
βZ −0.13∗∗∗ (-3.15) −0.15∗∗∗ (-3.71) −0.15∗∗∗ (-2.99) −0.14∗∗∗ (-3.43) −0.14∗∗∗ (-3.36)
βMKT 0.19∗ (1.91) 0.09 (0.84) 0.04 (0.29) 0.01 (0.03) 0.04 (0.35)
βSMB 0.36∗∗∗ (2.91) 0.18 (1.45) 0.08 (0.68) 0.08 (0.71) 0.13 (1.13)
βHML −0.11 (-0.98) −0.02 (-0.18) 0.06 (0.55) 0.06 (0.57) 0.05 (0.52)
βUMD −0.11 (-1.36) −0.15∗ (-1.89) −0.18∗∗ (-2.19) −0.19∗∗ (-2.37) −0.178∗∗ (-2.11)
Constant 0.882 (4.90) 0.77∗∗∗ (4.06) 0.78∗∗∗ (3.99) 0.76∗∗∗ (4.03) 0.81∗∗∗ (4.30)
R2 3.63 3.63 3.64 3.70 3.71

Note: This table reports the average value of Fama-MacBeth regressions with Z-scores
calculated using different hyper-parameters. The dependent variable is the next-month
future stock returns. Here, k represents the number of lowest eigenvalues used to calculate
network Laplacian Spectrum λt and m represent the sliding window size for constructing
the context matrix C. Newey-West adjusted t-statistics are in parentheses. ***, **, * are
significant at the 1%, 5%, and 10% significance level, respectively.

context matrix C. In this section, I perform a sensitivity test with different selections

of these two hyperparameters to ensure the robustness of the proposed model. I use

three different values of k, i.e., 10, 15, 20 and five different values of m, i,e, 12, 24,

36, 48, and 60. Table C.1 reports the results of the sensitivity analysis.

Same as Section 5.3.4, the Fama-MacBeth regressions control for the market,

size, value, and momentum factor. Consistently, firms with high (positive) sensitivity

to Z-score have lower future returns, and this negative relation is more significant

when Z-score is higher than the historical median. In Table C.1, I only report the
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results when Z-score is high, i.e., the market network experiences substantial changes.

Panel A in Table C.1 reports the cross-sectional regression results with k = 10, Panel

B shows the results with k = 15, and Panel C presents the results when k = 20. For all

the models, the coefficients of Beta of Z-score are negative and highly significant. The

coefficient ranges between -0.125 (the largest observed value when k = 15 and k = 12)

and -0.167 (the smallest value observed when k = 10 and m = 24). Particularly, the

sensitivity of the size of the coefficient is not systematic to k. However, when the

window size m increases, the coefficient slightly increases. The size and significance of

the beta coefficients for control variables remain similar to each other for all models,

except k = 20 and m = 12, where all the traditional factors are insignificant.

The sensitivity test results reported in Table C.1 indicate that the network

factor is not sensitive to the choice of the number of eigenvalues or the number of

months. With a small expected variance, proposed methodology can identify the

network factor effectively. The choices of k and m in this paper are based on network

theory, Eigengap, and practicality. A value of k = 20 is big enough to capture the

maximum information from the Laplacian spectrum, yet small enough to filter out

noise from the graph Laplacian [222]. The network factor is also not computationally

expensive. Using the Laplacian spectrum calculated from correlations of previous

thirty-six months (three years) incorporates enough data points to represent normal

market behavior. It also contains an economic cycle. A small m, e.g., 6 or 12 months,

might introduce too much volatility and can not accurately represent normal market

behavior.
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