1,242 research outputs found

    STOCHASTIC MODELING AND TIME-TO-EVENT ANALYSIS OF VOIP TRAFFIC

    Get PDF
    Voice over IP (VoIP) systems are gaining increased popularity due to the cost effectiveness, ease of management, and enhanced features and capabilities. Both enterprises and carriers are deploying VoIP systems to replace their TDM-based legacy voice networks. However, the lack of engineering models for VoIP systems has been realized by many researchers, especially for large-scale networks. The purpose of traffic engineering is to minimize call blocking probability and maximize resource utilization. The current traffic engineering models are inherited from the legacy PSTN world, and these models fall short from capturing the characteristics of new traffic patterns. The objective of this research is to develop a traffic engineering model for modern VoIP networks. We studied the traffic on a large-scale VoIP network and collected several billions of call information. Our analysis shows that the traditional traffic engineering approach based on the Poisson call arrival process and exponential holding time fails to capture the modern telecommunication systems accurately. We developed a new framework for modeling call arrivals as a non-homogeneous Poisson process, and we further enhanced the model by providing a Gaussian approximation for the cases of heavy traffic condition on large-scale networks. In the second phase of the research, we followed a new time-to-event survival analysis approach to model call holding time as a generalized gamma distribution and we introduced a Call Cease Rate function to model the call durations. The modeling and statistical work of the Call Arrival model and the Call Holding Time model is constructed, verified and validated using hundreds of millions of real call information collected from an operational VoIP carrier network. The traffic data is a mixture of residential, business, and wireless traffic. Therefore, our proposed models can be applied to any modern telecommunication system. We also conducted sensitivity analysis of model parameters and performed statistical tests on the robustness of the models’ assumptions. We implemented the models in a new simulation-based traffic engineering system called VoIP Traffic Engineering Simulator (VSIM). Advanced statistical and stochastic techniques were used in building VSIM system. The core of VSIM is a simulation system that consists of two different simulation engines: the NHPP parametric simulation engine and the non-parametric simulation engine. In addition, VSIM provides several subsystems for traffic data collection, processing, statistical modeling, model parameter estimation, graph generation, and traffic prediction. VSIM is capable of extracting traffic data from a live VoIP network, processing and storing the extracted information, and then feeding it into one of the simulation engines which in turn provides resource optimization and quality of service reports

    Optimizing Hypervideo Navigation Using a Markov Decision Process Approach

    Get PDF
    Interaction with hypermedia documents is a required feature for new sophisticated yet flexible multimedia applications. This paper presents an innovative adaptive technique to stream hypervideo that takes into account user behaviour. The objective is to optimize hypervideo prefetching in order to reduce the latency caused by the network. This technique is based on a model provided by a Markov Decision Process approach. The problem is solved using two methods: classical stochastic dynamic programming algorithms and reinforcement learning. Experimental results under stochastic network conditions are very promising

    Traffic analysis of Internet user behavior and content demand patterns

    Get PDF
    El estudio del trafico de internet es relevante para poder mejorar la calidad de servicio de los usuarios. Ser capaz de conocer cuales son los servicios más populares y las horas con más usuarios activos permite identificar la cantidad de tráfico producido y, por lo tanto, diseñar una red capaz de soportar la actividad esperada. La implementación de una red considerando este conocimiento puede reducir el tiempo de espera considerablemente, mejorando la experiencia de los usuarios en la web. Ya existen análisis del trafico de los usuarios y de sus patrones de demanda. Pero, los datos utilizados en estos estudios no han sido renovados, por lo tanto los resultados obtenidos pueden estar obsoletos y se han podido producir cambios importantes. En esta tesis, se estudia la cantidad de trafico entrante y saliente producido por diferentes aplicaciones y se ha hecho una evolución teniendo en cuenta datos presentes y pasados. Esto nos permitirá entender los cambios producidos desde 2007 hasta 2015 y observar las tendencias actuales. Además, se han analizado los patrones de demanda de usuarios del inicio de 2016 y se han comparado con resultados previos. La evolución del tráfico demuestra cambios en las preferencias de los usuarios, a pesar de que los patrones de demanda siguen siendo los mismos que en años anteriores. Los resultados obtenidos en esta tesis confirman las predicciones sobre un aumento del tráfico de 'Streaming Media'; se ha comprobado que el tráfico de 'Streaming Media' es el tráfico total dominante, con Netflix como el mayor contribuidor.L'estudi del trànsit d'Internet és rellevant per a poder millor la qualitat de servei dels usuaris. Ser capaç de conèixer quins són els serveis més popular i les hores amb més usuaris actius permet identificar la quantitat de trànsit produït i, per tant, dissenyar una xarxa capaç de soportar la activitat esperada. L'implementació d'una xarxa considerant aquest coneixement pot reduir el temps d'espera considerablement, millorant l'experiència dels usuaris a la web. Ja existeixen anàlisis del transit dels usuaris i els seus patrons de demanda. Però, les dades utilitzades en aquests estudis no han sigut renovades, per tant els resultats obtinguts poden estar obsolets i s'han produït canvis importants. En aquesta tesis, s'estudia la quantitat de transit entrant i sortint produit per diferents aplicacions i s'ha fet una evolució, tenint en compte dades presents i passades. Això ens permetrà entendre els canvis produïts des de 2007 fins 2015 i observar les tendències actuals. A més, s'han analitzat els patrons de demanda de usuaris de principis de 2016 i s'han comparat amb resultats previs. L'evolució del trànsit mostra canvis en las preferències dels usuaris, en canvi els patrons de demanda continuen sent els mateixos que en anys posteriors. Els resultats obtinguts en aquesta tesis confirmen les prediccions sobre un augment del trànsit de 'Streaming Media'; s'ha comprovat que el trànsit de 'Streaming Media' es el trànsit total dominant, amb Netflix com el major contribuïdor.The study of Internet traffic is relevant in order to improve the quality of service of users. Being able to know which are the most popular services and the hours with most active users can let us identify the amount of inbound and outbound traffic produced, and hence design a network able to support the activity expected. The implementation of a network considering that knowledge can reduce the waiting time of users considerably, improving the users’ experience in the web. Analysis of users’ traffic and user demand patterns already exist. However, the data used in these studies is not renewed, thus the results found can be obsolete and considerable changes would have happened. In this bachelor’s thesis, it is studied the amount of inbound and outbound traffic produced considering different applications and the evolution when regarding previous and actual data has been taken into account. This would let us understand the changes produced from 2007 to 2015 and observe the tendencies nowadays. In addition, it has been analyzed the user demand patterns in the beginning of 2016 and it has been contrasted with previous results. The evolution of traffic has shown changes in users’ preferences, although their demand patterns are still the same as previous years. The results found in this thesis confirmed the expectations about an increase of streaming media Internet traffic; it was proved that streaming media traffic is the dominant total traffic, with Netflix as the major contributor

    Quality of Service based Retrieval Strategy for Distributed Video on Demand on Multiple Servers

    Get PDF
    The recent advances and development of inexpensive computers and high speed networking technology have enabled the Video on Demand (VoD) application to connect to shared-computing servers, replacing the traditional computing environments where each application was having its own dedicated computing hardware. The VoD application enables the viewer to select, from a list of video files, his favorite video file and watch its reproduction at will. Early video on demand applications were based on single video server where video streams are initiated from a single server, then with the increase in the number of the clients who became interested in VoD services, the focus became on Distributed VoD architectures (DVoD) where the context of distribution may be distributed system components, distributed streaming servers, distributed media content etc.The VoD server must handle several issues in order to be able to present a successful service. It has to receive the clients’ requests and analyze them, calculate the necessary resources for each request, and decide whether a request can be admitted or not. Once the request is admitted, the server must schedule the request, retrieve the required video data and send the video data in a timely manner so that the client does not suffer data starvation in his buffer during the video reproduction. So, the overall objective of a VoD service provider is to provide a better Quality of Service (QoS). Some issues related to QoS are-efficient use of bandwidth, providing better throughput etc.One of the important issues is to retrieve the video data from the servers in minimum time and to start the playback of the video at client side with a minimum waiting time. The overall time elapsed in retrieving the video data and starting the playback is known as access time. The thesis presents an efficient retrieval strategy for a distributed VoD environment where the basic objective is to minimize the access time by maintaining the presentation continuity at the client side. We have neglected some of the network parameters which may affect the access time, by assuming a high speed network between the servers and the client. The performance of the strategy has been analyzed and is compared with the referred PAR (Play After Retrieval) strategy. Further, the strategy is also analyzed under availability condition which is a more realistic approach

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial
    corecore