
will be published in Proc. of the Int. Workshop on Multimedia Information Systems (MIS), Istanbul,

September 1998, Springer Lecture Notes in Computer Science. Springer-Verlag

An Admission Control Framework for Applications
with Variable Consumption Rates in Client-Pull

Architectures*

Silvia Hollfelder, Karl Aberer

GMD - Integrated Publication and Information Systems Institute (IPSI)
Address: Dolivostraße 15, D- 64293 Darmstadt, Germany

E-Mail: {hollfeld | aberer}@darmstadt.gmd.de

Abstract. Highly interactive multimedia applications require variable
data rates during their presentation. Current admission control
mechanisms do not address the variable data rate requirements
appropriately for the following reasons: (1) classical admission control
mechanisms are based on the server-push approach, where the required
data rate has to be estimated in advance, and (2) worst-case resource
reservation is not economic. Client-pull models are more appropriate to
serve these kinds of applications. At the current state, there are no
suitable mechanisms that support admission control in client-pull
architectures at the server. In this paper, a session-oriented framework
for admission control is introduced that is based on two steps: (1) the
admission of new clients and (2) the scheduling of the single requests of
admitted clients to balance the load. The goal of this approach is to
improve the server utilization and the Quality of Service. Evaluation
studies demonstrate the benefit of the framework.

1. Introduction

Enhanced multimedia applications like computer-based training (CBT), product
documentation, or digital libraries enable a flexible user behavior since the user has
various options to realize its preferences interactively. Examples of interaction types
that occur in such applications are the usage of VCR-functionality for the playback of
continuous media, browsing in media archives [10] and the interactive control of
preorchestrated composite multimedia presentations [1]. These different interaction
types cause highly varying data consumption rates of the application and makes it
difficult to specify resource demands in advance. Thus, the media storage components
have to provide mechanisms that are able to deal with these characteristics of highly,
interactive multimedia applications. These mechanisms differ from those required by

* This work has partly been funded by the European Union within the framework of the ESPRIT Long

Term Research Project HERMES, No. 9141.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147904273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

multimedia applications with more uniform access characteristics, like video-on-
demand.

For illustration purposes, we discuss the characteristics of browsing applications in
digital libraries as one typical example. In a digital library, the users have to deal with
a huge amount of data, including video data. Therefore, they want to scan quickly
through data that has been roughly specified by a query in order to inspect and
compare it. In contrast to a video-on-demand application where the users generally
want to view complete, single videos, in this scenario, the user makes full use of
VCR-functionalities, like fast forward, rewind and pause, and might require to view
several videos in parallel. Thus, within this application the data requests arrive
aperiodically at the server, and the data rates vary within a wide spectrum. Another
example for applications with variable data consumption are composite multimedia
presentations where the user gets presented various media, like text, image, audio and
video, simultaneously and the course of the presentation is controlled interactively by
the user. The task of the multimedia data management system in such scenarios is to
support the qualitatively adequate presentation of the required media data. Especially
in distributed environments, this is a challenge.

Distributed multimedia applications require the support of continuous data flows
from the server to the client satisfying Quality of Service (QoS) parameters. In order
to achieve the required presentation quality, the clients compete for limited resources
on the server. The basic strategies to deal with limited resources can be distinguished
into optimistic and pessimistic ones.

With optimistic strategies all requests are served as well as possible (best effort).
These strategies are typically used in client-pull architectures, where the client
subsequently requests small chunks of media data during presentation. The server
triggers the delivery of data only after a single, “small“ request has arrived. The data
requests arrive aperiodically at the server [15]. In case of user interactions the client
changes its request behavior, e.g., it will request larger blocks of a media or send
more frequent requests. The client-pull architecture is suitable for interactive
applications with varying resource requirements since it is not assumed that the
required data rate will be constant for the duration of a presentation. Bottlenecks are
dealt with either by the server or clients with various strategies, e.g., by means of
quality adaptation mechanisms at the client [9] or at the server [18].

With pessimistic strategies resource reservations are made at the server, in
advance. An admission control mechanism usually checks at the server, if enough
resources for the adequate delivery of data to a new client are available. If there are
enough resources available, the client is admitted and the resources are reserved for
this client until the end of the presentation. Most approaches for admission control
mechanisms consider the request of single media streams within a server-push
architecture. Since the whole presentation is pre-specified by the request the server
manages the delivery of the whole media stream and pushes the data continuously to
the client. Admission control mechanisms for “pure“ server-push architectures
assume that during a presentation the data rate consumed by the client will be nearly
constant [15]. The available system resources are calculated by stochastic [11,19] or
deterministic approaches [20,12]. Based on the knowledge about the already reserved

and freely available resources it is possible to reject requests in case of server
overloads. Admission control mechanisms are harder to use for interactive
applications since it is difficult to estimate server resources consumed by the
applications. We discuss some of the strategies that can be considered.

A priori reservation. To guarantee a given Quality of Service worst case
assumptions about the data rate required can be made. Obviously, the reservation of
the worst case data rate wastes server resources and decreases the number of clients
that can be served in parallel. Dey-Sircar et al. [5] reserve separate server bandwidth
for VCR-interactions, using statistical methods. The drawback of their work is that
they assume that interactions occur rarely.

Re-admission at interaction points. A straightforward way to use standard
admission control policies with interactive applications is to perform admission
control for each single media object request, that can occur as the result of an
interaction as described in Gollapudi and Zhang [7]. One drawback of their approach
is that each client request is subject to the admission control. For example, when the
first scene of a video is admitted there is no guarantee for the admission of the
subsequent scenes of the same presentation. This may lead to unacceptable delay in
presentation when too many clients send requests. The main problem of their
approach is that the admission is not performed for a client session. Thus, the
admission of one continuous media stream of a multimedia presentation does not
necessarily guarantee the admission of another continuous media stream that has to be
synchronized with the already admitted streams. But, especially in composite,
interactive presentations, temporal requirements between multiple media, like
start_with, or finish_with, have to be considered.

Smooth the application data rates. Some approaches to admission control for
interactive applications propose to ’smooth’ the data rate deviations to achieve a
relatively constant workload. Shenoy and Vin [16] reduce the high data rate for fast
forward and fast rewind of MPEG-videos by encoding the stream in base and
enhanced layers. The encoding of the base layer is done by reducing the temporal and
spatial resolution. For fast forward only the base layer is used. Chen, Kandlur, and Yu
[3] suggest segment skipping where a segment can be a set of Group of Pictures
(GoP) of an MPEG-video. For fast forward or fast rewind some segments are skipped.
Chen, Krishnamurthy, Little, and Venkatesch [2] change the order of MPEG-frames
to a priority sequence. For fast forward and fast rewind only the most important
frames (I- and P-Frames) are pushed to the client. The higher data rate is reduced by
quality adaptation on the temporal dimension of other requests by a dynamic resource
reservation. Reddy [14] reduces the latency of ’urgent’ requests, but neglects varying
bandwidth requirements. The smoothing approach is, however, restricted to relatively
simple interactive scenarios where interactions take place within the presentation of
one single media stream.

Reviewing the different approaches, up to date, no admission control mechanism
has been developed which is applicable for varying resource requirements of highly
interactive applications requiring a client-pull architecture. We presented first ideas
on admission control for client-pull architectures in [8]. In this paper, we propose an
admission control framework to support interactive multimedia applications,

assuming that no user profile is available that gives any information about the
resources required by a pending client. It consists of (1) the admission of new clients,
in the following called pending clients, when server resources are available and (2)
the scheduling and adaptation of requests of admitted clients. We evaluate different
strategies, both for admission and scheduling. With the approach we benefit from the
relative safety provided by admission control, but still provide fallback strategies in
the case of overloads. The admission control mechanism we propose is session-
oriented such that requests related to the same presentation or session do not require
separate admissions. This gives adequate support for composite multimedia
presentations. The main problem to be adressed is the criterion upon which the
admission decision can be performed. The inital request of a session does not provide
the necessary information to predict future requests. Here, we use statistical features
of the running sessions for determining the admission criterion. For a large number of
parallel session the average client consumption is a good estimate for prediction. Data
rate variations are accounted for by introducing a safety margin. Thus, an admitted
client is supposed to obtain sufficient resources. If in spite of the admission control
resource bottlenecks occur, strategies for rescheduling of requests are used to achieve
high QoS by means of load balancing. In the worst case quality adaptations are
required to enable guaranteed continuous delivery.

We first introduce the underlying system model in Section 2.1. Then we introduce
the admission and scheduling strategies in Sections 2.2 to 2.4. In Section 3 we present
the results of evaluation studies and conclude the paper with some remarks on future
research directions.

2. Admission Control Framework

We describe a framework that is under implementation for a Multimedia Database
Management System at GMD-IPSI. It is designed to support highly interactive
applications with variable data consumption. The goal is to provide better QoS than
best effort delivery and to achieve better server utilization than worst-case-based
reservation.

2.1 System Model

The system model is based on a client-pull architecture. Clients request multiple
chunks of data from the server within a single multimedia session. A multimedia
session contains the presentation of at least one time-dependent media, like a video or
an audio. Single media as well as composite media presentations are possible.

One task of the server is to limit the number of active clients by means of an
admission control mechanism. At the beginning of a session, a client requests the
server for admission (see Figure 1). Then the server informs the client about its
admission. After a client has been admitted, it can send data requests to the server.
When a client terminates its multimedia session it informs the server. The server

handles data requests from admitted clients within service periods of fixed length,
which are indexed by k ∈ �. Data requests specify which part of which media object
is requested by the client and at which time it has to be delivered. Thus, a data request
has the form <b, t>, with t ∈ �.

Fig. 1. The System Model

The specifications used for a block b can be of different types. In the simplest case,
they indicate the beginning and the end of a block within a media stream. For
example, for a video stream this can be the first and the last frame of a scene
requested by the client. More complex cases are, for example, requests of data
required for fast forward, which may require only every second frame of a video, and
requests of parts of different media like an audio with the corresponding video. The
server is responsible for mapping the specification of the data requests to the
corresponding data accesses to the media data.

The deadline t specifies the time in number of service periods that a client is
willing to wait until its request is scheduled. These deadlines may vary between the
single requests of a client. The clients are able to specify deadlines since they have
more information on the presentation state. For example, the buffer state of a client
may be used as an indicator for the urgency of a request. By sending requests in
advance the client can also account for delays of the request that can occur, for
example, due to network transmission time, or can plan ahead for future presentation.
This means that it has to send the data request in time to the server to avoid that data
will be delivered too late. It overcomes deviations in delivery by using a local buffer
[4]. The client assumes that requested data will be delivered within the given
deadline, e.g., at the earliest within the next service period.

In each period k, the server collects the incoming requests, schedules the requests
for the next service period, and when the system resources are not sufficient it delays
the remaining requests for later periods. Since the delay of requests depends on the
scheduling policy and not on the arrival time of the request, the arrival order does not

Storage System Resources Data

Admission
 Control

Request
SchedulerAdmission Policy

Storage
System

Aperiodic
Requests

Acception
Data

MM-
Data

Past System Behavior

Scheduling Policy

Pending Clients

Ask for Admission /
Notification of Termination

Admitted Clients

necessarily determine the scheduling of requests, even for the same client. Still the
arrival time can be used as one priorization criterion.

In addition to scheduling single requests, the server has to be able to fragment
single requests <b,t> into several disjoint requests <b1, t>, ..., <bn, t>, such that b1, ...,
bn specify the same data as b, for two reasons. First, though we assume that single
requests are small, it may happen that data requests are too large to be served within
one service period. Second, for optimization it can be advantageous to split a request,
such that part of the request is served with the remaining resources of a current
service period and utilization is increased.

The storage system is responsible for the execution of the schedule. It maps the
schedule to accesses to the storage system. This opens the opportunity to increase the
throughput by optimizing the reading order for all requests scheduled for one service
period. It is assumed that the request scheduler has a model for the storage system
throughput and uses this for determining the scheduling.

The approach described in this paper abstracts from the properties of the storage
system like disk scheduling policies, data placement strategies, and buffer size but it
assumes that the throughput of the underlying storage system is given as a bandwidth
value [5]. This assumption is realistic because todays‘ storage systems that consist of
disk arrays do not offer access to single disks. The storage system reads the requested
data from the disk, buffers it in the server cache, and sends it to the client over the
network. It is also assumed that the network will be able to send the data
appropriately to the client.

2.2 Admission of Pending Clients

In the following, several strategies for admission control are introduced. They are
based on an admission criterion that automatically adapts to the system load. It has to
adapt to different client consumption types, both for uniform and for bursty ones. The
goal of the strategies is to achieve a high system utilization and to avoid overload
situations since they degrade the temporal QoS by delayed requests.

Before a client session is allowed to issue data requests it requests admission from
the server. This request is called admission request.

Let Resmax be the maximal amount of resources provided by the storage system.
For each period k we introduce the following parameters: the set of currently admitted
clients Ck, the set Rk of open requests that need to be handled by the server in the next
period, and the set Sk of requests that are scheduled for the next period. Assume that
for a given period k we have Rk={r1, ..., rn} and Sk={s1, ..., sm}. The number of
admitted clients is given by | Ck |. Then we define the server load lk by

where res(ri) are the resources required to serve request ri. Note that the server load
can be larger than 1.0 thus not all requests can be handled within the next period.

∑
=

=
n

i
ik rres

s
l

1max

)(
Re

1

Next, we define the server utilization uk by

where res(si) are the resources required to serve the scheduled request si. Note that
the server utilization always is smaller or equal to 1.

In the simplest case the admission control can admit new clients as long as storage
system resources are available, i.e., uk ≤ 1, which basically amounts to a best effort
strategy. However, the current server utilization in service period k is only a good
prediction on the future server utilization, as long as the resource demands of single
sessions vary only little. Thus, in approaches that smooth the resource demands for
each session, as discussed in Section 1, the current server utilization is a viable
measure for the admission, while for highly interactive applications, that we consider,
it is not. Similarly, the current server load can be considered as an admission criterion,
with lk ≤ 1.

In order to adapt to the long term system behavior, we introduce a ’lookback’ value
λ that determines the number of service periods we look back to observe the past
system behavior. The choice of this value determines how fast the admission control
can adapt to new load patterns, or how strongly it compensates for short term
deviations in server load. Based on the quantities uk and lk we can now define two
quantities that will be considered for an admission criterion.

The average server load lk,λ of the past λ periods is given by

The average server utilization uk,λ of the past λ periods is given by

In the following, we introduce two approaches for defining an admission criterion
that considers the past system behavior. For these criteria we introduce a quantity τ ∈
[0,1] that is used as safety margin. This quantity determines how close the average
utilization and load values may approach the maximum value of 1, and thus how
much tolerance is available to compensate for short term deviations. High values of τ
represent an aggressive admission policy, while low values of τ represent a defensive
admission policy. In the first case, overload situations may happen more frequently,
while in the latter case the utilization will be lower and less clients are admitted.

Strategy 1: Lookback to server behavior. This strategy considers the past server
resource values as admission criteria. For the admission, both average server load and
the average utilization can be used. Pending clients are admitted if the average server
load or the average utilization are under the safety margin, i.e.,

uk,λ < τ or lk,λ < τ.

This strategy does not consider the information on the number of admitted clients.

∑
=

−=
λ

λ λ 1
,

1

i
ikk ll

∑
=

=
m

i
ik sres

s
u

1max

)(
Re

1

∑
=

−=
λ

λ λ 1
,

1

i
ikk uu

Strategy 2: Lookback to client behavior. The idea is to estimate the client
consumption by considering the average request or average consumption rate of the
admitted clients, in the past. The advantage of this approach is that the number of
admitted clients is considered for the admission criteria.

The average client request rate rk,λ of the past λ periods is given by

The average client consumption rate ck,λ of the past λ periods is given by

A pending client is admitted in service period k, if

With this admission criterion a pending client is admitted when in addition to the
sum of the average consumption or average request rate of the admitted clients Ck

resources for at least one new client are available. This means that resources required
for a pending client are estimated to be equal to the average resources required by the
admitted clients. Furthermore, it is expected that the average past behavior of
admitted clients will be an indicator for the future. Note that we neglect their
individual behavior since it is not necessarily representative for future resource
demands.

2.3 Scheduling Policies for Data Requests

After pending clients have been admitted the server has to deliver the clients‘
requests in the forthcoming periods until their sessions are terminated. In each period
k, the server collects the incoming requests Ik together with the requesting client and
the time of arrival. Thus Ik consists of tuples <c, tin, b, t>, c ∈ Ck, tin ∈ �, where Ck is
the set of admitted clients and tin the arrival time of a request at the server. By means
of a scheduling policy the server generates a schedule Sk that determines which
requests are scheduled for the next period, where S0 = Ø. The set of open requests Rk

in each period k is then determined by the incoming requests Ik and requests from
previous periods that are not scheduled yet by Rk = Ik ∪ (Rk-1 \ Sk-1), where R0 = Ø.
During scheduling it may happen that the available system resources are not sufficient
to handle all open requests. Then, the scheduling policy as a first option can move a
request <c, tin, b, t> to period k+1 without harm as long as t > k.

As soon as the open requests cannot be satisfied within the forthcoming service
period the scheduling algorithm has to priorize the open requests. In the following, we
discuss different scheduling policies with two goals in mind: (1) serve open requests
within their time constraints (see Section 2.1), and (2) balance the system load
between different service periods. Load balancing is important since the system load
varies in between consecuting periods. In contrast to the admission control
mechanism, which targets at avoiding long term bottlenecks, short-term deviations in

∑
= −

−=
λ

λ λ 1
, ||

1

i ik

ik
k C

l
r

∑
= −

−=
λ

λ λ 1
, ||

1

i ik

ik
k C

u
c

τλ <+)1|(|*, kk Crorτλ <+)1|(|*, kk Cc

system load can be smoothed through request scheduling. The following scheduling
policies can be considered [8].
• First Come First Serve (FCFS): The simplest policy is to serve the requests by their

arrival order. This policy has only small potential for load balancing since it does
not consider the request urgency for scheduling.

• Resource-driven Scheduling: LORF (Low Resource Requests First Serve) reduces
the negative effects of overload by first scheduling the requests with lowest
resource requirements. This increases the number of requests that can be served.
This strategy is useful in applications where the benefit of the system is related to
the number of requests served within the time constraints.

• Earliest Deadline First Serve (EDF): EDF gives those requests priority that have
the closest deadline. The further the deadlines of requests reach into the future, the
higher is the potential of this policy. The goal of the policy is to achieve a high
percentage of requests that have to be served within their deadlines, i.e., increase
QoS in terms of jitter.

• Quality of Service-driven Scheduling: This policy requires a QoS-metric
representing the relevant QoS parameters that determine acceptable quality ranges.
High Quality First Serve (QUF) prefers requests that require high QoS parameters,
assuming that applications with high quality requirements are most interested in
good service.
When the advanced scheduling policy is not able to schedule open requests within

their time constraints their service will be delayed. If the admission and load
balancing techniques can no longer guarantee the full service quality, additional
mechanisms for quality adaptation can be used to overcome bottleneck situations. The
goal of quality adaptation is to balance quality degradation, of which lost or delayed
requests is one type. With adaptation the required data volume is reduced by
modifying the quality of the delivered data in the temporal and/or spatial dimension.
For example, it is possible to modify the resolution of a video or audio, or drop
frames of a video [9]. When the server decides to adapt it has the responsibility to
reduce the data rate and deliver the data with reduced quality in a way such that the
client is able to interpret the returned data, which then deviates from its original
request. This might be a non-trivial problem for compressed stream data like MPEG
with interframe dependencies. The quality adaptations are in the simplest case
distributed over all clients equally, or can be based on individual QoS profiles of the
clients. Related work on quality adaptation can be found, e.g., in [17].

Thus, the combination of an admission control mechanism, a scheduling
mechanism with load balancing, and a quality adaptation mechanism is the way to
enable the server to optimally adapt to the requirements of highly, interactive
multimedia applications and at the same time achieve high resource utilization. The
admission control and scheduling mechanism cannot guarantee that system overload
does not occur but, by an appropriate choice of parameters, allow to reduce the
number of overload situations.

2.4 Service Algorithm

We now give the detailed algorithm for admission control and request scheduling.
The algorithm is given in pseudo code. In the algorithm, the average client
consumption is used as admission criterion. The algorithm for the other admission
criteria is analogous. For periods with k < λ the value ck,k is used for the admission
criterion, instead of ck,λ.

S0:= Ø; R0:= Ø; C0:= Ø; k:=1;
While(true)
Begin
Pk := requests for admission;
While(Pk ≠ Ø and ck,λ (|Ck| +1) < τ)

Begin
Ck := Ck ∪ {first(Pk)};
Pk := Pk \ {first(Pk)}; End;

Ik := requests from admitted clients;
Rk := Ik ∪ (Rk-1 \ Sk-1);
Sort Rk according to priority criterion;
Free_res = Resmax; Sk:= Ø;
While(free_res > res(first(Rk)))

Begin
Sk := Sk ∪ {first(Rk)};
Rk := Rk \ {first(Rk)};
free_res := free_res - res(first(Rk)); End;

Execute scheduled requests in Sk;
Update ck,λ;
Remove terminated clients from Ck;
k++; End;

Fig. 2. Pseudo Code of Admission Control and Scheduling Algorithm.

After performing admission control the algorithm schedules open requests until all
resources of the next service period k+1 are reserved. After that, the schedule is sent
to the storage system. In addition, the average client consumption is updated for the
admission control mechanism in each service period.

3. Evaluations

In this section, we present experimental results that were obtained in a simulation
environment implemented in the Mathematica [21] system. We compare two
quantities for determining the quality of an admission and scheduling strategy,
namely the average server utilization versus the number of delayed requests, which
we use as a QoS criterion. In the course of this investigation a particular focus was on
the stability of the admission control mechanism we propose. Stability means in this

context that the system is able to control itself in phases with low and high load. For
example, in underloaded periods the danger exists that too many clients get admitted,
and in overloaded periods too many pending clients get rejected which leads to
system underload in the future. In the worst case, oscillating behavior of the system
load occurs. This is a critical point for any feedback system.

We describe the configuration that was used for simulating client behavior. The
client switches between periods, where it requests data, and idle periods, in which it
does not request data (e.g., the user is inspecting discrete data). During the request
periods the client requests a varying load of media data (a media stream). All duration
parameters are generated using the exponential probability distribution, while the
request sizes are generated using the normal distribution. The server is assumed to
have 30000 units of resource within a service period. The duration parameters are
chosen under the assumption that a service period has a length of one second. In the
chosen configuration, there exist two types of clients. The first has an average request
period duration of 10 service periods with an average request size of 1400 units of
resource per service period, an average idle period duration of 10 service periods, and
average total session duration of 100 periods. The second client has an average
request period duration of 30 periods with an average request size of 4200 units of
resources, an average idle period duration of 3 service periods, and an average total
session duration of 200 service periods. While the first client is intended to simulate
average quality presentations for a browsing application, the second client simulates a
VCR access to a high quality video. Low quality clients are created five times as often
than high quality clients. Furthermore, clients are created such that the server
periodically has to deal with phases of low load and high load. One such phase has
100 periods. In this way, the server has to continuously deal with the stability
problem. Our configuration allows only around 10 parallel clients. This low number
of clients generates still a rather bursty distribution of requests and thus imposes a
more difficult challenge to the admission control than a larger number of clients.

20 40 60 80 100

1000

2000

3000

4000

5000

Client 1

20 40 60 80 100

1000

2000

3000

4000

5000

Client 2

Fig. 3. Client Request Behavior of Type 1 and Type 2.

Figure 3 illustrates the typical behavior of both types of clients over their lifetimes.
The x-axis represents the service periods and the y-axis gives the requested resource
units. The graphs represent the request behavior of a client during its request and idle
times. The request behavior varies around 1400 resource units in the left figure and
around 4200 units in the right figure during a multimedia presentation. The clients
request no data during their idle periods.

First we evaluate the different strategies that we have proposed. As a first
experiment we take strategy 2 and run a prescreening for (λ, τ)-values for both,
average client consumption rate ck,λ and average client request rate rk,λ, as admission
criterion. As scheduling policy we use EDF. The results are summarized in Table 1.

λ τ
average

utilization
ck,λ

variance of
utilization

ck,λ

fraction of
requests served
in time (ck,λ)

average
utilization

rk,λ

variance of
utilization

rk,λ

fraction of
requests served

in time (rk,λ)

1 0.8 0.827701 0.132783 0.774411 0.856366 0.160017 0.649223
10 0.8 0.801515 0.168636 0.968677 0.818404 0.258037 0.410026

100 0.8 0.744060 0.164218 0.976362 0.705767 0.164979 0.977320

1 0.9 0.882038 0.152534 0.246973 0.924667 0.089782 0.324022

10 0.9 0.840137 0.141908 0.890563 0.793205 0.179114 0.711840

100 0.9 0.790747 0.140999 0.979186 0.719280 0.145321 0.976081

1 0.95 0.904935 0.122163 0.438073 0.883451 0.101035 0.818325

10 0.95 0.890717 0.119438 0.521545 0.814924 0.173354 0.767916

100 0.95 0.825157 0.157906 0.712329 0.732246 0.173858 0.900999

Table 1. Results of Strategy ´Lookback to Client Behavior´ (Strategy 2).

The left side of the table displays the results with ck,λ and the right one the results
with rk,λ as decision criterion. This experiment shows that low values of λ (e.g., 1, 10)
and high values of τ (e.g., τ = 0.95) can immediately lead to unstable behavior (see
bold values). This means that short lookback phases are not sufficient for the
admission control because the system load varies in this experiment in larger time-
windows. Further, in our configuration, a safety margin of τ = 0.95 and higher is not
sufficient to compensate short-term load deviations.

For better illustration we give one typical example of a stable system behavior for
the values τ = 0.9, and λ = 100, using rk,λ as a criterion for the admission which
served more than 97% of the requests in time and achieved average utilization of
almost 72% (see Figure 4). The best system utilization would be achieved by an
average server load of value 1. The left figure shows that short term peaks in the
server load can be dealt with. In the right figure, the dotted line gives the number of
requests served within their deadline, and the solid line gives the number of delayed
requests over the service periods. For example, it is shown how EDF balances the
highest server load, occurred some periods just before service period 50. The request
scheduler is able to avoid delayed requests at this period. This high server load leads
to single delayed requests just after period 50.

Next, we evaluate alternative admission and scheduling strategies. The following
experiment shows that average server utilization lk,λ and similarly average server load
uk,λ, used for strategy 1, are no adequate admission criteria. One reason for this worse
behavior is that for a long lookback the values lk,λ and uk,λ increase and decrease very
slowly when new clients get admitted or rejected since these values represent average
values over the past. In this case, it may happen that with a long lookback, phases of
low past server load lead to uncontrolled admission of new clients, and vice versa.
This leads in the extreme case to a strongly oscillating behavior and extreme server

overload. On the other hand, short lookbacks do not sufficiently reflect the varying
resource requirements. This worse behavior does not occur with strategy 2 since this
admission criteria does account for the current number of admitted clients.

50 100 150 200

0.2

0.4

0.6

0.8

1

1.2

1.4

Server Load

50 100 150 200

1

2

3

4

5

6

7
Requests

Fig. 4. Example of a stable System Behavior using ´Lookback to Client Behavior´ (Strategy 2).

We performed an experiment with (λ, τ)-values of (20, 0.9), as displayed in Figure
5. The left side of Figure 5 demonstrates the extremely high server load with multiple
peaks (server load > 10). The right side shows that the number of delayed requests
(solid lines) is extremely high, and only a few requests are served within their
deadlines (dotted lines). With larger values of λ the behavior becomes even worse.

200 400 600 800 1000

5

10

15

20

25

30

Server Load

200 400 600 800 1000

5

10

15

20

Requests

Fig. 5. Example Using ´Lookback to Server Behavior´ (Strategy 1).

The next experiment (Figure 6) illustrates the benefit of using the EDF scheduling
strategy. We performed the experiment with (λ, τ) -values (100, 0.9) with the average
client request rate as admission criterion, which behaved well when using EDF.

200 400 600 800 1000

0.5

1

1.5

2

Server Load

200 400 600 800 1000

2

4

6

8
Requests

Fig. 6. Example Using ´Lookback to Client Behavior´ (Strategy 2) and FCFS.

For the same experimental parameters the FCFS scheduling strategy performs
substantially high variations in server load (left figure). The temporal QoS, measured

in percentage of requests served in time, degraded to a rate of 0.85 in this experiment
(right figure).
With regard to the question, whether average client consumption or average client
request rate is the preferable admission criterion the results are not fully conclusive,
yet. However, the Table 2 reports results of an experiment with λ = 200 that is one of
several experiments, which indicate that the average request rate appears to be the
admission criterion leading to more stable behavior. This experiment was run over
1000 periods.

decision
criterion

λ τ average
utilization

variance of
utilization

fraction of requests
served in time

 ck,λ 200 0.8 0.753404 0.209823 0.802239
200 0.9 0.797481 0.164365 0.85

rk,λ
λ

200 0.8 0.703255 0.166676 0.972553

200 0.9 0.73551 0.17511 0.958729

Table 2. Comparison of Client Consumption and Client Request Rate.

In order to verify our results for using the average client request rate as a criterion,
we performed a long term run over 30.000 service periods with parameters (λ = 200, τ
= 0.8). In this experiment, too, the system behavior remained stable, with an average
utilization of 0.75 and average Quality of Service of 0.97.

A question that requires further investigation is the dependency between the
optimal safety margin τ and the variance of the average request rate and the average
consumption rate. This quantities obviously depend on each other and a quantitative
approximation of this relationship would be very useful. First experiments on relating
the threshold value with the variance of the average request rate and the average
consumption rate showed the following behavior: Using the variance of the average
consumption rate as a safety margin for the admission criterion the system turned
immediately unstable. Using the variance of the average request rate as a safety
margin for the admission criterion showed acceptable, but still less stable behavior
than in using predetermined values of τ. An alternative possibility would be to
dynamically adapt the safety margin, i.e., to increase it when the quality decreases
and, to decrease it when the server utilization decreases.

We also compared our admission control framework with a worst case based
admission control. For that purpose we used a client that generates only few, but data
intensive requests, and then remains idle for longer periods. In the configuration for
this experiment the average request size is 4200, the average idle period 30, the
average request period 3, and average total duration 200. Our admission control
mechanism based on the average request rate achieved a utilization value of 0.67 and
a QoS value of 0.92. A pessimistic admission strategy that admits only that many
clients that can be served if all of them issue simultaneously requests, admits at most
7 clients at a time, since 7 * 4200 = 29400 (29400 < 30000). This strategy achieved a
utilization value of 0.09 (!) and QoS value of 0.93. Note that, due to random
variations in the request size, overloads are still possible with the pessimistic

approach. Our strategy achieved a more than seven times higher utilization with the
same QoS.

4. Conclusions

In this paper, a framework for an admission control mechanism for applications
with variable data rates is introduced that is based on two steps: the admission of
pending clients and the scheduling of the single requests of admitted clients. The
admission of pending clients is based on the past client behavior. Various policies for
the scheduling of single requests are used to balance the server load. Simulations
show the benefit of the admission control framework for applications with variable
data consumption with respect to QoS and server utilization. The experimental results
can be summarized as follows:
• Using average server utilization and average server load are no adequate criteria.
• EDF achieves a substantial performance gain as compared to FCFS.
• Very short lookbacks do not work reliably.
• In general, the average client request rate behaves more stable in the long run and

achieves comparably better performance than average client consumption.
• For uneven load patterns in the number of requesting clients the lookback should

be at least over a whole period of load variation.
Currently, we are developing a distributed implementation of the admission control

framework in Java that will be used both for evaluation purposes and for the
implementation of the admission control module in a multimedia server.

Future work will include the evaluation of our approach within a multimedia
database system. We also expect to obtain data on consumption rates of real world
applications which we can use to further evaluate and to refine the admission control
framework. However, we do not expect qualitative changes in its behavior since, in
the experiments we performed, the admission control mechanism adapted very well to
quite different types of load patterns. For the admission and scheduling method we
see two important questions that need to be addressed. First, the dynamic adaptation
of the safety margin values and, second, the use of dynamic QoS adaptations in the
scheduling strategy.

References

[1] Susanne Boll, Wolfgang Klas, and Michael Löhr: Integrated Database Services for
Multimedia Presentations. In: S. M. Chung (Ed), Multimedia Information Storage and
Management, Kluwer Academic Publishers, 1996.

[2] Huang-Jen Chen, Anand Krishnamurthy, Thomas D. C. Little, and Dinesh Venkatesch: A
Scalable Video-on-Demand Service for the Provision of VCR-Like Functions. In: Proc. 2nd
Int. Conf. on Multimedia Computing and Systems, 1995.

[3] Ming-Syan Chen, Dilip D. Kandlur, and Philip S. Yu: Support for fully interactive Playout
in a disk-array-based Video Server. In: ACM Multimedia 10/1994.

[4] Asit Dan, Daniel M. Dias, Rajat Mukherjee, Dinkar Sitaram, and Renu Tewari: Buffering
and Caching in Large-Scale Video Servers. In COMPCON’ 95: Technologies for the
Information Superhighway, 1995.

[5] Jayanta K. Dey-Sircar, James D. Salehi, James F. Kurose, and Don Towsley: Providing
VCR Capabilities in Large-Scale Video Servers. In: Proc. of ACM Multimedia, 1994.

[6] Craig S. Freedman and David J. DeWitt: The SPIFFI Scalable Video-on-Demand System.
In: M. Carey and D. Schneider (Eds.): In: Proc. of Int. Conference on Management of Data
(ACM SIGMOD), 1995.

[7] Sreenivas Gollapudi and Aidong Zhang: NetMedia: A Client-Server Distributed Multimedia
Environment. In: Proc. of 3rd Int. Workshop on Multimedia Database Management
Systems, 1996.

[8]Silvia Hollfelder: Admission Control for Multimedia Applications in Client-Pull
Architectures. In Proc. of 3rd Int. Workshop on Multimedia Systems (MIS), 1997.

[9] Silvia Hollfelder, Achim Kraiss, and Thomas C. Rakow: A Client-Controlled Adaptation
Framework for Multimedia Database Systems. In Proc. of Europ. Workshop on Interactive
Distributed Multimedia Systems and Telecommunication Services (IDMS), 1997.

[10] Rune Hjelsvold, Roger Midtstraum, and Olav Sandst�: Searching and Browsing a Shared
Video Database. In: Kingsley C. Nwosu, Bhavani Thuraisingham, and P. Bruce Berra (Eds),
Multimedia Database Systems, Kluwer Academic Publishers, 1996.

[11] Guido Nerjes, Peter Muth, and Gerhard Weikum: Stochastic Performance Guarantees for
Mixed Workloads in a Multimedia Information System. In: Proc. of the IEEE Int. Workshop
on Research Issues in Data Engineering (RIDE), 1997.

[12] Banu Özden, Rajeev Rastogi, Avi Silberschatz, and P. S. Narayanan: The Fellini
Multimedia Storage Server. In: S. M. Chung (Ed): Multimedia Information Storage and
Management, Kluwer Academic Publishers, 1996.

[13] Seungyup Paek and Shih-Fu Chang: Video Server Retrieval Scheduling for Variable Bit
Rate Scalable Video. In: Proc. of the IEEE Int. Conference on Multimedia Computing and
Systems, 1996.

[14] Narasimha Reddy: Improving Latency in Interactive Video Server. In: Proc. of SPIE
Multimedia Computing and Networking Conference, 1997.

[15] Siram S. Roa, Harrick M. Vin, and Asis Tarafdar: Comparative Evaluation of Server-push
and Client-pull Architectures for Multimedia Servers. In: Nossdav 96, 1996.

[16] Prashant J. Shenoy and Harrick M. Vin: Efficient support for Scan Operations in Video
Servers. In: Proc. of the Third ACM Conference on Multimedia, 1995.

[17] Heiko Thimm and Wolfgang Klas: Delta-Sets for Optimized Reactive Adaptive Playout
Management. In Proc. 12th Int. Conference On Data Engineering (ICDE), 1996.

[18] Heiko Thimm, Wolfgang Klas, Crispin Cowan, Jonathan Walpole, and Calton Pu:
Optimization of Adaptive Data-Flows for Competing Multimedia Presentational Database
Sessions. In Proc. of IEEE Int. Conference on Multimedia Computing and Systems, 1997.

[19] Harrick M. Vin, Pawan Goyal, Alok Goyal, and Anshuman Goyal: A Statistical Admission
Control Algorithm for Multimedia Servers. In: Proc. of the ACM Multimedia, 1994.

[20] Harrick M. Vin, Alok Goyal, and Pawan Goyal: Algorithms for Designing Large-Scale
Multimedia Servers. In: Computer Communications, 1995.

[21] Stephen Wolfram: The Mathematica book, 3rd ed., Wolfram Media/Cambridge University
Press, 1996.

