83,211 research outputs found

    Stability and Performance Verification of Optimization-based Controllers

    Get PDF
    This paper presents a method to verify closed-loop properties of optimization-based controllers for deterministic and stochastic constrained polynomial discrete-time dynamical systems. The closed-loop properties amenable to the proposed technique include global and local stability, performance with respect to a given cost function (both in a deterministic and stochastic setting) and the L2\mathcal{L}_2 gain. The method applies to a wide range of practical control problems: For instance, a dynamical controller (e.g., a PID) plus input saturation, model predictive control with state estimation, inexact model and soft constraints, or a general optimization-based controller where the underlying problem is solved with a fixed number of iterations of a first-order method are all amenable to the proposed approach. The approach is based on the observation that the control input generated by an optimization-based controller satisfies the associated Karush-Kuhn-Tucker (KKT) conditions which, provided all data is polynomial, are a system of polynomial equalities and inequalities. The closed-loop properties can then be analyzed using sum-of-squares (SOS) programming

    Stochastic MPC Design for a Two-Component Granulation Process

    Full text link
    We address the issue of control of a stochastic two-component granulation process in pharmaceutical applications through using Stochastic Model Predictive Control (SMPC) and model reduction to obtain the desired particle distribution. We first use the method of moments to reduce the governing integro-differential equation down to a nonlinear ordinary differential equation (ODE). This reduced-order model is employed in the SMPC formulation. The probabilistic constraints in this formulation keep the variance of particles' drug concentration in an admissible range. To solve the resulting stochastic optimization problem, we first employ polynomial chaos expansion to obtain the Probability Distribution Function (PDF) of the future state variables using the uncertain variables' distributions. As a result, the original stochastic optimization problem for a particulate system is converted to a deterministic dynamic optimization. This approximation lessens the computation burden of the controller and makes its real time application possible.Comment: American control Conference, May, 201

    The stochastic matching problem

    Get PDF
    The matching problem plays a basic role in combinatorial optimization and in statistical mechanics. In its stochastic variants, optimization decisions have to be taken given only some probabilistic information about the instance. While the deterministic case can be solved in polynomial time, stochastic variants are worst-case intractable. We propose an efficient method to solve stochastic matching problems which combines some features of the survey propagation equations and of the cavity method. We test it on random bipartite graphs, for which we analyze the phase diagram and compare the results with exact bounds. Our approach is shown numerically to be effective on the full range of parameters, and to outperform state-of-the-art methods. Finally we discuss how the method can be generalized to other problems of optimization under uncertainty.Comment: Published version has very minor change

    Stochastic Budget Optimization in Internet Advertising

    Full text link
    Internet advertising is a sophisticated game in which the many advertisers "play" to optimize their return on investment. There are many "targets" for the advertisements, and each "target" has a collection of games with a potentially different set of players involved. In this paper, we study the problem of how advertisers allocate their budget across these "targets". In particular, we focus on formulating their best response strategy as an optimization problem. Advertisers have a set of keywords ("targets") and some stochastic information about the future, namely a probability distribution over scenarios of cost vs click combinations. This summarizes the potential states of the world assuming that the strategies of other players are fixed. Then, the best response can be abstracted as stochastic budget optimization problems to figure out how to spread a given budget across these keywords to maximize the expected number of clicks. We present the first known non-trivial poly-logarithmic approximation for these problems as well as the first known hardness results of getting better than logarithmic approximation ratios in the various parameters involved. We also identify several special cases of these problems of practical interest, such as with fixed number of scenarios or with polynomial-sized parameters related to cost, which are solvable either in polynomial time or with improved approximation ratios. Stochastic budget optimization with scenarios has sophisticated technical structure. Our approximation and hardness results come from relating these problems to a special type of (0/1, bipartite) quadratic programs inherent in them. Our research answers some open problems raised by the authors in (Stochastic Models for Budget Optimization in Search-Based Advertising, Algorithmica, 58 (4), 1022-1044, 2010).Comment: FINAL versio

    High-Dimensional Stochastic Design Optimization by Adaptive-Sparse Polynomial Dimensional Decomposition

    Full text link
    This paper presents a novel adaptive-sparse polynomial dimensional decomposition (PDD) method for stochastic design optimization of complex systems. The method entails an adaptive-sparse PDD approximation of a high-dimensional stochastic response for statistical moment and reliability analyses; a novel integration of the adaptive-sparse PDD approximation and score functions for estimating the first-order design sensitivities of the statistical moments and failure probability; and standard gradient-based optimization algorithms. New analytical formulae are presented for the design sensitivities that are simultaneously determined along with the moments or the failure probability. Numerical results stemming from mathematical functions indicate that the new method provides more computationally efficient design solutions than the existing methods. Finally, stochastic shape optimization of a jet engine bracket with 79 variables was performed, demonstrating the power of the new method to tackle practical engineering problems.Comment: 18 pages, 2 figures, to appear in Sparse Grids and Applications--Stuttgart 2014, Lecture Notes in Computational Science and Engineering 109, edited by J. Garcke and D. Pfl\"{u}ger, Springer International Publishing, 201
    • …
    corecore