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The matching problem plays a basic role in combinatorial optimization and in statistical mechanics.

In its stochastic variants, optimization decisions have to be taken given only some probabilistic

information about the instance. While the deterministic case can be solved in polynomial time, stochastic

variants are worst-case intractable. We propose an efficient method to solve stochastic matching problems

which combines some features of the survey propagation equations and of the cavity method. We test it on

random bipartite graphs, for which we analyze the phase diagram and compare the results with exact

bounds. Our approach is shown numerically to be effective on the full range of parameters, and to

outperform state-of-the-art methods. Finally we discuss how the method can be generalized to other

problems of optimization under uncertainty.

DOI: 10.1103/PhysRevLett.106.190601 PACS numbers: 05.10.Ln, 75.10.Nr

One important aspect of the statistical physics ap-
proaches to disordered systems is the broad range of their
interdisciplinary applications. Systems with frustration,
structural disorder, and uncertainties are in fact ubiquitous
in many fields of science and their study has greatly
benefited from the algorithms which have emerged at the
interface between statistical physics of disordered systems
and computer science.

One of the key problems has been the so-called match-
ing problem [1], which for the case of random instances
was among the first to be solved by statistical physics
methods [2] and later by rigorous mathematical techniques
[3]. Matching is a constituent part of many problems in
different fields, ranging from physics (dimer models [4]) to
computer science (vision [5]), economics (auctions [6]),
and computational biology (pattern matching [7]). It can be
formulated simply (given a graph, find the largest possible
subset of edges without common vertices), and is of poly-
nomial complexity [8].

The stochastic version of matching is a basic example of
optimization under uncertainty [9,10], which consists in
finding the minimum of a cost function depending on
some stochastic parameters, given just some partial infor-
mation about their value. Most real-world optimization
problems involve uncertainty. The precise value of some
of the parameters is often unknown, either because they are
measured with insufficient accuracy or because they are
stochastic in nature and determined only after some deci-
sions have been taken. The objective of the optimization
process is thus to find solutions which are optimal in some
probabilistic sense, a fact which introduces fundamental
conceptual and computational challenges. Stochastic mat-
ching problems are in fact known to belong to higher
computational complexity classes ranging from NP-hard
to PSPACE-complete [8] depending on how stochasticity is
introduced.

Here we apply a new method for stochastic optimization
problems to the two-stage matching problem. This new
method, which builds on the formalism of survey propaga-
tion (SP) [11–13] and of the cavity method, is partly ana-
lytic and allows us to optimize the expectation of a
stochastic cost function by estimating the statistics of its
minima, without resorting to explicit (and costly) sampling
techniques.
In the following we define the problem, describe the

method we propose for solving it, and discuss its phase
diagram. We find that for large connectivity the problem
enters a computationally ‘‘hard’’ phase where standard
heuristics fail. In particular, we perform a detailed com-
parison with stochastic programming using state-of-the-art
solvers. While our method has a good performance in both
phases, stochastic programming turns out to be impracti-
cally slow in the region of large connectivity, and to have a
significantly worse performance than our method in the
region of small connectivity. Finally, we report about ap-
plications to problems which are NP-hard also in their
deterministic setting.
The two-stage stochastic matching problem.—We study

a variant of the problem introduced in [14–16], where
it is shown to be NP-complete. We are given a bipa-
rtite graph G ¼ ðL; R; EÞ with L further partitioned in L1

and L2, and a set of independent probabilities p ¼
fpl2 2�0; 1½; l2 2 L2g. The nodes in L1 are deterministic,

while the nodes in L2 are stochastic; l2 2 L2 will be
available for matching with probability pl2 . In the first

stage the nodes in L1 are matched, knowing only the
probabilities p. In the second stage, the available nodes
in L2 are extracted according to p and they are matched.
The objective is to maximize the size of the final matching.
We introduce two sets of binary variables, x1 ¼ fxl1r 2f0; 1g; ðl1rÞ 2 E: l1 2 L1g and x2 ¼ fxl2r 2 f0; 1g; ðl2rÞ 2

E: l2 2 L2g, to represent the possibleM � E, with xlr ¼ 1
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iff ðlrÞ 2 M. We also introduce a set of binary parameters
t ¼ ftl2 2 f0; 1g; l2 2 L2gwith tl2 ¼ 1 iff l2 is available for

matching in the second stage. We define an energy function
Eðx1;x2; tÞ counting the number of unmatched vertices
among the available ones. The problem consists in finding

x �
1 ¼ argmin

x1

Etmin
x2

Eðx1;x2; tÞ (1)

subject to the matching constraints
P

l2@rxlr �
1ð8 r 2 RÞ, Pr2@l1

xl1r � 1ð8 l1 2 L1Þ, and
P

r2@l2
xl2r �

t2ð8 l2 2 L2Þ, where @r ¼ fl 2 L: ðlrÞ 2 Eg and similarly
for @l1 and @l2.

The main difficulty of the problem stems from the fact
that Etminx2

Eðx1;x2; tÞ has a highly nontrivial dependence
on x1. In order to overcome this difficulty, we shall use the
cavity method to first compute the minimum energy rela-
tive to x2 for fixed x1 and t, and then to compute the
average over t of this quantity.

Minimizing relative to x2 for fixed x1 and t.—Once x1 is
determined and the stochastic parameters t are set, it is
straightforward to find the optimal x2. A possible way of
doing this is by Max-Sum (MS), as discussed in [17]. We
introduce the cavity fields ul2r propagating from l2 2 L2 to

r 2 R and hl2r propagating in the opposite direction. The

MS equations are ul2r ¼ �max½�1;maxr02@l2nrhl2r0 � and
hl2r ¼ �max½�1;maxl0

2
2@rnl2ul2r�. These equations can

be solved by iteration, and their solution allows us to
compute E�ðx1; tÞ ¼ minx2

Eðx1;x2; tÞ, which is found

to be

E1ðx1Þ�
X

l22L2

max½�1;max
r2@l2

hl2r�

þX
r2R

max½�1;max
l22@r

ul2r�þ
X

ðl2rÞ2E:l22L2

max½0;hl2rþul2r�;

(2)

where E1ðx1Þ is the energy contribution of L1 nodes and is
constant relative to x2.

A difficulty can arise if the solution is not unique and
different solutions have different energies. In this case,
only one of the solutions will correspond to the actual
minimum. The following argument (confirmed by numeri-
cal investigations) suggests that this is not a problem.

The MS equations are closed for cavity fields with
support in f�1; 1g, and also for cavity fields with support
in f�1; 0; 1g. Solutions with other supports can exist for
finite size instances and for appropriate initial conditions,
but we have verified numerically that they disappear in the
infinite size limit, so we shall ignore them.

Let us consider (as in [17] for the nonbipartite case)
the uniform ensemble of instances with Poissonian
degree distribution and average degree c, in the infinite
size limit. The average fraction puþ of cavity fields ul2r
that take the value þ1 satisfies the equation puþ ¼
exp½�c expð�cpuþÞ�. Also (1� pu�), phþ, and (1� ph�)
must satisfy the same equation. In the case of bipartite
graphs phþ can be different from puþ (and ph� from pu�),

and this is a notable difference relative to the nonbi-
partite case. In any case, phþ and ph� are determined from
puþ and pu�.
For c < e the equation admits a unique solution, which

implies that puþ ¼ ð1� pu�Þ and phþ ¼ ð1� ph�Þ, meaning
that the cavity fields have support over f�1; 1g. This unique
distribution of cavity fields will correspond to an essen-
tially unique fixed point of MS; it is possible that some
disconnected components (with finite size) admit several
fixed points, but the fixed point of the OðNÞ component
(which dominates the energy) is unique. This is confirmed
by numerical simulations.
For c > e, the situation is more complicated: the equa-

tion x ¼ exp½�c expð�cxÞ� admits 3 solutions, and puþ
can be different from 1� pu� (and phþ from 1� ph�).
The condition puþ þ pu� � 1 implies that puþ � 1� pu�,
so the total number of solutions will be at most 6. Only
some of these possible solutions will correspond to positive
values of the energy (and the other ones can be dismissed),
and only one of them will be the correct one. We have
studied in detail the case for c ¼ 5: the number of solutions
corresponding to positive energy is 3, and remarkably the
value of the energy is the same for all of them. One of
the solutions has support on f�1; 0; 1g, corresponding to
the 1-RSB case in the nonbipartite case [17], and the
remaining two have support in f�1; 1g.
On finite size instances, we have verified numerically

that these 3 fixed points can always be obtained by choos-
ing appropriate initial conditions. Their energies are close
to each other, but not exactly the same, and the correct one
is always the largest.
We conclude from this discussion that the energy com-

puted from (2) is correct for instances extracted with
Poissonian degree distributions with c < e and approxi-
mately correct for instances with c > e. It must be noted,
however, that the reduced instance to be solved in the
second stage is not necessarily Poissonian, as the proba-
bility that a node in R is matched to a node in L1 can be
correlated to its degree. Moreover, it is possible that some
small disconnected components have multiple solutions,
which combined with the 3 solutions of the giant compo-
nent give a larger number of fixed points, but these will
always have energies that are approximately equal.
We shall neglect these possible issues, comforted by our
numerical results.
In the following we shall give the explicit computations

for the case where the support of u and h is f�1; 1g, but not
for the case where the support is f�1; 0; 1g. Even though
we have implemented both cases, we have verified that the
energies of the solutions obtained are almost exactly the
same for all connectivities; however, the expressions for
case f�1; 0; 1g are much more complicated, and the run-
ning times are much longer.
Computing the average relative to t.—To proceed with

the computation of the average in (1), we note that the
energy (2) is a sum of local terms over x1, h, and u, so that
its average can be computed with a procedure similar to SP
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[11–13]. This corresponds to a simplified belief propaga-
tion for the variables x1, h, u, and t, where x1, h, and u are
subject to hard constraints implementing the matching
conditions and the MS update equations, and where t are
subject to external fields that force them to take the
marginal pðtÞ ¼ Q

l22L2
P½tl2 ¼ 1� ¼ Q

l22L2
pl2 .

We introduce the probabilities Ulr ¼ Pt½ulr ¼ 1� prop-
agating from left to right, andHlr ¼ Pt½hlr ¼ 1� propagat-
ing from right to left. The SP-like equations for Ulr

and Hlr are

Ulr ¼ pl

Y
r0�r

ð1�Hlr0 Þ; Hlr ¼
Y
l0�l

ð1�Ul0rÞ: (3)

Equation (3) can be derived by observing that Ulr ¼
P½tl ¼ 1�P½�maxð�1;maxr0�rhlrÞ ¼ 1jtl ¼ 1�, and
similarly for Hlr.

The average minimum energy is then computed by
averaging (2) over t using Ulr ¼ Pt½ulr ¼ 1�, and Hlr ¼
Pt½hlr ¼ 1�:
E�ðx1Þ ¼ EtE�ðx1; tÞ

¼ X
l

pl

�
2
Y
r

ð1�HlrÞ � 1

�

þX
r

�
2
Y
l

ð1�UlrÞ � 1

�
þ 2

X
ðlrÞ

HlrUlr; (4)

where the term E1ðx1Þ is included and represented with the
convention Ulr � Hlr � xlr 8 l 2 L1. For example, the
contribution from a vertex l 2 L2 is þ1 if the vertex is
present and if all the incoming values of hlr are�1, which
happens with probability pl

Q
rð1�HlrÞ; the same contri-

bution will be �1 if the vertex is present and if there is at
least one incoming value of hlr equal toþ1, which happens
with probability pl½1�

Q
rð1�HlrÞ�. The average of the

contribution is then pl½2
Q

rð1�HlrÞ � 1�. The average of
all remaining terms is computed similarly.

Notice that the ‘‘naive’’ application of belief propaga-
tion to the problem defined over the variables x1, h, u, and
t (subject to the appropriate external fields), in which
one would consider the pairs (hlr, ulr) as single joint
variables, with cavity probabilities Pl!r½ðhlr; ulrÞ� and
Pr!l½ðhlr; ulrÞ�, would lead to the wrong result for c > e.
In fact, when the number of fixed points of the MS equa-
tions depends on t, the naive procedure would give to each
of them a weight proportional to pðtÞ while the correct
weight is pðtÞ=nt, where nt is the number of fixed points
corresponding to a given t and pðtÞ is its probability.
This is achieved with the SP procedure we introduced.

Minimizing relative to x1.—We can then proceed to
minimize this energy, using again MS. We consider the
messages Ulr and Hlr as variables of a new problem and
introduce the cavity messagesUlrðUÞ¼ logP½Ulr¼U� pro-
pagating from left to right and H lrðHÞ¼ logP½Hlr¼H�
from right to left. Notice that if l 2 L1, we will haveUlr ¼
xlr 2 f0; 1g satisfying the matching constraints

P
rUlr � 1,

while if l 2 L2 we will have Ulr 2 ½0; 1� satisfying the SP

update Eq. (3), and similarly for Hlr. The continuous
distributions over messages associated to x2 variables can
be discretized for numerical purposes.
The update equations for the messages Ulr and H lr

are obtained as usual for MS, i.e., UlrðUlrÞ¼
max½�ElrðUlr;Hlr0 Þþ

P
r0�rH lr0 ðHlr0 Þ�, where ElrðUlr;

Hlr0 Þ is the sum of the terms in (4) containing Ulr, and
where the maximization is over the values of the incoming
messages fHlr0 : r

0 � rg subject to the appropriate con-
straints; the update of H lrðHlrÞ is obtained similarly. We
do not report these equations for brevity. All these max-
imizations can be performed efficiently by exploiting their
associativity. In order to improve the convergence of the
algorithm we also introduce a reinforcement term for the
messages associated to edges (l1r) with l1 2 L1 [18,19].
These equations can be solved by iteration starting with

uniform initial conditions. These are the only message
passing equations that need to be solved numerically. At
the fixed point, the values of Ulr and H lr provide
the optimal values of x1 by setting xlr ¼ 1 if and only if
½Ulrð1Þ �Ulrð0Þ� þ ½H lrð1Þ �H lrð0Þ� þ 2> 0. Once
x1 has been assigned and the realization of t has been
extracted it is easy to perform the minimization over x2.
Numerical results and comparison with other meth-

ods.— Figure 1 shows some results obtained with the
SP-derived algorithm in the case where h and u have
support on f�1; 1g. The case where h and u have support
on f�1; 0; 1g gives results that are very close to these.
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FIG. 1 (color online). Average energy density vs average con-
nectivity of L nodes. The four lines correspond (from top to
bottom) to a greedy algorithm (assign x1 as if t ¼ 0), to a
‘‘smart’’ greedy algorithm (find the maximum-weight matching
on the full instance with weights on the nodes equal to their
probability to be available and assign x1 accordingly), to the SP-
derived algorithm (with h and u with support on f�1; 1g), and to
the offline lower bound of the optimum (with prior knowledge of
t). The vertical line is at c ¼ e. Each point is an average of 50 to
100 instances, with error bars smaller than the point sizes.
The instances have jL1j ¼ 1000 and jL2j ¼ jRj ¼ 2000, with
pl distributed uniformly in �0; 1�.
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In order to give quantitative evidence of the poten-
tialities of our approach for real-world problems, we
have made two final studies: on the one hand we have
compared the performance with state-of-the art method,
and on the other we have applied the method to prob-
lems which are NP hard even in the deterministic set-
ting. In both cases, the results perfectly corroborate our
expectations. (i) We compared the SP-derived algorithm
with two other standard approaches. The first is a
greedy strategy solving a weighted matching based on
pðtÞ. Even though it is very fast, its solutions are much
worse (Fig. 1). The second is called stochastic program-
ming. It consists in extracting � realizations t1; . . . ; t� �
pðtÞ and then solving minx1

P�
i¼1 minxi

2
Eðx1;x

i
2; t

iÞ ¼
minx1;x

1
2
;...;x�

2

P�
i¼1 Eðx1;x

i
2; t

iÞ using OR techniques like

linear relaxations complemented with branch and bound.
Note that this minimization problem is NP complete
[14]. We employed two well-known tools for this task.
iLog CPLEX, a commercial, industrial strength linear/
integer programming software from IBM, and
LP_SOLVE, an open source alternative. Although qualita-

tively similar, results with LP_SOLVE were uniformly
worse than the ones of CPLEX, so we will not report
them. We observe that the results depend strongly on �
and on the average degree c (see Fig. 2). As expected,
for fixed c the quality of the solution improves as �
increases, but the running time becomes larger. For c up
to around 2.5, CPLEX seems to be able to solve the
problem in polynomial time in both � and N, but either
it is much slower than the SP-derived algorithm or it
gives a significantly higher energy (depending on �).
For c ¼ 3:5 and above, the time scaling of CPLEX

worsens significantly: for � ¼ 10, the running time in-
creases dramatically with jL1j, and for jL1j ¼ 1000
CPLEX was not able to attain an optimum under a cutoff

of 24 hours even for � ¼ 2. Note that the SP-derived
algorithm employs around 1 min. (ii) The method was
also successfully applied to a stochastic version of the
maximum-weight independent set problem [20], when
the node’s contribution to the total weight is uncertain
but its distribution is known. This is a relevant problem
in communication networks with some interference con-
straints [21]. Details will be given in [22].
R. Z. acknowledges the EU Grant No. 265496.
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FIG. 2 (color online). Each point represents an instance with
jL2j ¼ jRj ¼ 2jL1j and pl distributed uniformly in �0; 1�. Top
left: Energy vs number of samples � obtained by CPLEX for c ¼
2:5 and jL1j ¼ 1000, compared with the one computed by the
SP-derived algorithm. The energies and error bars were com-
puted by resampling over 10 000 samples. Bottom left: CPLEX

time (seconds) vs number of samples in the same instances. Top
right: CPLEX time as a function of jL1j for several values of c and
� ¼ 10. Bottom right: Best fit of CPLEX times in bottom left with
fðxÞ ¼ bxa gives a ’ 2:35.
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