
Stability and Performance Verification of
Optimization-based Controllers

Milan Korda and Colin N. Jones∗

January 15, 2015

Abstract

This paper presents a method to verify closed-loop properties of optimization-
based controllers for deterministic and stochastic constrained polynomial
discrete-time dynamical systems. The closed-loop properties amenable to the
proposed technique include global and local stability, performance with respect
to a given cost function (both in a deterministic and stochastic setting) and
the L2 gain. The method applies to a wide range of practical control problems:
For instance, a dynamical controller (e.g., a PID) plus input saturation, model
predictive control with state estimation, inexact model and soft constraints, or
a general optimization-based controller where the underlying problem is solved
with a fixed number of iterations of a first-order method are all amenable to
the proposed approach.

The approach is based on the observation that the control input generated
by an optimization-based controller satisfies the associated Karush-Kuhn-
Tucker (KKT) conditions which, provided all data is polynomial, are a system
of polynomial equalities and inequalities. The closed-loop properties can then
be analyzed using sum-of-squares (SOS) programming.

1 Introduction

This paper presents a computational approach to analyze closed-loop properties of
optimization-based controllers for constrained polynomial discrete-time dynamical
systems. Throughout the paper we assume that we are given an optimization-
based controller that at each time instance generates a control input by solving
an optimization problem parametrized by a function of the past measurements of
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the controlled system’s output, and we ask about closed-loop properties of this
interconnection. This setting encompasses a wide range of control problems including
the control of a polynomial dynamical system by a linear controller (e.g., a PID) with
an input saturation, output feedback model predictive control with inexact model
and soft constraints, or a general optimization-based controller where the underlying
problem is solved approximately with a fixed number of iterations of a first-order1

optimization method. Importantly, the method verifies all KKT points; hence it can
be used to verify closed-loop properties of optimization-based controllers where the
underlying, possibly nonconvex, optimization problem is solved with a local method
with guaranteed convergence to a KKT point only.

The closed-loop properties possible to analyze by the approach include: global and
local stability, performance with respect to a discounted infinite-horizon cost (where
we provide polynomial upper and lower bounds on the cost attained by the controller
over a given set of initial conditions, both in a deterministic and a stochastic setting),
the L2 gain from a given disturbance input to a given performance output (where
we provide a numerical upper bound).

The main idea behind the presented approach is the observation that the KKT
system associated to an optimization problem with polynomial data is a system of
polynomial equalities and inequalities. Consequently, provided that suitable con-
straint qualification conditions hold (see, e.g., [13]), the solution of this optimization
problem satisfies a system of polynomial equalities and inequalities. Hence, the closed-
loop evolution of a polynomial dynamical system controlled by an optimization-based
controller solving at each time step an optimization problem with polynomial data
can be seen as a difference inclusion where the successor state lies in a set defined
by polynomial equalities and inequalities. This difference inclusion is then analyzed
using sum-of-squares (SOS) techniques (see, e.g., [6, 11] for introduction to SOS
programming).

The approach is based on the observation of Primbs [15] who noticed that the KKT
system of a constrained linear-quadratic optimization problem is a set of polynomial
equalities and inequalities and used the S-procedure (see, e.g., [1]) to derive sufficient
linear matrix inequality (LMI) conditions for a given linear MPC controller to be
stabilizing. In this work we significantly extend the approach in terms of both
the range of closed-loop properties analyzed and the range of practical problems
amenable to the method. Indeed, our approach is applicable to general polynomial
dynamical systems, both deterministic and stochastic, and allows the analysis not
only of stability but also of various performance measures. The approach is not only
applicable to an MPC controller with linear dynamics and a quadratic cost function
as in [15] but also to a general optimization-based controller, where the optimization

1By a first order optimization method we mean a method using only function value and gradient
information, e.g., the projected gradient method (see Section 4.4).

2



problem may not be solved exactly, encompassing all the above-mentioned control
problems.

This work is a continuation of [5] where the approach was used to analyze the
stability of optimization-based controllers where the optimization problem is solved
approximately by a fixed number of iterations of a first order method. The results
of [5] are summarized in Section 4.4 of this paper as one of the examples that fit in
the presented framework.

The paper is organized as follows. Section 2 gives a brief introduction to SOS pro-
gramming. Section 3 states the problem to be solved. Section 4 presents a number of
examples amenable to the proposed method. Section 5 presents the main verification
results: Section 5.1 on global stability, Section 5.2 on local stability, Section 5.3 on
performance analysis in a deterministic setting, Section 5.4 on performance analysis
in a stochastic setting and Section 5.5 on the analysis of the L2 gain in a robust
setting. Computational aspects are discussed in Section 6. Numerical examples are
in Section 7 and some proofs are collected in the Appendix.

2 Sum-of-squares programming

Throughout the paper we will rely on sum-of-squares (SOS) programming, which
allows us to optimize, in a convex way, over polynomials with nonnegativity con-
straints imposed over a set defined by polynomial equalities and inequalities (see, e.g.,
[11, 6] for more details on SOS programming). In particular we will often encounter
optimization problems with constraints of the form

LV (x) ≥ 0 ∀x ∈ K, (1)

where L is a linear operator (e.g., a simple addition or a composition with a fixed
function), V : Rn → R a polynomial and

K = {x ∈ Rn | g(x) ≥ 0, h(x) = 0},

where the functions g : Rn → Rng and h : Rn → Rnh are vector polynomials (i.e.,
each component is a polynomial). A sufficient condition for (1) to be satisfied is

LV = σ0 + g>σ + h>p = σ0 +

ng∑
i=1

σigi +

nh∑
i=1

pihi, (2)

where σ0 and σi, i = 1, . . . , ng, are SOS polynomials and pi, i = 1, . . . , nh, are
arbitrary polynomials. A polynomial σ is SOS if it can be written as

σ(x) = β(x)>Qβ(x), Q � 0, (3)
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where β(x) is a vector of polynomials and Q � 0 signifies that Q is a positive
semidefinite matrix. The condition (3) trivially implies that σ(x) ≥ 0 for all x ∈ Rn.
Importantly, the condition (3) translates to a set of linear constraints and a positive
semidefiniteness constraint and therefore is equivalent to a semidefinite programming
(SDP) feasibility problem. In addition, the constraint (2) is affine in the coefficients
of V , σ and p; therefore (2) also translates to an SDP feasibility problem and,
crucially, it is possible to optimize over the coefficients of V (as long as they are
affinely parametrized in the decision variables) subject to the constraint (2) using
semidefinite programming.

In the rest of the paper when we say that a constraint of the form (1) is replaced
by sufficient SOS constraints, then we mean that (1) is replaced with (2).

In addition we will often encounter optimization problems with objective functions
of the form

min/max

∫
X

V (x) dx, (4)

where V is a polynomial and X a simple set (e.g., a box). The objective function is lin-
ear in the coefficients of the polynomials V . Indeed, expressing V (x) =

∑nβ
i=1 viβi(x),

where (βi)
nβ
i=1 are fixed polynomial basis functions and (vi)

nβ
i=1 the corresponding

coefficients, we have∫
X

V (x) dx =

nβ∑
i=1

vi

∫
X

βi(x) dx =

nβ∑
i=1

vimi,

where the moments mi :=
∫
X
βi(x) dx can be precomputed (in a closed form for

simple sets X). We see that the objective (4) is linear in the coefficients (vi)
nβ
i=1 and

hence optimization problems with objective (4) subject to the constraint (1) enforced
via the sufficient constraint (2) translate to an SDP.

3 Problem statement

We consider the nonlinear discrete-time dynamical system

x+ = fx(x, u), (5a)

y = fy(x), (5b)

where x ∈ Rnx is the state, u ∈ Rnu the control input, x+ ∈ Rnx the successor state,
fx : Rnx × Rnu → Rnx a transition mapping and fy : Rnx → Rny an output mapping.
We assume that each component of fx and fy is a multivariate polynomial in (x, u)
and x, respectively.

We assume that the system is controlled by a given set-valued controller

u ∈ κ(Ks), (6)
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where κ : Rnθ → Rnu is polynomial and

Ks := {θ ∈ Rnθ |∃λ ∈ Rnλ s.t. g(s, θ, λ) ≥ 0, h(s, θ, λ) = 0}, (7)

where each component of the vector-valued functions g : Rns × Rnθ × Rnλ → Rng

and h : Rns × Rnθ × Rnλ → Rnh is a polynomial in the variables (s, θ, λ). The set
Ks is parametrized by the output of a dynamical system

z+ = fz(z, y), (8a)

s = fs(z, y), (8b)

where fz : Rnz ×Rny → Rnz and fs : Rnz ×Rny → Rns are polynomial. The problem
setup is depicted in Figure 1. In the rest of the paper we develop a method to analyze
the closed-loop stability and performance of this interconnection. Before doing that
we present several examples which fall into the presented framework.

controlScheme.pdf

Figure 1: Control scheme

4 Examples

The framework considered allows for the analysis of a large number of practical
control scenarios. The common idea is to write the control input u as the output
of an optimization problem with polynomial data parametrized by the state of the
dynamical system (8). The control input u then belongs to the associated KKT
system (provided that mild regularity conditions are satisfied) which is of the form (7).

4.1 Polynomial dynamical controller + input saturation

Any polynomial dynamical controller (e.g., a PID controller) plus an input saturation
can be written in the presented form provided that the input constraint set is defined
by finitely many polynomial inequalities satisfying mild constraint qualification
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conditions (see, e.g., [13]). Indeed, regarding z as the state and s as the output of
the controller and generating u according to u = projU(s), where

projU(s) = min
θ∈U

1

2
‖θ − s‖22 (9)

is the Euclidean projection of s on the constraint set U . Assuming that the input
constraint set is of the form

U = {v ∈ Rnu | gU(v) ≥ 0}, (10)

where gU : Rnu → RngU has polynomial entries, the KKT conditions associated to
the optimization problem (9) read

θ − s−∇gU(θ)λ = 0 (11a)

λ>θ = 0 (11b)

λ ≥ 0 (11c)

gU(θ) ≥ 0, (11d)

where λ ∈ RnU is the vector of Lagrange multipliers associated with the constraints
defining U and ∇gU is the transpose of the Jacobian of gU (i.e., [∇gU ]i,j =

∂[gU ]j
∂xi

).
Assuming that constraint qualification conditions hold such that any minimizer of (9)
satisfies the KKT conditions (11) we conclude that

u = projU(s) ∈ κ(Ks)

with κ being the identity (i.e., κ(θ) = θ),

h(s, θ, λ) =

[
θ − s−∇gU(θ)λ

λ>θ

]
and

g(s, θ, λ) =

[
λ

gU(θ)

]
,

where h and g are polynomials in (s, θ, λ) as required.
Note that the description of the input constraint set (10) is not unique. For

example, if the input constraint set is [−1, 1], then the function gU can be

gU(θ) = (1− θ)(1 + θ) (12)

or

gU(θ) =

[
1− θ
1 + θ

]
(13)
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or any odd powers of the above. Depending on the particular description, the
constraint qualification conditions may or may not hold. It is therefore important to
choose a suitable description of U which is both simple and such that the constraint
qualification conditions hold. We remark that in the case of U = [−1, 1] both (12)
and (13) satisfy these requirements.

Note also that the KKT system (11) may be satisfied by points which are not
global minimizers of (9) if the set U is nonconvex; this is an artefact of the presented
method and cannot be avoided within the presented framework. We note, however,
that the input constraint set U is in most practical cases convex (note that the
concavity of the components of gU is not required; what matters is the convexity of
the set U defined by gU [7]).

4.2 Output feedback nonlinear MPC with model mismatch
and soft constraints

This example shows how to model within the presented framework a nonlinear MPC
controller with state estimation, a model mismatch2, soft constraints and no a priori
stability guarantees (enforced, e.g., using a terminal penalty and/or terminal set)
and possibly only locally optimal solutions delivered by the optimization algorithm.
In this case the system (8) is an estimator of the state of the dynamical system (5)
and in each time step the following optimization problem is solved

minimize
û,x̂,ε

ls(ε) +
∑N

i=0 li(s, x̂i, ûi)

subject to x̂i+1 = f̂(x̂i, ûi), i = 0, . . . , N − 1
a(s, x̂, û) + ε ≥ 0
b(s, x̂, û) = 0,

(14)

where x̂ = (x̂0, . . . , x̂N), û = (û0, . . . , ûN−1), ε = (ε1, . . . , εnε) are slack variables for
the inequality constraints, f̂ is a polynomial model of the true transition mapping fx,
ls is a polynomial penalty for violations of the inequality constraints, li, i = 0, . . . , N ,
are polynomial stage costs and a and b (vector) polynomial constraints parametrized
by the state estimate s produced by (8). If the dimension of the state estimate s is
equal to the dimension of the state of the model x̂ (which we do not require), then
most MPC formulations will impose x̂0 = s, which is encoded by making one of the
components of b equal to x̂0 − s. The formulation (14) is, however, not restricted to

2In this example we assume that we know the true model of the system but in the MPC controller
we intentionally use a different model (e.g., we use a linearized or otherwise simplified model for
the sake of computation speed); the true model is used only to verify closed-loop properties of the
true model controlled by the MPC controller. See Section 5.5 for the case where the true model is
not known exactly even for the verification purposes and the model mismatch is captured by an
exogenous disturbance.
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this scenario and allows arbitrary dependence of the constraints (along the whole
prediction horizon) on the state estimate s. The control input applied to the system
is then u = û?0, where û?0 is the first component of any vector û? optimal in (14).

The KKT system associated to (14) reads

∇x̂,û,εL(s, x̂, û, ε, λ) = 0 (15a)

λ>a a(s, x̂, û) = 0 (15b)

b(s, x̂, û) = 0 (15c)

λa ≥ 0 (15d)

a(s, x̂, û) ≥ 0, (15e)

where λ := (λa, λb, λ
0
f̂
, . . . , λN−1

f̂
) and

L(s, x̂, û, ε, λ) := ls(ε) +
N∑
i=0

li(s, x̂i, ûi)− λ>a (a(s, x̂, û)+ ε)

+ λ>b b(s, x̂, û) +
N−1∑
i=0

λi
f̂
(x̂i+1 − f̂(x̂i, ûi))

is the Lagrangian of (14). The KKT system (15) is a system of polynomial equalities
and inequalities. Consequently, setting

θ := (û, x̂, ε), κ(θ) = û0

and assuming that constraint qualification conditions hold such that every optimal
solution to (14) satisfies the KKT condition (15), there exist polynomial functions
h(s, θ, λ) and g(s, θ, λ) such that û?0 ∈ κ(Ks) for every û?0 optimal in (14).

Finally, let us mention that, provided suitable constraint qualification conditions
hold, not only every globally optimal û?0 will satisfy the KKT system but also
every locally optimal solution to (14) and every critical point of (14) will; hence the
proposed method can be used to verify stability and performance properties even if
only local solutions to (14) are delivered by the optimization algorithm.

Remark 1. Note that the situation where the optimization problem (14) is not
solved exactly can be handled as well. One way to do so is to include an auxiliary
variable δ capturing the inaccuracy in the solution, either in the satisfaction of the
KKT system (15) or directly as an error on the delivered control action û0 (e.g.,
defining κ(θ) = û0(1 + δ) with θ = (û, x̂, ε, δ)) and imposing |δ| ≤ ∆, where ∆ > 0
is a known bound on the solution accuracy. If the solution inaccuracy is due to a
premature termination of a first-order optimization method used to solve (14), a more
refined analysis can be carried out within the presented framework; this is detailed in
Section 4.4.

8



4.3 General optimization-based controller

Clearly, there was nothing specific about the MPC structure of the optimization
problem solved in the previous example and therefore the presented framework can be
used to analyze arbitrary optimization-based controllers which at each time step solve
an optimization problem parametrized by the output of the dynamical system (8):

minimize
θ∈Rnθ

J(s, θ)

subject to a(s, θ) ≥ 0
b(s, θ) = 0,

(16)

with J , a and b polynomial. The associated KKT system reads

∇θJ(s, θ)−∇θa(s, θ)λa +∇θb(s, θ)λb = 0 (17a)

λ>a a(s, θ) = 0 (17b)

λa ≥ 0 (17c)

a(s, θ) ≥ 0 (17d)

b(s, θ) = 0, (17e)

which is a system of polynomial equalities and inequalities in (s, θ, λ), where λ =
(λa, λb) and hence can be treated within the given framework. In particular the
functions h and g defining the set Ks read

h(s, θ, λ)=

∇θJ(s, θ)−∇θa(s, θ)λa +∇θb(s, θ)λb
λ>a a(s, θ)
b(s, θ)


and

g(s, θ, λ) =

[
λa

a(s, θ)

]
.

See Remark 1 for the situation where the problem (16) is not solved exactly.

4.4 Optimization-based controller solved using a fixed num-
ber of iterations of a first order method

The presented framework can also handle the situation where the optimization
problem (16) is solved using an iterative optimization method, each step of which
is either an optimization problem or a polynomial mapping. This scenario was
elaborated on in detail in [5], where it was shown that the vast majority of first
order optimization methods fall into this category. Here we present the basic idea on
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one of the simplest optimization algorithms, the projected gradient method. When
applied to problem (16), the iterates of the projected gradient method are given by

θk+1 = projS(θk − η∇θJ(s, θk)), (18)

where projS(·) denotes the Euclidean projection operator on the constraint set

S = {θ ∈ Rnθ | a(s, θ) ≥ 0, b(s, θ) = 0}

and η > 0 is a step size. The update formula (18) can be decomposed into two
steps: step in the direction of the negative gradient and projection on the constraint
set. The first step is a polynomial mapping and the second step is an optimization
problem. Indeed, equation (18) can be equivalently written as

θk+1 = arg min
θ∈Rnθ

1
2
‖θ − (θk − η∇θJ(s, θk))‖22

s.t. a(s, θ) ≥ 0

b(s, θ) = 0.

(19)

For each k ∈ {0, 1, . . .}, the KKT system associated to (19) reads

θk+1 − (θk − η∇θJ(s, θk)) +∇θ a(s, θk+1)λ
k+1
a

+∇θ b(s, θk+1)λ
k+1
b = 0 (20a)

b(s, θk+1) = 0 (20b)

a(s, θk+1)
>λk+1

a = 0 (20c)

a(s, θk+1) ≥ 0 (20d)

λk+1
a ≥ 0, (20e)

which is a system of polynomial equalities and inequalities. Note in particular the
coupling between θk and θk+1 in equation (20b). Assuming we apply M steps of
the projected gradient method, the last iterated θM is therefore characterized by M
coupled KKT systems of the form (20), which is a system of polynomial equalities
and inequalities as required by the proposed method.

Other optimization methods, in particular most of the first order methods (e.g.,
fast gradient method [9], AMA [18], ADMM [2] and their accelerated versions [3]),
including local non-convex methods (e.g., [4]), and some of the second order methods
(e.g., the interior point method with exact line search) are readily formulated in this
framework as well; see [5] for more details on first-order methods.

5 Closed-loop analysis

In this section we describe a method to analyze closed-loop properties of the inter-
connection depicted in Figure 1 and described in Section 3. First, notice that the
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closed-loop evolution is governed by the difference inclusion

x+ ∈ fx(x, κ(Ks)), (21a)

z+ = fz(z, fy(x)). (21b)

Since all problem data is polynomial and the set Ks is defined by polynomial
equalities and inequalities it is possible to analyze stability and performance using
sum-of-squares (SOS) programming. This is detailed next.

We will use the following notation:

ĥ(x, z, θ, λ) := h(fs(z, fy(x)), θ, λ) (22a)

ĝ(x, z, θ, λ) := g(fs(z, fy(x)), θ, λ). (22b)

For the rest of the paper we impose the following standing assumption:

Assumption 1. The set Ks is nonempty for all s ∈ Rs.

Assumption 1 implies that the control input (6) is well defined for all s ∈ Rns .

5.1 Stability analysis – global

A sufficient condition for the state x of the differential inclusion (21) to be stable is
the existence of a function V satisfying

V (x+, z+, θ+, λ+)− V (x, z, θ, λ) ≤ −‖x‖22 (23a)

V (x, z, θ, λ) ≥ ‖x‖22 (23b)

for all
(x, z, θ, λ, x+, z+, θ+, λ+) ∈ K,

where

K = {(x, z, θ, λ, x+, z+, θ+, λ+) | x+ = f(x, κ(θ))

ĥ(x, z, θ, λ) = 0, ĝ(x, z, θ, λ) ≥ 0, ĥ(x+, z+, θ+, λ+) = 0,

ĝ(x+, z+, θ+, λ+) ≥ 0, z+ = fz(z, fy(x))}. (24)

These equations require that a Lyapunov function V exists which decreases on
the basic semialgebraic set K implicitly characterizing the closed-loop evolution (21).
Therefore, we can tractably seek a Lyapunov function for system (21) by restricting
V to be a polynomial of a pre-defined degree and replacing the inequalities (23) by
sufficient SOS conditions according to Section 2. For better understanding we detail
this replacement here and refer to the general treatment in Section 2 in the rest of
the paper.
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Setting
ξ := (x, z, θ, λ, x+, z+, θ+, λ+),

these SOS conditions read

V (x+, z+, θ+, λ+)− V (x, z, θ, λ)− ‖x‖22 = (25a)

σ0(ξ) + σ1(ξ)
>ĝ(x, z, θ, λ) + σ2(ξ)

>ĝ(x+, z+, θ+, λ+)

+ p1(ξ)
>ĥ(x, z, θ, λ) + p2(ξ)

>ĥ(x+, z+, θ+, λ+)

+ p3(ξ)(x
+ − fx(x, κ(θ)) + p4(ξ)(z

+ − fz(z, fy(x)),

‖x‖22 − V (x, z, θ, λ) = (25b)

σ̄0(ξ) + σ̄1(ξ)
>ĝ(x, z, θ, λ) + p̄1(ξ)

>ĥ(x, z, θ, λ),

where σi(ξ) and σ̄i(ξ) are SOS multipliers and p(ξ) and p̄(ξ) polynomial multipliers of
compatible dimensions and pre-specified degrees (selection of the degrees is discussed
in Section 6). The satisfaction of (25a) implies the satisfaction of (23a) and the
satisfaction of (25b) implies the satisfaction of (23b) for all ξ ∈ K; this follows readily
since σi and σ̄i are globally nonnegative, ĝ is nonnegative on K and ĥ is zero on K
(see Section 2).

Remark 2. Note that instead of including the equalities x+ − fx(x, κ(θ)) and z+ −
fz(z, fy(x)) in the description of K we could also directly substitute for x+ and z+. In
general, direct substitution is preferred if the mappings fx, fz and fy are of low degree,
especially linear, in which case there is no increase in the degree of the composition
of V with fx or with fz and fy. Otherwise, the formulation (25) is preferred.

From the previous discussion we conclude that closed-loop stability of the state
x of (21) is implied by the feasibility of the following SOS problem:

find V, σ0, σ1, σ2, p1, p2, p3, p4, σ̄0, σ̄1, p̄1

s.t. (25a), (25b)

σ0, σ1, σ2, σ̄0, σ̄1 SOS polynomials
V, p1, p2, p3, p4, p̄1 arbitrary polynomials,

(26)

where the optimization is over the coefficients of the polynomials

(V, σ0, σ1, σ2, p1, p2, p3, p4, σ̄0, σ̄1, p̄1).

The following theorem summarizes the results of this section.

Theorem 1. If optimization problem (26) is feasible, then the closed-loop system (21)
is globally asymptotically stable.
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5.2 Stability analysis – local

The method presented in Section 5.1 addresses the verification of global asymptotic
stability and imposes no restriction on the relationship between x and z, which may
result in the problem (26) being infeasible, e.g., if (21) is stable only locally or if
there is a known a priori relationship between x and z (e.g., if z is an estimate of
x and a bound on the estimation error is known) not taken into account by the
formulation of the preceding section.

In order to get a local version and/or incorporate state constraints we enforce
the Lyapunov conditions (23) on the intersection of the set K defined in (24) with a
given region of interest or state constraint set

X := {(x, z) ∈ Rnx+nz | ψi(x, z) ≥ 0, i = 1, . . . , nψ}.

Provided that the functions ψi(·) are polynomials, the set

K̄ := {(x, z, θ, λ, x+, z+, θ+, λ+) | (x, z, θ, λ, x+, z+, θ+, λ+) ∈ K, (x, z) ∈ X}

is defined by finitely many polynomial equalities and inequalities, leading to a
verification SOS problem completely analogous to (26). However, the pitfall here is
that the satisfaction of Lyapunov conditions (23) (with K replaced by K̄) does not
ensure the invariance of the closed-loop evolution of (x, z) in the set X. Asymptotic
stability is guaranteed only on the largest sub-level set contained in X of the function

V̄ (x, z) = sup
θ,λ
{V (x, z, θ, λ) | (x, z, θ, λ) ∈ K̂},

where

K̂ := {(x, z, θ, λ) | ĝ(x, z, θ, λ) ≥ 0, ĥ(x, z, θ, λ) = 0, (x, z) ∈ X}.

Note that if we choose V as a function of (x, z) only, then trivially V̄ (x, z) =
V (x, z). In general, however, the function V̄ (x, z) is a solution to a complicated
parametric polynomial optimization problem and therefore not known analytically.
Therefore, we resort to computing an inner approximation to the largest super
level set of V̄ (x, z) included in X by first approximating V̄ (x, z) from above by a
polynomial function p(x, z) of a prescribed degree and computing the largest sub-level
set of p(x, z) included in X. Approximating V̄ (x, z) from above can be done using
the following SOS optimization problem

minimize
p(x,z)

∫
X
p(x, z) d(x, z)

s.t. p(x, z) ≥ V (x, z, θ, λ) ∀ (x, z, θ, λ) ∈ K̂.
(27)

Since the set K̂ is basic semialgebraic, the constraint immediately translates to
an SOS constraint (with conservatism inversely proportional to the degree of the
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SOS multipliers), and the objective is a linear combination of the coefficients of the
polynomial p(x, z), where the coefficients of the linear combination are the moments
of the Lebesgue measure over X. Problem (27) therefore immediately translates to
an SDP (see Section 2).

Once the polynomial p is found, an inner approximation to the maximum level
set of V̄ (x, z) contained in X can be found by solving

maximize
γ∈R+,{σ0,i},{σ0,i}

γ

s.t. ψi(x, z) = σ0,i(x, z)+σ1,i(x, z)(γ − p(x, z)),
{σ0,i}, {σ1,i} SOS polynomials ∀ i ∈ {1, . . . , nψ}.

(28)

The satisfaction of the first constraint implies that ψi(x, z) ≥ 0 for all (x, z) such
that p(x, z) ≤ γ and all i ∈ {1, . . . , nψ}; therefore {(x, z) | p(x, z) ≤ γ} ⊂ X for any
γ feasible in (28). Maximizing γ then maximizes the size of the inner approximation.

Problem (28) is only quasi-convex because of the bilinearity between σ1 and γ
but can be efficiently solved using a bi-section on γ. Indeed, for a fixed value of γ
problem (28) is an SDP, typically of much smaller size than (26).

The following Lemma summarizes the results of this section.

Lemma 1. If a polynomial p is feasible in (27) and γ ∈ R+ feasible in (28), then the
set {(x, z) | p(x, z) ≤ γ} provides an inner approximation to the maximum sub-level
set of V̄ included in X.

This immediately leads to the following theorem.

Theorem 2. If a polynomial V is feasible in (26), polynomial p feasible in (27) and
γ ∈ R+ feasible in (28), then all trajectories of the closed-loop system (21) starting
from the set {(x, z) | p(x, z) ≤ γ} lie in the set X and limt→∞ xt = 0.

5.3 Performance analysis – deterministic setting

In this section we analyze the performance of the controller (6) with respect to a
given infinite-time cost function

C(x0, z0) = Lατ(x0,z0) +

τ(x0,z0)−1∑
t=0

αtl(xt, ut), (29)

where α ∈ (0, 1) is a discount factor, l is a polynomial stage cost,

τ(x, z) := inf{t ∈ {1, 2, . . .} | (xt, zt) /∈ X, (x0, z0) = (x, z)} (30)

is the first time that the state (xt, zt) of (21) leaves X (setting τ(x, z) = +∞ if
(xt, ut) ∈ X for all t) and

L > max{l(x, u) | (x, z) ∈ X, u ∈ κ(Ks)}/(1− α) (31)
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is a constant upper bounding the stage cost l on X divided by 1− α. We assume
that L <∞, which is fulfilled if the projection of X on Rnx is bounded and the set
Ks is bounded for all s = fs(z, fy(x)) with (x, z) ∈ X. A constant L satisfying (31)
is usually easily found since X is known and the controller (6) is usually set up in
such a way that it satisfies the input constraints of system (5), which are typically a
bounded set of a simple form.

The reason for choosing (29) is twofold. First, C(x0, z0) =
∑∞

t=0 α
tl(xt, ut) for all

(x0, z0) such that (xt, zt) ∈ X for all t; that is, whenever (xt, zt) stays in the state
constraint set X for all t, the cost (29) coincides with the standard infinite-horizon
discounted cost. Second, C(x0, z0) ≤ L for all (x0, z0) ∈ X; that is, the cost function
is bounded on X, which enables us to obtain polynomial upper and lower bounds
on C (which is not possible if C is infinite outside the maximum positively invariant
subset of (21) included in X as is the case for the standard infinite-horizon discounted
cost).

In the rest of this section we derive polynomial upper and lower bounds on C(x, z).
To this end define

K̂c := {(x, z, θ, λ) | ĝ(x, z, θ, λ) ≥ 0, ĥ(x, z, θ, λ) = 0, (x, z) /∈ X}.

The upper bound is based on the following lemma:

Lemma 2. If

V (x, z, θ, λ)− αV (x+, z+, θ+, λ+)− l(x, κ(θ)) ≥ 0 (32)

∀ (x, z, θ, λ, x+, z+, θ+, λ+) ∈ K̄,

V (x, z, θ, λ) ≥ L ∀ (x, z, θ, λ) ∈ K̂c (33)

and
V (x, z) ≥ V (x, z, θ, λ) ∀ (x, z, θ, λ) ∈ K̂, (34)

then V (x, z) ≥ C(x, z) for all (x, z) ∈ X.

Proof. See the Appendix.

The lower bound is based on the following lemma:

Lemma 3. If

V (x, z, θ, λ)− αV (x+, z+, θ+, λ+)− l(x, κ(θ)) ≤ 0 (35)

∀ (x, z, θ, λ, x+, z+, θ+, λ+) ∈ K̄,

V (x, z, θ, λ) ≤ L ∀ (x, z, θ, λ) ∈ K̂c (36)

and
V (x, z) ≤ V (x, z, θ, λ) ∀ (x, z, θ, λ) ∈ K̂, (37)

then V (x, z) ≤ C(x, z) for all (x, z) ∈ X.
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Proof. Analogous to the proof of Lemma 2.

The previous two lemmas lead immediately to optimization problems providing
upper and lower bounds on C(x, z).

An upper bound on C(x, z) is given by the following optimization problem:

minimize
V,V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (32), (33), (34),

(38)

where ρ(x, z) is a user-defined nonnegative weighting function allowing one to put a
different weight on different initial conditions. Typical examples are ρ(x, z) = 1 or
ρ(x, z) equal to the indicator function of a certain subset of X (see Example 7.1).

A lower bound on C(x, z) is given by the following optimization problem:

maximize
V,V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (35), (36), (37).

(39)

In both optimization problems, the optimization is over continuous functions
(V, V ) or (V, V ); in order to make the problems tractable we restrict the class
of functions to polynomials of predefined degrees and replace the nonnegativity
conditions (32), (33), (34) or (35), (36), (37) by sufficient SOS conditions (see
Section 2). For (32), (34) and (35), (37), these conditions are completely analogous
to (25). For (33) and (36) we have to deal with the condition (x, z) /∈ X. A sufficient
condition for (33) is

V (x, z, θ, λ)− L = −σψi(ζ)ψi(x, z) + σ0(ζ) (40)

+ σ1(ζ)>ĝ(x, z, θ, λ) + p̄1(ζ)>ĥ(x, z, θ, λ) ∀ i ∈ {1, . . . , nψ},

where
ζ := (x, z, θ, λ),

σ0, σ1 and σψi ’s are SOS and p̄1 is a polynomial. For each i ∈ {1, . . . , nψ} this
condition implies that V (x, z, θ, λ)− L ≥ 0 on

Kc,i = {(x, z, θ, λ) | ĝ(x, z, θ, λ) ≥ 0, ĥ(x, z, θ, λ) = 0, ψi(x, z) ≤ 0}.

Since ∪nψi=1Kc,i = Kc, the condition (40) indeed implies (33). A sufficient condition
for (36) is obtained by replacing the left-hand side of (40) by L− V (x, z, θ, λ).

Therefore, all constraints of the optimization problems (38) and (39) can be
enforced through sufficient SOS conditions. The objective function is linear in the
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coefficients of the polynomials V or V and can be evaluated in closed form for simple
sets X; see Section 2 for details.

In conclusion, by restricting the class of decision variables in (38) and (39) to
polynomials of a prescribed degree and replacing the nonnegativity constraints by
sufficient SOS conditions, the problems (38) and (39) become SOS problems with
linear objective and hence immediately translate to SDPs.

5.4 Performance analysis – stochastic setting

A small modification of the developments from the previous section allows us to
analyze the performance in a stochastic setting, where (21) is replaced by

x+ ∈ fx(x, κ(Ks), w), (41a)

z+ = fz(z, fy(x, v)), (41b)

where (w, v) is an iid (with respect to time) process and measurement noise with
known joint probability distributions Pw,v, i.e.,

P(w ∈ A, v ∈ B) = Pw,v(A×B)

for all Borel sets A ⊂ Rnw and B ⊂ Rnv . We analyze the performance with respect
to the cost function

Cs(x0, z0) = E
{
Lατ(x0,z0)}+

τ(x0,z0)−1∑
t=0

αtl(xt, ut)
}
, (42)

where τ(x0, z0) defined in (30) is now a random variable and L satisfies (31). The
expectation in (42) is over the realizations of the stochastic process (wt, vt)

∞
t=0. The

rationale behind (42) is the same as behind (29).
The stochastic counterpart to Lemma 2 reads

Lemma 4. If

V (x, z)−αEV (fx(x, κ(θ), w), fz(z, fy(x, v)))−l(x, κ(θ)) ≥ 0 ∀ (x, z, θ, λ) ∈ K̂,
(43)

and
V (x, z) ≥ L ∀ (x, z) ∈ Xc, (44)

then V (x, z) ≥ Cs(x, z) for all (x, z) ∈ X,

where Xc is the complement of X.

Proof. See the Appendix.
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The stochastic counterpart to Lemma 3 reads

Lemma 5. If

V (x, z)− αEV (fx(x, κ(θ), w), fz(z, fy(x, v)))− l(x, κ(θ)) ≤ 0 ∀ (x, z, θ, λ) ∈ K̂,
(45)

and
V (x, z) ≤ L ∀ (x, z) ∈ Xc, (46)

then V (x, z) ≤ Cs(x, z) for all (x, z) ∈ X.

Proof. Similar to the proof of Lemma 4.

Upper and lower bounds on Cs are then obtained by

minimize
V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (43), (44),

(47)

and

maximize
V

∫
X

V (x, z)ρ(x, z)d(x, z)

s.t. (45), (46),

(48)

where ρ(x, z) is a given nonnegative weighting function. Polynomial upper and lower
bounds on Cs are obtained by restricting the functions V and V to polynomials and
replacing the nonnegativity constraints by sufficient SOS constraints in exactly the
same fashion as in the deterministic setting. The expectation in the constraints (43)
and (45) is handled as follows: Given a polynomial p(x,w, v) =

∑
α,β,γ p(α,β,γ)x

αwβvγ

with coefficients {p(α,β,γ)} indexed by multiindices (α, β, γ), we have

E p(x,w, v) =

∫
p(x,w, v)dPw,v(w, v) =

∑
α,β,γ

p(α,β,γ)x
α

∫
wβvγdPw,v(w, v),

where the moments
∫
wβvγdPw,v(w, v) are fixed numbers and can be precomputed

offline. Hence, the expectation in (43) and (45) is linear in the decision variables,
as required, and is available in closed form provided that the moments of Pw,v are
known.

Remark 3. Note that in problems (47) and (48) we use only one function V and V
instead of pairs of functions (V, V ) and (V, V ) in problems (38) and (39). Using a
pair of functions gives more degrees of freedom and hence smaller conservatism of
the upper and lower bounds, but is difficult to use in the stochastic setting because of
the need to evaluate the expectation of a function of (θ+, λ+) which has an unknown
dependence on (w, v). In order to overcome this, one would either have to impose
additional assumptions or resort to a worst-case approach.
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5.5 Robustness analysis – L2 gain, ISS

In this section we describe how to analyze performance in a robust setting in terms
of the L2 gains from w and v to a performance output

ŷ = fŷ(x), (49)

where fŷ is a polynomial. We assume the same dynamics (41) as in Section (5.4) but
now all that is known about w and v is that they take values in a given (possibly
state-dependent) set

W(x, z) = {(w, v) ∈ Rnw × Rnv | ψw(x, z, w, v) ≥ 0}, (50)

where each component of ψw : Rnx+nz+nw+nv → Rnψw is a polynomial in (x, z, w, v).
Note that we do not a priori assume that the set W(x, z) is compact.

Defining

Kw=
{

(x, z, θ, λ, w, v, x+z+, θ+, λ+, w+, v+) | (51)

ĥ(x, z, θ, λ) = 0, ĝ(x, z, θ, λ) ≥ 0,

ĥ(x+, z+, θ+, λ+) = 0, ĝ(x+, z+, θ+, λ+) ≥ 0,

ψw(x, z, w, v) ≥ 0, ψw(x+, z+, w+, v+) ≥ 0,

x+ − fx(x, κ(θ), w) = 0, z+ − fz(z, fy(x, v)) = 0
}
,

and

K̂w=
{

(x, z, θ, λ, w, v) | ĥ(x, z, θ, λ) = 0, ĝ(x, z, θ, λ) ≥ 0,

ψw(x, z, w, v) ≥ 0}, (52)

we can seek a function V such that

V (x+, z+, θ+, λ+, w+, v+)− V (x, z, θ, λ, w, v) ≤ −‖fŷ(x)‖22 + αw‖w‖22 + αv‖v‖22
∀ (x, z, θ, λ, w, v, x+z+, θ+, λ+, w+, v+) ∈ Kw, (53)

V (x, z, θ, λ, w, v) ≥ 0 ∀ (x, z, θ, λ, w, v) ∈ K̂w. (54)

and

V (0, 0, θ, λ, w, v) = 0 ∀ (0, 0, θ, λ, w, v) ∈ K̂w. (55)

The following lemma and its immediate corollary links the satisfaction of (53), (54)
and (55) to the L2 gain from w and v to ŷ.
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Lemma 6. If V satisfies (53), (54) for some αw ≥ 0 and αv ≥ 0, then

∞∑
t=0

‖ŷt‖22 ≤ V (x0, z0, θ0, λ0, w0, v0) + αw

∞∑
t=0

‖wt‖22 + αv

∞∑
t=0

‖vt‖22. (56)

Proof. See the Appendix.

Corollary 1. If V satisfies (53), (54) and (55) for some αw ≥ 0 and αv ≥ 0, then
the L2 gain from w to ŷ respectively from v to ŷ is bounded by αw respectively αv.

Proof. Follows by setting (x0, z0) = (0, 0) and using (55) which implies that

V (x0, z0, θ0, λ0, w0, v0) = 0

in (56).

Minimization of an upper bound on the L2 gain from w and v to ŷ is then
achieved by the following optimization problem:

minimize
V,αw,αv

αw + γαv

s.t. (53), (54), (55),
(57)

where the parameter γ ≥ 0 trades off the minimization of the L2 gains from w to ŷ
and from v to ŷ.

Remark 4. If instead of (54) we require V (x, z, θ, λ, w, v) ≥ ‖x‖2 for all (x, z, θ, λ, w, v) ∈
K̂w, then this along with (53) implies that the system (41) is input-to-state stable
(ISS) with respect to the input (w, v) ∈W(x, z).

Since the sets Kw and K̂w are defined by finitely many polynomial equalities and
inequalities, we can find upper bounds on the L2 gains αw and αv by restricting V
to be a polynomial of a prescribed degree and replacing the nonnegaivity constraints
of (57) by sufficient SOS conditions according to Section 2.

6 Computational aspects

As discussed in Section 2, the constraint (2) translates to an SDP constraint. There
is a natural tradeoff between computational complexity and the richness of the
class of functions satisfying (2). This tradeoff is, for the most part, controlled by
the size of the polynomial basis parametrizing the function V and by the vector of
polynomials β(x) in (3) associated to the SOS multipliers. In general, the larger β(x)
(in terms of the number of components), the larger the set of functions covered, but
the higher the computational complexity. A typical choice for β(x) is the vector of
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all multivariate monomials up to a given total degree. Another choice may be the
set of all multivariate monomials up to a given total degree corresponding to a given
subset of the variables x = (x1, . . . , xn); this is used in the numerical examples of
this paper.

More specific monomial selection techniques require some insight into the problem
structure. Fortunately, there exist automatic monomial reduction techniques (e.g.,
the Newton polytope [17]) which discard those monomials in β(x) which cannot
appear in the decomposition of σ(x). It is also possible to directly reduce the size
of the SDP arising from (3) using the facial reduction algorithm of [12]; the benefit
of this approach is that it works at the SDP level and is therefore not limited to
the situation where β(x) is a subset of the monomial basis, allowing one to use
numerically better conditioned bases (e.g., the Chebyshev basis).

The transformation from the abstract form (3) can be carried out automati-
cally using freely available modeling tools such as Yalmip [8], SOSTOOLS [10] or
SOSOPT [16] and solved using SDP solvers such as SeDuMi [14] or MOSEK.

7 Numerical examples

This section illustrates the approach on two numerical examples. The SOS problems
were modeled using SOSOPT [16] and solved using MOSEK. For both examples
we report the parsing time of SOSOPT, the time to carry out monomial reduction
by SOSOPT and the solve time of MOSEK. The bottleneck of the approach is the
monomial reduction phase (which, however, is very effective in the sense of reducing
the size of the problem significantly). The authors expect that a more efficient
implementation of the reduction phase and polynomial handling in general would
allow the approach to scale much beyond what is presented here.

7.1 Bilinear system + PI with saturation – performance
analysis

First we demonstrate the approach on a bilinear dynamical system

x+ = fx(x, u) :=

[
0.9x1 + u+ 0.2ux1

0.85x2 + x1

]
y = fy(x) := x2

controlled by a PI controller with input saturation given by

z+ = fz(z, y) := z − kiy
s = fs(z, y) := kp(z − y)
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x1
x2

Figure 2: Bilinear system performance bound – Red: upper bound V (x, 0) of degree 6.
Blue: true closed-loop cost J(x, 0).

with kp = 0.05, ki = 0.02. The control input is given by saturating u on the input
constraint set U = [−0.5, 0.5], i.e, u = projU(s). In addition the system is subject
to the state constraints ‖x‖∞ ≤ 10. In view of Section 4.1, this set up can be
analyzed using the presented method. The goal is to estimate the performance of this
closed-loop system with respect to the cost function (29) with l(x, u) = ‖x‖2 + u2,
α = 0.95 and L = (2 · 102 + 0.52)/(1− α) = 4.05 · 103 chosen according to (31). We
estimate the performance using the optimization problem (38), where we consider V
as function of (x, z) only and therefore do not need the upper bounding function V .
Assume that we are interested only in closed-loop performance for initial conditions
starting from X′ = {x | ‖x‖∞ ≤ 1} and z = 0 (i.e., zero integral component
at the beginning of the closed-loop evolution), which is a strict subset of the set
X := {(x, z) | ‖x‖∞ ≤ 10, z ∈ R}. To this effect we minimize

∫
X′ V (x, 0) dx as the

objective of (38), which corresponds to setting ρ(x, z) = IX′(x)δ0(z), where IX′ is the
indicator function of X′ and δ0 the dirac distribution centered at zero. We compare
the upper bound obtained by solving (38) with the exact cost function evaluated on a
dense grid of initial conditions in X′ by forward simulation of the closed-loop system.
The comparison is in Figure (2); we see a relatively good fit over the whole region of
interest X′. The constraints (32) and (33) of (38) were replaced with sufficient SOS
conditions with SOS multipliers of degree four containing only monomials in (x, z)
and polynomial multipliers of degree three containing monomials in (x, z, θ, λ).

7.2 Uncertain linear system – global asymptotic stability

Consider the Quanser active suspension model in continuous-time ẋ = Acx+ Bcu
with

Ac =

 0 1 0 −1
−Ks/Ms −Bs/Ms 0 Bs/Ms

0 0 0 1
Ks/Mus Bs/Mus −Kus/Mus −(Bs + Bus)/Mus

 ,

22



Bc = [0 1/Ms 0 −1/Mus]
T ,

where Ks = 1205, Kus = 2737, Mus = 1.5, Bs = 20, Bus = 20 and the mass Ms is
unknown and possibly time-varying in the interval [2.85, 4]. After discretization3 with
sampling period 0.01, this model can be written as x+ = (A0 +A1w)x+(B0 +B1w)x,
where w := 1/Ms ∈ [1/4, 1/2.85].

We consider an MPC controller (with perfect state measurement) with cost func-
tion given by matrices Q = I and R = 20 minimized over prediction horizon N subject
to input constraint |u| ≤ 250 and nominal dynamics x+ = A0x+B0u. This problem
is expressed in a dense form (i.e., the state is eliminated using the dynamics equation)
to which we apply M steps of the projected gradient method (18) (see Section 4.4)
initialized with the LQ solution and seek a quadratic ISS Lyapunov function V (see
Remark 4) while minimizing the L2 gain αw using the optimization problem (57)
(with αv = 0). The problem (57) is feasible (for all combinations of M and N tested)
when we take the SOS multipliers σ1, σ2 in equation (25a) of degree two in (x, θ) and
the polynomial multipliers p1, p2 of degree one in (x, θ, λ). The list of monomials
β(x, θ, λ, w) constituting the multiplier σ0 in the form β(x, θ, λ, w)TQβ(x, θ, λ, w),
Q � 0, is determined automatically by SOSOPT and contains monomials linear
in λ, x, θ and w, and products x · w and θ · w. In Eq. (25b) we set all multipliers
to zero except for σ̄0, monomials of which are again determined automatically by
SOSOPT. Determining the smallest list of monomials β(x, θ, λ, w) takes the most
time of the whole procedure; this is documented by Table 1 reporting the time
breakdown for different values of N and M . The optimal L2 gain αw is equal to zero,
showing closed-loop global robust asymptotic stability (i.e., convergence ‖xk‖ → 0
for any sequence {wk ∈ [1/4, 1/2.85]}∞k=0). Figure 3 shows a sample trajectory of
‖xk‖, V (xk) (the Lyapunov function is function of x only in this case) and uk and
wk for N = M = 4.

Table 1: Global asymptotic stability of an uncertain system – timing breakdown as a function of
the number of iterations of the projected gradient method M and the horizon length N used in the
cost function. The parsing and monomial reduction was carried out by SOSOPT; the SDP solve by
MOSEK.

parsing monomial reduction SDP solve

M,N = 1, 1 0.99 s 1.12 s 0.45 s

M,N = 2, 2 1.56 s 5.9 s 0.5 s

M,N = 3, 3 4.85 s 65.5 s 1.95 s

M,N = 4, 4 45 s 755 s 13.9 s

3The matrices A0, A1, B0, B1 were found as a least-squares fit of the continuous-time dynamics
discretized on a grid of values of w ∈ [1/4, 1/2.85].
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Figure 3: Global asymptotic stability of an uncertain system – one trajectory starting from the
initial condition x0 = [1 1 1 1]T of the norm of the state ‖xk‖, the Lyapunov function V (xk), the
control input uk and the disturbance wk.

7.3 Local stability of a quadcopter

This example investigates stability of a linearized attitude and vertical velocity model
of a quadcopter. The system has seven states (Roll, Pitch and Yaw angles and
angular velocities, and velocity in the vertical direction) and four control inputs
(the thrusts of the four rotors). The system is controlled by a one-step MPC
controller (with perfect state information) which at time k approximately minimizes
the cost xTkQxk + uTkRuk + xTk+1Pxk+1, where Q = I, R = 10I and P is the infinite-
time LQ matrix associated to the cost matrices Q and R, using one step of the
projected gradient method (18) subject to the input constraints ‖u‖∞ ≤ 1. This
model is open-loop unstable and therefore we investigate closed-loop stability in
the region X = [−1, 1]7 as described in Section 5.2. The SOS problem (26) is
feasible when seeking a quadratic Lyapunov function using SOS multipliers σ1,
σ2 in equation (25a) of degree two in x and the polynomial multipliers p1, p2 of
degree one in (x, θ, λ). The smallest set of monomials constituting σ0 is chosen
automatically by SOSOPT. In (25b), we chose all multipliers zero except for σ̄0
whose monomials are determined automatically by SOSOPT. Computing the largest
γ such that {x | V (x) ≤ γ} is included in X yields γ = 6.37; this proves that all
trajectories starting in {x | V (x) ≤ γ} stay there and converge to the origin. One
closed-loop trajectory of ‖x‖2, V (x) and u are depicted in Figure 4; note that this
trajectory does not start in {x | V (x) ≤ γ} but still converges to the origin and the
Lyapunov function decreases. The parsing time and monomial reduction carried out
by SOSOPT took 2.7 s and 16.2 s, respectively; the MOSEK solve time was 0.55 s.

8 Conclusion

We presented a method for closed-loop analysis of polynomial dynamical systems
controlled by an optimization based controller. Provided that all data is polynomial
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Figure 4: Local stability of a quadcopter – trajectories of the norm of the state ‖xk‖, the Lyapunov
function V (xk), the control input uk for initial condition x0 = [1 1 1 1 1 1 1]>.

the analysis problem boils down to a semidefinite programming (SDP) problem
which can be readily modeled and solved using freely available tools. The limiting
factor is the parsing time of the SOS problems, which, however, should be possible to
ameliorate by a tailored implementation. Besides the parsing time, the second limiting
factor is the size of the resulting SDP problem, especially if tighter performance
bounds are required; using first-order-like SDP solvers (e.g., SDPNAL [20]), and/or
parellel solvers (e.g., SDPARA [19]) should enable the presented method to scale
beyond the reach of interior point methods used in this paper.
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Appendix

Proof of Lemma 2

Let (xt, zt) be a solution to (21) for t ∈ {0, 1, . . .} and let ut ∈ κ(Ks). Then there
exist θt ∈ Rnθ and λt ∈ Rnλ such that

(xt, zt, θt, λt, xt+1, zt+1, θt+1, λt+1) ∈ K̄ (58)

and
(xt, zt, θt, λt) ∈ K̂ (59)
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for all t ∈ {0, 1, . . . , τ − 1}, where τ := τ(x0, z0) is defined in (30) and

(xτ , zτ , θτ , λτ ) ∈ K̂c. (60)

Using (32) and (58), we conclude that

V (xt, zt, θt, λt)− αV (xt+1, zt+1, θt+1, λt+1)− l(xt, ut) ≥ 0

for all t ∈ {0, 1, . . . , τ − 1}. This implies that

ατV (xτ , zτ , θτ , λτ ) +
τ−1∑
t=0

αtl(xt, ut) ≤ V (x0, z0, θ0, λ0).

Using (33) and (60) we conclude that

C(x0, z0) = ατL+
τ−1∑
t=0

αtl(xt, ut) ≤ V (x0, z0, θ0, λ0).

Using (34) and (59) we have V (x0, z0, θ0, λ0) ≤ V (x0, z0) and hence V (x0, z0) ≥
C(x0, z0) as desired. �

Proof of Lemma 4

The proof proceeds along similar lines as the deterministic version by decomposing the
probability space according to the values of the stopping time τ . On the probability
event {τ = k} we get, by iterating the inequality (43),

αkV (xk, zk) + E
{ k−1∑

t=0

αtl(xt, ut) | τ = k
}
≤ V (x0, z0).

Since (xk, zk) /∈ X on {τ = k} we have V (xk, zk) ≥ L by (44) and hence

αkL+ E{
k−1∑
t=0

αtl(xt, ut) | τ = k} ≤ V (x0, z0)

on {τ = k}. Summing over k gives the result.

Proof of Lemma 6

Let (xt, zt) be a solution to (41) with (wt, vt) ∈W(xt, zt) for all t ∈ {0, 1, . . .}. Then
there exist θt ∈ Rnθ and λt ∈ Rnλ such that

(xt, zt, θt, λt, wt, vt, xt+1zt+1, θt+1, λt+1, wt+1, vt+1) ∈ Kw
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and
(xt, zt, θt, λt, wt, vt, ) ∈ K̂w

for all t ∈ {0, 1, . . .}. Hence, by (53) and (54),

V (xt+1, zt+1, θt+1, λt+1, wt+1, vt+1)−V (xt, zt, θt, λt, wt, vt)

≤ −‖ŷt‖22 + αw‖wt‖22 + αv‖vt‖22 (61)

and
V (xt, zt, θt, λt) ≥ 0

for all t ∈ {0, 1, . . .}. Iterating (61) we obtain

T−1∑
t=0

‖ŷt‖22 ≤ −V (xT , zT , θT , λT , wT , vT )

+ V (x0, z0, θ0, λ0, w0, v0) +
T−1∑
t=0

αw‖wt‖22 + αv‖vt‖22

≤ V (x0, z0, θ0, λ0, w0, v0) +
T−1∑
t=0

αw‖wt‖22 + αv‖vt‖22,

where we have used the fact that V (xT , zT , θT , λT ) ≥ 0 in the second inequality.
Letting T tend to infinity gives the result. �
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