3,995 research outputs found

    Stochastic network models for logistics planning in disaster relief

    Get PDF
    Emergency logistics in disasters is fraught with planning and operational challenges, such as uncertaintyabout the exact nature and magnitude of the disaster, a lack of reliable information about the locationand needs of victims, possible random supplies and donations, precarious transport links, scarcity ofresources, and so on. This paper develops a new two-stage stochastic network flow model to help decidehow to rapidly supply humanitarian aid to victims of a disaster within this context. The model takesinto account practical characteristics that have been neglected by the literature so far, such as budgetallocation, fleet sizing of multiple types of vehicles, procurement, and varying lead times over a dynamicmultiperiod horizon. Attempting to improve demand fulfillment policy, we present some extensions ofthe model via state-of-art risk measures, such as semideviation and conditional value-at-risk. A simpletwo-phase heuristic to solve the problem within a reasonable amount of computing time is also suggested.Numerical tests based on the floods and landslides in Rio de Janeiro state, Brazil, show that the modelcan help plan and organise relief to provide good service levels in most scenarios, and how this dependson the type of disaster and resources. Moreover, we demonstrate that our heuristic performs well for realand random instances

    Research Directions in Information Systems for Humanitarian Logistics

    Get PDF
    This article systematically reviews the literature on using IT (Information Technology) in humanitarian logistics focusing on disaster relief operations. We first discuss problems in humanitarian relief logistics. We then identify the stage and disaster type for each article as well as the article’s research methodology and research contribution. Finally, we identify potential future research directions

    Facility location optimization model for emergency humanitarian logistics

    Get PDF
    Since the 1950s, the number of natural and man-made disasters has increased exponentially and the facility location problem has become the preferred approach for dealing with emergency humanitarian logistical problems. To deal with this challenge, an exact algorithm and a heuristic algorithm have been combined as the main approach to solving this problem. Owing to the importance that an exact algorithm holds with regard to enhancing emergency humanitarian logistical facility location problems, this paper aims to conduct a survey on the facility location problems that are related to emergency humanitarian logistics based on both data modeling types and problem types and to examine the pre- and post-disaster situations with respect to facility location, such as the location of distribution centers, warehouses, shelters, debris removal sites and medical centers. The survey will examine the four main problems highlighted in the literature review: deterministic facility location problems, dynamic facility location problems, stochastic facility location problems, and robust facility location problems. For each problem, facility location type, data modeling type, disaster type, decisions, objectives, constraints, and solution methods will be evaluated and real-world applications and case studies will then be presented. Finally, research gaps will be identified and be addressed in further research studies to develop more effective disaster relief operations

    Relief distribution networks : a systematic review

    Get PDF
    In the last 20 years, Emergency Management has received increasing attention from the scientific community. Meanwhile, the study of relief distribution networks has become one of the most popular topics within the Emergency Management field. In fact, the number and variety of contributions devoted to the design or the management of relief distribution networks has exploded in the recent years, motivating the need for a structured and systematic analysis of the works on this specific topic. To this end, this paper presents a systematic review of contributions on relief distribution networks in response to disasters. Through a systematic and scientific methodology, it gathers and consolidates the published research works in a transparent and objective way. It pursues three goals. First, to conduct an up-to-date survey of the research in relief distribution networks focusing on the logistics aspects of the problem, which despite the number of previous reviews has been overlooked in the past. Second, to highlight the trends and the most promising challenges in the modeling and resolution approaches and, finally, to identify future research perspectives that need to be explored

    Pre-positioning of relief items under road/facility vulnerability with concurrent restoration and relief transportation

    Get PDF
    Planning for response to sudden-onset disasters such as earthquakes, hurricanes, or floods needs to take into account the inherent uncertainties regarding the disaster and its impacts on the affected people as well as the logistics network. This article focuses on the design of a multi-echelon humanitarian response network, where the pre-disaster decisions of warehouse location and item pre-positioning are subject to uncertainties in relief item demand and vulnerability of roads and facilities following the disaster. Once the disaster strikes, relief transportation is accompanied by simultaneous repair of blocked roads, which delays the transportation process, but gradually increases the connectivity of the network at the same time. A two-stage stochastic program is formulated to model this system and a Sample Average Approximation (SAA) scheme is proposed for its heuristic solution. To enhance the efficiency of the SAA algorithm, we introduce a number of valid inequalities and bounds on the objective value. Computational experiments on a potential earthquake scenario in Istanbul, Turkey show that the SAA scheme is able to provide an accurate approximation of the objective function in reasonable time, and can help drive policy-based implications that may be applicable in preparation for similar potential disaster

    A Multi-Criteria Vertical Coordination Framework for a Reliable Aid Distribution

    Get PDF
    Purpose: This study proposes a methodology that translates multiple humanitarian supply chain stakeholders’ preferences from qualitative to quantitative values, enabling these preferences to be integrated into optimization models to ensure their balanced and simultaneous implementation during the decision-making process. Design/methodology/approach: An extensive literature review is used to justify the importance of developing a strategy that minimizes the impact of a lack of coordination on humanitarian logistics decisions. A methodology for a multi-criteria framework is presented that allows humanitarian stakeholders’ interests to be integrated into the humanitarian decisionmaking process. Findings: The findings suggest that integrating stakeholders’ interests into the humanitarian decision-making process will improve its reliability. Research limitations/implications: To further validate the weights of each stakeholder’s interests obtained from the literature review requires interviews with the corresponding organizations. However, the literature review supports the statements in this paper. Practical implications: The cost of a lack of coordination between stakeholders in humanitarian logistics has been increasing during the last decade. These coordination costs can be minimized if humanitarian logistics’ decision-makers measure and simultaneously consider multiple stakeholders’ preferences. Social implications: When stakeholders’ goals are aligned, the humanitarian logistics response becomes more efficient, increasing the quality of delivered aid and providing timely assistance to the affected population in order to minimize their suffering. Originality/value: This study provides a methodology that translates humanitarian supply chain stakeholders’ interests into quantitative values, enabling them to be integrated into mathematical models to ensure relief distribution based on the stakeholders’ preferences.Peer Reviewe

    Operations research in disaster preparedness and response: The public health perspective

    Get PDF
    Operations research is the scientific study of operations for the purpose of better decision making and management. Disasters are defined as events whose consequences exceed the capability of civil protection and public health systems to provide necessary responses in a timely manner. Public health science is applied to the design of operations of public health services and therefore operations research principles and techniques can be applied in public health. Disaster response quantitative methods such as operations research addressing public health are important tools for planning effective responses to disasters. Models address a variety of decision makers (e.g. first responders, public health officials), geographic settings, strategies modelled (e.g. dispensing, supply chain network design, prevention or mitigation of disaster effects, treatment) and outcomes evaluated (costs, morbidity, mortality, logistical outcomes) and use a range of modelling methodologies. Regarding natural disasters the modelling approaches have been rather limited. Response logistics related to public health impact of disasters have been modelled more intensively since decisions about procurement, transport, stockpiling, and maintenance of needed supplies but also mass vaccination, prophylaxis, and treatment are essential in the emergency management. Major issues at all levels of disaster response decision making, including long-range strategic planning, tactical response planning, and real-time operational support are still unresolved and operations research can provide useful techniques for decision management.-JRC.G.2-Global security and crisis managemen
    • …
    corecore