7,640 research outputs found

    OhioState at SemEval-2018 Task 7: Exploiting Data Augmentation for Relation Classification in Scientific Papers using Piecewise Convolutional Neural Networks

    Full text link
    We describe our system for SemEval-2018 Shared Task on Semantic Relation Extraction and Classification in Scientific Papers where we focus on the Classification task. Our simple piecewise convolution neural encoder performs decently in an end to end manner. A simple inter-task data augmentation signifi- cantly boosts the performance of the model. Our best-performing systems stood 8th out of 20 teams on the classification task on noisy data and 12th out of 28 teams on the classification task on clean data.Comment: To apperar in Proceedings of International Workshop on Semantic Evaluation (SemEval-2018

    Graphical workstation capability for reliability modeling

    Get PDF
    In addition to computational capabilities, software tools for estimating the reliability of fault-tolerant digital computer systems must also provide a means of interfacing with the user. Described here is the new graphical interface capability of the hybrid automated reliability predictor (HARP), a software package that implements advanced reliability modeling techniques. The graphics oriented (GO) module provides the user with a graphical language for modeling system failure modes through the selection of various fault-tree gates, including sequence-dependency gates, or by a Markov chain. By using this graphical input language, a fault tree becomes a convenient notation for describing a system. In accounting for any sequence dependencies, HARP converts the fault-tree notation to a complex stochastic process that is reduced to a Markov chain, which it can then solve for system reliability. The graphics capability is available for use on an IBM-compatible PC, a Sun, and a VAX workstation. The GO module is written in the C programming language and uses the graphical kernal system (GKS) standard for graphics implementation. The PC, VAX, and Sun versions of the HARP GO module are currently in beta-testing stages

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 199

    Get PDF
    This bibliography lists 82 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Aerospace medicine and biology: A continuing bibliography with indexes, supplement 130, July 1974

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in June 1974

    Bibliographie

    Get PDF

    Design, fabrication and evaluation of chalcogenide glass Luneburg lenses for LiNbO3 integrated optical devices

    Get PDF
    Optical waveguide Luneburg lenses of arsenic trisulfide glass are described. The lenses are formed by thermal evaporation of As2S3 through suitably placed masks onto the surface of LiNbO3:Ti indiffused waveguides. The lenses are designed for input apertures up to 1 cm and for speeds of f/5 or better. They are designed to focus the TM sub 0 guided mode of a beam of wavelength, external to the guide, of 633 nm. The refractive index of the As2S3 films and the changes induced in the refractive index by exposure to short wavelength light were measured. Some correlation between film thickness and optical properties was noted. The short wavelength photosensitivity was used to shorten the lens focal length from the as deposited value. Lenses of rectangular shape, as viewed from above the guide, as well as conventional circular Luneburg lenses, were made. Measurements made on the lenses include thickness profile, general optical quality, focal length, quality of focal spot, and effect of ultraviolet irradiation on optical properties

    Prediction of user behaviour on the web

    Get PDF
    The Web has become an ubiquitous environment for human interaction, communication, and data sharing. As a result, large amounts of data are produced. This data can be utilised by building predictive models of user behaviour in order to support business decisions. However, the fast pace of modern businesses is creating the pressure on industry to provide faster and better decisions. This thesis addresses this challenge by proposing a novel methodology for an effcient prediction of user behaviour. The problems concerned are: (i) modelling user behaviour on the Web, (ii) choosing and extracting features from data generated by user behaviour, and (iii) choosing a Machine Learning (ML) set-up for an effcient prediction. First, a novel Time-Varying Attributed Graph (TVAG) is introduced and then a TVAG-based model for modelling user behaviour on the Web is proposed. TVAGs capture temporal properties of user behaviour by their time varying component of features of the graph nodes and edges. Second, the proposed model allows to extract features for further ML predictions. However, extracting the features and building the model may be unacceptably hard and long process. Thus, a guideline for an effcient feature extraction from the TVAG-based model is proposed. Third, a method for choosing a ML set-up to build an accurate and fast predictive model is proposed and evaluated. Finally, a deep learning architecture for predicting user behaviour on the Web is proposed and evaluated. To sum up, the main contribution to knowledge of this work is in developing the methodology for fast and effcient predictions of user behaviour on the Web. The methodology is evaluated on datasets from a few Web platforms, namely Stack Exchange, Twitter, and Facebook

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    A Stochastic Complexity Perspective of Induction in Economics and Inference in Dynamics

    Get PDF
    Rissanen's fertile and pioneering minimum description length principle (MDL) has been viewed from the point of view of statistical estimation theory, information theory, as stochastic complexity theory -.i.e., a computable approximation to Kolomogorov Complexity - or Solomonoff's recursion theoretic induction principle or as analogous to Kolmogorov's sufficient statistics. All these - and many more - interpretations are valid, interesting and fertile. In this paper I view it from two points of view: those of an algorithmic economist and a dynamical system theorist. >From these points of view I suggest, first, a recasting of Jevons's sceptical vision of induction in the light of MDL; and a complexity interpretation of an undecidable question in dynamics.
    • …
    corecore