
PREDICTION OF USER BEHAVIOUR

ON THE WEB

NIKOLAY BURLUTSKIY

A thesis submitted in partial fulfilment of the

requirements of the University of Brighton

for the degree of Doctor of Philosophy

2017

Contents

Acknowledgments v

Declarations vi

Abstract vii

Abbreviations viii

Chapter 1 Introduction 1

1.1 Problem Overview . 1

1.2 Motivation . 4

1.3 Research Questions . 7

1.4 Research Methodology . 8

1.5 Contribution to Knowledge . 9

1.6 Thesis Organisation . 10

1.7 Publications . 11

1.8 Summary . 12

Chapter 2 Background and Related Work 13

2.1 User Behaviour on the Web . 13

2.2 Prediction Tasks . 16

2.3 Models of User Behaviour on the Web 18

2.3.1 Dynamic Models . 18

2.3.2 Graph-based Models . 19

2.4 Visual Data Exploration . 23

2.4.1 Exploration Tasks . 23

2.4.2 Choosing a Visualisation . 24

2.5 Extracting Features for Prediction 25

2.5.1 Identifying Features . 26

i

2.5.2 Complexity of Feature Extraction 30

2.5.3 Selecting Features . 31

2.6 Machine Learning for Predicting User Behaviour 32

2.6.1 Machine Learning Algorithms for Supervised Learning 34

2.6.2 Online and Offline (Batch) Learning Modes 40

2.6.3 Deep Learning . 41

2.6.4 Evaluating the Efficiency of Prediction 43

2.7 Summary . 44

Chapter 3 Model of User Interaction and Relationship Development

on the Web 46

3.1 Introduction . 46

3.2 Proposed Model of User Behaviour 48

3.2.1 Objects . 49

3.2.2 Time-Varying Attributed Graph (TVAG) 50

3.2.3 Relationship Graph . 51

3.2.4 Interaction Graph . 51

3.2.5 User Attributes . 52

3.2.6 Relationship Attributes . 53

3.2.7 Message Attributes . 54

3.3 A Toy Modelling Example . 55

3.3.1 User Attributes . 55

3.3.2 Interaction Graph . 56

3.3.3 Relationship Graph . 57

3.4 Modelling Examples . 58

3.4.1 Stack Exchange . 59

3.4.2 Twitter . 62

3.4.3 Facebook . 68

3.5 Conclusion and Discussion . 72

3.6 Summary . 74

Chapter 4 Feature Extraction for an Efficient Prediction 75

4.1 Introduction . 75

4.2 Feature Engineering . 77

4.3 Feature Semantics . 77

4.3.1 User Features . 78

4.3.2 Message Features . 79

4.3.3 Relationship Features . 80

ii

4.3.4 Structural Features . 81

4.3.5 Temporal Features . 82

4.4 Feature Complexity . 83

4.4.1 Computational Complexity 84

4.4.2 Space Complexity . 85

4.5 Experiment Outline . 87

4.5.1 Stack Exchange: Stack Overflow and Stack Maths 90

4.5.2 Twitter . 91

4.5.3 Varying Class Balance . 92

4.6 Results and Discussions . 93

4.6.1 Semantic Variations of Features and Performance 94

4.6.2 Computational Variations of Features and Performance . . . 101

4.6.3 Machine Learning Algorithms and Performance 101

4.6.4 A Guideline for Feature Extraction and Selection 102

4.7 Comparison to Related Studies . 103

4.8 Conclusion . 105

4.9 Summary . 105

Chapter 5 Choosing a ML Set-up for an Efficient Prediction 106

5.1 Introduction . 107

5.2 Online and Offline (Batch) Learning 108

5.2.1 Offline (Batch) Learning . 108

5.2.2 Online Learning . 109

5.3 Proposed Method to Compare Online and Offline Algorithms 110

5.4 Deep Learning Approach . 112

5.4.1 Deep Belief Network (DBN) 112

5.4.2 Training Procedure . 114

5.5 Complexity of ML Algorithms . 114

5.6 Experiment Outline . 116

5.7 Results and Discussions . 118

5.7.1 Online vs Offline . 118

5.7.2 Deep Learning vs State-of-the-Art Algorithms 119

5.8 Comparison to Related Studies . 125

5.9 Conclusions . 128

5.10 Summary . 129

iii

Chapter 6 Visual Data Exploration 130

6.1 Introduction . 130

6.2 Exploration Tasks . 132

6.3 Proposed Approach for Choosing Visualisations 133

6.3.1 Visualisations as Cases . 134

6.3.2 Similarity Measure . 135

6.3.3 Recommending Visualisations 135

6.4 Experiment Outline . 136

6.4.1 IBM Many Eyes as a Source of Visualisations 136

6.4.2 Crawling Data . 136

6.4.3 Extracting Cases . 136

6.4.4 Case-Based Reasoning Step 139

6.4.5 Evaluation . 140

6.5 Results and Discussions . 144

6.6 Comparison to Related Studies . 144

6.7 Conclusions . 145

6.8 Summary . 146

Chapter 7 Conclusions 147

7.1 Introduction . 147

7.2 Summary of Thesis . 147

7.3 Main Findings and Contributions . 149

7.4 Future Directions . 154

Appendix A Datasets 156

A.1 Stack Exchange . 156

A.2 Twitter . 162

A.3 Facebook . 163

Appendix B Feature Complexity for Datasets 167

B.1 Stack Exchange . 167

B.2 Twitter . 170

B.3 Facebook . 173

iv

Acknowledgments

Foremost and the most importantly, I owe my sincere and endless appreciation to

my supervisors Miltos Petridis, Andrew Fish, and Nour Ali. This thesis would not

have been possible without their continuous guidance, support and advice. I also

very thankful to Dr Stelios Kapetanakes, Dr Alexey Chernov, Dr Manos Panaousis,

and Dr Babangida Abubakar. These people are very experienced academics who

are always around for friendly advice. I am happy that I was delighted to share my

office and have chats with other PhD students, including Mohammed Al-Obeidallah,

Mousa Khubrani, Shaun Shei, Mansour Ahwidy, Micah Rosenkind, Ioannis Agor-

gianitis, Mithileysh Sathiyanarayanan, Marcus Winter, Tobias Mulling, Vasileios

Manousakis Kokorakis, Eisa Alharbi, Eleftherios Bandis. I cannot mention every-

one who helped and encouraged me to keep going in my research. Last but not least,

I would like to thank Sam Lynch for many fruitful discussions on various topics dur-

ing our regular coffee breaks and lunch time. I appreciate Joseph Cosier’s effort in

proofreading the thesis and providing some valuable input on the ideas challenged

in this thesis. I would like to give an extra mention to Andrew Fish for his con-

tinuous enthusiasm and sincere interest in my PhD work. I could not even think

about a better support during these long, hard but exciting days constituting for

more than three years of my PhD programme. Also, I am thankful to Dr Frederic

Stahl and Roger Evans for examining this work and providing useful feedback on

my thesis. Finally, I would like to thank my parents, my sister, and my nephew for

their support and their unconditional belief in me.

v

Declarations

I declare that the research contained in this thesis, unless otherwise formally indi-

cated within the text, is the original work of the author. The thesis has not been

previously submitted to this or any other university for a degree, and does not

incorporate any material already submitted for a degree.

Nikolay Burlutskiy

vi

Abstract

The Web has become an ubiquitous environment for human interaction, commu-

nication, and data sharing. As a result, large amounts of data are produced. This

data can be utilised by building predictive models of user behaviour in order to sup-

port business decisions. However, the fast pace of modern businesses is creating the

pressure on industry to provide faster and better decisions. This thesis addresses

this challenge by proposing a novel methodology for an efficient prediction of user

behaviour. The problems concerned are: (i) modelling user behaviour on the Web,

(ii) choosing and extracting features from data generated by user behaviour, and

(iii) choosing a Machine Learning (ML) set-up for an efficient prediction.

First, a novel Time-Varying Attributed Graph (TVAG) is introduced and

then a TVAG-based model for modelling user behaviour on the Web is proposed.

TVAGs capture temporal properties of user behaviour by their time varying compo-

nent of features of the graph nodes and edges. Second, the proposed model allows

to extract features for further ML predictions. However, extracting the features and

building the model may be unacceptably hard and long process. Thus, a guideline

for an efficient feature extraction from the TVAG-based model is proposed. Third,

a method for choosing a ML set-up to build an accurate and fast predictive model

is proposed and evaluated. Finally, a deep learning architecture for predicting user

behaviour on the Web is proposed and evaluated.

To sum up, the main contribution to knowledge of this work is in developing

the methodology for fast and efficient predictions of user behaviour on the Web.

The methodology is evaluated on datasets from a few Web platforms, namely Stack

Exchange, Twitter, and Facebook.

vii

Abbreviations

AG - Attributed Graph

AGM - Attributed Graph Model

ANN - Artificial Neural Networks

BM - Boltzmann Machine

BN - Bayesan Network

CBR - Case-Based Reasoning

CNN - Convolutional Neural Network

CPU - Central Processing Unit

DBN - Deep Belief Network

DL - Deep Learning

DT - Decision Trees

EDA - Exploratory Data Analysis

EM - Ensemble Methods

GPU - Graphics Processing Unit

HMM - Hidden Markov Models

k-NN - k Nearest Neighbours

LR - Logistic Regression

LSR - Least Squares Regression

MAG - Multiplicative Attributed Graph

MART - Multiple Additive Regression Trees

ME - Maximum Entropy

ML - Machine Learning

MLE - Maximum Likelihood Estimation

viii

MLP - Multi-Layer Perceptron

NB - Naive Bayes

NLP - Natural Language Processing

PCA - Principal Component Analysis

PDF - Probability Density Function

PA - Passive-Aggressive

Q&A - Question-and-Answer

RBFN - Radial Basis Function Network

RF - Random Forest

RBM - Restricted Boltzmann Machine

RNN - Recurrent Neural Network

SGD - Stochastic Gradient Descent

SSM - State-Space Models

SVM - Support Vector Machines

TAG - Time Aggregated Graph

TVG - Time-Varying Graph

TVAG - Time-Varying Attributed Graph

XGB - Extreme Gradient Boosting

ix

Chapter 1

Introduction

The main motivation of the work in this thesis is to explore the challenge of pre-

dicting user behaviour on the Web. As a result, a novel methodology for an efficient

prediction of user behaviour on the Web is proposed. The methodology is tested

and evaluated in several experiments on real datasets, such as datasets from Stack

Exchange, Twitter, and Facebook.

In this Chapter, the problem of predicting different aspects of user behaviour

on the Web is introduced. First, the problem overview is explored in Section 1.1.

Second, the motivation for predicting user behaviour is presented in Section 1.2.

Third, the research questions along with the adopted research methodology and

contribution to knowledge are discussed in Sections 1.3, 1.4, and 1.5 accordingly.

Last, the organisation of the thesis is presented, the papers published as a result of

this work are listed, and the whole work is summarised in Sections 1.6, 1.7, and 1.8

correspondingly.

1.1 Problem Overview

Recently, the scale of user behaviour on the Web, more specifically human interac-

tion and communication on the Web, has grown very fast. As a result, the size of

data generated by such behaviour has increased significantly. For example, the con-

tent generated only on Facebook in early 2016 is counted in thousands of terabytes

per day and this number continues to grow. However, most of this data remains

unused and forgotten.

In this thesis, user behaviour on the Web is defined as human interaction

and relationship development on the Web. Human interaction involves messaging

activities of users, for example, sending messages between users on Facebook, post-

1

ing and sharing pictures, audio and video content. In case of Twitter, posting tweets

and retweeting other tweets is considered as human interaction. The second part of

user behaviour is relationship development. These relationships can be, for example,

professional, friendship or romantic relationships. On Facebook these relationships

involve friendship ties since users can ‘friend’ or ‘unfriend’ someone. Users of Twit-

ter can follow each other or be followed by others. These relationships are dynamic

since they can develop overtime, a relationship between people can appear and then

disappear later.

The Web is an umbrella term for a number of platforms that allow people

to communicate, interact, and exchange the generated information. Such media

include social networking platforms, email services, web blogs, and Q&A forums.

However, the understanding of user behaviour in these communities, how people

interact with each other, and what kind of information can be deduced from their

activities is still limited.

Nevertheless, researchers have tried to utilise data generated on the Web

for different prediction tasks. For example, predicting user satisfaction of customer

support on the Web [Karnstedt et al., 2010; Glady et al., 2009], user behaviour in

social media [Zhu et al., 2013], predicting response times to questions [Yang et al.,

2011; Dror et al., 2013] and tweets [Weerkamp and De Rijke, 2012], churn of users

[Zhu et al., 2013], predicting effectiveness of online advertisements [McDuff et al.,

2015] is a short list of such tasks.

Some researchers have worked on establishing factors influencing user be-

haviour on the Web. However, understanding the factors influencing user behaviour,

the methods of extracting this information from the Web, and the approaches for

predicting the behaviour is still at an early stage of development. Indeed, recent

studies on predicting user behaviour have shown that the behaviour depends on

many factors such as social, contextual, spatial, and temporal factors [Scellato et al.,

2011; Guille and Hacid, 2012]. Due to the scale of data generated on the Web, study-

ing these relationships and building predictive models is a challenging task involving

substantial data mining efforts [Adedoyin-Olowe et al., 2013].

The problem scenario addressed in this thesis is the scenario when the effi-

ciency of predicting user behaviour on the Web is crucial. To illustrate this scenario

more specifically, a few examples of predicting user behaviour on the Web where the

efficiency of a prediction is crucial are presented below. First, for example, predict-

ing whether a tweet on Twitter will be retweeted within one hour or not fits well in

the problem scenario. It is evident that if a very accurate ML model is built and

the this model predicts that a particular tweet will be retweeted within one hour

2

but to produce such a prediction takes more than two hours then such prediction is

useless for a practical application. Another example is predicting whether a question

asked on Q&A forum will be answered within 10 minutes or whether it will take

longer than 10 minutes. In order to produce a prediction using ML approach, a set

of features must be extracted, then a predicting model must be trained on these

features and finally a prediction must be performed. However, if all this process

requires more than 10 minutes then the prediction cannot be used for a practical

application. Thus, this problem scenario where the efficiency of a prediction of user

behaviour on the Web is crucial is addressed in this thesis.

Modelling User Behaviour on the Web

Modelling is a great tool for understanding and exploring the data generated by

users on the Web. Researchers tried to build models of user behaviour on the Web

using data such as [Shannon, 1948; Yu and Kak, 2012]. These models are always

incomplete due to the complexity of the task, but the models can be useful for specific

tasks. The era of Social Networks has made graph models popular to explore and

analyse relationships between people as well as for analysing the dynamics of their

communication [Xiong and Donath, 1999; Donath et al., 2010; Frau et al., 2005].

Also, modelling user behaviour can facilitate the exploration of the data and can

help to find hidden patterns of human communication and interaction on the Web.

Exploring User Behaviour Visually

Visualisation can facilitate exploration of user behaviour. Indeed, visualisation can

help to uncover hidden relationships and answer questions on how users communi-

cate and how their relationships evolve over time. For example, visualisation of users’

emails activity can provide insight into the conversational history of users’ commu-

nication [Samiei et al., 2004]. Even though there has been long lasting research into

exploratory visualisations of human communication, the choice of a visualisation for

a particular task and a dataset is challenging [Smith and Fiore, 2001; Venolia and

Neustaedter, 2003].

Extracting Features for Machine Learning Prediction

In order to build a good predictive model, it is necessary to understand what drives

user behaviour on the Web as well as to find important attributes or factors the

behaviour depends on. Once the data or the model representing user behaviour

on the Web is explored and understood, these factors can be extracted as features.

3

Then these features can be used to build a predictive model of user behaviour on

the Web [Cheng et al., 2011; Steurer and Trattner, 2013]. Several researchers have

analysed different online communities, their motivation and behavioural dynamics

on the Web [Wang et al., 2013; Li et al., 2012; Horowitz and Kamvar, 2010; Morris

et al., 2010]. Since the data generated by online communities is large, the feature

extraction step often involves reducing the size of the data. Ideally, this step is

performed without much loss of information on the user behaviour but the reduced

data can still be used for building an accurate model of user behaviour.

Choosing a Machine Learning Set-up

Accuracy and speed of prediction are crucial in many businesses. For example, the

ML company called ‘SkyTree’1 reports several business challenges in fraud detection

where it is required to provide prompt and accurate results. This may be achieved

by frequent model updates as well as by using a combination, or an ensemble, of

ML methods [SkyTree, 2014].

There is a tendency for more complex models to provide more accurate but

slower predictions than simpler models [Loumiotis et al., 2014]. Thus, there is a

need to find a trade-off in the accuracy and the speed of the prediction, especially

in the cases when the speed of the prediction is crucial [Bifet et al., 2015].

Choosing an appropriate ML set-up for building a good predictive model

from extracted features is a challenging task due to the number of existing ML

algorithms and their variations. Indeed, there is no algorithm dominating others

in terms of performance. Most ML techniques involve a substantial time of trial

and error to find the most appropriate ML set-up for a particular task and domain

[Domingos, 2012]. However, researchers are actively working on building guidelines

for how to choose a particular ML set-up depending on the size and provenance

of a dataset, prediction task, available hardware and software resources, and the

technical complexity of the set-up [Sculley et al., 2015].

1.2 Motivation

Predicting user behaviour on the Web has a wide range of practical applications. A

list of possible applications includes:

• Predicting user purchasing activities. By analysing how people discuss a par-

ticular advertised product and whether a product is recommended by people

1skytree.net

4

to others, it is possible to predict sales of a product [Badea, 2014]. Also, the

retail industry is interested in analysing and predicting customer behaviour

and their purchasing patterns to develop marketing and stock replenishment

strategies [Park and Seo, 2013].

• Predicting churn of users. Churners are users who leave a Web service for the

benefit of a competitor [Karnstedt et al., 2010]. Sometimes churn is defined

as a significant decrease in user activity. Telecommunication and computer

network providers are interested in identifying such users to evaluate their

loyalty [Glady et al., 2009]. By predicting users who are likely to leave the

service soon, it is possible to take an action, for example, call a customer or

send him/her an email in an attempt to keep the customer.

• Identifying spammers and criminals. Predicting unusual user behaviour can

help to detect spammers and criminals [Aneetha et al., 2012]. Also, predicting

high risk customers can help banks and the financial sector to minimise fraud

and financial losses [Wei et al., 2012].

• Predicting user complaint activities. By predicting users who are likely to

complain about a service, it is possible to take an action to improve users’

experience with a service [Jernite et al., 2013]. Another related application is

predicting users who are not satisfied with a service [Larivière and Van den

Poel, 2005].

• Predicting user posting activities. Predicting trends of user behaviour, for ex-

ample, explicitly highlighting and predicting the dynamics of tweets in Twitter,

facilitates users’ understanding of popular tweets at a particular time [Zhang

et al., 2014].

• Improving user satisfaction. Providing a user with an expected time for when

his/her tweet will be retweeted can improve user experience on the Web [Artzi

et al., 2012]. Also, predicting whether user’s question on a Q&A forum will be

answered can improve user satisfaction of using the forum [Yang et al., 2011;

Dror et al., 2013]. For example, by providing a user of a Q&A community

with an estimation of the response time to their questions, the frustration of

silence on an online community can be mitigated. Furthermore, users can

be recommended to change their questions in order to make their questions

answerable faster [Bhat et al., 2014; Lezina and Kuznetsov, 2012].

There are plenty of possible architectural implementations for such applications.

However, most of these architectures can be generalised in a pipeline (see Figure

5

1.1) [Pentreath, 2015]. User behaviour on the Web leads to data ingestion which can

be streamed in real time. For example, thousands of tweets are posted on Twitter

per second in 2017. This data is usually stored in a database. However, the size of

the data is large and it requires a preprocessing step before building a ML model.

For this purpose, a Data Cleansing and Transformation step is performed (see Figure

1.1). This step includes a feature extraction procedure in order to decrease the size

of the data and to use only relevant data. Afterwards, a model training and testing

step is performed and finally a model deployment and integration is conducted.

There are a few possible issues of processing speed and response time of such

a ML pipeline. First of all, due to the fact that a lot of data is generated by user

behaviour on the Web, the feature extraction step must be performed in an efficient

way (see Figure 1.1, Data Transformation step). Otherwise, in the case when this

step takes long time, the data for building a model will be derived and processed

too late. As a result, the model will be outdated or even the prediction made by the

model will be irrelevant. For example, in case of predicting when a user replies to a

tweet on Twitter, a model can provide a prediction of the tweet reply to be expected

in two minutes but feature extraction step might take more than two minutes what

makes such a system too slow for a practical application. Second, model building and

testing can be a crucial step as well. Similar to the feature extraction step, if model

training and testing takes long time then the predictions made by such a model can

be obtained too late for them being useful. Again, for predicting question response

times on a Q&A forum where the response times are often less than a minute, a

predictive model must be capable of providing predictions faster than fractions of

minutes.

The requirements for the speed of classification, as was mentioned previously,

depends on the problem. For predictions of response time on Twitter, Facebook,

and popular Q&A forums, such as Stack Exchange forums, the prediction must be

made in a few seconds or minutes since the prediction must be made before the

predicted event will happen. The requirements for the accuracy of predictions are

also task dependent. For example, predicting a question to be answered within a

certain interval better than predicting using a naive approach can add value to a

Q&A platform. For instance, improving the prediction accuracy by a few percent

it is possible to redirect more questions to experts. Thus, the speed of answering

questions on Q&A forums can be improved. However, in some sensitive scenarios,

for example, predicting criminal behaviour on the Web requires more confident

predictions which in some cases must be near 99% due to high risks caused by

possible false predictions. In this thesis, the stress is on less sensitive scenarios

6

Figure 1.1: A general pipeline for a machine learning system.

where improving naive approaches by a few percent can lead to important benefits

due to the large size of data.

In this thesis, a continuous pipeline for a ML system (Figure 1.1) is considered

and two crucial steps of feature extraction and then building and testing ML models

are of interest. Predicting user behaviour on the Web efficiently depends on these

two steps.

1.3 Research Questions

The main research question formulated in this thesis can be stated as follows:

“How can one model, explore, and predict user behaviour on the Web

efficiently using data mining techniques?”

The main research question is split into six sub-questions addressed in this thesis.

The first step in answering the main research question leads to the first sub-question

addressing the problem of modelling user behaviour on the Web, more specifically

modelling human interaction and relationship development on the Web:

1. How can one model human interaction and relationship development in order

to capture, explore, and facilitate understanding of user behaviour on the

Web?

The second step is to extract features for building predictive models of user be-

haviour on the Web. This step leads to the second and the third sub-questions

addressing the problem of extracting these features for fast but accurate predictions

as well as evaluating how temporal features are important for such predictions:

2. How can one construct a set of features for an accurate but fast prediction of

user behaviour on the Web?

7

3. How important are temporal features for prediction in terms of accuracy and

time efficiency?

The third step is to build a predictive model of user behaviour efficiently. This step

involves choosing an efficient ML set-up for building such models. One can choose

an online or offline setting, a state-of-the-art algorithm or a more advanced deep

learning algorithm for training and testing the predictive models. As a result, the

following two sub-questions are addressed:

4. How do online and offline algorithms compare in terms of their time complex-

ity and accuracy performance in predicting user behaviour?

5. How does the performance of state-of-the-art ML algorithms compare? Is deep

learning advantageous compared to other algorithms?

Finally, there is an ongoing work on visually exploring user behaviour on the Web.

Visualisation is a powerful tool for exploring user behaviour on the Web, how-

ever, choosing appropriate visualisations for exploring user behaviour is challenging.

Thus, the last sub-question addresses the problem of how to automatise the process

of choosing visualisations:

6. How can one automatically choose appropriate visualisations to explore user

behaviour on the Web?

1.4 Research Methodology

The research methodology adopted in this thesis consists of five steps. Each step is

discussed below.

The first step is developing a model of user behaviour on the Web in order to

capture user behaviour on the Web, defined as human communication and relation-

ship development on the Web. Since the model is designed using a fusion of a Time-

Varying Graph (TVG) and an Attributed Graph (AG), the resulted Time-Varying

Attributed Graph (TVAG) model explicitly captures temporal and structural prop-

erties of user behaviour on the Web. In order to demonstrate the applicability of the

proposed model, three datasets are used, Stack Exchange, Twitter, and Facebook.

As a result, it is shown that it is feasible and straightforward to model real world

social platforms using the proposed model.

The second step is to extract features efficiently from the proposed TVAG-

based model of user behaviour on the Web. All features are classified into two

groups, semantic and computational, and then the effect of these groups of features

8

on accuracy and time performance is estimated for a binary classification task across

three different datasets from Stack Exchange and Twitter. Four state-of-the-art ML

algorithms are used, namely k-NN, LR, DT, and XGB. As an evaluation metric, ac-

curacy, F-measure, and time performance are measured.

The third step is to compare the performance of the predictive models trained

using two different learning modes, online and offline (batch) learning modes, to pre-

dict user behaviour on the Web. Since these two learning modes are conceptually

different, an evaluation procedure is proposed and executed. As an experiment, four

offline (batch), and three online learning algorithms are executed across three differ-

ent datasets from Stack Exchange and Twitter. As an evaluation metric, accuracy

and time performance are used for comparing the performance of these two modes.

Next, a Deep Learning (DL) algorithm, Deep Belief Network (DBN), is de-

signed for predicting user behaviour on the Web and then its performance is com-

pared to the previously introduced four offline (batch) and three online ML algo-

rithms. Again, as an evaluation metric, accuracy and time performance are used.

Finally, the problem of choosing visualisations of user behaviour on the Web

automatically is addressed. For that purpose, a Case-Based Reasoning (CBR) ap-

proach for choosing visualisations of user behaviour on the Web is proposed and

then tested on a real dataset collected from the IBM Many Eyes platform. Then

the results of choosing visualisations automatically by the proposed CBR approach

are compared to the results of choosing visualisations by participants in an empir-

ical study. Finally, the difference in the results is analysed both qualitatively and

quantitatively.

1.5 Contribution to Knowledge

The main contribution to knowledge of this thesis is through providing a systematic

methodology to predict user behaviour on the Web. In more detail, the list of

contribution is as follows:

1. Proposed a novel methodology to predict user behaviour on the Web.

2. Designed a Time-Varying Attributed Graph (TVAG) where each node and

edge of the graph is a time-varying attributed object. Then designed a novel

model of human communication and relationship development based on two

such graphs. Demonstrated how this model can be used for modelling user

behaviour on Facebook, Twitter, and Stack Exchange platforms.

3. Introduced a novel systematic approach of feature extraction from the pro-

9

posed model to predict user behaviour on the Web. These features are clas-

sified into semantic and computational complexity groups. Evaluated contri-

bution of these feature groups to accuracy and time performance of a binary

classification task. Proposed a guideline for efficient feature extraction and

discussed scenarios when this guideline is advantageous.

4. Predicted users’ response time for the largest Q&A platform, Stack Exchange,

using the proposed methodology. Showed that temporal features are important

predictors in predicting user behaviour on the Web.

5. Predicted tweets being retweeted for the largest micro-blogging platform, Twit-

ter, using the proposed methodology. Showed that structural features are

important predictors in prediction of user behaviour on the Web.

6. Proposed a procedure for comparison of online and offline (batch) learning

modes. Showed empirically that online learning can be much faster than offline

learning without much loss in the accuracy of predicting user behaviour on the

Web.

7. Showed that Deep Learning (DL), more specifically Deep Belief Network (DBN),

can be superior to other ML methods in terms of accuracy but slower in train-

ing and predicting.

8. An additional contribution is a proposed novel method based on Case-Based

Reasoning (CBR) to choose visualisations of user behaviour on the Web. The

method was evaluated on IBM Many Eyes platform as well as an empirical

study for an evaluation of the proposed method was conducted.

1.6 Thesis Organisation

This thesis is organised as follows:

Chapter 1 introduces the problem addressed in this thesis, motivation for working

on this problem, research questions, methodology, contribution to knowledge,

organisation of this thesis, and papers published as a result of working on this

thesis.

Chapter 2 discusses Background and Related Work.

Chapter 3 introduces a model based on a Time-Varying Attributed Graph (TVAG)

to model user behaviour on the Web.

10

Chapter 4 introduces a feature engineering procedure and an approach on how to

estimate the efficiency of feature extraction.

Chapter 5 explores the problem of choosing a ML set-up for a prediction task in

the context of user behaviour on the Web. Online and offline (batch) learning

modes are compared. Also, a deep learning approach is designed and compared

to other state-of-the-art ML approaches.

Chapter 6 provides an approach on how can one automatically choose visualisations

for the exploration of user behaviour on the Web.

Chapter 7 revisits the research questions, summarises the main findings and con-

tributions of this thesis, and, finally, proposes a few directions for further

research.

1.7 Publications

This thesis resulted in the following publications:

1. N. Burlutskiy, M. Petridis, A. Fish, and N. Ali, Modelling User

Behaviour on the Web with Time-Varying Attributed Graphs, Social

Networks, An International Journal of Structural Analysis, Editors:

M. Everett, T.W. Valente (submitted in April 2017). The content of

this paper describes the proposed TVAG-based model of user behaviour on

the Web introduced in Chapter 3.

2. N. Burlutskiy, M. Petridis, A. Fish, N. Ali, and A. Chernov, An

Investigation on Online versus Batch Learning in Predicting User

Behaviour, Thirty-sixth SGAI International Conference on Artificial

Intelligence (AI-2016), England, Cambridge (accepted). The content

of this paper describes the experiments introduced in Chapter 5.

3. N. Burlutskiy, M. Petridis, A. Fish, and N. Ali, Predicting Users’

Response Time in Q&A Communities, IEEE International Confer-

ence on Machine Learning and Applications (ICMLA 2015), USA,

Miami, pp. 618-623, 12/2015. The content of this paper describes the

experiments introduced in Chapter 4 and 5 of this thesis.

4. N. Burlutskiy, M. Petridis, A. Fish, and N. Ali, How to Visualise a

Conversation: A Case-Based Reasoning Approach, 19th UK Work-

shop on Case-Based Reasoning (UKCBR 2014), England, Cam-

11

bridge, pp. 27-38, 12/2014. This paper introduced the proposed method

for choosing visualisations for data exploration described in Chapter 6.

5. N.Burlutskiy, A. Fish, M. Petridis, and N. Ali, Enabling the Visu-

alization for Reasoning about Temporal Data, IEEE Conference on

Visual Languages and Human-Centric Computing, Australia, Mel-

bourne, pp. 179-180, 08/2014. This paper introduced the importance of

visualisation for reasoning over data as well as requirements for such a system

(Chapter 6).

While working on this thesis, the author contributed to a few related investigations

which led to the following publications:

6. M. Sathiyanarayanan, and N. Burlutskiy, Visualizing social net-

works using a treemap overlaid with a graph, Procedia Computer

Science 58, pp. 113-120, 08/2015.

7. M. Sathiyanarayanan, and N. Burlutskiy, Design and evaluation of

Euler diagram and treemap for social network visualisation, Com-

munication Systems and Networks (COMSNETS), 2015 7th Inter-

national Conference on, India, Bangalore, pp. 1-6, 06/2015.

8. M. Petridis, S. Kapetanakis, J. Ma, and N. Burlutskiy, Temporal

Knowledge Representation for Case-Based Reasoning Based on a

Formal Theory of Time, International Conference on Case-Based

Reasoning (ICCBR 2014), Cork, Ireland, 09/2014.

1.8 Summary

This Chapter introduced the problem of predicting user behaviour on the Web.

First, the problem of predicting user behaviour on the Web was discussed. Sec-

ond, the motivation for producing such predictions was stated. Third, the research

questions addressed in this thesis along with the research methodology and the con-

tribution to knowledge were declared. Finally, the structure of this thesis and the

list of peer-reviewed papers published by the author were introduced.

In the next Chapter, background and related work are discussed.

12

Chapter 2

Background and Related Work

This Chapter leads the reader through the most recent research findings in the

area of predicting user behaviour on the Web. Also, the Chapter provides the

necessary background for modelling and visualising of user behaviour, as well as

the background for feature extraction and state-of-the-art ML techniques to predict

user behaviour on the Web.

First, an overview of prediction of user behaviour on the Web is introduced

in Section 2.1. Second, prediction tasks are listed in Section 2.2. Third, models of

user behaviour are reviewed in 2.3. Fourth, visual data exploration of user behaviour

on the Web is over-viewed in Section 2.4. Fifth, feature extraction techniques are

discussed in Section 2.5. Sixth, the state-of-the art ML methods for prediction are

discussed in 2.6. Finally, the Chapter is summarised in Section 2.7.

2.1 User Behaviour on the Web

Many users regularly use the Web to share their interests, stay connected, discuss

various topics, share and obtain information. As a result, vast amounts of data are

generated by these users and then one can use this data to produce useful predic-

tions of certain user related behaviour. These predictions can be used in various

domains, including finance, product marketing, social dynamics, public health, and

politics. One of the consequences of this is that an increasing number of researchers

have been attracted to this subject [Yu and Kak, 2012].

There are many platforms where users can communicate, share their in-

terests, stay connected, discuss various topics, and exchange information. These

platforms include, for example, social networks, Q&A forums, and digital commu-

nication networks. Following is a short overview of those platforms.

13

Figure 2.1: Different Social Networking Sites on the Web.

Social Networks

Social networks are popular platforms for socialising, interacting, and sharing in-

formation on the Web (see Figure 2.1). Social Networks platforms include Twitter

and Facebook ; Q&A forums include, for example Quora and Stack Exchange. Insta-

gram and Flickr are examples of platforms where users share pictures. Also, digital

newspapers, such as the Guardian and the New York Times, allow users to leave

their comments and interact with other users. The common features of these social

platforms are, first, the presence of a social structure and, second, the presence of

mechanisms to interact and disseminate information. In 2016, two of the largest

and most successful social networks were Facebook and Twitter :

• Facebook : The largest social network where people can ‘friend’ each other and

communicate with each other. A common abstract model for representing the

Facebook structure is a social graph where people are nodes and their relation-

ships are edges of the graph. Also, since the individuals can send messages

to each other, a second graph, an interaction graph, can be constructed where

nodes represent people and directed edges represent messages being sent.

• Twitter : In this platform, people can ‘follow’ each other, be followed by others,

or follow someone. Thus, a directed social graph of people (nodes) and their

relationships (edges) can be constructed. Also, people can ‘tweet’ or ‘retweet’

each other which allows one to model the tweeting activity of users in the form

14

Figure 2.2: Different Q&A Communities on the Web.

of a dynamic interaction graph.

Q&A Forums

Question-and-Answer (Q&A) communities are represented by thousands of inde-

pendent forums as well as forums which are part of another platforms (see Figure

2.2). The largest Q&A communities are Stack Exchange, Quora, Baidoo, Yahoo!,

and Naver. The functionality to ask and answer questions is the characteristic which

unites all these Q&A forums. Two of the most popular Q&A forums are presented

below:

• Quora: This platform is a Q&A social network where people can follow each

other. Users can also ask and answer questions. Again, both a social graph as

well as an interaction graph can be constructed.

• Stack Exchange: This Q&A platform is represented by a family of Q&A web-

sites where users ask and answer questions on various topics. These websites

do not have an explicit social graph where people can ‘friend’ each other but

an interaction graph of question asking and answering activity can be con-

structed.

15

Digital Communication Networks

The Internet has given people the ability to communicate globally through email

and instant messengers. Microsoft, Google, and Yahoo are examples of such email

services. Facebook messenger, Kakao Talk, WhatsApp, and Kik are examples of

instant messengers. Some of these communication networks allow the construction

of a social graph, a graph where people are interconnected by social ties. From

another side, the interaction between people can form another graph, an interaction

graph.

Similarities and Differences of the Platforms

The aforementioned platforms allow people to communicate and to build various

social ties. As a result, the platforms form at least two different types of networks,

namely a social or friendship network and interaction network. Also, all these social

media platforms have temporal characteristics: for example, users add new friends

and ‘unfriend’ others over time. Therefore, the topology of the social network formed

by these communities can change over time. The same can happen with the inter-

action network since messages are timestamped and the temporal properties of the

interaction network are known too. Nevertheless, every platform has its own data

format representing communication between people. As a result, first, different

predictions can be performed over different platforms and, second, each platform

requires an individual approach to understand and predict user behaviour on the

Web. This fact motivates one to provide a general graph-based model of user inter-

action and relationship development on the Web.

Next, a set of the most common prediction tasks is introduced and discussed.

2.2 Prediction Tasks

There is a vast number of papers in which researchers have tried to predict user be-

haviour on the Web. These papers include but are not limited to the prediction of

purchasing activities [Badea, 2014], customer behaviour [Park and Seo, 2013; Zheng

et al., 2013], churn of users [Karnstedt et al., 2010], users’ loyalty [Glady et al.,

2009], identification of spammers and criminals [Aneetha et al., 2012; Wei et al.,

2012]. To add to this list, researchers predicted user complaint activities [Jernite

et al., 2013], and predicted users who will not be satisfied with a service [Larivière

and Van den Poel, 2005]. Predicting user satisfaction [Yang et al., 2011; Dror et al.,

2013; Artzi et al., 2012] and improving user’s experience on the Web by predicting

16

temporal properties of user’s activity [Bhat et al., 2014; Lezina and Kuznetsov, 2012]

is an active area of research as well. Predicting one’s location at a particular time

[Sadilek and Krumm, 2012] is another area of interest in predicting user behaviour

on the Web.

Due to the diversity of user behaviour on the Web and the variety of predic-

tion tasks, there are at least two common problems associated with these predictions.

First, the accuracy of the prediction and, second, computational complexity and the

resources required to perform the prediction. For example, in [Zheng et al., 2013] the

authors predicted customer restaurants preference based on check-ins posted in so-

cial media. The authors analysed 121,000 Foursquare check-ins in restaurants in the

Greater New York City area and then they built two predictive models. However,

it was not mentioned how computationally expensive it was to train an accurate

model which can be unacceptable when a near real-time prediction is required.

An approach for predicting human location at a particular time was proposed

in [Sadilek and Krumm, 2012]. The authors used historical data of past human lo-

cation to extract patterns in user behaviour. Also, it was shown that predicting

one’s location in the distant future is, in general, highly independent of the recent

location of that person but, on the contrary, one’s location exactly one week from

now is a good predictor. Again, the author concentrated on providing an accurate

prediction, however, the time spent on preprocessing and then training a model can

be unacceptable for near real-time predictions.

Another group of researchers predicted human activities at home [Nazerfard

and Cook, 2013; Choi et al., 2013]. These activities include having breakfast or,

for example, taking medication. The authors also proposed an approach to predict

the start time of the next user activity. Again, the problem of having a fast and

accurate prediction was not a concern.

Predicting user posting activities [Zhang et al., 2014] has attracted many re-

searchers as well. Predicting such user behaviour in social media includes predicting

the posting time of messages in Q&A forums [Yang et al., 2011; Dror et al., 2013;

Zhu et al., 2013; Burlutskiy et al., 2015], churn of users [Zhu et al., 2013], response

time to a tweet [Weerkamp and De Rijke, 2012]. For example, an initial attempt to

build a predictive model for Twitter was conducted in [Spiro et al., 2012]. In this

paper the authors constructed a model for predicting the time between information

dissemination and redistribution on Twitter.

Due to the variety of user behaviour on the Web and, as one of the results,

the variety of prediction tasks, the research community has attempted to provide

different models of user behaviour. These models are discussed in the next Section.

17

Figure 2.3: The model of communication from [Shannon, 1948].

2.3 Models of User Behaviour on the Web

User behaviour on the Web can be considered as a process of communication and

interaction between users on the Web. One of the first and simplest models of

communication is reflected in the work of [Shannon, 1948]. This model consists of

a transmitter, a message, a channel where the message travels, noise or interfer-

ence, and a receiver (see Figure 2.3). Wilber Schramm in his work [Schramm and

Roberts, 1971] extended the model of communication with an emphasis on feedback

in communication. The traditional communication model can be easily applied for

social media. For example, by substituting keyboard for encode/decode and screen-

to-screen for channel. The people communicating in social media can be considered

being both senders and receivers worrying about correct feedback.

In this thesis, modern models of user behaviour are split into two large groups,

dynamic models and graph-based models. Dynamic models are based on control

theory and system theory whereas graph-based models use graph theory and social

networks theory. First, dynamic models are introduced.

2.3.1 Dynamic Models

Generally speaking, a dynamic model represents the behaviour of an object over

time. Usually such models are considered as a set of states ordered in a sequence.

In case of user behaviour on the Web, such objects are people and dynamic models

represent their behaviour. For example, in [Pentland and Liu, 1999] the researchers

proposed to consider a human “as a device with a large number of internal mental

states, each with its own particular control behaviour and inter state transition

probabilities”. Each “internal mental state” can be written as a single dynamic

18

process:

ẋk = fk(xk, t) + ξ(t)

yk = hk(xk, t) + ν(t)
(2.1)

Where the function fk models the dynamic evolution of the state vector xk

at time k. Both ξ and ν are white noise processes with known spectral density

matrices. The observations yk is a function hk of the state vector xk.

Then this system described in Equation 2.1 can be used for analysis, explo-

ration and predictions. The predictions can be performed by using, for example,

Kalman filters [Pentland and Liu, 1999; De la Rosa et al., 2007].

In control engineering a concept of State-Space Models (SSM) has been ap-

plied for various domains [Sontag, 1998]. SSM is a mathematical model of a physical

system. Such systems consists of input, output and state variables which are usu-

ally related by differential equations [Sontag, 1998]. An example of using SSM for

modelling user behaviour on the Web was proposed in [Radinsky et al., 2012]. The

authors showed how to use this model for predicting user activity such as query

clicks and url clicks. This model uses temporal features as well as some domain-

specific features such as the number of clicked urls and query-click entropy.

Nevertheless, graph-based models are more common models for modelling

user behaviour compared to the dynamic models described in this Subsection. In

the next Subsection graph-based models are introduced and discussed.

2.3.2 Graph-based Models

A graph-based model assumes that a graph is used for modelling user behaviour.

Usually, the nodes of such a graph are associated with people and the edges connect-

ing the nodes are associated with some sort of communication or connection between

the people. Modelling user behaviour as a graph allows to capture structural prop-

erties of the network formed by these people. Indeed, a plenty of graph-based model

have been proposed. Below is a brief list of such related research works.

A graph-based model of a Twitter network was proposed and then built in

[Zhang et al., 2014]. In their paper, the authors proposed using a graph G = (U,E)

for describing users activity on Twitter where the nodes U were associated with

people and the edges E were associated with the relationships of following users

or users being followed by other users. Modelling a Twitter network as a graph

allows one to learn about the structure of relationships between people, facilitates

understanding which people are more active and who are central in the network.

The structure of such networks can by analysed formally using the graph theory.

19

Indeed, such social graphs have shown importance for many applications such as

improving security and performance of network systems in detecting email spam-

mers [Garriss et al., 2006], improving Internet search [Gummadi et al., 2006], and

defending against Sybil1 attacks [Yu et al., 2006].

Enhancing a basic graph-based model of user behaviour introduced earlier

is a large area of research. For example, in order to capture the structure of social

networks as well as the features of the nodes and the edges in a network, a few

statistically sound models of social networks have been proposed [Toivonen, 2009].

Nevertheless, many models consider only the networks where the nodes have no

attributes which limits the scale of multifaceted nature of user behaviour to be cap-

tured [Toivonen, 2009]. As a result, several recent works has attempted to extend

classical graph models for real-world social networks. One of the goals of such ex-

tension is to enable a powerful mathematical analysis for real-world social networks.

One direction is to consider nodes of such networks having attributes [Toivonen,

2009; Kim and Leskovec, 2011; Pfeiffer et al., 2014] and the second direction is to

use graphs in combination [Zhang and Zhang, 2013].

The first direction for extending graphs is performed by defining attributes

for nodes of a graph. There are two graph-based models associated with such graphs

extended by attributes. These are a ‘Multiplicative Attribute Graph’ (MAG) and

an Attributed Graph Model (AGM). In [Kim and Leskovec, 2011] a MAG was pro-

posed and then it was shown that the nodes with attributes allow to capture the

interactions between occurrence of links in a clean and tractable manner. The nodes

of such a graph have categorical attributes which encode some information on the

people in the network. The probability of an edge in this graph is the product of

individual attribute link formation affinities. As a result, this graph can be used

for predicting, for example, unobserved edges. By predicting whether there is an

edge existing between a pair of nodes, one can deduct the structure of such a social

network. However, their model was developed only for a specific purpose, to capture

the edges of a graph. Nevertheless, it was shown that MAG allows one to capture

structural properties of real-world networks as well as attributes of nodes in such

networks, for example, the age, status, gender of people in a social network.

An Attributed Graph Model (AGM) framework for capturing network struc-

ture and node attributes simultaneously was proposed in [Pfeiffer et al., 2014]. The

authors outlined an efficient method for estimating the parameters of AGM. In an-

other paper [Campbell et al., 2013], the authors mentioned that an attributed graph

1The Sybil attack is an attack in peer-to-peer networks wherein a system is corrupted by faking
identities of the networks.

20

u1{

m1

m2

m4

m3

u2{

u3{ u4{

Age: 23,
Gender: male }

Age: 21,
Gender: male }

Age: 20,
Gender: female }

Age: 28,
Gender: male }

Name: Bob,

Name: Nick,

Name: Jack,

Name: Jana,

Figure 2.4: An example of an attributed graph with four attributed nodes
u1, u2, u3, u4 and four edges m1,m2,m3,m4. Each node has three attributes, Name,
Age, Gender.

is a powerful representation of social media networks. The authors stated that intro-

ducing attributes on edges can enhance the expressiveness of a graph. An example

of an attributed graph is shown in Figure 2.4.

The second direction is to improve expressiveness of a graph-based model

by using a few graphs in combination. For example, in [Zhang and Zhang, 2013]

the authors introduced a combination of an uncertain graph and an attributed graph

which is called the ‘uncertain attribute graph’ as a model of a social network. The

authors argue that this graph allows one to capture both rich information of social

networks as well as uncertainty of this information.

All these aforementioned works [Toivonen, 2009; Kim and Leskovec, 2011;

Pfeiffer et al., 2014; Zhang and Zhang, 2013] only capture the attributes of the

nodes of a graph. However, introducing attributes not only for the nodes but to the

edges as well can improve expressiveness of a model of user behaviour. Even more,

extending the model into the temporal domain can be advantageous as well. This

extension is important, firstly, because a model with temporal properties allows one

to capture and analyse temporal behaviour of users on the Web. Indeed, the time is

a natural and inseparable characteristic of user behaviour. Secondly, the temporal

properties of a model can be used for extracting temporal features for ML predic-

tion tasks. Lastly, explicit temporal properties allow to cut graphs into sub graphs

for faster computations of graph properties on the resulting subgraphs rather than

21

using the whole graphs.

Indeed, the majority of graph-based models are a-temporal or time is cap-

tured implicitly. However, there exist a few temporal models of human communica-

tion on the Web. For example, Time-Varying Graphs (TVG) which are introduced

below.

Time-Varying Graphs (TVGs)

Time-Varying Graphs (TVGs) have been developed to describe a wide range of

dynamic networks [Casteigts et al., 2010]. The nodes of a TVG are defined as a set

of entities U , and the edges are a set of relations E between these entities. Also, an

alphabet L accounts for any property of a relation. That is, E ⊆ U × U × L. The

definition of labels L is domain specific and left open. Having a distinct label L,

the set E allows multiple relations between entities. The relations between entities

are defined over a time span T ∈ T called the lifetime of the system. The temporal

domain T is N for discrete − time systems or R+ for continuous − time systems.

The dynamics of the system can be described by a TVG, G = (U ;E;T ; ρ; ζ), where

• ρ : E×T → {0, 1}, called presence function, indicates whether a given edge is

available at a given time.

• ζ : E × T → T, called latency function, indicates the time it takes to cross

a given edge if starting at a given date (the latency of an edge could vary in

time).

The sequence ST (G) = sort(∪{ST (e) : e ∈ E}), called characteristic dates of G,

corresponds to the sequence of dates when appearance or disappearance of an edge

occur in the system. Such events can be viewed as evolution of the graph G. The

evolution of G is described as the sequence of graphs SG = G1, G2, .., Gn−1, Gn

where Gi corresponds to a static snapshot of a graph at time t = i. In general case,

Gi 6= Gi+1.

By restricting the timespan T of a graph G, a temporal subgraph G′ =

(U ;E′;T ′; ρ′; ζ ′) can be derived.

TVG is a powerful mathematical model for capturing temporal properties

of a social network. However, more research on how to use TVGs for real-world

applications as well as how to enrich TVGs with attributes on both nodes and edges

is required since it potentially can help to capture diverse temporal information of

the real-world user behaviour on the Web.

User behaviour on the Web is multifaceted and dynamic. In order to under-

stand patterns of user behaviour, explore a model of user behaviour on the Web, a

22

set of techniques has been proposed and developed. One of the most powerful tools

to explore user behaviour on the Web is visualisation. Visual exploration of user

behaviour on the Web is introduced and discussed in the next Section.

2.4 Visual Data Exploration

User behaviour on the Web involves communication via e-mails, social networks,

chats, forums, and instant messengers. However, the complexity and scale of such

user behaviour motivates people to find ways how to explore this communication.

Visualisation is a powerful exploration tool. There is a large number of researches

on how to visually represent user communication on the Web and understand-

ing which visualisation is more efficient for a specific reasoning task [Venolia and

Neustaedter, 2003; Smith and Fiore, 2001; Jovicic, 2000; Sathiyanarayanan and

Burlutskiy, 2015a,b]. In addition to the research work on visualisation, there are

many commercially available visualisation tools for different data produced by users

[Google, 2014; IBM, 2014; TIBCO, 2014].

The field of information visualisation has seen a rapid growth due to ad-

vances in software and hardware development and, as a result, a number of software

visualisation tools have appeared on the market. These tools allow users to create

a complicated visualisation on the fly by a single user’s click. Moreover, a user can

interact with visualised data and share it with others [Google, 2014; IBM, 2014;

TIBCO, 2014]. For instance, data in IBM Many Eyes can be uploaded in text for-

mat or tab-delimited data and then a user can choose a visualisation type to explore

the data.

To sum up, visualisations facilitate data exploration and assist in further

transformation of discovered knowledge into a meaningful representation [Burlut-

skiy et al., 2014a]. Even more, visualisations help to discover and present patterns

in social networks. For instance, in [Nohuddin et al., 2015] the authors reported a

technique for discovering and presenting patterns in temporal social network data.

Nevertheless, due to the large number of possible visualisations, choosing an

appropriate visualisation is a challenging task. This choice significantly depends on

user’s task. A list of exploration tasks and methods for choosing a visualisation are

presented in the next Subsections.

2.4.1 Exploration Tasks

The first step in data exploration is to analyse the data and check its quality. Visu-

alisation can assist a user in verification for existence of missing values, errors, and

23

outliers. The data can have missing values, for example, some instances can have

missing timestamps – the time points when the instances were generated. Errors, for

example, can include typographical errors. Finally, outliers are observations which

are sufficiently extreme that they can be taken as being caused by some undesired

factor, for example, an error in recording or in observation [Gilchrist, 1984].

Visualisation can help to understand user behaviour on the Web and the

characteristics of such behaviour. For example, visualisation allows one to explore

the following:

• Understand Temporal Granularity. User behaviour exists at different temporal

granularity levels. The microscopic behaviours happen in a short time frame.

For example, a user can communicate via instant messages with another user

in fractions of seconds. On the other hand, a user can exhibit behavioural

patterns over years, for example, change in political views or a circle of close

friends.

• Find parameters for Feature Tuning. Some temporal features, for example,

aggregated temporal features, require to specify time intervals. Visual explo-

ration can help to determine and verify such intervals.

• Reduce Data Size. User behaviour generates large data and, as a result, it

is crucial to reduce the size of the data without much losing the information

required for a particular task. Visual exploration can help to select and leave

only important data. Also, a set of local and aggregated features can be

determined and then formed via visual exploration of the data.

• Explore Parameters of a Graph Model. Visualisation of a temporal graph rep-

resenting user behaviour on the Web can help to choose a proper aggregation

level for temporal features.Visualisation can help to choose features for build-

ing a predictive model of user behaviour. These facts have caused many tools

for graph visualisation to appear.

2.4.2 Choosing a Visualisation

A traditional way for choosing a visualisation is usually performed in accordance

with user’s experience in visualising data. Another approach is to use a guideline

[Keim, 2002] or a recommender system for choosing a visualisation [Vartak et al.,

2015; Kaur et al., 2015].

For example, in [Keim, 2002] the author classified visualisation techniques

24

into five groups, namely (1) standard 2D and 3D graphics, (3) geometric tech-

niques, (2) icon-based techniques, (4) dense pixel techniques, and (5) hierarchical

techniques. The author provides with a guideline for a visualisation expert based

on the introduced classification.

From another side, development of visualisation recommender systems is an

area of active research. A combination of user’s dataset and a chosen visualisation

type can be considered as an experience of a user in visualising their data. Neverthe-

less, choosing a visualisation for user’s data is a challenging task. As a result, there

is research in methods for providing a user with a recommendation of a visualisation

for their data. For example, in [Freyne and Smyth, 2010] the authors proposed a

case-based recommendation system that is capable of suggesting popular visualisa-

tions to users based on the characteristics of their datasets and users’ preferable

visualisations in IBM Many Eyes [IBM, 2014; Freyne and Smyth, 2010]. Neverthe-

less, the approach did not address the problem of visualising user behaviour on the

Web.

A broader vision on automatic identification and visualisation recommen-

dation for a particular analytical task is discussed in [Vartak et al., 2015]. This

work extends the work presented in Chapter 3 where an approach for automatically

choosing visualisations is proposed. Another work on developing a visualisation

recommender system was proposed in [Kaur et al., 2015]. The authors introduced

a semi-automatic visualisation recommendation based on captured domain knowl-

edge. However, according to the literature explored, there are no methods proposed

for choosing a visualisation of user behaviour on the Web.

2.5 Extracting Features for Prediction

Predicting user behaviour on the Web involves building predictive models of user

behaviour, for example, from historical data. In this thesis, Machine Learning (ML)

is employed for building such models. One of the requirements for such models is

being able to produce an accurate prediction. Feature engineering is an important

aspect of an accurate prediction and it can significantly improve the accuracy of a

prediction as well as reduce the time for training and prediction [Page et al., 2014;

Hira and Gillies, 2015]. However, there are two major problems related to feature

engineering. First, how to construct and calculate the features. For example, an

automatic process of calculating features like in deep learning can be utilised or an

approach with hand-crafted features can be constructed using knowledge of domain

specialists. Second, once a feature set is constructed and calculated, there are sce-

25

narios when the features are computationally complex and it will take unacceptably

long time and effort to calculate the features. Thus, there is a trade-off problem

of spending as little as possible time on feature engineering and computation while

including the most valuable features in the final feature set.

Indeed, improving accuracy of a prediction is very important for any ML

task. However, from an engineering point of view, reducing the number of features,

complexity of features and ML algorithms, as well as improving reproducibility and

stability of a system is important as well [Sculley et al., 2015].

Next, the process of identification of features for predicting user behaviour

is discussed below.

2.5.1 Identifying Features

There is a large number of possible ways to construct and calculate features. Some

of these features are important for producing an accurate prediction and some of

them are useless. In this Subsection, the features which showed being important in

various prediction tasks of user behaviour are introduced.

A set of features important for Twitter trend prediction was analysed in

[Zhang et al., 2014]. The authors used three types of features, namely content,

structure, and node features. The content features were extracted from tweets, con-

sidering features such as, for example, the number of tweets. The structure features

were related to the metrics on the topological structure of the network. Finally, the

node features were associated with the information on users. This thesis considered

to classify features in according to the model of user behaviour as a graph. However,

the feature design was not discussed thoroughly. Also, the temporal aspect of the

model describing trends in user behaviour was omitted in their paper.

In [Kim and Leskovec, 2011] it was shown that the users with similar at-

tributes are likely to link to one another which allows one to build a model for

predicting users’ attributes. In this paper, it was identified that the features related

to users are important for such predictions. The model was built using a public

dataset AddHealth where the information on users include their school name, school

type, grades, and some demographic characteristics [Kim and Leskovec, 2011].

In [Radinsky et al., 2012], the authors concentrated on using temporal fea-

tures for predicting user’s activities of clicking urls. These features included aggre-

gated features of time series, features describing the shape of time series, and other

domain-specific features, for example, query class features. Indeed, predicting user’s

activities frequently involves dealing with large amounts of time series. As a result,

there is a need for aggregating the features over time.

26

A representative model for predicting Telecom churn was introduced in [Sharma

and Panigrahi, 2013]. The features used in the model were related to users, for ex-

ample, user’s phone number, and user’s area code. Other features were related to

calls, for example, the number of user’s night calls, and user’s evening calls. Finally,

the features related to charges were considered, such as the total day charge feature,

and international calls charge feature. The features related to user’s calls and user’s

charges were split in accordance with the temporal properties of the calls, whether

the call happened during the day, evening, or night. Even using these simple fea-

tures the authors reached relatively high accuracy. The calls can be considered as

messages exchanged between the users and the charges can be seen as properties or

attributes of these messages. As a result, these features can be viewed from a more

general prospective where users exchange messages and the features can be associ-

ated to users or messages (calls) and the messages have attributes (charges). Also,

the authors used temporal information for splitting the features into day, night, or

evening features.

Some authors tried to improve predicting accuracy by introducing domain-

specific features. For example, in [Comarela et al., 2012; Teevan et al., 2011] the

authors predicted response time in Q&A forums by constructing the features repre-

senting question difficulty, how well the question is formulated, if there are experts

on the forum who can answer the question, whether the experts are willing to an-

swer and have time to answer, whether the question is interesting, and whether it

was asked at night, weekend or holiday [Comarela et al., 2012; Teevan et al., 2011].

However, the problem with this type of feature is the fact that they are hard to gen-

eralise to different domains, as well as the fact that they require to be hard-coded.

As a result, there is a need for a more general guideline on how to construct and

extract features.

Twitter, as one of the largest social platforms, has attracted many researchers

who tried to build a few predictive models. As a result, researchers tried to identify

features which can be extracted from Twitter data and which features are impor-

tant for predictions. For example, in [Spiro et al., 2012] the authors predicted the

response time of tweets. It was shown that some Twitter hashtags are strongly cor-

related with smaller waiting times. On the contrary, the authors claimed that the

number of user’s followers was associated with longer waiting time for a retweet. A

very similar prediction model was constructed in [Mahmud et al., 2013; Lee et al.,

2014]. The authors constructed features based on the past history of user’s retweet-

ing wait times in order to predict their next retweeting time for a new tweet. The

past history included features such as the number of retweets per status message,

27

an average number of retweets per day, and tweeting statistics for the last days and

hours. In [Artzi et al., 2012], a method for the prediction of whether a tweet will

be retweeted, replied to or ignored was proposed. The authors used six types of

features, such as historical, social, lexical, content, posting, and sentiment features.

These works [Artzi et al., 2012; Spiro et al., 2012; Mahmud et al., 2013; Lee et al.,

2014] motivate including a diverse set of features for constructing a predictive model

in this thesis. Nevertheless, due to the difference in various types of social media,

such as Q&A communities, Facebook and Twitter communities, these features are

generalised in the proposed methodology for predicting user behaviour on the Web.

Most of the prediction models ignore temporal and dynamic natures of user

behaviour, but there is evidence that temporal characteristics of social media com-

munities are important [Cai and Chakravarthy, 2013]. An attempt to use temporal

features to predict the quality of answers at Q&A forums was undertaken in [Cai

and Chakravarthy, 2013]. The authors introduced the following temporal features:

1) the number of answers, 2) the number of best answers, 3) the number of questions

asked or given by a user, and 4) the best answer ratio during a time interval. The

authors argued in their work that these temporal features are crucial for predicting

the quality of answers. Also, in [Guille and Hacid, 2012], it was shown that temporal

features were crucial for social network prediction tasks on Twitter. These works

inspired to design and introduce temporal features in this thesis as a part of the

methodology for predicting user behaviour on the Web.

Another study on the factors that influence the response time on Twitter was

conducted in [Comarela et al., 2012]. As a part of this study, factors that influence

users’ response or retweet probability were identified. The authors found that these

factors include previous response times to the same tweeter, the sending rate of the

tweeter, the age of the tweet message and some basic text elements of it, such as

presence of a hashtag, mention of someone, and embedded url links. In [Teevan

et al., 2011] the factors influencing response time for questions asked on Facebook

were investigated. It was discovered, firstly, that phrasing a question well leads

to better responses from users. Secondly, explicitly stating a question in the sta-

tus message as opposed to a statement message, increases the chances of response.

Thirdly, explicitly scoping the audience and, finally, using only one sentence led to

more, better, and faster responses. A study on whether a question asked at a Q&A

community requires a better answer was undertaken in [Anderson et al., 2012]. The

authors selected eighteen attributes for learning and then predicted whether an an-

swer satisfied the questioner or not. It was shown that the selected attributes by

the authors were well chosen predictors for the quality evaluation of answers. In

28

[Hu et al., 2013], the large number of questions on broad topics at Baidu Zhidao

Q&A forums motivated the authors to exploit social features and topic based fea-

tures of the forums for answer quality prediction. As a result, it was found that the

answer length, answer position, and user’s activity can be used for distinguishing

high quality answers from low quality answers. These papers helped in selecting the

features used in the proposed methodology and then generalising and automating

the process of extracting features from a model of user behaviour on the Web.

Since human communication and interaction can be modelled as a graph,

features related to the topological properties of the formed graph can be used for

prediction. Even more, it was shown that these topological or so-called structural

features of human communication can improve the accuracy of prediction tasks

[Santoro et al., 2011]. In their paper, the authors showed how to calculate some

structural features of time-varying graphs. In another paper [Tang et al., 2009], a

few temporal distance metrics for capturing temporal characteristics of human com-

munication represented as a time-varying graph were introduced. These metrics can

be used as features for predicting user behaviour on the Web. However, one can no-

tice that calculating such features, especially for large graphs, is a computationally

expensive task.

Predicting which users in a communication network will either increase or

decrease their activity after a given period of time was demonstrated and evaluated

in [Teinemaa et al., 2015]. The features related to usage of network (chat days,

audio days, video days), structural features (number of edges, average total degree,

internal density of the social network formed by a community), and profile features

(number of countries, cities in the community, gender, age of users) were extracted

for building a predictive model. Again, structural features showed high importance

for the prediction.

A model for predicting how users are connected in online location-based so-

cial networks was proposed in [Scellato et al., 2011]. The authors classified the

features into social features computed for friends-of-friends, place features com-

puted for place-friends, and global features. Place features include, for example, the

number of check-ins, the number and the fraction of common places between two

users. Social features defined for every pair of users are the number of common

neighbours, Jaccard coefficient, and Adamic-Adar measure based on the degrees of

the shared neighbours [Scellato et al., 2011]. Finally, global features, for example,

the geographic distance between users’ home locations, the same distance divided

by the product of the number of check-ins each user made in their home location,

was demonstrated to be a good predictor. This paper showed that spatial features

29

are important for producing location-based predictions.

In [Bhat et al., 2014], the authors showed that tag-related features strongly

influence response time for the questions asked in Stack Overflow. The so-called tag-

related features are the following: the average frequency of tags, number of popular

tags, average co-occurrence rate of tags, number of active subscribers, percentage

of active subscribers, number of responsive subscribers, percentage of responsive

subscribers. As a result, the authors showed that in their experiment set-up the

tag-related features outperformed features not related with the tags. However, the

authors did not address the computational complexity of calculating such features.

Identifying the features for building a predictive model is one side of predict-

ing user behaviour on the Web. Another side is to calculate the features which can

be challenging due to high computational complexity of the identified features. The

next Subsection concerns the computational complexity involved in calculating and

transforming features before building a predictive model.

2.5.2 Complexity of Feature Extraction

Identifying the features which significantly influence the success of a ML task is

one side of most ML tasks. However, computing the identified features may involve

several transformations and mathematical calculations which can negatively affect

the performance of extracting features, training a model and then predicting user

behaviour on the Web using this model. The complexity of calculating such features

can be analysed using Big O notation [Knuth, 1976]. First of all, several transfor-

mations of feature space are introduced. For example, these transformations can be

the following:

• Standardisation: features can represent comparable objects but be measured

in different units. For instance, two different features can represent the same

measurement but the first one is in seconds and the second one is in minutes.

Standardisation prevents this from happening, for example, by the following

centring and scaling transformation of features: x′i = (xi − µi)/σi, where µi is

the mean and σi is the standard deviation of the feature xi over all training

samples;

• Normalisation: to remove the dependence of a feature xi on the size of the

feature, the following transformation can be done: x′i = xi/||xi||;
• Binarisation: categorical features must be represented as multiple boolean fea-

tures. For example, instead of having one categorical feature for the weather,

introduce three binary features sunny, rain, and snow and then set these

features to 0 or 1. As a result, every categorical feature will be transformed

30

into k binary features where k is the number of values that the categorical

feature takes;

• Non-linear expansions: Even though for complex data dimensionality reduc-

tion is crucial, increasing the dimensionality of a problem can be advantageous.

For example, in case when the problem is very complex and the available

features are not enough to derive good results in terms of the accuracy of

prediction;

• Aggregation: Several features can be aggregated. For example, a set of features

can be substituted with only one feature which has the value which is an

average of the values of the set of features;

• Feature discretisation: some ML algorithms do no handle well continuous data.

Thus, the data must be discretised into a finite discrete set. Even more, this

step can simplify the data description and improve understanding of data.

Some transformations change the dimensionality of a problem while others do not.

For example, standardisation and normalisation do not change the dimensionality

of a problem whereas aggregation decreases the problem dimensionality.

2.5.3 Selecting Features

The main goal of feature selection is to select relevant and informative features.

However, feature selection can achieve other goals, for example [Guyon and Elisseeff,

2006]:

• To decrease the size of the data: to limit storage requirements and increase

algorithm speed;

• To reduce feature set : to save resources in the next round of data collection

or during utilisation;

• To improve performance: to gain in predictive accuracy;

• To understand the data: to gain knowledge about the data or simply visualise

the data.

Ideally, an exhaustive leave-one-feature-out selection process should be executed on

a regular basis. This will help to keep the size of a feature set efficient by identifying

useless features and removing them from the feature set. There are many methods

for feature selection. The methods can be classified into filter methods, wrapper

methods, embedded methods, and hybrid methods. [Bolón-Canedo et al., 2012]:

• Filter methods rank features in accordance with some measure of ‘usefulness’

of each feature for classification. Then a feature set composing of the best N

features in accordance with this ranking is created.

31

• Wrapper methods ‘wrap’ a classifier up in a feature selection algorithm. This

type of methods usually chooses a set of features and then the efficacy of this

set is evaluated. Then the original set is changed in accordance with some

rules and then the efficacy of the new set is evaluated. The problem with this

approach is that feature space is vast and looking at every possible combination

is computationally expensive.

• Embedded methods: In contrast to filter and wrapper approaches, embedded

methods do not separate the learning from the feature selection part.

• Hybrid methods are a combination of the previous methods.

Choosing a method for feature selection depends on the size of the data, the total

number of features, learning algorithms, and algorithm computational complexity

[Kojadinovic and Wottka, 2000; John et al., 1994]. For example, it is challenging to

use computationally intensive learning algorithms with wrapper methods.

The next Section introduces state-of-the-art ML algorithms for predicting

user behaviour on the Web. Also, two popular learning modes are discussed, on-

line and offline learning as well as the idea behind deep learning, one of the most

successful types of learning for several domains, is introduced.

2.6 Machine Learning for Predicting User Behaviour

Machine Learning (ML) is an area of research where approaches for enabling comput-

ers to learn from data without explicitly programming the computers are developed.

ML approaches have shown promising results in predicting user behaviour on the

Web [Sadilek and Krumm, 2012; Zheng et al., 2013; Nazerfard and Cook, 2013; Choi

et al., 2013; Zhu et al., 2013; Burlutskiy et al., 2015]. One direction in creating mod-

els for predicting user behaviour is to build a high-level model of information flows

on the Web [Spiro et al., 2012; Mahmud et al., 2013]. Indeed, building high-level

statistics on how data propagates over time is a useful method in understanding

user behaviour on the Web. Another direction is to use various features of data

for a more detailed picture of user behaviour. The former direction gives only a

very coarse insight in people communication and relationship development. On the

contrary, the feature-based approach for developing a model at a lower granularity

level can potentially provide a more precise model [Zhu et al., 2013; Zheng et al.,

2013; Nazerfard and Cook, 2013; Choi et al., 2013; Burlutskiy et al., 2015].

Formulating the problem of predicting user behaviour in the terminology of

ML can be performed naturally and in a straightforward way. More specifically the

32

problem can be formulated as a classification task. In this case, the goal is to predict

the outcome Y for new ‘test’ samples of user behaviour. For this purpose, one must

build a predictive model M which is typically a function with adjustable parameters.

The training examples X are used to select an optimum set of parameters:

Definition 1. Let X be a set of input variables xi and Y be a label with classes

ci. Then define Dtr as a training set of instances (xi, ci), Dtr = {(xi, ci)}, xi ∈ X,

ci ∈ Y and 1 ≤ i ≤ n, where n is the total number of instances. The classification

problem is to determine a model M(X,Y) such that maps xi to target classes ci.

The process of training and testing the model is preceded by dividing data

D in two sets: training dataset Dtr and test dataset Dtd. The training dataset

Dtr is used for training the classifier whereas the test dataset Dtd is used for the

actual prediction. The data D can be split in the training and test datasets in

different proportions, for example, 80% of the data D becomes the training dataset

and other 20% is a test dataset. The variable for prediction Y is considered known

in the training dataset Dtr but unknown in the test dataset Dtd; thus, the variable

for prediction Y is predicted by the trained model M(X,Y) on a test dataset Dtd.

Predicting user behaviour in real-time implies the following requirements for

a prediction algorithm. First, since the dimension of the feature space is high,

there should be a feature selection step. Usually there is a large number of features

available: user information, location, messages, time of day, day of week, activities

of users. Second, the algorithm should calculate and provide the prediction fast

enough to support decision-making. Last, the algorithm should have a continuous

learning nature by which it keeps learning over time. In other words, the algorithm

has to constantly use the historical data for learning and adapt its predictions to

the dynamics of human behaviour.

Supervised ML algorithms showed promising results for these requirements

[Sadilek and Krumm, 2012; Zheng et al., 2013; Nazerfard and Cook, 2013; Choi

et al., 2013; Zhu et al., 2013; Burlutskiy et al., 2015]. As a result, a variety of ML

approaches have been used for predicting user behaviour. Generally speaking, ad-

vance ML algorithms along with intelligent feature engineering tend to demonstrate

higher accuracy but the complexity of such models and features negatively affects

their time performance [Yang et al., 2011; Dror et al., 2013]. However, analysis and

evaluation of the time needed for training and predicting user behaviour is often

omitted [Choi et al., 2013; Radinsky et al., 2012].

33

2.6.1 Machine Learning Algorithms for Supervised Learning

In supervised learning, training of a classification model is performed with known

labels Y . For example, a binary classification task assumes that the label has only

two classes Y = {0, 1}.
In [Yang et al., 2011] an approach for predicting if a question will be an-

swered or not was proposed. First, the unanswered questions at Yahoo! Answers

were analysed and then a prediction model was proposed by formulating the prob-

lem as a supervised learning task. As a result, the authors demonstrated how to use

ML for predicting whether a question will remain unanswered.

Customer restaurants preference was predicted based on check-ins posted in

social media [Zheng et al., 2013]. The authors analysed 121,000 Foursquare check-ins

in restaurants in the Greater New York City area and then they built two models

using Support Vector Machines (SVM) and Artificial Neural Networks (ANN) to

predict customer behaviour. As a result, the authors showed that an model based

on ANN provides with a quite accurate prediction compared to a SVM-based model.

However, it was not mentioned how computationally expensive it was to train an

accurate model which can be unacceptably hard and long for near real-time predic-

tion requirements.

A representative model of predicting Telecom churn was presented in [Sharma

and Panigrahi, 2013]. The authors used an ANN, namely Multi-Layer Perceptron

(MLP), and the Radial Basis Function Network (RBFN) for solving a binary clas-

sification problem.

The authors in [Zhu et al., 2013] built a predictive model which was trained

on a set of extracted features, such as user activity, social connections, and tempo-

ral features. The authors proposed using a modified Logistic Regression (LR), the

efficiency of which they compared to a classic LR, Random Forests (RF), and Node

classification algorithms [Ma et al., 2011]. A similar prediction was accomplished

in [Weerkamp and De Rijke, 2012] where a novel approach of activity prediction

was proposed. The problem formulated by the authors of [Weerkamp and De Rijke,

2012] was “given a set of tweets and a future timeframe, to extract a set of activities

that will be popular during that timeframe”. The authors focused on aggregated

behaviour rather than individual behaviour as in the paper of [Zhu et al., 2013].

However, in these papers the authors did not address the problem how to build a

fast and accurate model for predicting user behaviour.

Trade-off between accuracy and time in the context of wireless network was

investigated in [Loumiotis et al., 2014]. In their paper, the forthcoming network

traffic demand was predicted using an ANN-based model; such predictions require

34

a regular training process, which incurs a high computational cost. In this thesis,

the trade-off in the different context of user behaviour on the Web is investigated.

In [Ding et al., 2016] the authors proposed a graph-based ML approach for

predicting hidden or unknown attributes of users by using the known information

provided by users in a social network. The authors tried to use both topological

properties of the social network as well as the known attributes of users for predict-

ing the unknown or hidden attributes of users. The authors considered the nodes of

their graph representing users of the network. Also, the nodes had attributes, for

example, age, gender, university, and hobbies of the users. As a result, the authors

demonstrated that it is possible to infer users’ hobby, age, and users’ university

using the proposed model.

The choice of a ML algorithm is influenced by the results presented in the

literature review [Kotsiantis, 2007] where a summary of state-of-art algorithms for

classification tasks is presented, as well as papers where ML algorithms showed ev-

idence of usefulness in predicting user behaviour on the Web (see Table 2.12). In

addition, the specificity of the analysed data influences the choice of features. LR

proves to be useful in solving predictive tasks due to scalability and transparency

of results interpretation. Practically, other more technically demanding approaches

such as SVM and ANN can show higher accuracy in prediction but they are much

more computationally expensive and hard in interpreting the results of prediction.

Ensemble ML approaches, for example, Boosting approaches, can improve the ac-

curacy but require extra computations.

Five diverse ML algorithms, namely LR, SVM, DT, k-NN, and XGB al-

gorithms, are described below in more detail since these algorithms are chosen as

state-of-the-art ML algorithms for experiments in this thesis.

2Most of these machine learning approaches are standard and can be found in a textbook on
Machine Learning, for example [Murphy, 2012]

35

Abbr. Full name Description Reference

LR Logistic Re-

gression

A probabilistic binary statistical

classification model; can have lin-

ear or non-linear kernel, for ex-

ample, a radial kernel

[Zhu et al., 2013;

Cheng et al., 2011;

Bhat et al., 2014; Lee

et al., 2014; Hu et al.,

2013]

ME Maximum

Entropy

Multi-class generalisation of LR [Artzi et al., 2012; Hu

et al., 2013]

MLE Maximum

Likelihood

Estimation

A method used for parameter es-

timation in statistical models

[Spiro et al., 2012]

k-NN k Nearest

Neighbours

An instance based learning al-

gorithm choosing k nearest in-

stances

[Raikwal et al., 2013;

Goel and Batra, 2009]

SVM Support Vec-

tor Machines

A non-probabilistic binary linear

classification model

[Jernite et al., 2013;

Bhat et al., 2014; Lez-

ina and Kuznetsov,

2012; Comarela et al.,

2012; Hu et al., 2013]

NB Naive Bayes A probabilistic classifier based on

Bayes’ Theorem

[Yang et al., 2011;

Scellato et al., 2011;

Comarela et al., 2012;

Lee et al., 2014]

BN Bayesan Net-

works

A family of probabilistic classi-

fiers

[Nazerfard and Cook,

2013]

DT Decision Tree A probabilistic graph-based clas-

sification model; C4.5 and J48

are some of implementations of

the method

[Yang et al., 2011;

Scellato et al., 2011;

Cheng et al., 2011;

Bhat et al., 2014]

RF Random For-

est

A probabilistic graph-based clas-

sification model similar to DT

but with a correction to avoid

overfitting of training data

[Zhu et al., 2013;

Scellato et al., 2011;

Larivière and Van den

Poel, 2005; Lezina

and Kuznetsov, 2012;

Lee et al., 2014;

Teinemaa et al., 2015]

36

MART Multiple

Additive

Regression-

Trees

A regression classifier with gradi-

ent boosting

[Artzi et al., 2012]

ANN Artificial

Neural Net-

works

Algorithms inspired by the way a

human brain works

[Zheng et al., 2013;

Sharma and Pan-

igrahi, 2013; Choi

et al., 2013]

EM Ensemble

methods

Approaches using multiple ML

algorithms to achieve better per-

formance

[Yang et al., 2011; Lee

et al., 2014]

Table 2.1: List of some approaches used for predicting user behaviour.

Logistic Regression (LR)

Logistic regression for a binary classification can be described by the following equa-

tion:

log
p(x)

1− p(x)
= β0 + β1x1 + ...+ βnxn (2.2)

where p(x) is the probability of a variable Y to be ‘1’ and 1−p(x) is the probability

of Y to be ‘0’. The variable x = (x1, ..., xn) is the variable of features used for

prediction of Y . The coefficients {βi} are the coefficients of logistic regression and

they show the contribution of each xi to the prediction of the variable Y . Usually,

it is predicted that Y = 1 if p(x) ≥ 0.5, and Y = 0 otherwise.

An implementation of LR exists in most common ML software tools, for

example SAS3, SPSS4, scikit-learn5, Matlab6. The main advantages of LR are the

ability to interpret the built model, and the performance for large datasets with a

multidimensional feature space.

Support Vector Machines (SVM)

SVM is a non-probabilistic classifier which builds a model that assigns labels for

prediction into one category or the other. As a result, SVM builds a boundary

between labels in n-dimensional space where n is the number of features.

3www.sas.com
4www.ibm.com/analytics/us/en/technology/spss/
5www.scikit-learn.org/stable/
6www.mathworks.com/products/matlab/

37

Figure 2.5: Building a boundary between classes using an SVM approach.

For example, in the case of using a binary SVM classifier, the boundary be-

tween the two classes, circles and crosses, is determined after training the classifier

(see Figure 2.5). If a new n-dimensional point for classification is above the bound-

ary, it is classified as a ‘cross’ and as a ‘circle’ otherwise. For example, A, B, and C

are classified as ‘crosses’ since they are above the boundary.

Analogously to LR, an implementation of SVM exists in most common ML

software tools. SVM maximises a margin between classes rather than the likelihood

of a particular class is maximised as it is performed in the case of LR. However, there

is no evidence as to whether or not SVM can achieve better accuracy of prediction

than LR can achieve.

k Nearest Neighbours (k-NN)

The idea of k-NN algorithm is to choose k neighbouring vectors for an input vector

x as the most similar to the input vector. For choosing a neighbouring vector of the

input vector, a distance metrics between the data vectors has to be defined. For

example Euclidean metric can be used. The next step is to define the similarity

measure for comparison of the vectors. For finding the nearest neighbours, this

similarity measure is used. In case of Euclidean space, a similarity measure S(p, q)

38

Figure 2.6: Classification using a k-NN approach.

between two vectors p and q is considered to be an Euclidean distance:

S(p, q) =

n∑
i=1

√
ωi(pi − qi)2 (2.3)

where p and q are two vectors, pi and qi are the ith entries of the vectors, n is the

number of entries; ω = {ωi} is a vector of weights corresponding to the importance

of each entry in the prediction. Each vector pi can be considered as a point in

n-dimensional Euclidean space.

The value of the variable for prediction Y is determined by the majority class

of the nearest k neighbours to the n-dimensional point of interest. For example, if

k = 5 and three the nearest neighbours are of a class ‘crosses’, or ‘1’, whether two

others are of a class ‘circles’, or ‘0’, then the variable Y = 1 since the majority of

the neighbours are of the class ‘crosses’ (see Figure 2.6).

Decision Trees (DT)

Decision trees (DT) are tree-like structures which can be used for classification. In

these structures, leaves represent class labels and branches represent conjunctions

of features that lead to these class labels. DT with continuous target variables are

called regression trees.

An example of a decision tree is shown in Figure 2.7. This DT has four

39

A

B C

o1 o2 o3 o4

yes

yes yes

no

nono

Figure 2.7: An example of a decision tree. If the condition A is true then the
condition B is checked, the condition C is checked otherwise. Finally, if condition B
holds then the outcome o1 comes out, otherwise the outcome o2. For the condition
C there are the outcomes o3 and o4 correspondingly.

classes {o1, o2, o3, o4} and three binary conjunctions {A,B,C}.
Again, most modern ML software tools have an implementation of an al-

gorithm to construct a DT. There are a few such implementations including ID3

[Quinlan, 1986], C4.5 [Quinlan, 1993], and J48, an open source implementation of

C4.5 algorithm.

Extreme Gradient Boosting (XGB)

Ensemble ML methods is a family of ML algorithms where a combination of ML

models is used to build a meta model. One of such algorithms which has shown

promising results, for example at Kaggle7, a popular platform for ML competitions,

is an ensemble regression trees proposed in [Friedman, 2000]. Tree boosting is a

highly effective and widely used ML method which is a state-of-the-art algorithm due

to its performance and success in various ML challenges. More details on extreme

tree boosting using gradient descent are in the paper [Chen and Guestrin, 2016].

The authors of this paper developed one of the most popular library using such tree

boosting concept, Extreme Gradient Boosting (XGB).

2.6.2 Online and Offline (Batch) Learning Modes

Online prediction is a hot research topic due to the need of the Big Data world to

provide fast and accurate results. For example, predicting human activity for the

7www.Kaggle.com

40

next few seconds or minutes leaves no time for long batch training unless a model is

very simple. In [Choi et al., 2013], the authors compared the accuracy of prediction

using online, mini-batch, and batch training. However, they did not evaluate the

time taken for training their models and then the prediction time.

There is no common ground whether online learning is as fast or faster than

offline learning. Even more, there is a debate whether batch training provides more

accurate results than online training [Wilson and Martinez, 2003]. Comparing these

two learning modes will facilitate choosing which learning mode as well which learn-

ing algorithm is advantageous for deployment in a real world system. The fact that

comparing online learning is challenging and depends on a particular prediction task,

motivates the development of a method for comparing online and offline learning in

this thesis.

2.6.3 Deep Learning

Deep learning is an automated approach in learning data representations and fea-

tures. Theoretically, deep learning networks can learn a powerful representation of a

problem space. Figure 2.8 shows the difference between a shallow and a deep neural

network. A deep learning network consists of an input layer, an output layer, and a

few hidden layers whereas a shallow learning network has an input layer, an output

layer, and only one hidden layer. Ideally, every farther hidden layer in a deep neural

network learns how to represent more complex features of the data. Indeed, theo-

retically the more the layers a neural network has, the more complicated functions

it can represent. Thus, deep learning networks are advantageous for learning data

representation in comparison to shallow learning networks.

There are three the most popular types of deep learning networks which

showed promising results in several application:

• Deep Belief Networks (DBN), a type of deep neural network, where multiple

layers are interconnected but there is no connection between units within each

layer [Hinton et al., 2006]. These networks are generative models of deep neural

networks and have been used, for example, for predicting user behaviour in

smart home environment [Choi et al., 2013];

• Convolutional Neural Networks (CNN), a type of deep neural network where

the connectivity architecture across its units is inspired by the organisation

of the animal visual cortex. Currently state-of-the art approaches for image

classification and recognition and Natural Language Processing (NLP) are

based on CNNs [Ciresan et al., 2012; Gu et al., 2015];

41

Input Data

Transformation 1 Transformation 2

Hidden Representation Output

Input Data

Transformation 1 Transformation N

Hidden Representation Output

Transformation K

Hidden Representation

Shallow Neural Network

Deep Neural Network

Figure 2.8: The difference between a shallow neural network and a deep neural
network.

• Recurrent Neural Networks (RNN), a type of deep neural network where units

are interconnected and form a directed cycle. These networks showed promis-

ing results, for example, in learning sequences in images and speech [Lipton,

2015].

Traditionally, back-propagation was used to train such learning networks. However,

training neural networks is computationally challenging thus, making them not use-

ful for many practical purposes. Nevertheless, recently there was a break through

in deep learning caused, first, by technological advances in parallelising these algo-

rithms across multiple machines, CPUs and GPUs, and, second, due to proposals of

a few computationally more efficient methods for training such networks. For exam-

ple, a fast, greedy learning algorithm for training a DBN was proposed in [Hinton

et al., 2006]. As a result, training multi-layer neural networks in several applications

has been revisited.

Nevertheless, it is still challenging to apply deep learning networks to large

scale applications since training and testing a deep learning network is a time-

consuming and computationally expensive task. In [Ruangkanokmas et al., 2016]

the authors propose using a DBN with a feature selection approach in combina-

42

tion. In their approach a chi-squared based feature selection allows to decrease the

complexity of the feature input by eliminating irrelevant features. As a result, the

learning phase of DBN becomes more efficient. The experimental results showed

that such feature selection allows one to train a DBN-based model which is capable

to provide higher accuracy compared to a LR-based model or a DBN-based model

without a feature selection stage. These results motivate the investigation of how to

train and use a DBN-based model in combination with a feature selection approach,

for example a wrapper method, for predicting user behaviour on the Web.

Finally, after building a predictive model, the performance of the model has

to be evaluated. The next Subsection addresses this problem.

2.6.4 Evaluating the Efficiency of Prediction

In order to evaluate the performance of a model M(X,Y), a test set Dtd and an

evaluation function Ep are introduced:

Definition 2. Let a test set be defined as Dtd = {(xj , yj)} where xj ∈ X, yj ∈ Y ,

1 ≤ j ≤ m where X is a variable, Y is a variable for prediction, and m is the number

of data entries. There are no common elements in sets Dtr and Dtd: Dtr ∩Dtd = ∅
where Dtr is a training set. The set Dtd is used to evaluate the performance of

the model M(X,Y). Such evaluation can be performed by comparing the values of

variables yj ∈ Y against predicted variables ŷj for xj for all (xj , yj) ∈ Dtd. The

evaluation function Ep summarises the performance of the built model M(X,Y) on

the test set Dtd numerically.

Performance measures are typically specialised to the class of ML problem.

In the case of classification, accuracy measures are widely used for evaluation of

model performance.

Performance Measures

The total number of correct classifications Nc divided by the total number of pre-

dictions N is one performance measure:

Ep =
Nc

N
(2.4)

Each possible outcome of the classification are the following:

• False positives (FP): the number of examples predicted as positive, which are

from the negative class.

43

• False negatives (FN): the number of examples predicted as negative, whose

true class is positive.

• True positives (TP): the number of examples correctly predicted as pertaining

to the positive class.

• True negatives (TN): the number of examples correctly predicted as belonging

to the negative class.

Some standard accuracy measures calculated using the aforementioned four out-

comes are Precision, Recall, and F1. Precision can be calculated as:

Precision =
TP

TP + FP
(2.5)

Recall is defined as:

Recall =
TP

TP + FN
(2.6)

F1 Score is:

F1 = 2
Precision×Recall
Precision+Recall

(2.7)

Equation 2.4 can be rewritten as:

Ep =
TN + TP

TP + TN + FP + FN
(2.8)

Cross-Validation

Cross-validation can be employed for evaluation of the accuracy of a prediction. For

example, in n-fold cross-validation, first, the data is divided in n parts (see Figure

2.9 for n = 5) and then n models are built on n− 1 parts of the data consequently.

Finally each model is tested on the left, nth, part of the data. For example, for 5-fold

validation, the first model is trained on the 1− 4 parts of the data and then tested

on the 5th, the second is trained on the parts 2− 5 and tested on the 1st part, the

third - 3, 4, 5, 1, tested on the 2nd part, the fourth is trained on the 4, 5, 1, 2 parts,

tested on the 3rd part, the fifth - 5, 1, 2, 3, is tested on the 4th.

2.7 Summary

Predicting user behaviour on the Web is a broad field with a variety of methods

and approaches. Predicting user behaviour on the Web involves performing a set

of consequent steps. These steps are, first, modelling user behaviour on the Web

(see Chapter 3), then, extracting features influencing user behaviour (see Chapter

44

Figure 2.9: 5-fold cross-validation.

4). Third, choosing an efficient ML set-up to build a predictive model using these

features (see Chapter 5). Also, choosing visualisations for model exploration is im-

portant (see Chapter 6).

This Chapter summarised related works as well as provided necessary back-

ground for each step of such a methodology to predict user behaviour on the Web.

The next Chapter introduces the first step in this methodology, modelling user be-

haviour, namely modelling user interaction and their relationship development on

the Web.

45

Chapter 3

Model of User Interaction and

Relationship Development on

the Web

A model of user behaviour, more precisely a model of user interaction and relation-

ship development on the Web, is proposed in this Chapter. First, a Time-Varying

Attributed Graph (TVAG) is proposed. In this graph both nodes and edges are

objects with time-varying attributes. Second, two graphs, an interaction graph, rep-

resenting how people interact with each other, and a relationship graph, represent-

ing social ties that people form with each other on the Web are constructed using

a TVAG. The resulting TVAG-based model combines these two graphs to model

temporal dynamics of human interaction and relationship development on the Web.

First, an introduction on modelling user behaviour is presented in Section

3.1. The proposed model of user behaviour is introduced in Section 3.2. A toy mod-

elling example using the proposed model is shown in Section 3.3. Modelling real

world platforms, such as Stack Exchange, Twitter, and Facebook using the proposed

TVAG-based model is demonstrated in Section 3.4. Finally, Section 3.5 and Section

3.6 provide a conclusion and a summary of the Chapter.

3.1 Introduction

A few graph-based models describing relationships between people, such as social

connections [Pfaltz, 2013], and interaction between people have been proposed [Cat-

tuto et al., 2013; Kim and Leskovec, 2011]. In these graph-based models, nodes

represent people and edges represent a social connection between these people or an

46

interaction between them. However, there are several shortcomings in such mod-

els. First, most models miss temporal properties of communication [Lattanzi, 2010].

Second, these models capture only social properties or only interaction properties

of social media [Pfaltz, 2013; Cattuto et al., 2013; Kim and Leskovec, 2011].

The first shortcoming, how to represent temporal properties of communica-

tion in a graph model, has been considered from a theoretical point of view [Casteigts

et al., 2010; Campbell et al., 2013; Cattuto et al., 2013; Semertzidis and Pitoura,

2016]. For example, a few attempts of expanding graphs into a temporal domain

to model dynamic networks were proposed [Casteigts et al., 2010; Cattuto et al.,

2013]. However, it is not straightforward to use such abstract models for practical

tasks since it is ambiguous how to map a real world network into an abstract graph

model [Campbell et al., 2013; Semertzidis and Pitoura, 2016]. In this Chapter, the

proposed model is based on Time-Varying Graphs (TVGs) where both nodes and

edges have a rich set of time-varying attributes. These attributes allow the use of

the proposed Time-Varying Attributed Graph (TVAG) model to encode informa-

tion from real-world social media networks. On the other hand, the time-varying

graph structure enables the performance of a statistically sound analysis of human

interaction and social connections on the Web. For example, such analysis includes

calculating centrality metrics, distance metrics related to both nodes and edges. As

a result, it allows one to analytically estimate the importance of nodes or edges in

the network [Cai and Chakravarthy, 2013; Hu et al., 2013; Teinemaa et al., 2015].

The second shortcoming of modern social network models is that of capturing

only one particular aspect of user behaviour on the Web. An attempt to overcome

this shortcoming was approached, for instance, by combining several graphs in the

paper [Lattanzi, 2010]. Also, for example, in [Lattanzi, 2010] the authors combined

a graph of an affiliation network and a social network graph to make their model

capable of capturing both social ties and interests of people. The affiliation graph

is a simple bipartite graph where people are associated with nodes and interests are

associated with edges of the graph. The social network graph is a multi-graph where

people are associated with nodes and social ties between these people are associated

with edges. In [Zhang and Zhang, 2013] the authors introduced a model of a so-

cial network as a combination of two graphs, an uncertain graph and an attributed

graph. The authors called their model the ‘uncertain attribute graph’ which is ca-

pable of capturing rich information of social networks as well as uncertainty of this

information. In this Chapter, the proposed TVAG-based model captures both social

and interaction properties of social media networks. This is achieved by combining

a social, or relationship, graph and an interaction graph. As a result, the proposed

47

TVAG-based model allows one to get a wider insight into user behaviour on the

Web.

The specificity of the addressed problem can be formulated as the following

research question:

• How can one model human interaction and relationship development in order

to capture, explore, and facilitate understanding of user behaviour on the

Web?

In order to answer this question, the following goals are set:

1. To provide an infrastructure and methodology to capture, explore, and facil-

itate understanding of user interaction and relationship development on the

Web;

2. To help in the identification and exploration of features influencing user be-

haviour on the Web;

3. To facilitate an efficient and automatic feature extraction for prediction tasks

of machine learning.

The first and the second goals are achieved by defining the TVAG-based model.

All entities of the proposed model are introduced, and an example of constructing

the model is given. Then the proposed model is used on three large social media

platforms, namely Twitter, Facebook, and Stack Exchange to demonstrate how to

use the proposed TVAG-based model. It is shown how the model captures temporal

properties of user behaviour on the Web as well as how the interaction and relation-

ship development is captured by the model.

The third goal is achieved by introducing the temporality in the attributes

of the proposed model. As a result, the temporal attributes allow one to sample

the graph into subgraphs. Sampling the graph into subgraphs leads to an efficient

feature extraction since the features are calculated only for subgraphs spanning a

limited time interval. This approach for feature extraction scales well for large tem-

poral networks with millions of nodes and multiple attributes while preserving the

structural characteristics of such networks.

3.2 Proposed Model of User Behaviour

The model of user behaviour on the Web is built with elements adopted from com-

munication theory [Shannon, 1948], graph theory [Casteigts et al., 2010], and social

48

network analysis [Kim and Leskovec, 2011; Cattuto et al., 2013; Semertzidis and

Pitoura, 2016].

In information theory, a model of communication has an information source

that produces a message and a destination, or a target, for whom the message is

sent [Shannon, 1948]. The message is sent via a channel which is the medium of

communication. A transmitter encodes the message to create a signal which is then

decoded by a receiver. Human communication and interaction on the Web can be

considered as an exchange of information between people who serve as information

sources and as receivers and the channel of communication is the Web.

In graph theory, mathematical structures consisting of objects, or nodes con-

nected by edges are studied. Recently, Time Aggregated Graphs (TAGs), graphs

which change over time were proposed [Casteigts et al., 2010]. Nevertheless, TAGs

is a relatively new concept and has not been explored much, especially real world

applications of TAGs.

In social network theory, social networks consist of individuals, organisations,

or other actors interacting with each others inside their network. The actors are

connected by ties, for example, friendship or interaction ties. A social network can

be considered as a graph in which nodes are associated with actors of the social

network and edges are associated with the social ties the actors form. Thus, graph

theory can be employed for studying the properties of social networks and for iden-

tification of important actors in the networks.

In this Chapter, a model of human interaction and relationship development

is proposed. This model consists of two graphs, an interaction graph and a relation-

ship graph. Both graphs are instances of TVAGs which are introduced as TAGs in

which both nodes and edges have attributes. The nodes and edges of TVAGs are

defined as time-varying objects which are described below.

3.2.1 Objects

The core of the model of human interaction and relationship development are con-

nected objects interacting with each other. Each object has time-varying attributes.

Definition 3. An attribute a(t) is a time-varying function defined for the discrete

time t in Z+. An object o(Ao(t), t) is a time-varying entity with a set of time-

varying attributes ao(t) ∈ Ao(t). Each object o(Ao(t), t) as well as the attributes of

this object Ao(t) are defined for the discrete time t in Z+. Each object has a time

span T ⊂ Z+.

An object o(Ao(t), t) can have no attributes at all, Ao(t) = {∅} or an in-

49

finite number of attributes Ao(t) = {ao1(t), ..}. The attributes Ao(t) of an object

o(Ao(t), t) hold the information on the object and can be divided in two groups:

numerical and categorical attributes. Numeric attributes have values that describe

a measurable quantity as a number whereas categorical attributes have values that

describe a ‘quality’ or ‘characteristic’ of the object. Numeric attributes can be con-

tinuous or discrete and categorical attributes can be nominal or ordinal. Thus, each

attribute ao(t) ∈ Ao(t) can be continuous C, discrete D, nominal N, or ordinal O.

Definition 4. The attribute ao(t) is called continuous C iff this attribute can take

any value between a certain set of real numbers R. The attribute is called discrete D

iff it can only take a value from a set of distinct whole values. The attribute is called

nominal N iff this attribute cannot be organised in a logical sequence. The attribute

is called ordinal O iff this attribute can only take a value that can be logically ordered

or ranked.

An example of a continuous attribute is the height of a person measured with

a ruler. On contrary to a continuous attribute, a discrete attribute cannot take the

value of a fraction between one value and the next closest value. For example, the

number of children in a family is a discrete attribute. The clothing sizes such as

small, medium, large, and extra large is an ordinal attribute since it is possible

to logically order these attributes. On contrary, gender or eye colour cannot be

logically ordered, thus, gender and eye colour are nominal attributes.

Next, these objects O(Ao(t), t) are used to derive the proposed TVAG model

and then the model of human interaction and relationship development based on

TVAGs is introduced.

3.2.2 Time-Varying Attributed Graph (TVAG)

A TVAG is a graph in which all nodes and edges have time-varying attributes.

Both nodes and edges are assumed to take place over a time span T ⊆ T called the

lifetime of the TVAG. The temporal domain T is N in this model since discrete time

is appropriate for the way time stamped events are collected on the Web. Shortly,

a TVAG is defined as follows:

Definition 5. A Time-Varying Attributed Graph (TVAG) is a graph G(t) such that

G(t) = (N(An(t), t), E(Ae(t), t)) where the nodes N(An(t), t) are connected by edges

E(Ae(t), t). The nodes N(An(t), t) and the edges E(Ae(t), t), are instances of the

objects O(Ao(t), t), and An(t) and Ae(t) are the attributes of the nodes and the edges

respectively.

Next, an interaction and a relationship graphs are introduced.

50

3.2.3 Relationship Graph

Social media consists of connected users who interact with each other. While com-

municating, the users establish relationships, for example friendship relationships.

Users and relationships are instances of the objects and they form a TVAG, a re-

lationship graph Gr(t), where the nodes of the graph are associated with users and

the edges are associated with relationships.

Definition 6. The users U(Au(t), t) are connected by relationships R(Ar(t), t) where

U(Au(t), t) and R(Ar(t), t), are instances of the objects O(Ao(t), t), and Au(t) and

Ar(t) are the attributes of the users and the relationships respectively. The relation-

ship graph Gr(t) = (U(Au(t), t), R(Ar(t), t)) is a graph representing the relationships

development between the users over the time t.

Since the users U(Au(t), t) are connected by the relationships R(Ar(t), t),

each relationship r(Ar(t), t) ∈ R(Ar(t), t) has at least two attributes, a source user

arSource(t) and a target user arTarget(t) such that arSource(t) uniquely identifies a user

usource(AuSource(t), t) and arTarget(t) uniquely identifies utarget(AuTarget(t), t), where

arSource(t), arTarget(t) ∈ Ar(t) and usource(AuSource(t), t), utarget(AuTarget(t), t) ∈
U(Au(t), t).

3.2.4 Interaction Graph

While communicating, the users interact with each other by exchanging messages.

Thus, users and messages which are instances of the objects form a TVAG, an

interaction graph Gint(t), where the nodes of the graph are associated with users

and the edges are associated with messages.

Definition 7. The users U(Au(t), t) interact with each other via sending and re-

ceiving messages M(Am(t), t), where U(Au(t), t) and M(Am(t), t), are instances of

the objects O(Ao(t), t), and Au(t) and Am(t) are the attributes of the users and the

messages respectively. The interaction graph Gint(t) = (U(Au(t), t),M(Am(t), t)) is

a graph representing the communication between the users.

These two TVAGs, namely the interaction graph Gint(t) and the relationship

graph Gr(t), describe the dynamics of communication and relationships of the users

on the Web. An example of such graphs is shown in Figure 3.1 and a step-by-step

construction of these two graphs for this example is given further in Section 3.3.

51

u1 u2

u4 u3

u1 u2

u4 u3

m1

m2

m5

m6

m4

m3

f1

f2

f3

f4

f5

Relationship Graph Interaction Graph

Figure 3.1: An example of a relationship graph and an interaction graph representing
communication of four users other a fixed time period T .

Notation Shorthand

Further in this thesis, users U(Au(t), t) sometimes are denoted as U(t) or just U for a

shorter notation. The same notation shorthand applies for relationships R(Ar(t), t),

messages M(Am(t), t), and a single user u, a relationship r, or a message m. Also,

the relationship graph Gr(t) = (U(Au(t), t), R(Ar(t), t)) sometimes is denoted as

Gr(t) = (U(t), R(t)) or just Gr for a shorter notation. The same applies for the

interaction graph Gint(t).

3.2.5 User Attributes

Users U are represented by the nodes in both relationship and interaction graphs Gr

and Gint. A user ui ∈ U appears in the graphs Gr and Gint once he/she registers in

a social media network or he/she is registered by another user. Every user ui has a

‘birth’ time stamp tb when a user ui was registered in social media. Once the node

was created, the attributes Au of the node ui can be created and initiated. Later

on, these attributes can be changed, updated, or new attributes can be introduced.

A set of possible user node attributes is presented below:

• aId: Unique Id (nominal, mandatory)

• aName: Name (categorical, optional)

• aLocation: Location (categorical, optional)

• aPopularity: Popularity (continuous, optional)

• aAge: Age (continuous, optional)

52

• aGender: Gender (discrete, optional)

• aT imeRegistered: Time Registered (discrete, optional)

For example, if Nick, a male user located in the US, registered on October 10th then

a node u(t) = u(au(t), t) is created, where au(t) are the node attributes and t is the

time:
u(au(t), t) = {aName(t) = {(Nick, tb)},

aLocation(t) = {(US, tb)},

aPopularity(t) = {(0, tb)},

aAge(t) = {(null, tb)},

aGender(t) = {(male, tb)},

aT imeRegistered(t) = {(tb, tb)}

}

(3.1)

As the reader can notice, all the attributes are temporal.

3.2.6 Relationship Attributes

Every user ui(t) can establish a relationship r(t) to another user. The established re-

lationships form the set of edges R(Ar(t), t) with two mandatory attributes, namely

aSource(t) and aTarget(t) which represent the source and the target users who

form the relationship r(t). The user can establish a relationship to himself, thus

aSource(t) = aTarget(t). The user can have any number of relationships with

other users or none at all. The relationship r(t) can have the following attributes

Ar(t):

• aSource = {UserId1} (nominal, mandatory)

• aTarget = {UserId2} (nominal, mandatory)

• aType = {} (nominal, optional)

A relationship r(t) can be of different types aType(t), for example, friendship, blood

relations, work relations, a status of following a person. Also, the relationship type

can change over time from one nominal value to another. For example, let assume

that Nick and Jack register on the Web with their user accounts uNick(t) and uJack(t)

respectively. Then Nick starts following Jack on July 21st. As a result, a relationship

53

r(ar(t), t) is created:

r(ar(t), t) = {aSource(t) = {(Nick, t1)},

aTarget(t) = {(Jack, t1)},

aType(t) = {(following, t1)},

}

(3.2)

Where Nick is a unique id which identifies uNick(t), Jack is a unique id which

identifies uJack(t), following is the type of the relationship they establish, and t1 is

the date when Nick started following Jack which is July 21st.

3.2.7 Message Attributes

Once a user u is ‘born’, he/she can interact with other users by sending messages M .

Users U(t) and messages M(t) form an interaction graph Gint(t) where the users

are the nodes and the messages are the edges of the graph. The attributes Am(t) of

the edges M(t) can be the following:

• aSource = {UserId1} (nominal, mandatory)

• aTarget = {UserId2} (nominal, mandatory)

• aType = {} (nominal, optional)

• Message Body (nominal, optional)

A message m must have a source aSource and a target aTarget. The message itself

can be empty or contain some information, for example, text, images, url links.

For example, if Nick sends a message ‘how are you?’ to Jack on July 22nd then a

message m(am(t), t) is created:

m(am(t), t) = {aSource(t) = {(Nick, t2)},

aTarget(t) = {(Jack, t2)},

aType(t) = {(textmessage, t2)},

aMessageBody(t) = {(′how are you?′, t2)}

}

(3.3)

Where Nick is a unique id which identifies uNick(t), Jack is a unique id which

identifies uJack(t), textmessage is the type of the message, and t2 is the date when

Nick sent the message to Jack which is July 22nd.

Next, a step-by-step example describes how the proposed model captures

temporal dynamics of human interaction and relationship development.

54

3.3 A Toy Modelling Example

A toy example of temporal dynamics for four users registering and then interacting

and establishing relationships is introduced. As a result, the process of forming an

interaction and relationship graph is presented.

3.3.1 User Attributes

Assume that at the time t01 a user u1 registers on the Web and then the user enters

some information about himself, for example, his name, age, and location. Thus,

the attributes Au1(t) of the user u1 are updated with the attributes at time t01:

Au1(t) = {aNameu1(t) = {(name1, t01)},

aAgeu1(t) = {(age1, t01)},

aLocationu1(t) = {(location1, t01)}

}

(3.4)

Then at the time t02 the user u1 updates his location to location2 and another user

u2 registers but enters only his name name2:

Au1(t02) = {aLocationu1(t02) = {(location2, t02)}}

Au2(t02) = {aNameu2(t02) = {(name2, t02)}}
(3.5)

Thus, the users’ information becomes:

u1(Au1(t), t) = {aNameu1(t) = {(name1, t01)},

aAgeu1(t) = {(age1, t01)},

aLocationu1(t) = {(location1, t01), (location2, t02)}

}

u2(Au2(t), t) = {aNameu2(t) = {(name2, t02)},

}

(3.6)

Finally, at the time t03 two users, u3 and u4 register on the Web and the user u2

changes his name to name3. That means that the attributes for the users u3 and

u4 are assigned to an empty set ∅ since they did not enter any information whereas

55

u1 u1 u2 u1 u2

u4 u3

u1 u2

u4 u3

t01 t02 t03 [t01, t03]

Figure 3.2: Users’ ‘births’ and updates for the three time points t01, t02, t03 and then
for the interval [t01, t03].

the attribute ‘name’ of the user u2 is updated with name3:

Au2(t03) = {nameu2(t03) = (name3, t03)}

Au3(t03) = {∅}

Au4(t03) = {∅}

(3.7)

This scenario of users’ births and their information updates is depicted in Figure

3.2.

3.3.2 Interaction Graph

An example of forming an interaction graph is shown in Figure 3.3. At the time

moment t11 the user u4 sends a message m1 to the user u1:

Am1(t11) = {aSourcem1(t11) = (u4, t11),

aTargetm1(t11) = (u1, t11)}
(3.8)

Then at the time t12 the user u2 sends the messages m2 and m3 to the users u1 and

u3:

Am2(t12) = {aSourcem2(t12) = (u2, t12),

aTargetm2(t12) = (u1, t12)}

Am3(t12) = {aSourcem3(t12) = (u2, t12),

aTargetm3(t12) = (u3, t12)}

(3.9)

56

u1 u2

u4 u3

u1 u2

u4 u3

u1 u2

u4 u3

u1 u2

u4 u3

t11 t12 t13 [t11, t13]

m1

m2

m3

m4
m5

m6

Figure 3.3: An interaction graph representing communication of four users for the
three time points t11, t12, t13 and then for the interval [t11, t13].

Finally, at the moment t13 the user u2 sends the messages m4 and m5 to the users

u3 and u4; also, the user u4 sends the message m6 to the user u3:

Am4(t13) = {aSourcem4(t12) = (u2, t12),

aTargetm4(t12) = (u3, t12)}

Am5(t13) = {aSourcem5(t12) = (u2, t12),

aTargetm5(t12) = (u4, t12)}

Am6(t13) = {aSourcem6(t12) = (u4, t12),

aTargetm6(t12) = (u3, t12)}

(3.10)

The result of such communication is the following interaction graph:

Gint = (U(Au(t), t),M(Am(t), t)) where

U(Au(t), t) = {ui(Aui(t), t)}, i = 1, .., 4 and

M(Am(t), t) = {mj(Amj(t), t)}, j = 1, .., 6

(3.11)

This scenario of users interaction and the resulting interaction graph is depicted in

Figure 3.3.

3.3.3 Relationship Graph

An example of forming a relationship graph is shown in Figure 3.4. At the time mo-

ment t21 the user u4 establishes a relationship with the user u3 and the relationship

r1 is created:

Ar1(t21) = {aSourcer1(t21) = u4,

aTargetr1(t21) = u3}
(3.12)

57

u1 u2

u4 u3

u1 u2

u4 u3

u1 u2

u4 u3

u1 u2

u4 u3

t21 t22 t23 [t21, t23]

r1

r4

r5

r2

r3 r1
r3

r5

r4

r2

Figure 3.4: A relationship graph representing development of relationships between
four users for the three time points t21, t22, t23 and then for the interval [t21, t23].

Then at the time t22 the user u3 confirms the relationship with the user u4. Also,

the user u4 establishes a relationship with the user u2 which leads to creation of the

link r2:

Ar2(t22) = {aSourcer2(t22) = u4,

aTargetr2(t22) = u2}

Ar3(t22) = {aSourcer3(t22) = u4,

aTargetr3(t22) = u3}

(3.13)

Finally, at the moment t23 the user u2 confirms a relationship with the user u4 and

the user u4 establishes another relationship with the user u3:

Ar4(t23) = {aSourcer4(t23) = u2,

aTargetr4(t23) = u4}

Ar5(t23) = {aSourcer5(t23) = u4,

aTargetr5(t23) = u3}

(3.14)

The result of such relationship development is the following relationship graph:

Gr = (U(Au(t), t), R(Ar(t), t)) where

U(Au(t), t) = {ui(Aui(t), t)} i = 1, .., 4 and

R(Ar(t), t) = {rk(Ark(t), t)}, k = 1, .., 5

(3.15)

3.4 Modelling Examples

Real world social media platforms can be very diverse and be represented, for ex-

ample, by a social network, a blogging platform or a Q&A forum. In this Section,

the proposed TVAG-based model is instantiated for three diverse platforms, namely

58

Users Posts Comments

TagsBadges

Users Messages

Post
History

Figure 3.5: An overview of the data model of Stack Exchange websites.

Stack Exchange, Twitter, and Facebook communities.

3.4.1 Stack Exchange

Stack Exchange websites facilitate users to ask and answer questions by posting

messages on the platform. Each message can be one of tree types - a question,

an answer, or a comment. An interaction graph is formed by the users and their

messages. The type of a message is encoded by an attribute.

Similar to Twitter, questions on Stack Exchange are tagged with predefined

tags. A tag is a keyword reflecting a topic or a domain of the question. Each question

can have up to six tags. Analogously to a Twitter hashtag, a Stack Exchange tag

is an attribute of a message. The message in Stack Exchange can be a question, an

answer, or a comment whereas on Twitter there is a tweet, a retweet, a mention, a

reply.

Stack Exchange websites are uniform in their structure. In total there 128

Stack Exchange websites on different topics. The data model is the same for all of

the websites and consists of six tables:

• Users;

• Posts;

• Tags;

• Badges;

• Comments;

• PostHistory.

The relationships between these six tables are shown in Figure 3.5. The transfor-

mation of the existing data model into the proposed TVAG model results in an

59

interaction graph Gint(U,M) with the following attributes:

User attributes Ua:
• Registration Date UaRegistrationDate: Time

• Display Name UaDisplayName: Text

• Reputation UaReputation: Integer

• Email Hash UaEmailHash: Text

• Website Url UaWebsiteUrl: Text

• Location UaLocation: Text

• Age UaAge: Integer

• About Me UaAboutMe: Text

• Views UaV iews: Integer

• Upvotes UaUpvotes: Integer

• Downvotes UaDownvotes: Integer

Stack Exchange records some temporal changes in the messages, for example changes

in titles and bodies of questions. Also, changes in the tags a question is tagged with

are recorded as well. This fact allows one to construct MaT itle(t), MaBody(t), and

MaTags(t). For all messages M without any temporal information, the only temporal

attribute associated is the time when a message m was created which is reflected in

CreationDate attribute of Stack Exchange data model.

Message attributes Ma:
• Source MaSource: UserId1

• Target MaTarget: UserId2

• Type MaType: {question, answer, comment, badge}
• Action MaAction: {Posted, Liked, Upvoted,Downvoted,Received}
• Score: MaScore: Integer

• Title: MaT itle: Text

• Body: MaBody: Text

• Tags: MaTags: Text

• Text MaText: textual message

• Link MaLink: Url link

Stack Exchange does not have a functionality for users to establish any relationships.

This leads to the fact there is no explicit relationship graph. Thus, only a interaction

graph can be constructed from the question answering activities.

An example of constructing an interaction graph is shown in Figure 3.6.

First, a question q1 is asked by a user u1. Second, the question receives an answer

a1 posted by a user u2. Third, a user u3 posts another answer a2. Then a user u4

writes a comment c1 for the answer a2. Finally, the user u2 writes another comment

c2 to the answer a2. The resulting interaction graph for such a scenario is shown in

the last, fifth, box in Figure 3.6.

60

u1

q1

u1
a1

u2

q1 q1

u1

a2

a1
u2

u3

q1

q1

q1

u1

a2

a1

c1

u2

u3 u4

q1

q1

a2

q1

u1

a2

a1

c1

c2

u2

u3 u4

q1

q1

a2

q1

a2

1 2 3

4 5

Figure 3.6: A step-by-step example of constructing an interaction graph for Stack
Exchange websites. The graph consists of four nodes u1, u2, u3, u4 associated with
four users, an edge q1 associated to a question asked by the user u1, two edges a1
and a2 associated to two answers for this question, and two comments c1 and c2
associated to two comments to the second answer a2.

61

Model Construction for a Stack Exchange Dataset

Stack Exchange provides data dumps of their data for all of their 128 websites.

The largest Q&A forum Stack Overflow has 7, 990, 488 questions and 13, 683, 746

answers with 3, 472, 204 users for the time period from July 31, 2008 to October 23,

2014. An interaction graph for 1,000 the most recent questions is shown in Figure

3.7. The total number of answered questions for the time interval from July 31,

2008 to October 23, 2014 is shown in Figure 3.8. Answered questions are defined as

questions which have at least one answer accepted by the asker.

3.4.2 Twitter

Twitter was established as a micro blogging platform where users can post messages

or so-called ‘tweets’ and establish relationships with other users by following each

other. Due to the limitation on the length of a tweet before 2015, users used to

actively attach urls to their tweets to share more information. Another important

feature of Twitter is the term hashtag which is a string starting with the character

‘#’. A hashtag represents a topic, event, a keyword.

According to the official documentation provided at Twitter website1, the

data model of Twitter is as follows:

• Object: Users

• Object: Tweets

• Object: Entities

• Object: Entities in Objects

• Object: Places

The documentation says that “Users can be anyone or anything. They tweet, fol-

low, create lists, have a home timeline, can be mentioned, and can be looked up in

bulk.”, and about tweets: “Tweets are the basic atomic building block of all things

[in] Twitter. Tweets, also known more generically as “status updates.” Tweets can

be embedded, replied to, liked, unliked and deleted.”. Thus, there is mapping be-

tween users, tweet activity and follower-following relationships on Twitter to users,

messages and relationships of the proposed TVAG-based model. For example, if

a user ui follows a user uj then a directed link from the user ui to the user uj is

established. The graph where the users are the nodes and the following relationships

are the links, is the relationship graph. However, Twitter does not provide temporal

information on relationship graph at all, thus, it is assumed that all relationships as

old as the corresponding user’s registration date.

1https://dev.twitter.com/overview/api

62

Figure 3.7: An interaction graph for 1,000 of the most recent questions on Stack
Overflow. The nodes represent users and the edges represent the flow of answering
questions of other users.

63

Figure 3.8: The total number of answered questions for the time from 31 July 2008
to 23 October 2014.

The communication and interaction between users in Twitter is organised by

tweets, the messages sent by the users. Technically, all tweets are public and can be

seen by anyone. However, only users who follow a tweeted person will see his tweet.

Thus, a user’s tweet m is broadcasted only to all his followers. Also, if a tweet

starts with ”@username1” then this tweet will not be automatically broadcasted to

the timeline of the follower @username2 in cases when @username2 is not following

@username1.

Users can interact with each other via retweet and mention in Twitter. A

retweet is identified by the text “RT @username” or “via @username” in a tweet m.

A mention is a tweet with @username if it is not a retweet. Thus, the interaction

graph is formed by the users and their tweets where each tweet can be a post, a

retweet, a reply or a mention. The interaction graph on Twitter is timestamped.

Model Construction for a Twitter Dataset

Twitter has an API for searching and downloading their data. Below is an example

of using hashtags for searching and extracting Twitter data and then fitting the

extracted data into the proposed TVAG-based model.

For searching tweets by a hashtag #hashtag the following query must be

64

executed:

http : //search.twitter.com/search.json?q = %23hashtag (3.16)

The query returns timestamped tweets as well as unique identification numbers (ids)

of users who posted the tweets. These timestamped tweets allow to form an inter-

action graph. Next, the unique users’ ids can be used for extracting the relationship

graph of the proposed model. The relationship graph consists of following-follower

relationships between the users. As a result, the two extracted graphs form the

proposed model. However, only the interaction graph has temporal features, thus,

it is assumed that all relationship ties were formed instantaneously at the earliest

interaction between the people in the network.

In [De Domenico et al., 2013] the authors extracted tweets by hashtags lhc,

cern, boson, higgs. The tweets were filtered by date so only the tweets from 00 : 00

AM 1st July 2012 to 11 : 59 PM 7th July 2012 were considered. As a result 985, 692

tweets were extracted. Each tweet has a timestamp, unique id of a user who posted

it, information on the tweet such as whether the tweet is a reply (RE), retweet

(RT), or a mention(MT). These tweets form an interaction graph where each node

corresponds to a user and directed edges represent the flow of tweets from that user.

Each edge has two attributes, namely the time a tweet was posted and the type of

a tweet - RE, RT, or MT. The interaction graph for 1,000 of the most active users

is shown in Figure 3.9. The relationship graph for 5,000 of the most active users is

shown in Figure 3.10.

All the extracted 985, 692 tweets correspond to 456, 631 authors. The re-

lationship graph has 456, 631 nodes corresponding to the authors connected by

14, 855, 875 directed edges associated with follower-following relationships.

As a result, the two graphs, interaction and relationship graphs, form the

proposed TVAG-based model. The interaction graph is a timestamped graph where

each edge has the time attribute but the relationship graph is timestamped with the

time of the first tweet in the networks since Twitter API does not provide the time

when a relationship between the users was established, terminated, and established

again. Below is the list of attributes for users, relationships, and messages:

User attributes Au:

• Anonymised User’s Name UaName: UserId

Relationship attributes Ar:

• Source RaSource: UserId1

65

Figure 3.9: An interaction graph for 1,000 of the most active users on Twitter. The
nodes represent people and the edges represent replies, retweets and mentions by
users. The most active users are the users who sent the largest number of tweets.

66

Figure 3.10: A relationship graph for 5,000 of the most active users on Twitter.
The nodes represent users and the edges represent following-follower relationships
between the users.

67

Figure 3.11: The total number of tweets during the time from 00 : 00 AM 1st July
2012 to 11 : 59 PM 7th July 2012.

• Target RaTarget: UserId2

• Type RaType: {following}

Message attributes Am:

• Source MaSource: UserId1

• Target MaTarget: UserId2

• Type MaType: {retweeting(RT), replying(RE),mentioning(MT)}

As a result, an interaction graphGint = (U,M) and a relationship graphGr = (U,R)

are constructed.

3.4.3 Facebook

Facebook provides people with means to communicate, take actions and establish

relationships with other people. Facebook developed a data model, called TAO, for

modelling these entities and connections as a graph. According to Facebook, TAO is

optimised for reads, and explicitly favours efficiency and availability over consistency

[Bronson et al., 2013]. TAO objects are typed nodes, and TAO associations are

typed directed edges between objects:

Object : (id)→ (otype, (key → value)∗)

Association : (id1, atype, id2)→ (time, (key → value)∗)
(3.17)

Every object, regardless of its object type otype, can be identified by a unique id

which is a 64-bit integer. Associations can be identified by the source object id1,

68

association type atype, and destination object id2. At most one association of a

given type can exist between any two objects. All objects and associations may

contain data represented as a key → value pair [Bronson et al., 2013]. Actions

may be encoded either as objects or associations. However, repeatable actions are

usually encoded as objects.

For example, in TAO, users are objects and the relationships between the

users, for example the status of being a friend, are associations. Messages, such as

private messages or messages to the feed of a user can be considered as associations

as well. The difference with the proposed TVAG-based model is that in TVAG

users, relationships, and messages are timestamped objects and relationships as

well as messages have two time-varying attributes uniquely identifying the source

and the destination objects analogously to id1 and id2 of the associations in TAO.

Facebook allows users to interact in several ways, for example by messaging

each other, through applications, uploading pictures, sharing videos, chatting, post-

ing to each other walls.

Next, an example of constructing the proposed model from a Facebook

dataset is introduced.

Model Construction for a Facebook Dataset

Facebook website provides with means for extracting user data from a Facebook user

page. All the information available at Facebook can be classified as information on

Users, Messages, and Relationships [Facebook, 2016]. By analysing the available

data, one can see that Facebook does not provide historical values for every single

attribute. For the most of the attributes only the latest value is provided. To

convert Facebook data in the proposed TVAG-based model, the attributes without

any historical information were treated as attributes with a single timestamp. The

value of that timestamp was assigned to the date of creation of the attribute or to

the date when the object was created. For example, since there is no information on

the time when a user updated their address information UaAddress, the assumption

is that the address was entered at the time t = turegistered when the user registered

at Facebook. That means that the address attribute UaAddress(t) consists of a single

timestamped value:

UaAddress(t) = {(UaAddress, turegistered)} (3.18)

Nevertheless, some attributes are timestamped and even historical information on

those attributes is provided. For example, Account Status History can be used to

69

recover UaAccountStatus(t) as a discrete function of time when the status of a user

was changed:

UaAccountStatus(t) = {(UaAccountStatus1, t1),

...,

(UaAccountStatusn, tn)}

(3.19)

The same procedure can be repeated for building UaNames(t) from Name Changes,

and for constructing UaIPAddress(t) from Logins and Logouts. As a result of such

transformation and recovery of temporal information where possible, the proposed

model based on TVAG with the following attributes is constructed:

User attributes Ua:

• Registration Date UaRegistrationDate: Time

• Account Status UaAccountStatus: Account Status

• About Me UaAboutMe: Text

• Favourite Quote RaFavouriteQuote: Text

• Hometown UaAboutMe: Text

• Current City UaCurrentCity: Text

• Address UaAddress: Text

• Name UaName: Text

• Alternate Names UaAlternateNames: Text

• Screen Names UaScreenNames: Text

• Date of Birth UaAlternateNames: Time

• Birthday Visibility UaScreenNames: Boolean

• Spoken Languages UaSpokenLanguages: Text

• Work UaWork: Text

• Vanity URL UaV anityURL: Text

• Education UaEducation: Text

• Emails UaWork: Text

• Work UaWork: Text

• Linked Accounts UaLinkedAccounts: Text

• Gender UaGender: Text

• Phone Numbers UaPhoneNumbers: Text

• Political Views UaPoliticalV iews: Text

• Religious Views UaReligiousV iews: Text

• Status UaStatus: Text

• Privacy Settings UaPrivacySettings: Text

• Notification Settings UaNotificationSettings: Text

• Locale UaLocale: Text

70

• Currency UaCurrency: Text

• Credit Cards UaCreditCards: List

• Locale UaLocale: Text

• Pages You Admin UaPagesY ouAdmin: List

• Physical Tokens UaPhysicalTokens: List

• Networks UaNetworks: List

• IP address UaIPAddress: Integer

• Location UaLocation: Text

• CheckIn UaCheckIn: Text

• Search UaSearch: Text

• Apps UaApps: Text

• Ad Clicked UaAdClicked: Text

• Ad Topics UaAdTopics: Text

• Sites Liked UaSitesLiked: Text

Relationship attributes Ra:

• Source RaSource: UserId1

• Target RaTarget: UserId2

• Type RaType: {connection, family, following, friends, hiding}
• Action RaAction: {Requested,Accepted,Removed,Deleted,Hidden}

Message attributes Ma:

• Source MaSource: UserId1

• Target MaTarget: UserId2

• TypeMaType: {chat,message, post, poke, share, note, photo, video, event, group}
• Action MaAction: {Liked, Posted, Poked, Shared,Noted, Joined, Created}
• Text MaText: textual message

• Link MaLink: Url link

Below is an example of interaction and relationship graph generation using extracted

data for one user. The user registered in June 2009 and has regularly used his

Facebook account. As a result, he/she has had 1, 212 conversations. In total, the

user has sent 19, 549 messages and received 24, 352 messages. The user has 440

friends, all the friendships are timestamped. The dynamics of sent and received

messages for that user is shown in Figure 3.12. The interaction graph for that user

is shown in Figure 3.13.

71

Figure 3.12: The total number of sent and received messages on Facebook for the
time from June 2009 to May 2016.

3.5 Conclusion and Discussion

Graphs are a powerful tool for the representation and exploration of social media

networks. However, the importance of temporal properties of such graphs is of-

ten underestimated. In this Chapter, first, a TVAG was introduced and then a

TVAG-based model for modelling human interaction and development of relation-

ships between people was proposed. The time-varying attributes of TVAG allow

one to capture the temporal properties of human interaction and relationship devel-

opment. Existing social networks and platforms can be easily transformed into the

proposed model which was demonstrated for three of the most popular social plat-

forms such as Twitter, Facebook, and Stack Exchange. This transformation does

not lose any data but allows one to capture and explore temporal user behaviour

on the Web. On the other hand, the three platforms of interest ignore the temporal

nature of a substantial number of attributes. Nevertheless, regardless of data models

and data structures used by a social platform, the TVAG-based model is useful to

capture user behaviour on the Web. The main contribution of the proposed TVAG

model is the time varying component of features of the graph nodes and edges.

A limitation of the proposed TVAG-based model is the fact that the precision

of its mathematical formulation must be improved. However, making the TVAG-

based model too formal mathematically may lead to limited flexibility of the model

72

Figure 3.13: The interaction graph for a single user for the time from June 2009
to May 2016. The user is represented as the node in the centre and the people the
user interacted with are represented as the nodes around the centre. The distance
between the central node and the other nodes is related to the number of messages
the users exchanged: the closer are the central node to another node the more
messages these two people exchanged.

73

and also to decreased applicability of the model to real world social networks. The

goal of introducing a TVAG-based model is to provide a flexible tool for modeling

dynamic and diverse user behaviour on the Web.

First, the proposed model can facilitate visual exploration of user behaviour.

Indeed, graph-based models facilitate the exploration of user behaviour on the Web

by visualisation due to the fact that a large number of tools for visualisation has

been proposed and developed. Even more, visualisation is an important step in data

mining which precedes extracting features and then building a predictive model.

Second, the proposed model can facilitate feature extraction for various ML

tasks. The proposed model of human interaction and relationship development con-

sists of two TVAGs, an interaction graph Gint = (U,M), and a relationship graph

Gr = (U,R). Both graphs capture interaction and relationship properties and struc-

ture of user behaviour on the Web. In ML, a feature extraction step is an important

step which often determines the success of the whole ML process. It was shown in

the literature that structural features of human communication are of high impact

on many prediction tasks [Cai and Chakravarthy, 2013; Hu et al., 2013; Teinemaa

et al., 2015]. However, in real world applications the number of nodes and edges in

the graphs Gr and Gint may reach millions and it is computationally expensive to

calculate features for the whole graph G defined on time interval T. Nevertheless,

explicit temporal properties of both nodes and edges allow one to find a smaller

subgraph GT on a time interval T ∈ T and calculate the features for this subgraph

rather than for the whole graph G. Thus, temporal features of the graph allow one

to calculate and then use the structural features even where the graph G is large.

To sum up, this Section introduced a TVAG, then it proposed a model of

user behaviour on the Web based on two TVAGs, and, finally, demonstrated how

the proposed model can be used for three real world social platforms.

3.6 Summary

A novel graph model, TVAG, and then a TVAG-based model of user behaviour, more

specifically a model of human interaction and relationship development on the Web,

were proposed in this Chapter. The model captures temporal properties of human

communication and relationship development on the Web which facilitates to explore

and understand user behaviour. The applicability of the model was demonstrated

for three popular social platforms, namely Facebook, Twitter, and Stack Exchange.

In the next Chapter, a procedure for an efficient feature extraction to build

predictive models of user behaviour on the Web is discussed.

74

Chapter 4

Feature Extraction for an

Efficient Prediction

In this Chapter the problem of efficient extraction of features for different prediction

tasks in the context of user behaviour on the Web is discussed. The methodology

of extracting features from the proposed TVAG-based model of human communica-

tion is introduced and evaluated. The efficiency of feature extraction is considered

in terms of how the extracted features improve the accuracy of a prediction as well

as how computationally efficient it is to extract these features.

First, a brief introduction of feature extraction for predicting user behaviour

is introduced in Section 4.1. The feature extraction problem is summarised in Sec-

tion 4.2. Then classification of features semantically and in accordance with their

complexity is explored in Section 4.3 and Section 4.4. An experiment investigating

how these features affect the performance of predicting user behaviour is presented

in Section 4.5. The results of the experiment are discussed in Section 4.6. The re-

sults are compared to related studies in Section 4.7. Finally, Section 4.8 and Section

4.9 provide a conclusion and a summary of the Chapter.

4.1 Introduction

Ideally, a predictive model is built using a small dataset without much feature

extraction effort. However, in order to improve the accuracy of a model, some-

times one needs to build and extract additional features. From another side, using

all the available features is computationally prohibitive for most real world high-

dimensional problems.

In this thesis, prediction is considered as a process where the feature ex-

75

traction step precedes the step of choosing a ML set-up for building a model for

predictions. Usually these so-called features are presented in a matrix or in a graph

form. Representing a problem space as a graph introduces an additional level of

complexity for calculating features based on the graph model [Schenker et al., 2005].

Introducing a hybrid representation can facilitate capturing both structural, graph-

related features and other features extracted from the vector model [Markov et al.,

2008]. However the computational complexity for extracting features from such a

hybrid model can be unacceptable in some practical scenarios. As a result, the

following question arises:

1. How can one construct a set of features for an accurate but fast prediction of

user behaviour on the Web?

A list of features potentially affecting the accuracy of predicting user behaviour

has been identified in the literature [Yang et al., 2011; Asaduzzaman et al., 2013;

Dror et al., 2013; Anderson et al., 2012; Lezina and Kuznetsov, 2012; Burlutskiy

et al., 2015; Bhat et al., 2014]. In order to systematise the features, they are clas-

sified semantically in this thesis - the features are grouped into users, messages,

relationships, temporal, and structural features. Such a classification allows one to

systematically analyse the computational complexity of the feature sets as well as

their contribution to the accuracy of predictions. However, not much research on

time complexity of calculating such features has been conducted. An attempt to

estimate the complexity of features was performed in [Page et al., 2014]. Neverthe-

less, there are many possible combinations of features and extracting the features

often involves expensive calculations.

A comparison of training and testing times for different ML algorithms was

performed in [Lim et al., 2000]. However, the authors did not address the question

of how the features influence the accuracy and time of predictions. Even though

many works have shown high accuracy for different predicting tasks, the time and

complexity of the trained models are usually not of main concern. In order to ad-

dress this issue, the time and space complexity of features influencing user behaviour

is estimated in this thesis. As a result, a classification based on semantic and com-

plexity properties of the features is proposed.

In order to answer the first research question, a few experiments on three

different datasets are conducted. First, the complexity of feature extraction for a

predictive model is estimated. Second, the accuracy contribution of the classified

feature sets is evaluated. As a result, the usefulness of the proposed feature clas-

sification into semantic and computational complexity groups is discussed and a

guideline for feature extraction is proposed.

76

The last question arises from the fact that temporal properties of human com-

munication are often missing in many social platforms for communication [Bronson

et al., 2013]. However, using temporal properties can facilitate to decrease the size

of the data for extraction as well as extract temporal features to improve the accu-

racy of a prediction. This, as a result, can provide an accurate prediction as well

as it can help to reduce computational efforts significantly. The second question is

formulated as follows:

2. How important are temporal features for prediction in terms of accuracy and

time efficiency?

To answer this question, a set of temporal features is selected and then a model

is trained using all features and then all features except temporal features. Also,

the time required to extract those features is captured and compared to the time

required to extract other features.

4.2 Feature Engineering

In this thesis, the features for prediction are represented as a feature space F . Having

a model of human communication and relationship development in the graph form

G = (U,E) proposed in Chapter 3, the transformation of the graph G into the

feature space F = {F1, .., Fn}, where n is the number of features, can be written as:

F = f(G) (4.1)

where f is a function which maps the graph G into the feature space F .

Selection of the features F for predictions is a challenging task. The choice

of features used for the prediction is mainly influenced by the availability of data in

the graph model as well as by the features successfully used in other predictions of

user behaviour [Yang et al., 2011; Dror et al., 2013; Asaduzzaman et al., 2013; Bhat

et al., 2014].

4.3 Feature Semantics

The features F can be divided in several groups depending on the semantics and the

elements of the graph G the features are associated with. The graph G has nodes

representing users U , edges E representing messages M and relationships R between

the users U , time t associated to users U , messages M , and relationships R. Finally,

the graph model G allows one to calculate structural features (see Figure 4.1). Thus,

77

the transformation of the graph G into the feature space F can be rewritten as a

union of subspaces of these features:

F = f1(U) ∪ f2(M) ∪ f3(R) ∪ f4(t) ∪ f5(G) (4.2)

Rewriting the transformations {f1, f2, f3, f4, f5} of the graph G, namely Users fea-

tures as Fu, Messages as Fm, Relationships as Fr, Temporal as Ft features, and

Structural as Fs leads to five types of features Fi. The features Fu are extracted

from the nodes U of the graph G, features Xm are extracted from the edges M of the

interaction graph Gint, the features Fr are derived from the edges of the relationship

graph Gr, and the features Ft are the temporal properties of the graph G. Finally,

Fs are the features representing structural properties of the graph G:

Fu = f1(U)

Fm = f2(M)

Fr = f3(R)

Ft = f4(t)

Fs = f5(G(t))

(4.3)

The feature vector F is a union of all these features,

F = Fu ∪ Fm ∪ Fr ∪ Ft ∪ Fs (4.4)

Subsections 4.3.1-4.3.5 provide a list of these user Fu, message Fm, relationship Fm,

structural Fs, and temporal Ft features which are then used for training a predictive

model.

4.3.1 User Features

The user features Fu are derived from the attributes of the nodes U of the graph G:

1. User Id : A unique number associated with every user;

2. User Personal Info: A feature representing information on a user. A user u

can have a multitude of user personal info features, for example:

(a) User’s Name: The name of a user;

(b) User’s Gender : The gender of a user;

(c) User’s Location: User’s location L(ui), it can be the name of his/her

hometown or his/her country;

(d) User’s Longitude: The longitude of user’s location;

78

User

Message

Relationship

Temporal Structural

G(U, E)

Figure 4.1: Extracting features from a graph model.

(e) User’s Latitude: The latitude of user’s location;

(f) User’s Time zone: User’s time zone can be derived from their location

or by identifying the place from where users post messages: T (ui) =

f(L(ui)) where L(ui) is the location of the user ui;

4.3.2 Message Features

The message features Fm are derived from the attributes of the edges M of the

interaction graph Gint. There are three attributes of these edges, namely source,

destination, and message. The first two attributes:

1. Source User : The ID of a user who sent the message;

2. Destination User : The ID of a user who received the message;

A possible list of features Fm extracted from messages M is below:

3. Type: The type of the message;

4. The number of sent messages: The number of sent messages for a particular

user ui at a time moment te. Nm = outdeg(ui, te);

5. The number of messages received by a user : The number of received messages

for a particular user ui at a time moment te. Nm = indeg(ui, te);

6. The number of answered messages: The number of sent messages which re-

ceived at least one answer for a particular user ui at a time moment te is

Na = outdeg(ui, te);

79

7. Textual features: Features related to a textual body of a message. Such fea-

tures may include various NLP features, for instance:

(a) Text length: The number of letters in the message m;

(b) Occurrence of a word : For example, the number of ‘who’ words in the

text;

(c) Occurrence of a set of words: For example, the number of ‘wh’ words in

the text;

A common formalisation for a textual message is a vector space model, for example,

the bag of words and phrases [Le and Mikolov, 2014]. However, the bag of words and

phrases representation is limited to frequency features of these words and phrases.

Nevertheless, structural and semantic features can be extracted from the text as

well. One of the main issues is the complexity of such computations. For example,

the occurrence of a word or a set of words can include the following:

• The number of active verbs: the total number of verbs in the message;

• The number of times of self referencing : the number of times a user mentioned

themselves, for example, ‘we’, ‘I’, ‘me’;

• The number of url links: the number of url links in the text;

• The number of images: the number of images in the text;

• The number of tags: The number of tags the message is tagged with. For

example, Twitter and Stack Exchange allow users to tag their messages, tweets

or questions correspondingly.

4.3.3 Relationship Features

The relationship features Fr are derived from the nodes R of the relationship graph

Gr. There are three attributes of these nodes, namely source, destination, relation-

ship. The first two attributes:

1. Source User : The ID of a source user;

2. Destination User : The ID of a target user;

Relationships formed between the users U can be friendship, family, work ties. For

example, the following features can be extracted:

3. Type: The type of a relationship;

4. The number of outcoming relationships: The number of users who follow the

user u;

80

5. The number of incoming relationships: The number of following users by the

user u;

The relationship graph G can have several types of relationships. For example,

Facebook allows one to have friendship relationships and blood relationships as

well.

4.3.4 Structural Features

Structural features Fs are the features which are related to the topology of the inter-

action graph Gint and the relationship graph Gr. These features include centrality

measures that identify the importance of nodes in the graphs. Below is a list of the

measures investigated in this thesis:

1. Degree centrality CD(ui) of a node ui is the number of edges e this node has:

CD(ui) = deg(ui) (4.5)

Where deg(ui) = outdeg(ui)+ indeg(ui) since the graph G is a directed graph.

2. Eigenvector centrality CE(ui) of a node ui can be calculated as following:

CE(ui) =
1

λ

∑
k

ak,iCE(uk) (4.6)

Where λ is a constant, ak,i is the (k, i)th entry of the adjacency matrix A of

the graph G.

3. PageRank, a form of eigenvector centrality, was introduced by Sergey Brin for

use in their search engine [Page et al., 1999]. The PageRank y(ui) of a node

ui can be calculated as:

y(ui) = α
∑
j∈U

ωji

kj
y(uj) + β (4.7)

Where α ≥ 0 and β ≥ 0, α + β = 1 are the parameters for calculating the

importance of the node i; ωji is a weight coefficient associated with the j, ith

node, and kj is a coefficient reflecting the importance of linkage.

4. Closeness centrality C(x) of a node is the average distance from the node to

all other nodes:

C(x) =
1∑

y 6=x d(y, x)
(4.8)

81

Where d(y, x) is the distance between a node x and y.

5. Betweenness centrality CB(u) of a node reflects the frequency of the node to

lie on short paths between other pairs of nodes. There is a path between nodes

ui and uj if there exists a sequence of nodes connected by edges from the node

ui to the node uj . A shortest path σjk is a path consisting of the smallest

number of nodes in such a sequence. There may be zero or more than one

shortest paths between two nodes ui and uj . Finally, betweenness centrality

can be defined as:

CB(u) =
∑
j,k∈U

σjk(i)

σjk
(4.9)

Where σjk is the number of (j, k)-shortest paths and σjk(i) is the number of

the shortest paths laying via the node i.

These structural features Fs can be calculated for both the interaction graph Gint

and the relationship graph Gr.

4.3.5 Temporal Features

In the proposed TVAG-based model G, time is explicit which allows one to extract

various temporal features Ft. Below is a list of temporal features which can be used

for predictions:

1. Timestamped features Fts: these features represent the time-varying properties

of the graph G;

(a) Fts1 is the time when a message m was posted can include the year,

month, week, day, minute, second. This is a timestamped feature;

2. Duration Ftd is the difference between two timestamped events, for example

the length of time a friendship lasts, the time taken for a message to be sent

and delivered, how much time has passed since two people met each other.

(a) Ftd1 is the time since registration on the Web: Tonsite(ui) = Tnow −
Tregistered(ui) where Tnow is the current time and Tregistered is the moment

in time when the user ui registered on the Web. This is a duration feature;

3. Frequency Ftf can be constructed from a list of timestamps for an edge or a

node. This feature can uncover patterns in edge or node occurrences. Indeed,

periodicity is present in certain datasets. For example, the following feature

is an instance of the frequency feature Ftf :

82

(a) Ftf1 is an average messaging activity. An example of such activity can be

the average response time Tav(ui) for a user ui which can be calculated

as an arithmetic sum of all message response times Tj(ui) for this user

ui divided by the total number of messages n: Tav(ui) = 1
n

n∑
j=1

Tj(ui);

4. Local Frequency Ftl: similar to Ftf with the difference that the frequency is

calculated for a time interval T .

(a) Ftl1 the number of messages in the period T : instead of calculating the

number of messages for the whole period Tw, the number is calculated

only for the period T ⊂ Tw. This is a local frequency feature;

(b) Ftl2 the number of established relationships in the last period T : instead

of calculating the number of relationships for the whole period Tw, the

number is calculated only for a period T ⊂ Tw. This is a local frequency

feature;

(c) Ftl3 a pattern of temporal messaging activity by a time period T : an

example of such a feature can be a vector with m entries where each

entry represents the number of messages for each time period T . This is

a local frequency feature;

Temporal features can represent the properties of the users U , messages M , and

relationships R between the users.

4.4 Feature Complexity

Feature engineering can significantly improve accuracy and time efficiency of a pre-

dictive model. However, calculating features can be computationally expensive.

The complexity of feature extraction depends on the data structure used for storing

data. The complexity of the features can be evaluated in big O notation. Thus, the

features can be divided into a few groups according to their big O complexity. In

this thesis, the features are classified into three groups, namely raw, easy, and hard

features (see Figure 4.2).

Raw features are all input features which can be used without any compu-

tations. These can include, for example, the time when a user posted a message,

a photo they posted, the text describing the photo. Sometimes these features can

be fed into a ML algorithm directly. However, in some scenarios there is a need

to modify the features through, for example, dimension reduction, normalisation,

sampling, binarisation (see Subsection 2.5.2).

83

Features

Raw Easy (O(1)) Hard

Figure 4.2: Classification of the features. Raw features - no calculations, easy
features - requires one to calculate features with complexity of O(1), hard features
- computational complexity more than O(1).

Table 4.1: Computational complexity of user features.

Fn Description Comments Computational
Complexity

F1 User Id A unique number associated with every
user

Raw

F2 User Personal
Info

This may include user’s name, gender,
location, latitude, longitude, time zone

Raw or O(1) for
a HashTable imple-
mentation

4.4.1 Computational Complexity

Raw features are used for calculating easy and hard features. Easy features are

the features which can be calculated from the raw features in constant time, thus,

their complexity is O(1). Hard features are the features which complexity is higher

than constant time. For example, easy features involve calculating the number of

messages mi for a user ui. If each message has a unique id and all messages are

sorted then calculating such a feature takes constant time O(1). An example of a

hard feature is calculating the occurrence of a phrase in all messages or in a subset

of messages. The time complexity of calculating this feature is linear, O(kn), where

n is the number of messages and k is the number of words in the phrase.

User features include a raw feature User Id and a set of features providing

information about the user. These features can be raw or, in case of being stored in

a hashtable, can be calculated in constant time (see Table 4.1).

Message features include two mandatory raw features, Source User and

Destination User (see Table 4.2). Also, message features have a raw feature F3,

Type of a message. The features F4 − F8 are NLP features and require processing

text messages and calculations. The features F4 - F8 can be calculated for a single

message m or for a set of messages m. In case when these features are for a set of k

messages then the complexity of calculating these features increases by the number

of messages k. The features F9−F11 are reflecting the qualitative characteristics of

users messaging each other.

84

Relationship features include two mandatory raw features Source User and

Destination User (see Table 4.3). Also, relationship features have a raw feature F3,

Type of a relationship, as well as easy features F4 − F5 reflecting the qualitative

characteristics of relationships between users.

Structural features are the most expensive to calculate (see Table 4.4).

For example, the complexity of calculating the feature F1, degree centrality for all

nodes U , is Θ(U2) for a graph represented as a dense adjacency matrix or Θ(E) in

a sparse matrix representation, where E is the number of edges. The complexity

for calculating betweenness centralities is Θ(U3) or O(U2 logU + UE) for sparse

representations [Brandes, 2001].

Finally, the computational complexity of temporal features are presented

in Table 4.5. These features include timestamped features (F1), duration and fre-

quency of events (features F2−F4), as well as local frequency features (feature F5).

The computational complexities in Tables 4.1 - 4.5 include constants in

front of their Big O notations. These constants do not really matter for a formal

analysis of asymptotic behaviour of such functions. However, these constants are

shown for practicians interested in running a particular implementation in the code.

As a result, these constants can lead to a large overhead or, for example, affect how

the functions perform for smaller input sizes.

In this thesis, human communication and relationship development is mod-

elled as a TVAG-based graph in order to capture dynamics as well as the topological

properties of such communication and relationship development. For extracting fea-

tures, first, querying a TVAG-based data structure is performed and then calculating

the features is executed. The complexity of such operations depends on the data

structure used for storing the data. Currently the problem of representing data as

a TVG is an area of active research [Cattuto et al., 2013; Semertzidis and Pitoura,

2016]. The proposed TVAG model is based on TVG. Thus, the computational com-

plexity of TVAG operations are corresponding to the complexity of TVG [Cattuto

et al., 2013; Semertzidis and Pitoura, 2016].

4.4.2 Space Complexity

All raw features are also classified into light and heavy (see Figure 4.3). If a feature

is less than M bytes, for example, M is 128 bytes and the feature is 64 bytes, then

it is defined as a light feature 1. Thus, if a feature requires m < M bytes to be

1It is important to mention that this classification is applied across all samples: if there exists a
feature greater or equal to M bytes even for a single sample, then this feature is treated as a heavy
feature for all samples.

85

Table 4.2: Computational complexity of message features.

Fn Description Comments Computational
Complexity

F1 Source User The ID of a user who sent the message Raw
F2 Destination

User
The ID of a user who received the mes-
sage

Raw

F3 Type For example, a message can be a ques-
tion, a tweet, or a reply

Raw

F4 Text length The number of letters in the message m kO(1) where k is
the number of let-
ters in a word

F5 Occurrence of a
word

For example, the number of ‘who’ word
in the text

O(1) for a
HashTable im-
plementation

F6 The most fre-
quent word

For example, finding the most popular
word in a text

O(n log(n)) for
sorting and
then O(1) for a
HashTable imple-
mentation

F7 The occurrence
of a set of words

For example, the number of ‘wh’ words
in the text

mO(1) for a
HashTable imple-
mentation, where
m is the number of
words

F8 The most fre-
quent set of
words

For example, the most popular words in
a text

O(n log(n)) for
sorting and
then kO(1) for
a HashTable imple-
mentation, where
k is the number of
words in the set

F9 The number of
messages sent
by a user

The number of messages for a particular
user ui at a time moment ts. Nm =
outdeg(ui, ts)

O(|E|) where |E|
is the number of
edges-messages

F10 The number
of messages
received by a
user

The number of messages for a particular
user ui at a time moment ts. Nm =
indeg(ui, ts)

O(|E|) where |E|
is the number of
edges-messages

F11 The number
of messages
answered by a
user

The number of received messages with
a feedback for a particular user ui at a
time moment ts. Na = outdeg(ui, ts)

O(|E|) where |E|
is the number of
edges-messages

86

Table 4.3: Computational complexity of relationship features.

Fn Description Comments Computational
Complexity

F1 Source User The ID of the source user Raw
F2 Destination

User
The ID of the destination user Raw

F3 Relationship
Type

For example, a relationship can be
friendship or blood relation

Raw

F4 The number
of incoming
relationships

The number of users who is connected
by a relationship to the user u

O(|E|) where |E|
is the number of
edges-relationships

F5 The number of
outcoming rela-
tionships

The number of users to whom the user
u is connected by a relationship

O(|E|) where |E|
is the number of
edges-relationships

raw features

light features

heavy features

heavy features

dimension

size < M size >= M

reduction

Figure 4.3: Processing raw features into two groups, light and heavy features with
dimension reduction.

stored then it is a light feature. For example, if a feature is a text or a picture of

m ≥M bytes then it is considered to be heavy. In that case some sort of dimension

reduction can be applied. For instance, in case of textual data, a ‘bag of words’,

term frequency, and phrase extraction can be used for dimension reduction.

In order to demonstrate a usage of the proposed classification for feature

extraction, an experiment is conducted. This experiment is described below.

4.5 Experiment Outline

In this experiment, prediction tasks are formulated as a classification task where

the fact of an event e to happen is predicted. The fact of the event e to happen

is predicted using the features F , where F = f(G(t)), and G(t) = (U(t), E(t)) is

the graph representing user behaviour, U(t) are the nodes representing users, E(t)

87

Table 4.4: Computational complexity of structural features.

Fn Description Comments Computational
Complexity

F1 Degree central-
ity CD(ui)

The number of users who follow the
user u

Θ(U2) for a graph
represented as a
dense adjacency
matrix or Θ(E)
in a sparse matrix
representation.

F2 Weighted degree
centrality

The number of following users by the
user u;

Θ(U2) for a graph
represented as a
dense adjacency
matrix or Θ(E)
in a sparse matrix
representation.

F3 Eigenvector cen-
trality CE(ui)

The number of users who follow the
user u

Θ(U2) for a graph
represented as a
dense adjacency
matrix or Θ(E)
in a sparse matrix
representation.

F4 PageRank The number of following users by the
user u;

Θ(U2) for a graph
represented as a
dense adjacency
matrix or Θ(E)
in a sparse matrix
representation.

F5 Closeness cen-
trality

The number of users who follow the
user u

Θ(U3) or
O(U2 logU + UE)
for sparse represen-
tations.

F6 Betweenness
centrality

The number of following users by the
user u;

Θ(U3) or
O(U2 logU + UE)
for sparse represen-
tations.

88

Table 4.5: Computational complexity of temporal features.

Fn Description Comments Computational
Complexity

F1 Message times-
tamp

The time when a message m was sent
by a user u

O(1) for each mes-
sage

F2 Time passed
since a user u
registered on
the Web

Tonsite(ui) = Tnow − Tregistered(ui) O(1) for each mes-
sage

F3 The average
messaging ac-
tivity of a user
u

Tav(ui) = 1
n

n∑
j=1

Tj(ui) where Tj(ui) =

t0(ui(Maj))−t0(ui(Mqj)) is the time for
the ith message by a user

O(n) where n is the
number of messages

F4 The number of
messages by a
user during the
period T

instead of calculating the number of
messages for the whole period Tw, the
number is calculated only for a period
T ⊂ Tw

Assuming that
the messages are
sorted by time,
O(n) where n is the
number of messages
during the period
T − Tnow ≤ t ≤
Tnow

F5 The frequency
of temporal
activity by a
time period T

a vector with nact entries where each
entry represents the number of mes-
sages for different time periods Ti ⊂ T

nactO(n) where n is
an average number
of activities during
a time period Ti

89

are the edges representing messages M and relationships R between the users. The

information on the graphG(t) spans from Ts to Tf and the event e can happen within

the interval [Ts, Tf] or outside the interval. First, a set of semantically grouped

features F is extracted and then their complexity is evaluated. Second, the time

required to extract the features is analysed, and the contribution of these features

to the accuracy of predictions is also estimated. This process is executed for three

different prediction tasks across different datasets, two of the largest datasets from

Stack Exchange websites and a dataset from Twitter platform:

1. Stack Exchange: Predicting users’ response time on the Web, particularly in

the context of the largest Q&A community, Stack Exchange;

2. Twitter : Predicting whether a tweet will be retweeted in 24 hours or not;

Four ML algorithms, namely k-NN, LR, DT, and XGB are chosen for predictions.

The choice is dictated by the fact that, first, all four ML algorithms are different in

their nature. Second, these algorithms showed promising results for predicting user

behaviour in the literature [Lezina and Kuznetsov, 2012; Burlutskiy et al., 2015;

Bhat et al., 2014]. These algorithms are discussed in details in Section 2.6.

First, the proposed methodology is tested for predicting users’ response time

on the Web, particularly in the context of the largest Q&A community, Stack Ex-

change.

4.5.1 Stack Exchange: Stack Overflow and Stack Maths

Online Q&A websites are popular platforms where users can ask questions and then

receive answers. However, many users are left frustrated since their questions remain

unanswered or answered after a long time. Thus, a prediction task of predicting

users’ response time is formulated.

Prediction Task

To predict whether a question q will receive an answer a within the time T or

whether it will take longer than this time T :

t(a) ∈ [t(q), t(q) + T] or t(a) ∈ (t(q) + T,∞), (4.10)

where t(q) is the time when the question q was asked, t(a) is the time when the

answer a for this question q will be received, and T is the duration of a period of

time, for example, 1 hour. In the experiment T = Tmedian where Tmedian is the

90

median time of answering questions. Choosing the median time leads to balanced

data.

Dataset

Stack Exchange datasets are available on-line and represent raw archived xml files

[StackExchange, 2014]. The dataset consists of 127 websites on different topics. The

timespan for these websites is from July 31, 2008 to October 23, 2014. The whole list

of available attributes of the dataset is presented in Appendix A. At the moment of

writing this thesis, Stack Exchange was one of the most popular and fastest growing

Q&A platform which was why it was chosen for the experiments. The total amount

of raw data in xml format was ∼156 GB.

For this experiment, the two largest datasets from Stack Exchange are chosen,

Stack Overflow (SO) website and Stack Maths (SM).

Feature Engineering

The raw archived xml data is transformed into a TVAG model and then 41 features

including 9 user features (see Table B.1), 19 message features (see Table B.2), 11

temporal features (see Table B.3), and 2 structural features (see Table B.4) are ex-

tracted. The feature F11, answerer ID, is excluded since it provides the information

about an answerer in the future which is a part of the prediction task. Stack Ex-

change websites do not have a social network, thus, there is no relationship features

to extract. The time required for extracting each group of features is recorded and

the complexity for each feature is estimated. As a result, the features are classified

into semantic and computational complexity groups. Finally, four different ML al-

gorithms are executed for all features and then for all features except one group in

order to determine the contribution of a feature group to the overall accuracy.

4.5.2 Twitter

Twitter is the largest micro-blogging platform where users tweet and retweet others.

Some tweets become viral and thousands of people retweet them, however, some

tweets are never retweeted. In the second experiment, a problem of predicting

whether a tweet will be retweeted within 24 hours or not is formulated. To predict

whether a tweet q will be retweeted within the time T or whether it will take longer

than this time T :

t(a) ∈ [t(q), t(q) + T] or t(a) ∈ (t(q) + T,∞) (4.11)

91

Where t(q) is the time when the tweet q was asked, t(a) is the time when the tweet

t is retweeted, and T is the duration of a period of time; in this experiment the

duration T is equal 24 hours.

Dataset

For the second experiment, a Twitter dataset is used. The dataset is taken from

[De Domenico et al., 2013] where the authors extracted tweets by hashtags lhc,

cern, boson, higgs. The choice of these hashtags was dictated by the fact that the

researchers wanted to extract tweets about the discovery of a boson at CERN in July

2012. The tweets are filtered by date so only the tweets from 00 : 00 AM 1st July 2012

to 11 : 59 PM 7th July 2012 are considered. As a result 985, 692 tweets are extracted.

This data allows one to build both relationship and interaction graphs since the data

have information on users, messages (tweets), and relationships between users (who

follows whom).

Feature Engineering

Analogically to Stack Exchange datasets, 1 user feature, 9 message features, 5 rela-

tionship features, 4 structural features, and 9 temporal features are extracted from

relationship and interaction graphs. The list of extracted features with their corre-

sponding complexities is represented in Tables B.5, B.6, B.7, B.8, B.9. The feature

F4, the type of a message, is excluded from the training set since it is the feature

for prediction. As a result, there are 27 features in the training set. The feature F4

is transformed into a binary label where 1 is for retweets and 0 is for all other kind

of tweets.

As a result, all features are classified into semantic groups, namely user, mes-

sage, relationship, temporal, and structural features, and computational complexity

groups including raw, easy, and hard features. Finally, four different ML algorithms

are executed using all extracted features and then for all features except a single

group, a semantic group or a computational complexity group, in order to determine

the contribution of that group to overall accuracy.

4.5.3 Varying Class Balance

The label for prediction for Stack Exchange datasets was derived from users’ re-

sponse time, all times less than median time formed ‘0’ and more than median time

lead to ‘1’. Thus, the classes are balanced, 50%/50%. However, in order to under-

stand how the balance between classes influences the accuracy of the prediction, the

92

proportion between the two classes for Stack Overflow dataset was varied. Varia-

tion in the proportion between classes was achieved by varying the response time

T . The first class (‘1’) consists of all questions answered faster than the time T ,

and the second class (‘0’) consists of the questions answered slower than the time

T . The proportions between the classes were chosen to comply with the following

five scenarios:

1. The second class prevails: T = 5 minutes or 15%/85% - only 15% of the

questions were answered within 5 minutes;

2. The classes are balanced: 26 minutes or 50%/50%;

3. The classes are nearly balanced: 1 hour or 61%/39%;

4. The first class prevails: 1 day or 84%/16%;

5. The first class significantly prevails: 1 month or 96%/4%.

4.6 Results and Discussions

The resulted contributions to the accuracy for different semantic groups of features

are shown in Table 4.6. The resulted contributions to the F1 score for different

semantic groups of features are shown in Table 4.7. The resulted contributions to

the accuracy for different computational complexity groups of features are shown in

Table 4.8 and Figure 4.4. The resulted contributions to the F1 score for different

computational complexity groups of features are shown in Table 4.9 and Figure 4.5.

Tables 4.6, 4.7, 4.8, 4.9 also summarise information on the quantity of features in

each group, the time required to extract these features, and the accuracy or F1 score

gain of each group to the overall accuracy. The accuracy and F1 gain are calculated

in comparison to a naive approach where prediction for each class results in 50%

accuracy. Finally the results for varying class balance for Stack Overflow data are

shown in Figure 4.6.

First, the results for varying semantic groups of features and the performance

of predictions are discussed.

93

Table 4.6: Accuracy for semantic groups of features for Stack Overflow (SO), Stack
Maths (SM), and Twitter.

Dataset Features Qty Time, s
Accuracy Gain, %

k-NN LR DT XGB

SO

User 9 ∼788 +1.1 +0.3 -0.4 +2.0

Message 18 ∼232,000 +4.2 +3.1 +4.5 +2.2

Relationship - - - - - -

Temporal 11 ∼65,300 +8.1 +9.1 +7.4 +11.1

Structural 2 ∼82,300 +4.2 +3.1 +2.5 +1.3

All features 41 ∼380,400 +10.5 +14.2 +15.2 +16.1

SM

User 9 ∼83 +0.7 +1.2 +1.0 -0.6

Message 18 ∼35,100 +3.7 +4.1 +3.7 +2.8

Relationship - - - - - -

Temporal 11 ∼9,800 +9.1 +7.3 +6.9 +9.4

Structural 2 ∼11,200 +3.1 +4.0 +3.2 +2.4

All features 41 ∼56,200 +11.2 +10.6 +13.1 +15.0

Twitter

User 1 - +0.2 +0.1 -0.7 +1.1

Message 8 ∼45 +1.5 +3.2 +1.2 +4.0

Relationship 5 ∼321 +2.3 +2.5 +3.1 +4.0

Temporal 9 ∼135 +4.2 +5.3 +6.3 +8.7

Structural 4 ∼21,100 +18.1 +18.5 +22.3 +37.2

All features 27 ∼21,600 +12.5 +10.1 +20.1 +38.5

4.6.1 Semantic Variations of Features and Performance

First, it can be noticed from Table 4.6 and Table 4.7 that calculating features,

especially structural features, takes significant time. For example, for Stack Over-

flow with nearly two million entries, calculating structural features took almost a

day (23 hours). Nevertheless, calculating message features for Stack Overflow and

Stack Maths also took significant time, almost three times more than for structural

features. However, calculating message features can be parallelised with help, for

example MapReduce techniques. On the contrary, parallelising calculation of struc-

tural features is problematic. Calculating temporal features took a relatively short

time compared to structural and message features for Twitter but comparable time

94

Table 4.7: F1 score for semantic groups of features for Stack Overflow (SO), Stack
Maths (SM), and Twitter.

Dataset Features Qty Time, s
F1 score Gain, %

k-NN LR DT XGB

SO

User 9 ∼788 +0.1 -0.6 +1.1 +1.2
Message 18 ∼232,000 +5.3 +4.2 +3.8 +2.4
Relationship - - - - - -
Temporal 11 ∼65,300 +7.8 +8.3 +8.7 +10.8
Structural 2 ∼82,300 +1.4 +2.7 +2.6 +2.1
All features 40 ∼380,400 +9.5 +12.2 +14.7 +15.6

SM

User 9 ∼83 +0.5 +1.0 -0.3 +0.1
Message 18 ∼35,100 +3.3 +2.8 +3.8 +2.3
Relationship - - - - - -
Temporal 11 ∼9,800 +8.7 +8.1 +7.0 +8.2
Structural 2 ∼11,200 +1.9 +3.7 +3.5 +3.0
All features 40 ∼56,200 +10.0 +11.1 +12.8 +15.4

Twitter

User 1 - -0.5 -0.9 +1.0 +1.1
Message 8 ∼45 +1.2 +2.7 +1.2 +3.2
Relationship 5 ∼321 +1.9 +2.2 +2.8 +3.6
Temporal 9 ∼135 +5.7 +5.1 +2.7 +7.9
Structural 4 ∼21,100 +17.2 +16.8 +21.0 +38.0
All features 27 ∼21,600 +13.1 +11.0 +21.2 +38.7

95

Table 4.8: Accuracy for computational complexity groups of features for Stack Over-
flow (SO), Stack Maths (SM), and Twitter.

Dataset Features Qty Time, s
Accuracy Gain, %

SO

k-NN LR DT XGB

All raw 9 - +1.1 +0.3 -0.4 +2.0
All easy 27 ∼66,900 +7.3 +8.5 +6.6 +8.9
All raw + easy 36 ∼66,900 +7.8 +9.0 +7.0 +8.7
All hard 4 ∼313,500 +3.7 +3.0 +2.8 +2.0
All raw + hard 13 ∼313,500 +3.1 +3.4 +4.0 +2.1
All features 40 ∼380,400 +10.5 +14.2 +15.2 +16.1

SM

All raw 9 - +0.7 +1.2 +1.0 -0.6
All easy 27 ∼11,400 +7.7 +7.9 +8.2 +8.9
All raw + easy 36 ∼11,400 +8.9 +8.3 +7.9 +10.2
All hard 4 ∼44,800 +2.9 +4.0 +3.2 +2.4
All raw + hard 13 ∼44,800 +3.1 +2.5 +2.1 +5.8
All features 40 ∼56,200 +11.2 +10.6 +13.1 +15.0

Twitter

All raw 7 - +0.2 +0.1 -0.7 +1.1
All easy 15 ∼180 +1.4 +2.0 +1.1 +4.2
All raw + easy 22 ∼180 +1.5 +1.9 +0.4 +3.2
All hard 6 ∼21,400 +18.1 +18.2 +19.3 +37.2
All raw + hard 13 ∼21,400 +18.5 +18.5 +18.2 +37.1
All features 27 ∼21,580 +12.5 +10.1 +20.1 +38.5

96

Table 4.9: F1 score for computational complexity groups of features for Stack Over-
flow (SO), Stack Maths (SM), and Twitter.

Dataset Features Qty Time, s
F1 score Gain, %

SO

k-NN LR DT XGB

All raw 9 - +1.1 +1.3 +0.8 +1.2
All easy 27 ∼66,900 +8.9 +7.8 +8.3 +9.2
All raw + easy 36 ∼66,900 +9.5 +8.6 +9.1 +11.6
All hard 4 ∼313,500 +2.5 +3.2 +2.9 +1.7
All raw + hard 13 ∼313,500 +3.1 +3.4 +4.0 +2.1
All features 40 ∼380,400 +9.5 +12.2 +14.7 +15.6

SM

All raw 9 - +0.6 +1.1 +1.2 -0.2
All easy 27 ∼11,400 +7.7 +7.9 +8.2 +8.9
All raw + easy 36 ∼11,400 +8.9 +8.3 +7.9 +10.2
All hard 4 ∼44,800 +2.1 +2.2 +1.9 +2.9
All raw + hard 13 ∼44,800 +3.3 +3.0 +2.0 +6.9
All features 40 ∼56,200 +10.0 +11.1 +12.8 +15.4

Twitter

All raw 7 - +0.2 +0.1 -0.7 +1.1
All easy 15 ∼180 +1.5 +1.2 +1.3 +2.9
All raw + easy 22 ∼180 +1.1 +1.5 +0.8 +3.1
All hard 6 ∼21,400 +17.4 +16.5 +20.1 +34.1
All raw + hard 13 ∼21,400 +15.4 +18.0 +18.2 +34.2
All features 27 ∼21,580 +13.2 +11.0 +21.2 +35.5

97

k-NN LR DT XGB

0

10

20

30

40

50

60

70

80

90

100

A A A AB B B BC C C CD D D DE E E EF F F F

A
cc

u
ra

cy
,

%

k-NN LR DT XGB

0

10

20

30

40

50

60

70

80

90

100

A A A AB B B BC C C CD D D DE E E EF F F F

A
cc

u
ra

cy
,

%

k-NN LR DT XGB

0

10

20

30

40

50

60

70

80

90

100

A A A AB B B BC C C CD D D DE E E EF F F F

A
cc

u
ra

cy
,

%

Figure 4.4: Accuracy for Stack Overflow (top), Stack Maths (middle), and Twitter
(bottom); (A) - raw features, (B) - easy, (C) - raw and easy, (D) - hard, (E) - raw
and hard, and (F) - all features.

98

k-NN LR DT XGB

0

10

20

30

40

50

60

70

80

90

100

A A A AB B B BC C C CD D D DE E E EF F F F

F
1

sc
o
re

,
%

k-NN LR DT XGB

0

10

20

30

40

50

60

70

80

90

100

A A A AB B B BC C C CD D D DE E E EF F F F

F
1

sc
or

e,
%

k-NN LR DT XGB

0

10

20

30

40

50

60

70

80

90

100

A A A AB B B BC C C CD D D DE E E EF F F F

F
1

sc
or

e,
%

Figure 4.5: F1 score for Stack Overflow (top), Stack Maths (middle), and Twitter
(bottom); (A) - raw features, (B) - easy, (C) - raw and easy, (D) - hard, (E) - raw
and hard, and (F) - all features.

99

5 m 26 m 1 h 1 d 30 d

0

10

20

30

40

50

60

70

80

90

100

A A A A AB B B B BC C C C CD D D D D

A
cc

u
ra

cy
,

%

(a) Answered faster than the time T .

5 m 26 m 1 h 1 d 30 d

0

10

20

30

40

50

60

70

80

90

100

A A A A AB B B B BC C C C CD D D D D

(b) Answered slower than the time T .

Figure 4.6: The results for the accuracy of prediction for Stack Overflow where the
five different response times T were predicted using different ML algorithms; where
(A) - Naive approach, (B) - DT, (C) - k-NN, and (D) - XGB.

for Stack Overflow and Stack Maths. User features for Twitter were raw that meant

no calculations were involved. For the two other datasets, Stack Overflow and Stack

Maths, calculating user features took the least time since the only features calcu-

lated were spatial features from a lookup table. Introducing spatial features such as

users’ location, latitude, longitude, and time zone showed importance for predicting

users’ response time. Indeed, users in different locations and time zones are less

likely to be involved in a prompt discussion compared to users in the same location

or time zone.

Second, it can be noticed that temporal features contribute the most to

overall accuracy for both Stack Overflow and Stack Maths datasets whereas struc-

tural features contributed the most to the accuracy of Twitter prediction. Using

all features together showed the best performance in terms of accuracy for both

Stack Overflow and Stack Maths as well as for Twitter prediction in two experi-

ments where DT and XGB ML algorithms were used. Nevertheless, for the other

two experiments with a Twitter dataset with k-NN and LR algorithms, using only

structural features showed the highest accuracy. Temporal features showed a 4.2%

- 8.7% accuracy gain for the Twitter dataset but were three-four time less accurate

compared to structural features. Nevertheless, structural features are very slow to

calculate since the computational complexity of calculating these features is propor-

tional to the number of nodes cubed (nodes represent the people in the network).

100

To summarise, the highest accuracy for ten out of twelve experiments, four

for each dataset, were achieved by using the whole set of features. Thus, it might be

possible to improve the accuracy of predictions by extending the list of the features

further. However, for a fast prediction, the time complexity of these features must

be taken into consideration since calculating these features can take several days

which may not be acceptable for practical purposes.

4.6.2 Computational Variations of Features and Performance

Table 4.8 and Table 4.9 show the contributions of the groups of features to the

resulted accuracy and F1 score of the predictions. One can notice that the time re-

quired to calculate the features is proportional to the complexity of the features. For

the experiments in this thesis, calculating easy features required four - five time less

time for Stack Overflow and Stack Maths datasets whereas for the Twitter dataset

the time difference was more than two magnitudes.

For all three datasets, Stack Overflow, Stack Maths and Twitter datasets,

raw features did not provide any significant accuracy or F1 score gain. In contrast,

easy features provided a 6.6% - 8.9% accuracy gain for Stack Overflow and Stack

Maths datasets. However, easy features were not useful for Twitter prediction. Fi-

nally, hard features slightly improved the accuracy for both Stack Overflow and

Stack Maths and significantly improved the accuracy for Twitter prediction.

As a result, using only hard features for Twitter dataset would give the high-

est accuracy but calculating easy features would require a negligible effort compared

to calculating hard features. Thus, it may be beneficial to use all features at least

for DT and XGB algorithms. For Stack Overflow and Stack Maths datasets, using

all features including hard features is preferential since using all features leads to

the highest accuracy. Excluding hard features leads to a 2.7% - 7.4% decrease in

accuracy.

4.6.3 Machine Learning Algorithms and Performance

For this experiment, four different ML algorithms were chosen, namely k-NN, LR,

DT, and XGB algorithms. All the algorithms performed quite similar for all three

datasets (see Figures 4.4 and 4.5). XGB showed the highest accuracy across all the

three datasets, DT was the second, and k-NN with LR showed the worst accuracy.

Also, all four algorithms performed quite consistently across various sets of features

(see Tables 4.6 and 4.7). For example, all algorithms performed better with tem-

poral and structural features. However, two exceptions were noticed where k-NN

101

and LR performed worse using all features of Twitter dataset compared to using

only structural features. The other two algorithms, DT and XGB, performed more

consistently across various sets of features. On contrary, k-NN and DT showed

consistent results for various set of features for Stack Overflow and Stack Maths

datasets. One of the main reasons why k-NN and DT performed worse on all set

of features rather than on structural features only, could be the fact that classes

for prediction in Twitter were highly unbalanced. Thus, k-NN and DT seemed to

struggle to learn under-represented class.

XGB showed higher accuracy with quite consistent results over a different

set of features for all three datasets (see Figures 4.4 and 4.5). Indeed, this algorithm

is using an ensemble of decision trees and showed high accuracy for a number of pre-

diction tasks. Nevertheless, training models for all four algorithms should be taken

into consideration. For example, k-NN is the slowest algorithm and XGB is quite

slow compared to DT and LR. As a result, the question is whether it is possible to

decrease the time for training and testing as well as to increase the accuracy of the

prediction. The training time can be decreased by training models in mini-batches

or in online modes and the accuracy can be improved by utilising an ensemble of

models or using more complicated algorithms for training, for example, using deep

learning algorithms.

Finally, Figure 4.6 demonstrates the results for varying balance between pre-

dicted classes for Stack Overflow dataset. The results showed that even varying

the balance between classes allows one to build models which learn from the data

since in all experiments the trained models outperformed a naive approach. For

example, for the Stack Overflow website with unbalanced data the ML algorithms

outperformed the naive approach by 5-20% for a smaller class.

4.6.4 A Guideline for Feature Extraction and Selection

The proposed classification of features into semantic and computational groups can

be used for an efficient feature extraction and feature selection. The features F

sorted in accordance with their complexity and their semantic group can be used

for training predictive models in a few steps. The process of selecting the features

for such a training involves choosing the least ‘complex’ semantic groups and then

training a predictive model using these features.

The reason for selecting the features in groups rather than individually is due

to the performance concerns. First, individual extensive selection is computationally

very expensive. Second, there is a semantic relationship to features described in this

Chapter.

102

Evaluating computational complexity groups of features is beneficial due to

the fact that it takes less effort to extract simpler features than to extract more

complex groups. However, there is a possibility that some of the included features

in a group add little or no value to the resulting accuracy.

In the proposed classification, each feature is associated with both a semantic

group and a complexity group. For example, a feature is an easy user feature. This

classification is used to combine the features into groups to provide a fast feature

extraction as well as to find a set of features which provides a fast and accurate

model for prediction.

The classification into light and heavy as well as easy and hard features is

arbitrary. The most important aspect of this classification is the fact that these

features can potentially influence the accuracy of the prediction as well as it takes

extra effort in terms of space (light or heavy) and time (easy or hard) to calculate

the features. Also, the time and space complexity of those features depends on the

data structures used. Thus, the same features can have different classifications for

different implementations. However, the proposed classification can simplify finding

a trade-off between the accuracy of the prediction and the time required to extract

the features.

Finally, the proposed guideline of feature engineering involves the following

steps:

1. Divide all raw features into light and heavy features;

2. Reduce the dimension for heavy raw features, for example, by creating a ‘bag

of words’ and then possible dimension reduction using Principal Component

Analysis (PCA);

3. Calculate easy features (calculations are performed in constant time, compu-

tational complexity is O(1));

4. Calculate hard features (computational complexity is harder than O(1)).

A predictive model can be trained on raw, easy, raw and easy, and then all features

including the hard features. Also, a semantic grouping inside each of computational

complexity group can be used. As a result, a set of features leading to the highest

accuracy but with a reasonable time to extract and calculate these features can be

derived.

4.7 Comparison to Related Studies

In [Gorodetsky et al., 2010] a feature space synthesis approach for “heavy” high

dimensional learning tasks was proposed. It was reported that the important ad-

103

vantage of their proposed approach was the fact that the approach allows one to

transform ontology-centred of heterogeneous possibly poor structured data into a

homogeneous feature space. As a result, most ML learners can be easily trained on

these features. On the contrary, the advantage of the proposed feature extraction in

this thesis is the fact that the approach allows one to transform graph-based model

of human communication into a homogeneous matrix-like feature space. Even more,

the approach allows one to make this transformation efficiently by evaluating the

time and space complexity of the transformation.

The purpose of many feature extraction methods is to remove redundant and

irrelevant features so that classification of new instances will be more accurate [Hira

and Gillies, 2015]. However, these approaches do not utilise the domain knowledge.

The proposed approach for feature extraction is tailored for the domain of human

communication where the features are associated with users, messages, and the rela-

tionships between people. Such association of the features with the model of human

communication allows one to systematically extract features and build the feature

space step by step in order to improve the accuracy of the predictive model but

keep the feature space as simple as possible. The simplicity of the feature space is

achieved by considering the cost of each feature which is associated to the time and

space complexity of the transformation. This complexity characteristic of features

can be used for removing redundant features or features that do not improve the

performance of the feature space in training models.

The results correspond to the findings in [He et al., 2014] where the authors

predicted ad clicks on Facebook. According to the results in their paper, in order

to achieve an accurate and computationally efficient prediction of a user clicking

on an ad, the most important is to choose the right features. In [He et al., 2014]

these features included historical information about the user or ad and dominated

other types of features. In this thesis, structural and temporal features showed high

importance for predicting user behaviour which was shown for Stack Exchange and

Twitter datasets. Also, it was shown that high importance features can be compu-

tationally involved.

The importance of temporal tag features was stated in [Bhat et al., 2014]

which corresponds to the results for Stack Overflow and Stack Maths in this thesis.

In this work, it was also shown that temporal features can not only significantly

improve accuracy of prediction but these features are relatively efficient for calcu-

lation. Also, in [Bhat et al., 2014] the highest accuracy was achieved by using the

whole set of features which matches the results in this thesis.

104

4.8 Conclusion

The results of the impact on accuracy and time performance for Stack Overflow,

Stack Maths, and Twitter showed that temporal and structural features can signif-

icantly improve the accuracy of prediction. However, these features are computa-

tionally intensive features. Calculating such features requires computational efforts

which can increase feature extraction time by more than 10-100 times.

As a result, a guideline for extracting features grouped into semantic and

computational groups was proposed (see Subsection 4.6.4). This guideline suggests

training models starting with the least complex computational features across vari-

ous semantic groups and then extending the feature set with more complex features.

The proposed approach for feature extraction allows one to extract features and then

build prediction models efficiently. The guideline allows one to find a set of features

which provides an accurate prediction but the time required for extracting the fea-

tures is minimal.

4.9 Summary

In this Chapter, a feature extraction method for an efficient prediction was proposed.

The approach involves the transformation of a TVAG-based model of human com-

munication and relationship development into a homogeneous matrix-like feature

space. The feature space is grouped both semantically and in accordance to the

computational complexity of features into a few groups. Finally, it was shown how

different semantic and computational groups of features influence the accuracy of

user behaviour predictions across three different datasets. The results allowed to

formulate a guideline for an efficient feature extraction.

In the next Chapter, the performance of two ML modes, online and offline

(batch) modes, for predicting user behaviour on the Web is investigated. Also,

a deep learning approach for predicting user behaviour is designed and then the

performance of this approach is compared to state-of-the-art ML approaches.

105

Chapter 5

Choosing a ML Set-up for an

Efficient Prediction

In this Chapter, the performance of a range of ML set-ups for building predictive

models of user behaviour on the Web is explored. A method for comparing the per-

formance of two conceptually different learning modes for training a model, online

and offline learning modes is proposed and evaluated. The consistency of the re-

sults is verified for a few datasets, two datasets from Stack Exchange, namely Stack

Overflow and Stack Maths, and a Twitter dataset. Finally, a Deep Learning (DL)

algorithm based on a Deep Belief Network (DBN) with a feature selection approach

is proposed and then the performance of this algorithm is compared to four other

state-of-the-art ML algorithms. As a result, a guideline for choosing a ML set-up

for an efficient prediction of user behaviour is proposed.

First, a brief introduction of choosing a ML set-up for a fast and accurate

prediction of user behaviour is introduced in Section 5.1. Two learning modes, on-

line and offline (batch) learning, are discussed in Section 5.2. The proposed method

for comparing online and offline (batch) learning is introduced in Section 5.3. Sec-

tion 5.4 presents a designed DBN-based DL set-up for predicting user behaviour on

the Web. Section 5.5 describes computational complexity of a few popular online

and offline (batch) learning algorithms. An experiment of comparing online and

offline learning modes as well as the performance of the DBN-based DL algorithm

to other state-of-the-art algorithms is presented in Section 5.6. The results of the

experiments are discussed in Section 5.7. The results are compared to related stud-

ies in Section 5.8. Finally, Section 5.9 and Section 5.10 provide a conclusion and a

summary of the Chapter.

106

5.1 Introduction

The era of the Internet and Big Data has provided us with access to a tremendous

amount of digital data generated as a result of human activities on the web. This

information allows one to apply statistical methods to the study of user behaviour.

Due to the fast growth in the computational power of modern computers, as well

as the advance in ML algorithms, many researchers have worked on developing ML

approaches for predicting user behaviour on the Web [Burlutskiy et al., 2015; Nazer-

fard and Cook, 2013; Weerkamp and De Rijke, 2012; Choi et al., 2013]. As a result,

there is a problem of choosing a ML set-up for a prediction.

There are two conceptually different modes of learning commonly used in

ML, online and offline/batch learning. In most scenarios, online algorithms are

computationally much faster and more space efficient [Liang et al., 2006]. Also, on-

line learning scales very well for large amounts of data [Bifet et al., 2015]. Finally,

online algorithms process data sample by sample which is natural for predicting

user behaviour since the records of human activities are often in a chronological

order. However, there is a question about how fast a prediction can be performed,

and whether online learning can provide predictions which are as accurate as of-

fline learning can provide. This question leads to the following research question

[Burlutskiy et al., 2016]:

1. How do online and offline algorithms compare in terms of their time complex-

ity and accuracy performance in predicting user behaviour on the Web?

There are two issues associated with comparing online and offline algorithms. First,

due to the conceptual difference between online and offline learning, comparison of

online and offline algorithms is not straightforward. In order to compare them, a

method for comparing the accuracy and the time performance of training and test-

ing the learners is proposed in this Chapter. Second, in many real world scenarios

offline models are continuously retrained as more data is available and then these

models are replaced with the updated ones. Another solution is to replace an old

model with a new model trained only on the most recent data. Nevertheless, it is

very hard to know in advance which solution is better for each particular case. This

fact motivates conducting an experiment where the training batch size is varied and

then prediction accuracy across three different datasets is evaluated.

In order to compare offline and online algorithms, five ML algorithms for

offline training and three online ML algorithms are chosen and then their perfor-

mance is compared using the proposed method for comparison of online and offline

learning modes. The choice of ML algorithms for experiments in this Chapter is

107

influenced by the papers where ML algorithms showed evidence of usefulness in pre-

dictions [Yang et al., 2011; Dror et al., 2013; Artzi et al., 2012; Anderson et al., 2012;

Bhat et al., 2014; Lezina and Kuznetsov, 2012]. LR proves to be useful in solving

predictive tasks due to scalability and transparency of results interpretation [Bhat

et al., 2014]. Another algorithm, k-NN, is tested for comparison due to its simplicity.

Another ML algorithm based on DT shows good performance for prediction in the

context of Q&A communities predictions [Yang et al., 2011; Asaduzzaman et al.,

2013; Bhat et al., 2014]. Deep Learning (DL) has shown high potential in producing

accurate predictions [Hinton et al., 2006]. Thus, the second research question to

answer is:

2. How does the performance of state-of-the-art ML algorithms compare? Is deep

learning advantageous compared to other algorithms?

In order to answer this question, a DL approach, DBN, is chosen to train a predic-

tive model of user behaviour on the Web. Then the performance of this model is

compared to four other models trained using four other ML algorithms, namely LR,

k-NN, DT, and SVM. The models are trained and evaluated across three different

datasets, two from Stack Exchange and one dataset from Twitter.

First, an introduction on online and offline learning modes is discussed in the

next Section.

5.2 Online and Offline (Batch) Learning

There are two conceptually different learning modes, namely batch, or offline, learn-

ing and online learning modes. The batch learning can also be divided in full-batch

learning where weights of a model are updated over the entire training data and

mini-batch learning when the weights are updated after some number m of training

instances. On the contrary, in the online learning mode, the weights are updated

using one training instance at a time. Both batch and online learning modes solve

a learning problem defined by an input set X and a label set Y . The goal of these

modes to train a model for predicting labels from Y for the instances in X.

5.2.1 Offline (Batch) Learning

In batch learning, there is an assumption on a probability distribution over the

product space X × Y , where X is an input set and Y is a label set. A batch

learning algorithm uses a training set Dtr to generate an output hypothesis, which

is a function F that maps instances in X to class labels in Y . The batch learning

108

algorithm is expected to generalise, in the sense that its output hypothesis should

accurately predict the labels of previously unseen examples, which are sampled from

the distribution [Dekel, 2009].

Examples of ML algorithms for prediction of user behaviour which can be

executed in batch mode are Decision Trees (DT), Support Vector Machines (SVM),

Logistic Regression (LR), k Nearest Neighbors (k-NN), and Deep Belief Network

(DBN) [Zheng et al., 2013; Nazerfard and Cook, 2013; Choi et al., 2013; Burlutskiy

et al., 2015].

5.2.2 Online Learning

Online prediction is based on a training algorithm when a learner operates on a

sequence of data entries. At each step t, the learner receives an example xt ∈ X in

a d-dimensional feature space, that is, X = Rd. The learner predicts the class label

for each example as soon as it receives it:

ŷt = sgn(f(xt, wt)) ∈ Y (5.1)

Where ŷt is the predicted class label, xt is an example, wt is the weight assigned

to the example, sgn() is the sign function, and Y = {0, 1} for a binary classifica-

tion task. Then the true label yt ∈ Y is revealed which allows one to calculate the

loss l(yt, ŷt) which reflects the difference between the learner’s prediction and the

revealed true label yt. The loss is used for updating the classification model at the

end of each learning step.

A generalised online learning algorithm is shown in Algorithm 1 [Hoi et al.,

2014]. This algorithm can be instantiated by substituting the prediction function

f , loss function l, and update function ∆.

Stochastic Gradient Descent (SGD), Perceptron, and Passive-Aggressive (PA)

are three instances of the algorithm which are of the interest in this thesis.

Algorithm 1 Online Learning

1: Initialise: w1 = 0
2: for t=1,2,..,T do
3: The learner receives an incoming instance: xt ∈ X;
4: The learner predicts the class label: ŷt = sgn(f(xt, wt));
5: The true class label is revealed from the environment: yt ∈ Y ;
6: The learner calculates the suffered loss: l(wt, (xt, yt));
7: if l(wt, (xt, yt)) > 0 then
8: The learner updates the classification model: wt+1 ← wt+∆(wt, (xt, yt));

109

Figure 5.1: Proposed training and testing scheme for comparison of online and offline
learning algorithms.

• Stochastic Gradient Descent : the function f in Algorithm 1 for this learner is

the dot product: f(xt, wt) = wt ·xt and the function ∆ is calculated as follows:

∆ = wt + η(yt − ŷt)xt where η is the learning rate. For the loss function, we

used hinge loss: l(yt) = max(0, 1− yt(wt · xt)).

• Perceptron: the difference to SGD is in the way the learner’s loss is calculated:

l(yt) = max(0,−yt(wt · xt));

• Passive-Aggressive: the family of these algorithms includes a regularization

parameter C. The parameter C is a positive parameter which controls the

influence of the slack term on the objective function. The update function

is: ∆ = wt + τytxt where τ = min(C, lt
||xt||2) and the loss function l is hinge

loss. Larger values of C imply a more aggressive update step [Crammer et al.,

2006].

In the next Section, the proposed method for comparing online and offline learning

modes is presented.

5.3 Proposed Method to Compare Online and Offline

Algorithms

Due to the conceptual difference in online and offline learning, a method for com-

paring the accuracy and the time performance of training and testing the learners

is proposed. The standard performance measurements for offline learning are accu-

racy, precision, recall, and F1-measure [Mohri et al., 2012].

The performance of online learners is usually measured by the cumulative

110

loss a learner suffers while observing a sequence of training samples. In order to

compare online and offline learning algorithms, a method which is a modification of

mini-batch training is introduced (see Figure 5.1).

First, Algorithm 2 is applied to online learners lon and then the same al-

Algorithm 2 Calculating the accuracy of learners

1: Initialise training and testing times: Ttr = 0, Ttt = 0
2: Sort the data D chronologically from the oldest to the latest;
3: Divide the data D into m equal batches Di

4: for i=1,2,..,m do
5: Divide each batch Di into a training set Ditr and test set Ditt;
6: Train a learner li on Ditr;
7: Record the time taken for the training Titr;
8: Update the training time Ttr = Ttr + Titr;
9: Test li on Ditr;

10: Record the time taken for the testing Titt;
11: Update the testing time Ttt = Ttt + Titt;
12: Calculate the average accuracy Ai over Ditr;

13: Calculate the average accuracy Aav over all Ai

gorithm is repeated for offline learners loff . The purpose of applying the same

aforementioned algorithm to both online and offline learners is to compare the ac-

curacy Aav and the performance of online and offline algorithms in terms of the

training time Ttr and testing time Ttt on the same data D in the same set-up.

Second, a classical 5-fold validation for training and testing the models is

used. The whole set is divided into five parts (Figure 5.1), a model is trained on

any four parts and then it is tested on the fifth part. Then the parts for training

and testing are changed and the process is repeated. Eventually all the five possible

combinations of the parts for training and testing are used. Then the average accu-

racy Aav and the time performance for training Ttr and testing Ttt for for these five

tests is calculated. This process is repeated for both online and offline algorithms.

A common way to convert online to batch learning is by presenting train-

ing examples one-by-one to the online algorithm, and then use the resulted model

for testing. This technique is called the last-hypothesis online-to-batch conversion

technique in [Dekel, 2009]. This technique is, first, for converting online to batch

learning but not for comparison of the performance of online and offline learning

modes. Second, the proposed method for comparison of online and offline learning

methods in this thesis defines how to measure accuracy and time performance of

these two conceptually different learning modes (see Algorithm 2).

The next Section introduces a DL approach for predicting user behaviour.

111

h3

h2

h1

v

W3

W2

W1

W3

h3

h2

RBM

W2

h2

h1

RBM

W1

h1

v

RBM

h3

h2

h1

v

W3

W2

W1

Deep Belief Network Greedy Training Resulting model

Figure 5.2: An example of the structure (left), training procedure (in the middle),
and the resulting model after training (right) of a Deep Belief Network with three
hidden layers.

5.4 Deep Learning Approach

A number of ML algorithms have been proposed, but there is no learning algorithm

dominating the others. Nevertheless, several algorithms are widely used due to their

ease of use in practice for large datasets and theoretical strength [Kotsiantis, 2007].

In this thesis, using both online and offline training modes, as well as different ML

algorithms are proposed for prediction of user behaviour (see Section 2.6).

However, in order to achieve better accuracy, a DL approach, namely DBN-

based approach, is employed for training a model and then using this model for

predicting user behaviour on the Web.

5.4.1 Deep Belief Network (DBN)

A DBN is a type of neural network with multiple layers of hidden units. The layers

are interconnected but there is no connections between units in a layer. Typically,

these building units are Restricted Boltzmann Machines (RBMs). Since an RBM

is non-linear, composing several RBMs together allows one to represent highly non-

linear patterns in training data. Thus, the strength of DBN is in the fact that each

layer can efficiently represent non-linearities in training data [Hinton et al., 2006]. In

Figure 5.2 a graphical depiction of a DBN with three hidden and one visible layers

is shown.

A RBM is a network of symmetrically coupled stochastic binary units. It

112

contains a set of visible units v ∈ {0, 1}D and a set of hidden units h ∈ {0, 1}P .

In an RBM, on contrary to Boltzmann Machines (BMs), there are connections only

between visible and hidden units and there are no connections within visible or

hidden units. The energy of the state {v,h} is defined as:

E(v,h) = −
∑

i∈visible
aivi −

∑
j∈hidden

bjhj −
∑
i,j

vihjwij (5.2)

Where vi and hj are the binary states of visible unit i and hidden unit j, ai and bj

are their biases, and wij is the weight between these two states.

The probability of the visible vector v can be calculated as:

p(v) =

∑
h

exp (−E(v,h))

Z
(5.3)

Where the normalising factor Z is called a partition function and can be determined

as:

Z =
∑
v

∑
h

exp (−E(v,h)) (5.4)

The derivative of the log probability of a training vector with respect to a weight is

as follows:
∂ log p(v)

∂wij
= Edata[vihj]− Emodel[vihj] (5.5)

Where Edata[.] is an expectation with respect to the distribution defined by the data

and Emodel[.] is an expectation with respect to the distribution defined by the model.

Finally, the learning rule for stochastic steepest descent in the log probability of the

training data becomes as follows:

∆wij = α(Edata[vihj]− Emodel[vihj]) (5.6)

Where α is a learning rate.

The conditional distributions for hidden layers over the visible layer can be

calculated as follows:

p(hi = 1|v, hi) = σ(bi +

D∑
j=1

wijvj)

p(vj = 1|h, vj) = σ(aj +

P∑
i=1

wijhi)

(5.7)

Where σ(x) = 1
1+e−x is a logistic function.

113

5.4.2 Training Procedure

Training a DBN is a time consuming process. However, a greedy learning algorithm

was proposed in [Hinton et al., 2006]. In this algorithm, each layer of a DBN is

trained in a sequence. Starting from the bottom visible layer, each layer performs a

non-linear transformation on its input vectors and produces output vectors. Then

these output vectors are used as input vectors for the next layer in the sequence.

Finally, the last top layer produces the prediction label y.

Each layer is trained for ne sweeps (or so-called ‘epochs’) through the training

set. During this training, the units in the ‘visible’ layer of each RBM has real-valued

activities between 0 and 1. For training higher layers of weights, the real-valued

activities of the visible units in the RBM are the activation probabilities of the

hidden units in the RBMs of the lower layer. In the training of RBMs of the hidden

layer, stochastic binary values are used.

Practically, the data is divided into m balanced mini-batches each containing

k examples of each class. The weights of the model are updated after each mini-

batch. Finally, the training procedure for a DBN in a mini-batch set-up is described

in Algorithm 3.

Algorithm 3 Training a DBN

1: Sort the data D chronologically from the oldest to the latest;
2: Divide the data D into m equal batches Di;
3: for i=1,2,..,m do
4: Divide each batch Di into a training set Ditr and test set Ditt;
5: Train a learner li on a training set Ditr starting with the bottom layer n:
6: for j=1,2,..,n do
7: Train a RBM on a training set Ditr to obtain its weight matrix, Wj ;
8: Use Wj as the weight matrix between the network layers n and n− 1;
9: Transform Ditr by the RBM to produce new data D′itr by computing the

10: mean activation of the hidden units;

11: Fine-tune all the parameters of li;
12: Test li on Ditt;
13: Calculate the accuracy Ai of the learner li for Ditt;

5.5 Complexity of ML Algorithms

The complexity of ML algorithms for both training and testing times varies signif-

icantly across different families of algorithms and depends on the number of sam-

ples, number of features, and algorithm parameters. For some algorithms, a formal

114

Table 5.1: Time complexity of the algorithms.

Algorithm Implementation Complexity Reference

DT C4.5 O(mn2) [Su and Zhang, 2006]
SVM LibSVM O(n3) [Chapelle, 2007]
k-NN kd-tree O(k log(n)) -

LR LM BFGS O(mn) [Minka, 2003]
DBN m hidden layers high* [Bianchini and Scarselli, 2014]

SGD, P, PA Algorithm 1 O(knp̄) [Bottou, 2010]

* The complexity is linearly proportional to the number of layers.

time complexity analysis has been reported in the literature [Su and Zhang, 2006;

Chapelle, 2007; Bianchini and Scarselli, 2014; Minka, 2003]. This analysis can help

to choose an algorithm for a prediction. For example, if time performance is crucial

then it might be advantageous to choose an algorithm with lesser time complexity.

In contrast, in cases when accuracy is more important than time performance, then

a more time-complex algorithm can be executed, for example, SVM or ANN. Nev-

ertheless, the time complexity of ML algorithms depends on the implementation of

the algorithms.

Time Complexity

In this Chapter, five offline algorithms were considered, namely Decision Trees (DT),

Logistic Regression (LR), Support Vector Machines (SVM), k Nearest Neighbours

(k-NN), and Deep Belief Networks (DBN), and three online algorithms, namely

Stochastic Gradient Descent (SGD), Perceptron, and Passive-Aggressive (PA). The

time complexity of training these models is presented in Table 5.1.

For DT-based learner C4.5, the time complexity is O(mn2) where m is the

number of features and n is the number of samples [Su and Zhang, 2006]. The time

complexity of LR is O(mn) but might be worse depends on the implementation

of the optimization method [Minka, 2003]. For SVM, the time complexity, again,

depends on optimisation method but for one of the most popular implementation in

LibSVM the time complexity is O(n3) [Chapelle, 2007]. For k-NN implemented as a

kd-tree, training cost is O(k log(n)) where k is the number of nearest neighbours and

n is the number of instances. For more complicated models, such as DBN, a formal

complexity analysis is hard since there is no measure to evaluate the complexity of

functions implemented by deep networks [Bianchini and Scarselli, 2014].

The training cost for online learners used in this thesis is O(knp̄), where

115

n is the number of training samples, k is the number of iterations (epochs), p̄ is

the average number of non-zero attributes per sample [Bottou, 2010]. Although

kernel-based online learners potentially can achieve better accuracy, they require

more memory to store the data. Moreover, these learners are computationally more

expensive what makes them unsuitable for large-scale applications. Thus, only linear

online learners are considered in this thesis.

5.6 Experiment Outline

The experiments are conducted for three datasets, Stack Overflow dataset, Stack

Maths dataset, and Twitter dataset. The extracted features are presented in Tables

B.1, B.2, B.3, and B.4 for Stack Overflow and Stack Maths datasets, and in Tables

B.5, B.6, B.7, B.8, and B.9 for Twitter dataset. As a result, the features are aggre-

gated in a feature matrix of size n ×m, where n is the number of features F , and

m is the number of instances Q. This matrix is used for training and then testing

a classification model built by a ML algorithm.

In order to avoid features in greater numeric values to dominate others, the

features are normalised to an interval [0, 1]. Also, the features are standardised by

removing the mean value µ = 0 and scaling variance to one σ = 1. This step is

critical for regularised classification models such as k-NN and SVM. Also, this data

transformation can improve the training time for SGD classifiers. Finally, categori-

cal features are converted into numeric features.

The prediction tasks are formulated as binary classification tasks and then

executed across three different datasets, the two largest datasets from Stack Ex-

change websites and a dataset from Twitter platform:

1. Stack Exchange: Predicting users’ response time on the Web, particularly in

the context of the largest Q&A community, Stack Exchange;

2. Twitter : Predicting whether a tweet will be retweeted within 24 hours or not.

Finally, two experiments are conducted. In the first experiment, three online (SGD,

Perceptron, PA) and five offline (LR, k-NN, DT, SVM, DBN) algorithms are trained

on the same dataset with all features. In the second experiment, the performance

of the designed DL algorithm (see Section 5.4), DBN, is compared to the state-of-

the-art algorithms in both batch and mini batch settings.

Offline vs Online Algorithms In the first experiment, three online (SGD, Per-

ceptron, PA) and five offline (LR, k-NN, DT, SVM, DBN) algorithms are trained

116

on the same dataset with all features. The goal of this experiment is to compare

online and offline learning using the proposed method described in Section 5.3.

Online algorithms: The number of iterations is chosen to be equal to one

since it was enough for the convergence of SGD. No regularisation methods are used
1. The learning rate η is set to be equal ‘1’.

Offline algorithms: For k-NN classifier, k=3 is used. For DT, C4.5 algorithm

is used. For SVM, LibSVM is used.

Deep Learning Approach In the second experiment, the performance of the

designed DL algorithm (see Section 5.4), a DBN-based algorithm with a feature

selection approach, is compared to the state-of-the-art ML algorithms.

Parameters of DBN : The number of epochs in the first greedy training step

is set to 10 for all the hidden layers and the output layer. The learning rate is set

to 0.1 with the decay rate set to 0.9 for each epoch. The number of neuron units in

the output layer is two since all prediction tasks are defined as binary classification

tasks. The number of input neuron units equals the number of features used for

prediction. Finally, the number of neural units for the two hidden layers was set to

300 and 100. The choice of two hidden layers was dictated by the fact that more

hidden layers did not improve the accuracy but worsen the time performance of the

models. This choice of the architecture was dictated by the architectures showed

high accuracy in the literature [Ruangkanokmas et al., 2016].

Each algorithm is executed ten times and then the average of these indepen-

dent runs is recorded.

Finding the Batch Size In order to find out how the size of a batch influences

the accuracy of a prediction, the size of a batch is varied. After k instances Xi are

received, the features Fi are calculated based on these instances and then a model

Mi is built (see Figure 5.3). Then this model Mi is employed for predicting using

a test dataset. As a result, by varying the batch size k, it is possible to find such

kb which is small enough but provides with relatively high accuracy. Finally this kb

can be used for training a DBN in a mini-batch mode.

After the batch size kb is determined, the experiment in the proposed mini-

batch setting (see Algorithm 2 and Algorithm 3) with such kb samples is run an

then the same experiment is repeated using 5-fold validation.

1In the experiments, L1 and L2 regularisation were tried but no significant improvements in the
results were achieved compared to the results without regularisation reported in this paper.

117

Time

F1

M1

X1

F2

M2

X2

F3

M3

X3

Fn

Mn

Xn

t1t0 t2 t3 tn

Figure 5.3: The proposed batch training of a model.

5.7 Results and Discussions

The results for the first and the second experiment, comparing offline and online

learning modes across the three datasets, are presented in Table 5.2 and Table 5.3.

The results for the change in the accuracy of predictions with respect to the number

of training instances are in Figure 5.4, Figure 5.5, and Figure 5.6 for Stack Overflow,

Stack Maths, and Twitter correspondingly.

5.7.1 Online vs Offline

There was no significant difference in the accuracy of the offline (batch) learning

algorithms compared to online learning algorithms (see Table 5.2 for mini-batch

training and the proposed method for evaluation and Table 5.3 for the 5-fold valida-

tion evaluation). However, the time spent on training and testing the batch models

was significantly longer especially for DBN and SVM models compared to online

learning methods such as PA, Perceptron, and SGD. The fastest batch learning al-

gorithm, LR, showed almost 1.8− 5.2% worse accuracy than SGD and it was 7− 13

times slower in terms of the training time across all datasets. Nevertheless, LR

performed slightly worse than SGD in one out of six experiments (see Table 5.3).

SGD showed the best accuracy of 63.1% over the other online learners (see Table

5.2). Also, DBN slightly outperformed (by 3% − 9%) other ML algorithms in all

set-ups.

SGD also outperformed other online algorithms. Relatively poor perfor-

mance showed Perceptron (up to 6.1% worse than SGD), probably due to the fact

that Perceptron is sensitive to badly labelled examples even after training on many

instances, whereas the SGD and PA algorithms are more robust to badly labelled

examples. Nevertheless, Perceptron slightly outperformed PA in two out of six ex-

periments. Also, the fact that the online algorithms used different importance on

each training instance over time might have influenced the results.

118

The time performance of batch algorithms corresponds to their time com-

plexity evaluated in Section 5.5 earlier. SVM and DBN performed the worst and

relatively similar in terms of the training time. The results are consistent across

the three datasets used in the experiments. However, the time performance of DBN

and SVM highly deteriorates with the number of training instances. Thus, training

these algorithms require careful choice of the batch size.

It was expected that ML algorithms executed in the online learning mode

should perform faster than the same algorithms executed in the batch learning modes

in both the training and the prediction steps (see Table 5.2 for mini-batch train-

ing and the proposed method for evaluation and Table 5.3 for the 5-fold validation

evaluation). The reason is in the nature of these algorithms - in online learning the

weights of the model are updated at each step compared to the computationally

expensive training in the batch mode. However, such significant differences were

not expected. Even though the experimental results are hardware dependent and

it is challenging to have a formal big O evaluation of the complexity of most of

these algorithms, training and testing the models in the online learning mode took

13− 3000 times less time.

From another side, it can be seen that there is almost no difference in train-

ing and predicting time for all the online learning algorithms. Nevertheless, the

training time for Perceptron was slightly longer than the training time of the other

algorithms used for the datasets.

All learners showed worse accuracy in the results for 5-fold validation (see

Table 5.3) for Stack Exchange datasets but better accuracy for Twitter dataset.

One possible cause of such discrepancy in the accuracy can be the nature of user

behaviour in these datasets, Stack Exchange dataset cover several years of user ac-

tivity whereas Twitter dataset covers only four days of tweeting activity. This fact

shows that the choice of a method for comparison of online and offline learning

modes can significantly influence the results. Nevertheless, the proposed method

for comparison seem to be more suitable due to the sequential nature of temporal

user activity (Section 5.3). However, relative performance of ML algorithms using

both the proposed method and 5-fold validation is similar where DBN performed

the best, k-NN the worst, and DT, LR, and SVM quite similar to each other. Also,

for online learners, SGD slightly outperformed the other online classifiers.

5.7.2 Deep Learning vs State-of-the-Art Algorithms

DBN slightly outperformed other ML algorithms in most set-ups. The worst ac-

curacy was shown by k-NN whereas LR and DT showed almost no difference in

119

Table 5.2: The Results for offline and online learning in comparison (each batch of
5,000 samples).

Dataset Algorithm Accuracy, % Training, s Testing, s

SO

k-NN 57.8 ± 0.73 98.1 940.1
DT 60.1 ± 0.43 60.8 0.985
LR 61.4 ± 0.66 18.6 0.362

SVM 62.0 ± 0.51 2,320.1 350.5
DBN 66.5 ± 0.51 3,034.0 720.2

PA 62.8 ± 0.62 1.3 0.002

Perceptron 57.9 ± 0.55 0.7 0.003
SGD 63.7 ± 0.80 1.2 0.002

SM

k-NN 60.0 ± 0.62 5.1 8.722
DT 62.8 ± 0.52 5.3 0.055
LR 61.1 ± 0.52 2.0 0.044

SVM 62.1 ± 0.47 210.5 46.80
DBN 64.2 ± 0.58 380.1 92.51

PA 61.4 ± 0.46 0.2 0.001

Perceptron 62.1 ± 0.55 0.3 0.001

SGD 63.1 ± 0.65 0.3 0.001

Twitter

k-NN 57.6 ± 0.45 22.4 74.55
DT 58.2 ± 0.63 40.9 0.829
LR 57.7 ± 0.57 12.1 0.412

SVM 58.4 ± 0.42 1,254.3 210.0
DBN 63.4 ± 0.52 2,021.2 428.4

PA 59.7 ± 0.49 1.0 0.002

Perceptron 59.4 ± 0.54 0.9 0.003
SGD 62.9 ± 0.62 1.1 0.003

120

Table 5.3: The Results for batch learning with 5-fold validation and online learning
in comparison.

Dataset Algorithm Accuracy, % Training, s Testing, s

SO

k-NN 60.5 ± 0.70 811.5 2799
DT 65.2 ± 0.20 190.1 0.499
LR 64.2 ± 0.35 82.5 0.065

SVM 62.4 ± 0.46 2,900.1 382.0
DBN 67.2 ± 0.82 2,715.2 711.2

PA 59.8 ± 0.61 4.5 0.068
Perceptron 55.7 ± 0.52 4.1 0.050

SGD 61.2 ± 0.42 4.5 0.053

SM

k-NN 61.2 ± 0.52 6.0 7.932
DT 63.1 ± 0.46 7.0 0.051
LR 60.6 ± 0.73 4.4 0.042

SVM 62.0 ± 0.50 322.2 45.68
DBN 64.3 ± 0.53 560.1 91.72

PA 62.1 ± 0.53 0.4 0.002
Perceptron 61.7 ± 0.57 0.5 0.002

SGD 63.1 ± 0.60 0.3 0.001

Twitter

k-NN 62.5 ± 0.52 56.4 85.43
DT 70.1 ± 0.56 150.9 0.932
LR 60.1 ± 0.55 21.2 0.515

SVM 59.2 ± 0.52 1,104.3 308.0
DBN 71.4 ± 0.62 1,987.2 368.4

PA 59.9 ± 0.52 1.4 0.004
Perceptron 60.2 ± 0.51 1.3 0.003

SGD 62.6 ± 0.51 1.5 0.003

121

Figure 5.4: Results for online (top) and offline (bottom) learning for Stack Overflow;
mini-batches of 5,000 samples each.

122

Figure 5.5: Results for online (top) and offline (bottom) learning for Stack Maths;
mini-batches of 5,000 samples each.

123

Figure 5.6: Results for online (top) and offline (bottom) learning for Twitter; mini-
batches of 5,000 samples each.

124

accuracy of the prediction. LR showed relatively high accuracy, just 2-7% less than

DBN considering the fact that the training and testing times for LR were the small-

est. Considering this fact that DBN requires significantly longer time for training

the model compared to LR, in some scenarios, when performance is of main concern,

it might be reasonable to use LR for predicting user behaviour on the Web.

The number of hidden layers was varied from one to three. As a result, no

consistency were found in influencing the number of hidden layers by the accuracy

of the prediction. However, time performance of the DBN-based algorithm deterio-

rated with the increase of the number of hidden layers proportionally to the number

of layers.

The results for different batch sizes for training are shown in Figure 5.7. The

experiments were conducted for batch sizes of 500, 1000, 2000, 5000, 10000, 20000,

and 50000 instances. Smaller batches led to lower accuracy compared to batches of

sizes more than 2000-5000-10000 instances. As a result, batches with 5000 instances

seemed to be large enough for training models with relatively high accuracy.

To summarise, the results showed that the DBN-based algorithm slightly

outperformed LR, DT, SVM, and k-NN as well as online training algorithms using

the same set-up such as the same set of features across three different datasets.

Nevertheless, training and testing time of offline algorithms is significantly larger

than training and testing time of offline algorithms which should be addressed in

scenarios where time performance of a prediction is one of the main concerns. How-

ever, DBNs can be easily parallelised across multiple GPUs and CPUs which can

significantly improve the time performance of a DBN-based algorithm.

5.8 Comparison to Related Studies

Below is the comparison of the results for the performance of offline and online

algorithms to related studies in this field.

Offline Algorithms Complexity and Accuracy In [Page et al., 2014] the re-

searchers compared k-NN, SVM, LR, and DBN for detecting seizure in patients using

high-resolution, multi-channel EEG data. The authors explored the classification

accuracy, computational complexity and memory requirements of these approaches.

The researchers reported that a DBN approach showed the highest accuracy which

corresponds to the results in this thesis. However, the computational complexity

of their DBN as well as the time taken to train their model was significantly lower

compared to the results for other approaches. As was expected, k-NN performed

125

Figure 5.7: Results for varying the training batch sizes for DBN algorithm. The
results are shown for the three datasets, SO - Stack Overflow, SM - Stack Mathe-
matics, and TW - Twitter dataset.

the worst since k-NN requires one to store all the data. However, in the paper of

[Page et al., 2014] k-NN required over 1, 000x more computations compared to LR

rather than 100x more computations in this thesis. The authors reported that SVM

did the second best requiring roughly 500x more memory and almost equal amount

of computation compared to LR which is a very surprising result since SVM is a

computationally expensive algorithm, in this thesis it showed roughly 5600 times

worse performance compared to LR. The results for DBN required 30x more com-

putations compared to LR. In this thesis, DBN took 88x more computations. In

this thesis, the reported results are for a DBN with two hidden layers, same as in

the paper [Page et al., 2014]. The reason of choosing two layers in this thesis as well

as in the paper [Page et al., 2014] was the fact that more layers did not provide any

statistically significant improvements in the accuracy but increased the number of

computations. Even more, in their paper training a DBN with only two layers did

not show any advantage of DBN over other approaches. In this thesis, the trained

DBN showed slightly better accuracy across three different datasets.

The authors in [Page et al., 2014] reported that LR performed very well

both computationally and in terms of accuracy. One can argue that it was due to

the nature of the problem which was easily solvable by a linear classifier. How-

ever, the boost in accuracy can be achieved by using more complicated approaches,

for example DBN. Nevertheless, applying such models requires more computational

126

and memory resources which was evaluated empirically in the experiments of this

Chapter.

Online Algorithms Complexity In [Wilson and Martinez, 2003], online and

offline training modes were compared across 26 applications. The training sets were

from 42 to 12, 000 with an average of 1329 and median of 232. As a result, online

training outperformed batch training by being more than 20 times faster and for

training with more than 1000 instances, online training was 70 times faster. It was

shown that the larger is a training set the slower batch training becomes with re-

spect to online training.

In this thesis, the tested datasets were significantly larger with more than

2, 000, 000 instances. The results showed that online learning can be 20− 640 times

faster depending on the training algorithm and the size of the training dataset. Also,

the experiments in this thesis were conducted for Perceptron, SGD, PA, and five

batch algorithms namely DBN, k-NN, SVM, DT, LR. On the contrary, the exper-

iments in [Wilson and Martinez, 2003] were done only for a multilayer Perceptron

with gradient descent training. Generally speaking, the results in this thesis corre-

spond to the results in [Wilson and Martinez, 2003] that online training can reach

relatively same level of accuracy in less time.

Another paper presented results for online, mini-batch and full batch train-

ing of DBN for predicting user behaviour [Choi et al., 2013]. The results showed

that DBN in online learning reached 72.67 ± 0.21 mini-batch learning 72.89 ± 0.32

and full-batch learning 72.86 ± 0.28. Thus, almost no difference in the accuracy.

However, the authors did not report the training and testing times. Nevertheless,

the reported equivalence of accuracy results for both online and batch learning cor-

responds to the results in this thesis.

The paper [Oza and Russell, 2001] compared the performance of online and

batch versions of the popular bagging and boosting algorithms. It was demonstrated

that both learning modes performed comparably in terms of classification accuracy.

However, the running times for online learners were significantly faster. For ex-

ample, for the two largest tested datasets of approximately 200, 000 and 400, 000

instances with 39 and 54 features accordingly the time was 20 minutes versus 7.1

hours for the first dataset and 4.3 hours versus 18.8 hours for the second dataset.

The results in [Oza and Russell, 2001] correspond to the results in this thesis.

In [Read et al., 2012] instance-incremental or online and batch-incremental

or batch approaches for classification were compared. As a result of empirical eval-

uation of datasets with up to 1 million training instances, it was concluded that

127

instance-incremental methods perform similarly to batch-learning implementations

of these methods but require less resources. The resources were defined as RAM-

hour. Thus, the demonstrated results in [Read et al., 2012] correspond to the results

in this thesis.

Deep Learning for Predicting User Behaviour Deep Learning showed promis-

ing results in several fields, especially image processing and natural language pro-

cessing [Ciresan et al., 2012]. However, not much work has been performed on using

deep learning for predicting user behaviour on the Web. For example, in [Choi

et al., 2013] the authors used DBN for predicting when a sensor will be turned on

in a smart home environment. The algorithm was tested on one dataset, MIT home

dataset, where all inputs are binary values. Even though in this thesis a similar

DBN architecture is used, the input data is considered being real-valued data rather

than binary data. Even more, not only the accuracy performance of DBN approach

was evaluated but time performance of the model was evaluated as well. Finally,

in [Choi et al., 2013] authors used their own metric, named a rising edge accuracy

(REA), for evaluating their results. On contrary, in this thesis a standard accuracy

measure was used. Thus, the proposed DBN architecture represents a more general

approach for training a model for predicting user behaviour on the Web. Also, the

proposed DL approach in this Chapter demonstrated better performance compared

to state-of-the-art ML algorithms across three datasets from Stack Exchange and

Twitter similar to the DL approach in [Choi et al., 2013] where it outperformed a

state-of-the-art ML algorithm, namely SVM.

5.9 Conclusions

Providing a fast but accurate prediction of user behaviour is challenging. In this

Chapter the challenge is addressed by an attempt to find an efficient ML set-up

for fast but accurate prediction. For this purpose, first, performance of online algo-

rithms was compared to performance of offline algorithms and, second, performance

of a DL algorithm was compared to state-of-the-art ML algorithms.

First, a method for comparing online and offline ML set-ups was proposed

and then three online and five offline ML algorithms were used for a comparison

across three different datasets. Second, a DL algorithm based on a DBN with a

feature extraction approach was designed and then evaluated in a comparison to

four other state-of-the-art ML algorithms.

The conducted empirical study showed that even though a DL algorithm,

128

DBN-based algorithm with a feature extraction approach, demonstrated slightly

better results in terms of accuracy, the time to train the model was several mag-

nitudes higher compared to the simplest online learning algorithms. Also, the pro-

posed approach for comparison of online and offline learning modes allowed to detect

the bottle neck in the efficiency of the prediction in terms of the accuracy and time.

The main goal of this Chapter was to answer two research questions, whether

online or offline learning perform better and whether a DL algorithm can outperform

other state-of-the-art algorithms. As a result, a guideline for choosing a ML set-up

is formulated. First, to achieve a fast prediction of user behaviour on the Web one

should use online algorithms, and to achieve an accurate but much slower predic-

tions, one should use a DL-based approach with a feature selection in a mini-batch

setting. Also, the experiments demonstrated that a DL algorithm with a feature

selection approach can be used in a natural way to predict user behaviour on the

Web. Moreover, using a DL approach allows one to achieve higher prediction accu-

racy. However, further experiments have to be conducted in order to determine the

most efficient way to train a DL network.

5.10 Summary

In this Chapter, the problem of choosing a ML set-up to predict user behaviour

on the Web efficiently is explored. This includes comparing and then choosing an

online or offline learning mode to train a model. First, a novel method to compare

online and offline learning algorithms in terms of accuracy and time performance

was proposed. Second, the performance of online training algorithms was compared

to offline state-of-the-art algorithms in predicting user behaviour on the Web across

three different datasets using the proposed comparison method. Finally, the perfor-

mance of a DL approach, a DBN-based algorithm with a feature selection approach,

was compared to four state-of-the-art ML algorithms where the DBN-based algo-

rithm slightly outperformed the state-of-the-art algorithms in terms of accuracy but

showed relatively low time performance.

In the next Chapter, the problem of visual exploration of human interac-

tion is explored as well as an automatic approach for choosing visualisations for

exploration is presented and discussed.

129

Chapter 6

Visual Data Exploration

Visualising user behaviour on the Web can facilitate understanding of interaction

and relationship development between these users. Indeed, in data mining termi-

nology such visualisation can be considered as Exploratory Data Analysis (EDA)

of user behaviour. As one of results, visualising user behaviour can help to make a

better informed decision by identifying and choosing features to extract and then

to build a predictive model. However, due to a large number of currently avail-

able visualisations, choosing appropriate visualisations to explore user behaviour is

a challenging task. The problem addressed in this Chapter is how to automatically

choose visualisations in order to help people to analyse, explore and understand user

behaviour on the Web.

First, a brief introduction of visualisations for the exploration of user be-

haviour is introduced in Section 6.1. A set of exploration tasks is summarised in

Section 6.2. The proposed approach to automatically choose appropriate visuali-

sations of user behaviour is discussed in Section 6.3. An experiment of using the

proposed approach on data from IBM Many Eyes is presented in Section 6.4. The

results of the experiment are discussed in Section 6.5. The results are compared

to related studies in Section 6.6. Finally, Section 6.7 and Section 6.8 provide a

conclusion and a summary of the Chapter.

6.1 Introduction

Visualisation of user behaviour is a popular topic amongst researchers. As a result,

many visualisation approaches and software tools have been proposed and devel-

oped so far. The area of visualisation of human communication and social networks

formed by people has been researched thoroughly. A very brief list of such visualisa-

130

tions with their evaluations can be found in [Donath et al., 2010; Frau et al., 2005;

Lee et al., 2013; Viégas and Smith, 2004; Farrugia et al., 2011; Sathiyanarayanan

and Burlutskiy, 2015a,b].

Development of the best, or more specifically the most appropriate for any

given goal, single visualisation of human communication seems to be an impossible

task. However, several visualisations proved to be preferable over other possible

visualisations for specific tasks and communication types. For example, the visuali-

sation of e-mail communication has been researched for several years [Jovicic, 2000;

Ahn et al., 2014; Angus et al., 2012]. Visualising social networks and users’ interac-

tion networks as a dynamically changing graph is a common ground for researchers

in this field [Hadlak et al., 2013]. An attempt to visualise conversations to uncover

their social and temporal patterns was conducted in [Smith and Fiore, 2001]. In

their work, a few visualisations, namely a graph, a tree map-like visualisation, and a

bar chart were shown to be useful in presenting properties of newsgroups. In [Veno-

lia and Neustaedter, 2003] the authors proposed a fusion of two visualisations for

showing relationships among the sent and received messages of a conversation. De-

veloping a fusion of visualisations consisting of treemaps, Euler diagrams, and graphs

is an active area of research as well [Sathiyanarayanan and Burlutskiy, 2015a,b].

A graph model can be a powerful model to describe user behaviour on the

Web. Ideally, visualising a graph model G = (U,E) of user behaviour will provide

a better understanding of the dynamics of human communication. As a result, for-

mulating an appropriate prediction task will be easier for the user. Also, identifying

features of user behaviour for extraction will be easier and eventually the user will

use these features for building a predictive model.

The visualisation of user’s data must support interaction with the data

behind his/her visualisation together with flexibility to change the visualisation for

the user’s needs. However, a single visualisation does not suit all user’s needs which

is one of the main motivations to develop means to recommend visualisations to a

user automatically. This motivates one to address the following research question

in this Chapter:

1. How can one automatically choose appropriate visualisations to explore user

behaviour on the Web?

To answer this question, an approach using Case-Based Reasoning (CBR) is chosen.

The proposed approach enables one to automatically choose a few visualisations

based on previous visualisations for similar datasets and then to recommend these

visualisations to a user. The cases are defined as experiences of previously chosen

visualisations of user behaviour on the Web. A similarity measure to find the most

131

Figure 6.1: Different visualisations of user behaviour1.

appropriate visualisations for a target dataset is constructed and applied. In this

work, the web-based visualisation platform IBM Many Eyes is chosen to collect data

on previously chosen visualisations of user behaviour on the Web. As a result of

applying the proposed approach, a user is recommended a few appropriate visuali-

sations and then he/she can decide whether to use the recommended visualisations

or whether to use another visualisation for his/her model. In both scenarios, the

system can utilise that information to learn from the user choices of visualisations

in order to improve the recommendation mechanism. At the end of this Chapter,

the results of visualisation for a sample email conversation using the proposed CBR

approach are demonstrated and evaluated.

6.2 Exploration Tasks

First, the most common problems people encounter when exploring user behaviour

on the Web are analysed. For this purpose, the literature on visualisation of user be-

haviour was studied and then IBM Many Eyes platform was used for understanding

what kind of problems people are trying to solve by visualising user behaviour on

the Web [Donath et al., 2010; Frau et al., 2005; Lee et al., 2013; Viégas and Smith,

1https://www.logianalytics.com/tips-tricks/how-to-choose-the-right-visualization-for-user’s-data/

132

2004; Farrugia et al., 2011; Sathiyanarayanan and Burlutskiy, 2015a,b]. The list of

these problems is below:

• Finding a sequence of messages: each message is considered to be an event

of an atomic communication between people. To understand in what se-

quence messages have been sent or received, a multi-modal visualisation can

enhance user’s experience in exploration of his communication [Venolia and

Neustaedter, 2003].

• Discovering patterns in communication: the user can be directed toward an

answer to his/her questions regarding the patterns in which he/she has com-

municated with people in a particular conversation by providing him/her with

visualisations where cyclic or sequential patterns of communication are repre-

sented explicitly.

• Aggregate the information on a conversation: if user’s conversation become

very long then he/she might want to see only an aggregated view of his/her

conversation.

• Understanding the granularity of time: user’s conversations exist at different

time granularity. For example, the intensity of user’s day-to-day conversations

or user’s month-to-month messages can be a feature of interest. By looking

at different granularity, one can have an insight into an aggregated picture of

user communication rather than being lost in user’s daily messages.

• Supporting temporal questions: the problem of finding a particular message

or a conversation of interest is common when exploring user’s communica-

tion. The visualisation can allow one to answer temporal queries on user’s

communication easily.

The goal of visualisations of interaction between people is to get a deeper insight of

the nature and properties of communication. A well-chosen visualisation of interac-

tion can help people to find answers for their questions.

6.3 Proposed Approach for Choosing Visualisations

In this Chapter, user behaviour on the Web is considered as interaction and relation-

ship development between people on the Web. Human interaction and relationship

development is modelled as a graph G = (U,E) where nodes U are associated with

users and edges E are associated with interaction and relationship between the

133

users. The graph G(U,E) can be visualised by using various visualisation types Vi,

for example, by a network diagram or a bar chart. Then the problem to be solved

is formulated as following:

Problem Statement: Find appropriate visualisation types Vi for the model Gi =

(Ui, Ei) using knowledge of chosen visualisation types V for previously visualised

models of human communications G(U,E).

The choice of appropriate visualisation types Vi is achieved by applying CBR ap-

proach [Aamodt and Plaza, 1994; Petridis et al., 2014] in the context of user inter-

action and relationship development modelled as a graph G(U,E). The proposed

method allows one to choose a few of the most appropriate visualisation types Vi

for a model G = (U,E). The choice is dictated by previous visualisations of similar

graph-based models. The classical CBR approach for problem solving has four steps

[Aamodt and Plaza, 1994]:

1. Retrieving one of previously experienced cases;

2. Reusing the retrieved case;

3. Revising the chosen solution;

4. Retaining the new experience for further usage.

Adapting the classical CBR approach for choosing visualisation types for a model

of user’s communication requires one to define what a case is for this particular

problem domain.

6.3.1 Visualisations as Cases

A case ci is a pair consisting of a model Gi(U,E) and a visualisation type V of the

model Gi(U,E):

ci = (Gi(U,E), V) (6.1)

Each model Gi(U,E) of the collected cases was visualised in the past using a visu-

alisation type V . The goal is to choose k the most appropriate visualisation types

{Vinput} for a new input model Ginput. For this purpose, the input model Ginput is

compared to all visualised in the past data models G(U,E) = {Gi(U,E)} using a

similarity measure D (see Subsection 6.3.2). As a result of the comparison, the clos-

est model Gclosest is chosen from G(U,E) for the input model Ginput in accordance

to the similarity measure D. Then k visualisation types {Vclosest} chosen in the past

for visualising the closest model Gclosest are chosen for visualising the input model

Ginput.

It is important to mention that the choice of visualisation types V for a

particular model G(U,E) depends on the user’s task. In this work, it is assumed

134

that the user explores the model and the task can be one of the following: finding

a sequence of messages, discovering patterns in communication, aggregating the in-

formation on a conversation, understanding the granularity of time, and performing

time filtering queries (see Section 6.2). For each of these tasks there is a set of

appropriate visualisation types {Vi} which depends on the properties of the model

G(U,E) such as the properties of the nodes U and the properties of the edges E by

which the nodes U are connected.

6.3.2 Similarity Measure

In order to decide which visualisation types are the most appropriate to use for

visualising user’s communication in the form of a model Ginput(U,E), k-Nearest

Neighbours (k-NN) algorithm is executed. The idea of this algorithm is in choosing

k neighbouring models Gn = {Gn1, ..., Gnk} for the input model Ginput as the most

similar to the input model. Each neighbouring model has a visualisation type asso-

ciated to it.

For choosing a neighbouring model Gni of the input model Ginput, a dis-

tance metrics dj between the input model Ginput and a historically visualised model

Gj(Uj , Ej) is introduced:

dj = difference(Ginput, Gj) (6.2)

Where difference(x, y) is a function which calculates a difference, or a distance

dj , between x and y as a real number. Choosing this function for a particular pair

of datasets depends on the available data in the models G(U,E), computational

complexity of calculating the distance d, the accuracy this metrics leads to. In this

Chapter, Euclidean metrics is used due to its simplicity and the data available in the

model G(U,E), and the model is considered to be a point in Euclidean space. Thus,

Euclidean distance between two models can be defined as the distance between two

points. For example, for two dimensional space the distance between two points

(x1, y1) and (x2, y2) is d =
√

(x1 − x2)2 + (y1 − y2)2.

6.3.3 Recommending Visualisations

After the user is given the k most similar visualisation types {V } for his/her input

model G(U,E), the user can choose either none of them (the recommendation was

bad) or one or even all k recommended visualisation types. This choice will form a

new case cj and will be saved in a knowledge database.

135

6.4 Experiment Outline

In this experiment, the proposed approach is implemented and then it is tested on a

real dataset crawled from IBM Many Eyes platform. Finally the automatic choice

of visualisation types is evaluated by participants.

6.4.1 IBM Many Eyes as a Source of Visualisations

IBM Many Eyes is a visualisation platform where a user can upload his/her dataset

in a format of comma-separated values or text and then he/she can choose a visu-

alisation type with an ability to customise the visualisation. The platform provides

twenty one different visualisations including the most common visualisations such

as a bar chart, bubble chart, tree map, graph, scatter plot, etc. A user can choose

a visualisation type for his/her dataset and then he/she can manipulate his/her vi-

sualisation. For instance, the user can flip axes, zoom in or zoom out, and interact

with the visualisation.

According to IBM Many Eyes recommendation, the procedure of using the

service is as follows:

• Upload user’s dataset. The dataset can be a spreadsheet or a text file.

• Select a visualisation for user’s dataset or use a visualisation recommended by

Many Eyes.

• Share user’s visualisation over the Web. A visualisation can be embedded in

a blog or be shared on Facebook and Twitter easily.

Since its start in 2007 Many Eyes has attracted thousands of people to upload and

visualise their datasets.

6.4.2 Crawling Data

The data for the experiment was collected by writing and then executing a web

crawler for downloading ∼0.5 million datasets from the website of IBM Many Eyes.

The number of calls was limited to 100,000 calls per day and the crawling process

took almost five days. Then the extracted data was assessed for quality and validity.

Some datasets and visualisations could not be downloaded but the total number of

those datasets was ∼2%.

6.4.3 Extracting Cases

On the 20th of October, 2014 IBM Many Eyes had 490,982 datasets and only

186,314 visualisations shared by 96,710 users. Thus, less than 38% of all the up-

136

loaded datasets were visualised. In this work, only the visualisations of human

communication were of interest. Therefore, the datasets were filtered using key-

words ’conversation’, ’email’, ’chat’, ’twitter’, and ’facebook’. In total, there were

5,819 datasets and only 2,322 visualisations for this set of search words.

After extracting the 2,322 visualised datasets of human communication, all

of them were analysed to understand what kind of information can be extracted to

fit the graph model G = (U,E). For the first iteration, it was decided to simplify

the graph model to a set of two features (|U |, |M |) where |U | is the number of users

and |M | is the number of messages in their communication. The reason for such

simplification was the fact that this information was presented in many datasets

and could be extracted.

Then, the extracted 2,322 datasets with the visualisations were filtered again.

At this step, the datasets without information on the number of users |U | and

the number of messages |M | were removed. This step allowed to map the fil-

tered datasets DV to the proposed model (|U |, |M |) of human communication:

DV → (|U |, |M |). The number of users |U | and the number of messages |M | in

a case ci were defined as follows:

• Number of users: |U | the number of people involved in a conversation which

is the number of nodes |U | of the graph |G|.

• Number of messages: |M | the number of messages sent and received by the

users U . For example, if a user u1 ∈ U sent a message m1 ∈ M to another

user u2 ∈ U and received a reply m2 ∈ M , the number of messages is two,

|M |=2.

Unfortunately, it seemed very hard to automatise the process of matching the auto-

matically extracted datasets DV to the graph model Gi since the uploaded datasets

DV were very diverse and in many cases they were obfuscated for more anonymity.

Also, some datasets and their visualisations seemed to be blindly thrown into the

tool or had not much information about the visualisations and datasets. However,

40 cases c = ((|U |, |M |), V) were successfully extracted from the datasets DV for

this study (Table 6.1).

Some examples of such extracted models and their visualisations are shown

in Figure 6.2. In Figure 6.2a there is a Bubble Chart visualisation of a conversation

between 18 users, who are represented as circles. The size of the circles is propor-

tional to the number of messages sent by each actor. Figure 6.2b represents a Line

Graph where the number of email messages M received by one actor U over a fixed

time is shown. In Figure 6.2c the Scatter Plot shows users U as circles with their

137

(a) Bubble chart. (b) Line graph.

(c) Scatter plot. (d) Graph-like visualisation.

Figure 6.2: Examples of visualisations of conversations in Many Eyes.

sizes proportional to the number of messages M sent to each of them. Figure 6.2d

depicts a Word Cloud with the most common words in communication between two

people over time.

All the 40 cases extracted from Many Eyes models of human communication

were visualised by eight different types of visualisations:

• Bar Chart,

• Matrix Chart,

• Line Graph,

• Bubble Chart,

• Treemap,

• Word Cloud,

• Block Histogram, and

• Network Diagram.

Thus, the visualisation types had five cases each, total forty visualisations. The

performance of the proposed CBR approach for choosing a visualisation for an input

model Ginput was tested using the extracted 40 models and their visualisations as

cases.

138

Table 6.1: Conversation datasets and their visualisations.

Keywords Datasets Visualisations Cases

Conversation 459 71 11
Email 385 112 2
Chat 650 112 10
Twitter 1,060 707 15
Facebook 3,265 1,320 2

Total 5,819 2,322 40

6.4.4 Case-Based Reasoning Step

An algorithm based on Case-Based Reasoning (CBR) with k nearest neighbours

(k-NN) was used in order to predict visualisation types a user would choose for a

new uploaded model of human communication. First, there is a need to choose the

parameter k of the k-NN classifier. The choice of k is non-parametric and a general

rule of thumb for choosing the value of k <
√
N where N is the number of instances

in the training dataset [Hassanat et al., 2014]. On the other hand, small values of k

lead to high sensitivity of a k-NN classifier to noise [Hassanat et al., 2014]. Thus, a

rule of thumb is used for choosing k such that k =
√
N/2, where N = 40 since there

are 40 cases. Substituting N = 40 in this equation gives k =
√

40/2 ≈ 6.32/2 ≈ 3.

As a result, three (k = 3) neighbouring models Gn = {Gn1, Gn2, Gn3} were chosen

and their types of visualisation Vn = {Vn1, Vn2, Vn3} were used for visualising a user’s

model Ginput.

For simplicity, each model G was associated to a point with coordinates

{|U |, |E|} in Euclidean space. Thus, the distance metric dj between two models

Ginput and Gj is the Euclidean distance between the two points x and xj associated

to the models Ginput and Gj correspondingly:

dj =
√
ω(x− xj)2 (6.3)

Where dj is an Euclidean distance between the two points, the point representing

an input dataset x = (|Uinput|, |Einput|)T and the point representing a historical

dataset xj = (|Uj |, |Ej |)T , j ≤ 40 where 40 corresponds to the number of cases,

or the number of historical datasets with corresponding visualisations. The points

x and xj have a number of users |U | and events |E| as their coordinates. The

vector ω = (ω1, ω2) represents the importance of the features, namely the number

of users |U | and the number of events |E|, for comparing two models. The weights

in the vector ω are represented as numerical values between 0 and 1. In this work,

139

Figure 6.3: A multigraph representing the email conversation between four users.

the weights with equal stress on importance for both the number of users |U | and

messages |E| were assigned. Thus ω1 = 0.5 and ω2 = 0.5. The result of the k-NN

algorithm is a choice of the closest visualisation types in the described metrics for

an input model based on previous visualisations. Since the k-NN algorithm was

applied, the user was given the k closest visualisation types for his model of human

communication G(U,E).

6.4.5 Evaluation

The results of the prediction were evaluated in a pilot empirical study by questioning

people on visualisation types for a newly uploaded model of human communication

they would prefer and why. Then the answers were compared with the results of

the automatic choice of the visualisation types by the CBR approach.

An Example for Visualisation: An Email Conversation

In this section, the work of the proposed CBR approach for a sample e-mail con-

versation is shown. The conversation had four users U = {A,B,C,D} and it had

eighteen messages sent between the users (Figure 6.3). The order of this directed

multi-graph of the conversation |U | is 4 and the size |M | equals to 18. Thus, the

dataset corresponds to the following point: (|U |, |M |) = (4, 18).

First, the distance between the sample dataset and each of the 40 case

datasets was calculated, it resulted in 40 values. Since k=3 for the k-NN algorithm,

the three nearest neighbours for this dataset were chosen by selecting the three

smallest numbers from these 40 values calculated in accordance with Formulae 6.3.

d1 =
√

0.5(4− 1)2 + 0.5(18− 18)2 = 2.1

d2 =
√

0.5(4− 1)2 + 0.5(18− 11)2 = 5.4

d3 =
√

0.5(4− 1)2 + 0.5(18− 10)2 = 6.0

140

Thus, the distances {d1, d2, d3} for the three nearest neighbours were {2.1, 5.4, 6.0}.
The visualisation types for these datasets chosen in the past were Line Graph, Bub-

ble Chart, and Matrix Chart accordingly. Ideally, each of the three neighbouring

datasets would have had the same visualisation type. However, it seems that for the

datasets similar to the sample dataset users decided that these three visualisation

types are the most appropriate. In order to understand why the proposed CBR

approach gave these visualisations and how appropriate these visualisations are for

the corresponding datasets, an evaluation was designed and conducted.

Human Experiments

The goal of the designed pilot evaluation was:

• Evaluate the choice of conversation visualisations from eight different visuali-

sations, and

• Compare the manual selection of a visualisation by participants to the auto-

matic choice made by the proposed CBR algorithm.

As the main part of the evaluation, four participants were asked to answer seven

questions for each of the eight alternative visualisations of the sample email conver-

sation described above (Figure 6.3).

At the beginning of an interview, each participant was introduced to the

eight basic different types of visualisations used in Many Eyes: Bar Chart, Matrix

Chart, Line Graph, Bubble Chart, Tree Map, Word Cloud, Block Histogram, and

Network Diagram. Then the participant received an explanation for the meaning of

graphical elements in each of the visualisations. A simple example of a visualisation

for a conversation between two people was given in order to confirm that the par-

ticipant understood the layout of all eight visualisation types.

Finally, the eight visualisations designed using IBM Many Eyes for the sam-

ple email conversation described above (Figure 6.3) were given to the participant

(Figure 6.5) and the following seven questions were asked:

• How many people participated in the conversation?

• How many messages were sent?

• Who initiated the conversation?

• Who sent the second message?

• Who sent the third message?

• How many time steps there were in the conversation?

• How many messages did the person A sent to the person B?

141

Figure 6.4: The dataset uploaded to Many Eyes as a spreadsheet.

Table 6.2: The mean value and the standard deviation for each visualisation.

Question / Visualisation Type* 1 2 3 4 5 6 7 8

1. The Mean Value of the questions score 3.3 4.6 2.8 4.0 4.1 4.0 4.5 4.7
2. The SD** of the questions score 1.7 0.5 1.1 1.1 0.9 1.0 0.8 0.3

*Visualisation Type: 1) bar chart, 2) matrix chart, 3) line graph, 4) bubble chart,
5) treemap, 6) word cloud, 7) block histogram, and 8) network diagram.
**SD - standard deviation.

Each question was ranked by the participant on a scale from zero to five. The higher

the value, the easier the visualisation for answering questions over the visualised

conversation. In other words, 0 meant that the visualisation was very confusing

for answering the question and 5 meant that it was easy to answer the question

using the particular visualisation. The results of the average scores for the answered

questions are in Figure 6.6. The mean value with standard deviation of the scores

for each of the visualisations are in Table 6.2. At the end of the interviews, the

participants were requested to give their feedback on what they thought about the

visualisations.

The evaluation showed that the Network Diagram, Matrix Chart and Block

Histogram outperformed other visualisations with the average scores of 4.7, 4.6, 4.5

and standard deviations of 0.3, 0.5, 0.8. The relatively low values of the standard

deviations meant the answers of the participants were quite consistent. The worst

visualisations with regard to the participants’ answers were Line Chart and Bar

Chart with 2.8, 3.3 for the average scores and 1.1, 1.7 for the standard deviations.

In the next Section, the results of the evaluation are discussed and then the

results are compared to the choice of the CBR approach.

142

Figure 6.5: The eight visualisations of the email conversation for the evaluation:
1) bar chart, 2) matrix chart, 3) line graph, 4) bubble chart, 5) treemap, 6) word
cloud, 7) block histogram, and 8) network diagram.

Figure 6.6: The results of the evaluation for each of the four participants by visual-
isation.

143

6.5 Results and Discussions

The results of the automatic choice of the CBR approach and the human evaluation

showed a discrepancy, which can be explained by the design of the CBR approach

and the conducted evaluation. The three nearest visualisations for the sample email

conversation were Bubble Chart, Line Graph and Matrix Chart. In these cases, the

users visualised a) the number of his Facebook and email messages received by days,

b) the number of emails received over the time, and c) the number of Facebook mes-

sages received during the day at different times. On the contrary, the evaluation

showed that the Line Graph visualisation of the sample email conversation was not

suitable for answering the questions over the conversation. Thus, the questions the

user asked over his visualisation are very important and must be fixed or known in

advance. In this Chapter, the asked questions were fixed to five (Section 6.2).

Also, the application of the proposed CBR for choosing a visualisation type

of a conversation showed a necessity in further elaboration on the following aspects:

1) refinement of the case model for visualisations of conversations, 2) what attributes

other than number of users and messages in a conversation are important for a case,

3) how many cases are required for statistically significant results of the CBR, and

4) how to evaluate the results of the CBR for visualisation of user’s conversation.

IBM Many Eyes lacks flexibility in terms of visualisation since the visual-

isation types and formats for uploading data are limited. From another side this

simplicity makes IBM Many Eyes easily accessible by a wide audience without any

previous experience in visualisation. This fact motivates one to look into the visu-

alisations offered by IBM Many Eyes for visualising conversations and developing a

recommendation system for advising visualisations of users’ data and conversations

in particular.

6.6 Comparison to Related Studies

Several authors tried to classify various visualisation techniques and provide users

with guidelines on which visualisation to choose for which data and which problem.

For example, in [Keim, 2002] the author classified visualisation techniques into five

groups, namely (1) standard 2D and 3D graphics, (3) geometric techniques, (2) icon-

based techniques, (4) dense pixel techniques, and (5) hierarchical techniques. The

author provides with a guideline for a visualisation expert based on the introduced

classification. On contrary, the approach proposed in this Chapter allows one to

recommend a few visualisation types for a data automatically. Thus, a user does

144

not need to be an expert in data visualisation and exploration since the user is given

a choice of visualisation types selected by an algorithm.

Development of visualisation recommender systems is an area of active re-

search. For example, in [Vartak et al., 2015], a vision on automatic identification

and visualisation recommendation for a particular analytical task is discussed. This

work provides with measures to use for recommending visualisations. These include

data characteristics, intended task, domain knowledge, visual ease of understanding,

and user preference. In this Chapter, data characteristics of the previously visualised

datasets were chosen to be the main parameters for choosing visualisations for rec-

ommendation. Even more, a proof-of-concept experiment on real dataset from IBM

Many Eyes along with evaluation of recommended visualisations by participants

was conducted in this Chapter.

Another work on developing a visualisation recommender system was pro-

posed in [Kaur et al., 2015]. The authors introduced a semi-automatic visualisation

recommendation based on captured domain knowledge. In this Chapter, visualisa-

tions are recommended to a user which are based on historically visualised datasets

extracted automatically from IBM Many Eyes, a visualisation as a service platform.

6.7 Conclusions

Visualising user behaviour to facilitate the process of understanding patterns of

human communication and interaction is challenging due to the diversity of visual-

isation types and settings. Even though modelling user behaviour as a graph and

then visualising this graph in a form of network diagram is a common practice, sev-

eral alternative visualisations exist and are useful for understanding user behaviour.

In order to choose a visualisation, previous experience of visualisations is helpful

to build an approach for choosing visualisations automatically. Such an approach

based on CBR was proposed and explored in this Chapter [Burlutskiy et al., 2014b].

The conducted empirical study demonstrated usefulness of the proposed approach

in assisting people to choose or recommend visualisations for their datasets and

models. Finally, the results of this Chapter showed evidence that CBR is capable

of using this previous experience to improve the appropriateness of recommended

visualisations.

145

6.8 Summary

In this Chapter, how to use historical datasets of human communication and their

visualisations for automatically choosing and recommending appropriate visualisa-

tions for a new input dataset of human communication was shown. The proposed

approach was tested on data crawled from Many Eyes, a large visualisation plat-

form built by IBM. Also, the automatic results of visualisation recommendation

were evaluated by human participants.

In the next Chapter, conclusions on predicting user behaviour on the Web

are presented and discussed.

146

Chapter 7

Conclusions

7.1 Introduction

This Chapter concludes the thesis with a summary of the conducted work, revisits

research questions and presents the main findings and contributions of the work

accomplished. Finally, a few directions for further potential research work are de-

scribed. The Chapter is organised as follows: in Section 7.2 an overall summary of

the thesis is introduced; then the main findings and contributions are discussed in

Section 7.3; finally, a list of ideas for future research work is suggested in Section

7.4.

7.2 Summary of Thesis

The thesis investigated the problem of predicting user behaviour on the Web. This

involves modelling, visually exploring, feature extracting, and predicting user be-

haviour on the Web using ML techniques. The developed process of predicting user

behaviour in this thesis is presented in Figure 7.1.

First, related works and the background of the problem were introduced in

Chapter 2. This included an overview of predicting user behaviour on the Web with

a set of popular prediction tasks. Then models of user behaviour were reviewed and

visual data exploration of user behaviour was discussed. Finally, feature extraction

techniques and the state-of-the-art ML methods for predicting user behaviour on

the Web were presented.

Second, a model of user behaviour, more specifically a model of human in-

teraction and relationship development on the Web, was proposed in Chapter 3

(see Figure 7.1 module Data). The core of this model is a novel Time-Varying At-

147

tributed Graph (TVAG) proposed in this thesis. The model consists of two TVAGs,

an interaction graph and a relationship graph. The proposed model allows one to

capture both structural and temporal properties of user behaviour on the Web as

well as facilitates visual exploration of user behaviour on the Web. Even more, the

model facilitates feature extraction from user behaviour on the Web. Then these

features are used for building predictive models. In order to demonstrate how one

can use the proposed TVAG-based model, three different platforms were modelled

using the proposed model. First, the largest Q&A platform, Stack Exchange, second,

the largest micro-blogging platform, Twitter, and finally the largest social network,

Facebook were modelled using the proposed TVAG-based model.

Third, the proposed TVAG-based model was used in Chapter 4 for extract-

ing features influencing user behaviour on the Web (see Figure 7.1 modules Feature

Extraction, Feature Space Representation, Feature Selection). First, these features

were classified semantically into user, message, relationship, structural, and tempo-

ral groups. Then all these features were classified in accordance to their computa-

tional complexity into raw, easy, and hard features. Finally it was shown how these

groups of features influence the accuracy of prediction. As a result, a guideline for

extracting features for predicting user behaviour on the Web was proposed. The

proposed guideline allows one to extract features efficiently in terms of both accu-

racy and time performance. The experiments were conducted for three different

datasets, two from Stack Exchange and one from Twitter.

Fourth, the efficiency of various ML set-ups for predicting user behaviour

on the Web were explored in Chapter 5 (see Figure 7.1 module ML set-up). First,

an offline (batch) learning mode was compared to an online learning mode. In the

absence of guidelines to compare these two different learning modes, a method for

comparison of online and offline (batch) learning modes was proposed and evaluated.

The comparison was performed for three large datasets, two from Stack Exchange

and one from Twitter.

Fifth, a DL algorithm, an algorithm based on a DBN with a feature selection

approach, for predicting user behaviour was designed (see Figure 7.1 module ML

set-up). Then the performance of this algorithm was compared to four state-of-the-

art ML algorithms across three different datasets, two from Stack Exchange and one

from Twitter.

Finally, the problem of visual exploration of user behaviour, more precisely

the problem of choosing visualisations for exploration of user behaviour was re-

searched, however, this is an ongoing and additional work on top of the main

work in the thesis. As a result, an approach for an automatic choice of visual-

148

isations was proposed and evaluated in Chapter 6 (see Figure 7.1 modules Data

Analysis/Exploration). The approach is based on Case-Based Reasoning (CBR). A

dataset from IBM Many Eyes platform was extracted to demonstrate the proposed

approach. The results of the automatic choice of visualisations were evaluated by a

few participants in an empirical study.

7.3 Main Findings and Contributions

This section revisits the research questions introduced in Chapter 1 (Section 1.3)

and demonstrates what are the main findings of this thesis resulted from answering

the research questions. The first addressed research question was the following:

1. How can one model human interaction and relationship development in order

to capture, explore, and facilitate understanding of user behaviour on the

Web?

A model of user communication and relationship development was developed in

Chapter 3. The main reason to propose such a model was the fact that graphs

are a powerful tool for the representation and exploration of social media networks.

However, the importance of temporal properties of such graphs is often underesti-

mated. First, a Time-Varying Attributed Graph (TVAG) was introduced and then a

TVAG-based model for modelling interactions M and development of relationships

R between people U was proposed. The time-varying attributes of TVAG allow one

to capture the temporal properties and structural characteristics of human inter-

action and relationship development. The proposed model consists of two graphs,

namely an interaction graph Gint = (U,M) capturing user communication and a

relationship graph Gr = (U,R) capturing relationship development.

A variety of social platforms and online communities can be easily trans-

formed into the proposed model which was demonstrated for three of the most

popular social platforms such as Twitter, Facebook, and Stack Exchange platforms

(see Section 3.4). This transformation does not lose any data but allows one to

capture and explore temporal user behaviour on the Web. On the other hand, it

was noticed that the three platforms of interest ignore the temporal nature of a

substantial number of attributes. Nevertheless, regardless of data models and data

structures used by a social platform, the proposed TVAG-based model is useful to

capture user behaviour on the Web. The main contribution of the proposed TVAG

model is the time varying component of features of the graph nodes and edges.

The graph nature of the model facilitates feature extraction as a part of ML

149

Data

Model

Feature ExtractionFeature Extraction

Feature Vector

Supervised

Prediction Results

Structured
Raw

LR
SVM
DBN

Visual Exploration

Feature Aggregation

Choosing
Visualisation

Online Learning Offline Learning

Algorithms J Algorithms K

Feature Set 1
Feature Set N

Evaluation

The Web

User Message

Structural Temporal

Easy Hard

Light Heavy

Semantic LevelComplexity Level

Feature Selector

Learning Mode

Feature Space
Representation

ML
Set-up

Data

Exploration
Analysis/

Feature
Extraction Raw Features

Feature
Selection

Learning Algorithms

Choosing
Visualisation

Data

SGD
P
PA

Preprocessing for ML

Class

Relationship

kNN
DT

Figure 7.1: The process of predicting user behaviour on the Web.

150

process. In ML, a feature extraction step is an important step which often deter-

mines the success of the whole ML process. It was shown in the literature that

structural features of human communication are of high impact on many prediction

tasks [Cai and Chakravarthy, 2013; Hu et al., 2013; Teinemaa et al., 2015]. However,

in real world applications the number of nodes and edges in the graphs Gr and Gint

may reach millions and it is usually very computationally expensive to calculate the

aforementioned features for the whole graph G defined on time interval T. Never-

theless, explicit temporal properties of both nodes and edges allow one to find a

smaller subgraph GT defined on a time interval T ∈ T and calculate the features for

this subgraph rather than for the whole graph G. Thus, temporal features of the

graph allow one to calculate and then use the structural features even where the

graph G is large.

Data reduction approaches are important for dealing with large datasets for

training a classifier. Such approaches involve feature selection techniques, sampling,

dimension reduction algorithms. The second research question was a question on

how one can use the proposed TVAG-based model of user behaviour for extracting

features efficiently:

2. How can one construct a set of features for an accurate but fast prediction of

user behaviour on the Web?

As a result of answering this research question, a guideline for an efficient feature

extraction from the proposed model of user behaviour was introduced in Chapter

4. This approach allows one to extract semantic groups of features associated with

users, their relationships, messages, temporal, and structural features. Also, it was

shown how to calculate computational complexity of these features for grouping

them into computational complexity groups, easy and hard feature groups. The

proposed approach for feature extraction showed that using structural and tempo-

ral features is advantageous for the accuracy of a prediction but extracting such

features can significantly increase the time of a feature extraction step. As a re-

sult, a guideline for selecting and constructing an efficient feature set based on the

proposed classification was proposed. The proposed guideline of feature engineering

involves the following steps (see Subsection 4.6.4 for more details):

1. Divide all raw features into light and heavy features;

2. Reduce the dimension for heavy raw features, for example, by creating a ‘bag

of words’ and then possible dimension reduction using Principal Component

Analysis (PCA);

151

3. Calculate easy features (calculations are performed in constant time, compu-

tational complexity is O(1));

4. Calculate hard features (computational complexity is harder than O(1)).

A predictive model can be trained on raw, easy, raw and easy, and then all features

including the hard features. Also, a semantic grouping inside each of computational

complexity group can be used. As a result, a set of features leading to the highest

accuracy but with a reasonable time to extract and calculate these features can be

derived.

The third research question was addressing how do temporal features affect

prediction performance:

3. How important are temporal features for predicting user behaviour on the Web

in terms of accuracy and time efficiency?

The proposed approach for feature extraction showed that using temporal features

is advantageous for the accuracy of a prediction but extracting such features can

increase the time of a feature extraction step. This was shown, first, by predicting

users’ response time for the largest Q&A platform, Stack Exchange, using the pro-

posed framework, where temporal features played an important role to achieve high

accuracy. Second, predicting tweets that will be retweeted showed that structural

and temporal features are important. However, it was shown that extracting tem-

poral and structural features is a computationally expensive task.

Choosing a ML set-up for predicting user behaviour on the Web involves

making several decisions. First, one has to decide which learning mode to use,

online or offline learning. Thus, the fourth research question was:

4. How do online and offline algorithms compare in terms of their time complex-

ity and accuracy performance in predicting user behaviour?

A procedure for comparison of online and offline learning modes was proposed in

Chapter 5. As a part of this procedure, Algorithm 2 is applied to online learners and

then the same algorithm is repeated for offline learners. (see Algorithm below).

The outputs of running this Algorithm, the accuracy Aav, training time Ttr, and

testing time Ttt, allow one to compare the performance of online and offline learn-

ing modes. It was shown in an experiment (see Section 5.6) across three different

datasets that online learning mode can be much faster than offline (batch) learning

mode without much loss in the accuracy of prediction.

Understanding whether a DL approach can be more advantageous compared

to the state-of-the-art algorithms was the fifth question:

152

Algorithm Calculating the accuracy of learners

1: Initialise training and testing times: Ttr = 0, Ttt = 0
2: Sort the data D chronologically from the oldest to the latest;
3: Divide the data D into m equal batches Di

4: for i=1,2,..,m do
5: Divide each batch Di into a training set Ditr and test set Ditt;
6: Train a learner li on Ditr;
7: Record the time taken for the training Titr;
8: Update the training time Ttr = Ttr + Titr;
9: Test li on Ditr;

10: Record the time taken for the testing Titt;
11: Update the testing time Ttt = Ttt + Titt;
12: Calculate the average accuracy Ai over Ditr;

13: Calculate the average accuracy Aav over all Ai

5. How does the performance of state-of-the-art ML algorithms compare? Is deep

learning advantageous compared to other algorithms?

A DL approach for predicting user behaviour on the Web was introduced in Chapter

5. Then it was shown that this approach can be superior to other ML methods in

terms of accuracy but slow in training and predicting (see Section 5.6). Also, it

was shown that LR is fast and allows one to achieve slightly inferior accuracy in

much shorter time compared to the other state-of-the art algorithms including a DL

approach.

Finally, the last addressed question was the following:

5. How can one automatically choose appropriate visualisations to explore user

behaviour on the Web?

A method based on CBR for choosing visualisations of user behaviour was proposed

in Chapter 6. The feasibility of the method was demonstrated for a visualisation-as-

a-service platform, IBM Many Eyes. The results of the proposed method were eval-

uated by participants. As a result, an application of the proposed method showed

that visualisations can be chosen and then recommended to a user automatically.

However, answering the last research question is an ongoing and additional work to

the main work conducted in this thesis.

Returning to the main research question addressed in this thesis:

“How can one model, explore, and predict user behaviour on the Web

efficiently using data mining techniques?”

153

The process of answering this research question in this thesis has resulted the fol-

lowing methodology. To sum up, it is advantageous to follow a ML process tailored

specifically to predict user behaviour on the Web (see Figure 7.1). This process in-

cludes modelling user behaviour in a form of two Time-Varying Attributed Graphs

(TVAGs), an interaction graph and a relationship graph. This graph-based model

enables one to choose automatically and then use visualisations to investigate user

behaviour on the Web in a straightforward way as well as extracting features associ-

ated with such user behaviour. Then these features must be classified semantically

and in accordance to the computational effort of their extraction. This classification

allows one to find a set of features which leads to an efficient prediction where there

is a trade-off between the accuracy of a prediction and the time performance of the

prediction. Finally, it was shown that a DL algorithm, a DBN-based algorithm with

a feature selection approach, is advantageous for predicting user behaviour on the

Web. However, building a model for large datasets can take substantial time. In

instances where time performance is crucial, online learning can be advantageous as

it can be several multitudes faster without much loss in accuracy of prediction.

7.4 Future Directions

The work presented in this thesis demonstrated a methodology for predicting user

behaviour on the Web (see Figure 7.1). The work showed how one can achieve an

efficient prediction for three popular platforms, including Twitter, Facebook, and

the largest Q&A Stack Exchange website, Stack Overflow. Despite the successful

results achieved, several directions for further research exists. A list of possible

future works is as follows:

• Modelling. The proposed TVAG-based model can be explored further formally.

For example, the expressive power and efficiency of algorithms on the proposed

model can be studied and validated. Also, one can compare the proposed

model with other state-of-the-art models, for example, dynamic models.

• Visualisation. In future work, it is necessary to test the proposed CBR ap-

proach for other datasets in order to understand how to tune the approach for

more accurate choices of visualisations. For this purpose, clarification of what

a case of a visualisation is needed, temporal and context attributes of human

interaction must be introduced. Only a small set of visualisations crawled

from Many Eyes was analysed, however, by extending the search beyond the

used keywords in this thesis, one can extract more data for their experiments.

154

Also, other sources for data, for example, Google Fusion Tables can be used

[Google, 2014]. The accessibility of the CBR choices of visualisations to an

audience with different levels of expertise in using visualisations for analysis.

A formal evaluation of the visualisations using “Physics of Notation” guide-

line [Moody, 2009] and its operationalisation methods based on this guideline

[Strrle and Fish, 2013] has been planned.

• Feature Extraction. The proposed classification of features can be explored fur-

ther. For example, the computational complexity of features can be considered

at more detailed level rather than considering only two groups of features, hard

and easy features. Also, analysis of the features and their complexity should

be done for more datasets from different domains.

• Online and Offline (Batch) learning. A DL approach showed higher accuracy

but required significant time to train and test the algorithm. In future work,

it is important to parallelise such algorithms and utilise multiple GPUs as well

as CPUs for faster computations.

• Deep Learning. A DL approach, namely a DBN-based approach, showed

higher accuracy but significantly worse time performance for training and

testing the algorithm compared to four state-of-the-art algorithms such as LR,

DT, k-NN, and SVM. Nevertheless, DBN is a highly parallelisable algorithm

both at data and model levels, for example, across multiple GPUs as well as

CPUs for faster computations. In future work, it is important to explore the

performance of a parallelised version of this algorithm. Also, applying other

DL algorithms using, for example, Recurrent Neural Networks (RNN), there

is a possibility to improve the performance of prediction further.

• Parallelisation. Parallelising ML algorithms is one of the solutions to improve

performance of prediction. For example, splitting data and computational

tasks over multiple computers, CPUs, GPUs, and threads can significantly

improve the performance of algorithms. Parallelising ML algorithms is an

area of active research [Stahl and Bramer, 2013].

155

Appendix A

Datasets

This Appendix provides with the information on three datasets used in this thesis,

namely Stack Exchange, Twitter, and Facebook. Firstly, the attributes of Stack

Exchange websites data are introduced in Section A.1. Secondly, attributes of a

Twitter dataset used in this thesis are presented in Section A.2. Finally, Section

A.3 provides with attributes of Facebook data.

A.1 Stack Exchange

Attributes of Stack Exchange data are listed below:

Badges:

• UserId, e.g.: “420”

• Name, e.g.: “Teacher”

• Date, e.g.: “2008-09-15T08:55:03.923”

Comments:

• Id

• PostId

• Score

• Text, e.g.: “@Stu Thompson: Seems possible to me - why not try it?”

• CreationDate, e.g.:“2008-09-06T08:07:10.730”

• UserId

156

Posts:

• Id

• PostTypeId

– 1: Question

– 2: Answer

• ParentID (only present if PostTypeId is 2)

• AcceptedAnswerId (only present if PostTypeId is 1)

• CreationDate

• Score

• ViewCount

• Body

• OwnerUserId

• LastEditorUserId

• LastEditorDisplayName=“Jeff Atwood”

• LastEditDate=“2009-03-05T22:28:34.823”

• LastActivityDate=“2009-03-11T12:51:01.480”

• CommunityOwnedDate=“2009-03-11T12:51:01.480”

• ClosedDate=“2009-03-11T12:51:01.480”

• Title=

• Tags=

• AnswerCount

• CommentCount

• FavoriteCount

Post History:

• Id

157

• PostHistoryTypeId

– 1: Initial Title - The first title a question is asked with.

– 2: Initial Body - The first raw body text a post is submitted with.

– 3: Initial Tags - The first tags a question is asked with.

– 4: Edit Title - A question’s title has been changed.

– 5: Edit Body - A post’s body has been changed, the raw text is stored

here as markdown.

– 6: Edit Tags - A question’s tags have been changed.

– 7: Rollback Title - A question’s title has reverted to a previous version.

– 8: Rollback Body - A post’s body has reverted to a previous version -

the raw text is stored here.

– 9: Rollback Tags - A question’s tags have reverted to a previous version.

– 10: Post Closed - A post was voted to be closed.

– 11: Post Reopened - A post was voted to be reopened.

– 12: Post Deleted - A post was voted to be removed.

– 13: Post Undeleted - A post was voted to be restored.

– 14: Post Locked - A post was locked by a moderator.

– 15: Post Unlocked - A post was unlocked by a moderator.

– 16: Community Owned - A post has become community owned.

– 17: Post Migrated - A post was migrated.

– 18: Question Merged - A question has had another, deleted question

merged into itself.

– 19: Question Protected - A question was protected by a moderator

– 20: Question Unprotected - A question was unprotected by a moderator

– 21: Post Disassociated - An admin removes the OwnerUserId from a post.

– 22: Question Unmerged - A previously merged question has had its an-

swers and votes restored.

• PostId

• RevisionGUID: At times more than one type of history record can be recorded

by a single action. All of these will be grouped using the same RevisionGUID

• CreationDate: “2009-03-05T22:28:34.823”

158

• UserId

• UserDisplayName: populated if a user has been removed and no longer refer-

enced by user Id

• Comment: This field will contain the comment made by the user who edited

a post

• Text: A raw version of the new value for a given revision - If PostHistoryTypeId

= 10, 11, 12, 13, 14, or 15 this column will contain a JSON encoded string with

all users who have voted for the PostHistoryTypeId - If PostHistoryTypeId =

17 this column will contain migration details of either “from ¡url¿” or “to

¡url¿”

• CloseReasonId

– 1: Exact Duplicate - This question covers exactly the same ground as

earlier questions on this topic; its answers may be merged with another

identical question.

– 2: off-topic

– 3: subjective

– 4: not a real question

– 7: too localized

Post Links:

• Id

• CreationDate

• PostId

• RelatedPostId

• PostLinkTypeId

– 1: Linked

– 3: Duplicate

Users:

• Id

159

• Reputation

• CreationDate

• DisplayName

• EmailHash

• LastAccessDate

• WebsiteUrl

• Location

• Age

• AboutMe

• Views

• UpVotes

• DownVotes

Votes:

• Id

• PostId

• VoteTypeId

– ‘ 1‘: AcceptedByOriginator

– ‘ 2‘: UpMod

– ‘ 3‘: DownMod

– ‘ 4‘: Offensive

– ‘ 5‘: Favourite - if VoteTypeId = 5 UserId will be populated

– ‘ 6‘: Close

– ‘ 7‘: Reopen

– ‘ 8‘: BountyStart

– ‘ 9‘: BountyClose

– ‘10‘: Deletion

160

– ‘11‘: Undeletion

– ‘12‘: Spam

– ‘13‘: InformModerator

• CreationDate

• UserId (only for VoteTypeId 5)

• BountyAmount (only for VoteTypeId 9)

Quality of the Data The first step was to analyse the data and check it for

quality. For this purpose, several queries were designed and executed to verify if

there are missing values, errors, and outliers.

• Missing values: some questions and answers missed users’ information so it

was impossible to identify who posted some questions and answers. It might

be related with the fact that some users deleted their profiles or administrators

of the Stack Exchange decided to delete some users’ profiles. The entries with

missing values were excluded from the analysis. However, there were only a

few missing entries compared to the volume of the data (less than 0.01% of

missing entries).

• Errors: there were a few entries with t(mai) < t(mqi) which is physically

impossible since a question cannot be answered before it was asked. These

erroneous entries were excluded from the analysis.

• Outliers: the data, where possible, was examined in order to find values which

are out of range. For example, the initial analysis of the question response

time showed that there were quite a lot (1%-3% of total number of questions)

of questions answered in the extremely short time of a few seconds. Moreover,

the answers were accepted as meaningful and answering the questions. It was

noted that most of these questions were posted and answered by the same

author. Further search on the Web showed that some users used questions

with answers from other forums for posting at the Stack Exchange website.

Possible motivation for these users could be to gain reputation in the Stack

Exchange community. Also, another possible motivation was to contribute

to Stack Exchange knowledge database. However, this user behaviour can

strongly decrease a predicted response time if included in modelling temporal

user behaviour. As a result, if a question was answered by the same author

161

Table A.1: Overall statistics for two Stack Exchange websites, Stack Overflow and
Stack Maths, used in the experiments.

Forums Users Questions Answers Comments Questions
with ac-
cepted
Answers

Stackoverflow 3,472,204 7,990,488 13,683,746 32,506,203 4,596,829

Math 138,856 323,334 479,708 1,506,639 178,765

in a very short time, the questions were excluded from the dataset for further

analysis.

After an assessment of the quality of the data, the main descriptive statistics of the

data were constructed and analysed. These statistics are presented below.

Data Statistics The statistics for the two datasets used in this thesis, Stack Over-

flow and Stack Maths, are presented in Table A.1. Stack Overflow was introduced

in 2008 and is the oldest and the largest website at Stack Exchange. However, the

websites introduced in 2010 and 2011 have attracted large number of users and

questions as well, for example Stack Maths website (see Table A.1).

Overall statistics for question response time are shown in Table A.2. The

mean answering time for the eleven largest Q&A forums varies from less than 3

days to almost 15 days. The median answering time varies from 20 minutes to 133

minutes. Statistics on the ratio of questions answered faster than in an hour, a day,

and a month varies significantly among different forums as well. However, more

than 90% of all questions are answered within 1 month. Nevertheless, even 10% of

unanswered within a month questions sums up to thousands of questions.

A.2 Twitter

A Twitter dataset from [De Domenico et al., 2013] where the authors extracted

tweets by hashtags lhc, cern, boson, higgs was used in this thesis. The tweets were

filtered by date so only the tweets from 00 : 00 AM 1st July 2012 to 11 : 59 PM 7th

July 2012 were considered. As a result 985, 692 tweets were extracted. Each tweet

has a timestamp, unique id of a user who posted it, information on the tweet such

as whether the tweet is a reply (RE), retweet (RT), or a mention(MT). These tweets

form an interaction graph where each node corresponds to a user and directed edges

162

Table A.2: Statistics on question response time for Stack Overflow (SO) and Maths.

Forums
Questions Question Response Time

A* SA**
%, time statistics % answered within

mean,
d

med,
m

min,
m

max,
days

1
hour

1
day

1
month

SO 4,133,896 .11 5.7 20 0.20 2,087 67 90 97

Math 174,685 .26 2.8 27 0.37 1,314 66 92 98

* Answered Questions; the difference in the number of answered questions in this table and
Table A.1 is due to the fact that the questions answered by the same author were excluded.
** Self Answered Questions: a ratio of questions answered by the person who submitted the
question.

represent the flow of tweets from that user. Each edge has two attributes, namely

the time a tweet was posted and the type of a tweet - RE, RT, or MT.

Quality of the Data Since the dataset was used by [De Domenico et al., 2013],

it was already cleaned and no outliers, missing or corrupted entries were identified.

Data Statistics The Twitter statistics is represented below. First, this dataset

has 985, 692 tweets and 245, 234 users who produced these tweets. Second, the these

tweets cover the tweets from 00 : 00 AM 1st July 2012 to 11 : 59 PM 7th July 2012.

A.3 Facebook

The attributes of Facebook data are listed below:

User attributes Au:

• Registration Date: The date the user joined Facebook.

• Account Status History: The dates when a user’s account was reactivated,

deactivated, disabled or deleted. This information include date, time, device,

IP address, machine cookie and browser information.

• About Me: Information the user added to the About section of user’s Time-

line like relationships, work, education, where the user lives. It includes any

updates or changes the user made in the past and what is currently in the

About section.

• Favourite Quotes: Information the user added to the Favourite Quotes section

of the About section of user’s Timeline.

163

• Hometown: The place the user added to hometown in the About section of

their Timeline.

• Current City: The city the user added to the About section of their Timeline.

• Address: User’s current address or any past addresses the user had on their

account.

• Name: The name used in the user’s Facebook account.

• Alternate Name: Any alternate names the user has on their account (ex: a

maiden name or a nickname).

• Screen Names: The screen names the user added to their account, and the

service they are associated with.

• Name Changes: Any changes the user made to the original name the user used

when he/she signed up for Facebook.

• Date of Birth: The date the user added to Birthday in the About section.

• Birthday Visibility: How user’s birthday appears on user’s Timeline.

• Spoken Languages: The languages the user added to Spoken Languages in the

About section.

• Work: Any current information the user added to Work in the About section.

• Vanity URL: User’s Facebook URL (ex: username or vanity for user’s account).

• Education: Any information the user added to Education field in the About

section.

• Emails: Email addresses added to user’s account.

• Linked Accounts: A list of the accounts the user linked to user’s Facebook

account.

• Facial Recognition Data: A unique number based on a comparison of the

photos the user was tagged in.

• Gender: The gender that the user added to the About section.

• Phone Numbers: Mobile phone numbers the user added to his/her account,

including verified mobile numbers the user added for security purposes.

• Political Views: Any information the user added to Political Views in the

About section.

• Religious Views: The current information the user added to Religious Views

in the About section.

• Status Updates: Any status updates the user posted.

• Privacy Settings: Your privacy settings.

• Notification Settings: A list of all user’s notification preferences and whether

he/her has email and text enabled or disabled for each.

• Locale: The language the user selected to use Facebook in.

• Pages You Admin: A list of pages the user admins.

164

• Physical Tokens: Badges the user added to his/her account.

• Networks: Networks (affiliations with schools or workplaces) that the user

belongs to on Facebook.

• Currency: User’s preferred currency on Facebook.

• Credit Cards: If user makes purchases on Facebook (ex: in apps) and has

given Facebook his/her credit card number.

• IP Addresses: A list of IP addresses where the user logged into user’s Facebook

account.

• Logins: IP address, date and time associated with logins to Facebook account

of the user.

• Logouts: IP address, date and time associated with logouts from Facebook

account of the user.

• Last Location: The last location associated with an update.

• Check-ins: The places the user checked into.

• Recent Activities: Actions the user has taken and interactions the user recently

has had.

• Searches: Searches the user made on Facebook.

• Apps: All of the apps the user has added.

• Ads Clicked: Dates, times and titles of ads clicked by the user.

• Ad Topics: A list of topics that the user may be targeted against based on

his/her stated likes, interests and other data the user put in his/her Timeline.

• Likes on Other Sites: Likes the user made on sites.

Relationship attributes Ar:

• Connections: The people who have liked a Page or Place of the user, RSVPed

to his/her event, installed his/her app or checked in to his/her advertised place

within 24 hours of viewing or clicking on an ad or Sponsored Story.

• Family Friends: the people whom the user has indicated as his/her family

members.

• Followers: A list of people who follow the user.

• Following: A list of people the user follows.

• Friends: A list of friends.

• Friend Requests: Pending sent and received friend requests.

• Removed Friends: People the user removed as friends.

• Pending Friend Requests: Pending sent and received friend requests.

• Hidden from News Feed: Any friends, apps or pages the user hidden from

News Feed.

165

Message attributes Am:

• Chat: A history of the conversations the user had on Facebook Chat.

• Messages: Messages the user sent and received on Facebook.

• Posts by You: Anything you posted to user’s own Timeline, like photos, videos

and status updates.

• Posts by Others: Anything posted to the Timeline by someone else, like wall

posts or links shared on user’s Timeline by friends.

• Posts to Others: Anything the user posted to someone elses Timeline, like

photos, videos and status updates.

• Likes on Others’ Posts: Posts, photos or other content the user liked.

• Likes on Your Posts from others: Likes on own posts, photos or other content.

• Pokes: A list of whos poked you and who the user poked.

• Shares: Content (ex: a news article) the user shared with others on Facebook

using the Share button or link.

• Notes: Any notes the user has written and published to user’s account.

• Photos: Photos the user uploaded to user’s account.

• Photos Metadata: Any metadata that is transmitted with uploaded photos.

• Videos: Videos the user posted to the Timeline.

• Events: Events the user has joined or been invited to.

• Groups: A list of groups the user belong to on Facebook.

Quality of the Data The data has missing values which were eliminated (less

than 5%).

Data Statistics The Facebook statistics is represented below. Firstly, the data

represents only one user registered in June 2009 and who had regularly used his

Facebook account. As a result, there are 1, 212 conversations. In total, the user

sent 19, 549 messages and received 24, 352 messages. The user had 440 friends, all

the friendships are timestamped.

166

Appendix B

Feature Complexity for Datasets

This Appendix provides information on features and their complexity across three

different datasets used in this thesis, namely Stack Exchange, Twitter, and Face-

book. These features are presented below in Sections B.1, B.2, and B.3 respectively.

B.1 Stack Exchange

This subsection introduces semantic groups of features and their calculated complex-

ities for Stack Exchange datasets. In this thesis, Stack Overflow and Stack Maths

datasets were used. User features are presented in Table B.1, message features are

in Table B.2, temporal features are in Table B.3, and structural features are in Table

B.4.

Table B.1: User Features.

Fn Description Comments Complexity

F1 User Id A unique number associated with every

user

Raw

F2 User Info The location of a user Raw

F3 User Info User’s latitude O(1)

F4 User Info User’s longitude O(1)

F5 User Info User’s time zone O(1)

F6 User Info The reputation of the user Raw

F7 User Info The total number of user’s profile views

by other users

Raw

F8 User Info The number of times a user was up-

voted by other users

Raw

F9 User Info The number of times a user was down-

voted by other users

Raw

167

Table B.2: Message Features.

Fn Description Comments Complexity

F10 Source User The ID of a user who asked the question Raw

F11 Destination

User

The ID of a user who answered the

questions

Raw

F12 Type The type of the message (question) Raw

F13 Text length The length of the question title in chars O(1)

F14 Text length The length of the question body O(1)

F15 Occurrence of a

word

The number of url links in the body of

a question

O(1)

F16 Occurrence of a

word

The number of images in the body of a

question

O(1)

F17 Occurrence of a

set of words

The number of ‘wh’ words in a question

title

O(1)

F18 Occurrence of a

set of words

The number of ‘wh’ words in a question

body

O(1)

F19 Occurrence of a

set of words

The number of active verbs in a ques-

tion title

O(1)

F20 Occurrence of a

set of words

The number of active verbs in a ques-

tion body

O(1)

F21 Occurrence of a

set of words

The number of times a user men-

tioned himself or themselves, for exam-

ple, ‘we’, ‘I’, ‘me’

O(1)

F22 Occurrence of a

set of words

The number of tags a question is tagged

with

O(1)

F23 The most fre-

quent set of

words

The popularity of the tags a question is

tagged with

kO(n log(n)) where

n is the total num-

ber of questions

and k is the number

of tags k

F24 The most fre-

quent set of

words

The number of popular tags a question

is tagged with

The same as for F23

F25 # of message

views

The total number of times a question

was viewed

Raw

F26 # of messages

sent by a user

The total number of question asked by

a user

O(1)

F27 # of messages

received

The total number of answers given by a

user

O(1)

F28 # of messages

answered

The total number of answers which

were accepted by other users

O(1)

168

Table B.3: Temporal Features.

Fn Description Comments Complexity

F29 Message times-

tamp

The day when a question was asked O(1)

F30 Message times-

tamp

The hour when a question was asked O(1)

F31 Message times-

tamp

The minute when a question was asked O(1)

F32 Message times-

tamp

The second when a question was asked O(1)

F33 Time passed

since a user u

registered

The number of days a user has been reg-

istered

O(1)

F34 # of messages

by a user during

the period T

The number of questions asked by a

user during the last week

O(1) for chronolog-

ically ordered ques-

tions

F35 # of messages

by a user during

the period T

The number of answers given by a user

in the last week

O(1) for chronolog-

ically ordered an-

swers

F36 # of messages

by a user during

the period T

The number of comments and replies

for a question during last month

O(k) where k is

the number of com-

ments and replies

during the last day

F37 The average

messaging ac-

tivity of a

user

The average answering time for user’s

questions: 1
n

n∑
j=1

t(aj)− t(qj), where

t(aj) the time when an answer aj was

given, t(qj) is the time when the ques-

tion qj was asked, n is the total number

of questions

O(n) where n is the

number of all an-

swered questions by

a user

F38 The frequency

of temporal

activity by a

time period T

A vector with twelve entries where

each entry represents the number of

posts for each month in last year:

(p1(ui), ..., p12(ui)) where pi is the num-

ber of posts by a user ui in a particular

month j

O(k) where k is

the total number of

posts

F39 The frequency

of temporal

activity by a

time period T

A vector with twenty four entries

where each entry represents the aver-

age number of posts for each hour:

(p1(ui), ..., p24(ui)), where pj is the av-

erage number of posts posted by a user

ui at a particular hour j

O(k) where k is

the total number of

posts

169

Table B.4: Structural Features.

Fn Description Comments Complexity

F40 Inbetweeness

centrality

CD(vi)

The number of users who follow the

user u

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

F41 Pagerank Pagerank of a node associated with a

user u

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

B.2 Twitter

This subsection introduces semantic groups of features and their calculated com-

plexities for a Twitter dataset. User features are presented in Table B.5, message

features are in Table B.6, relationship features are in Table B.7, temporal features

are in Table B.8, and structural features are in Table B.9.

Table B.5: User Features.

Fn Description Comments References

F1 User Id A unique number associated with a user Raw

170

Table B.6: Message Features.

Fn Description Comments Complexity

F2 Source User The ID of the source user Raw

F3 Destination

User

The ID of the destination user Raw

F4 Message Type Tweet, retweet, reply, or mention Raw

F5 # of messages

sent

The number of tweets sent O(1)

F6 # of messages

sent

The number of tweets retweeted by a

user

O(1)

F7 # of messages

sent

The number of tweets mentioned by a

user

O(1)

F8 # of messages

received

The number of tweets received by a user O(1)

F9 # of messages

answered

The number of tweets retweeted by oth-

ers

O(1)

F10 # of messages

answered

The number of tweets mentioned by

others

O(1)

Table B.7: Relationship Features.

Fn Description Comments References

F11 Source User The ID of the source user Raw

F12 Destination

User

The ID of the destination user Raw

F13 Type The type of the relationship: following Raw

F14 # of incoming

relationships

The number of followers for a user u O(|E|) where |E| is

the number of in-

coming edges

F15 # of outcoming

relationships

The number of following users for a user

u

O(|E|) where |E| is

the number of out-

coming edges

171

Table B.8: Temporal Features.

Fn Description Comments References

F16 Message times-

tamp

The day a tweet was posted O(1)

F17 Message times-

tamp

The hour a tweet was posted O(1)

F18 Message times-

tamp

The minutes a tweet was posted O(1)

F19 Message times-

tamp

The seconds a tweet was posted O(1)

F20 # of messages

by a user during

the period T

The number of tweets retweeted the last

day

O(1)

F21 # of messages

by a user during

the period T

The number of tweets replied last day O(1)

F22 # of messages

by a user during

the period T

The number of tweets mentioned last

day

O(1)

F23 The average

user’s messag-

ing activity

The average retweeting time for a tweet O(n) where n is the

number of all an-

swered questions

F24 The frequency

of temporal

activity by a

time period T

A vector with 24 entries where each

entry represents the number of tweets

for each hour in last three days:

(p1(ui), ..., p24(ui)) where pi is # of

posts by a user ui in a jth month

O(k) where k is

the total number of

posts

172

Table B.9: Structural Features.

Fn Description Comments References

F25 Inbetweeness

centrality

Inbetweeness centrality for the relation-

ship (social) network

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

F26 Inbetweeness

centrality

Inbetweeness centrality for the interac-

tion (tweets) network

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

F27 Pagerank Pagerank for the relationship (social)

network

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

F28 Pagerank Pagerank for the interaction (tweets)

network

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

B.3 Facebook

In this Subsection, semantic groups of features with their computational complexi-

ties are presented. User features are presented in Table B.10, message features are

in Table B.11, relationship features are in Table B.12, temporal features are in Table

B.13, and structural features are in Table B.14.

173

Table B.10: User Features.

Fn Description Comments References

F1 User Id A unique number for a user O(1)

F2 User Info User name O(1)

F3 User Info User gender O(1)

F4 User Info The location of a user O(1)

F5 User Info User’s latitude O(1)

F6 User Info User’s longitude O(1)

F7 User Info User’s time zone O(1)

Table B.11: Message Features.

Fn Description Comments References

F8 Source User The ID of the source user Raw

F9 Destination

User

The ID of the destination user Raw

F10 Message Type The type of a message: chat Raw

F11 Text length The length of a message in chars O(1)

F12 Occurrence of a

word

The number of url links in the body of

a question

O(1)

F13 Occurrence of a

word

The number of images in the body of a

question

O(1)

F14 Occurrence of a

set of words

The number of punctuation marks in a

text

O(1)

F15 The most fre-

quent set of

words

The number of popular words in a mes-

sage

kO(n log(n)) where

n is the total num-

ber of questions

and k is the number

of tags k

F16 The number of

messages sent

by a user

The total number of messages sent by

a user

O(1)

F17 The number

of messages

received by a

user

The total number of messages received

by a user

O(1)

174

Table B.12: Relationship Features.

Fn Description Comments References

F18 Source User The ID of the source user Raw

F19 Destination

User

The ID of the destination user Raw

F20 Relationship

Type

The type of a relationship: friendship Raw

F21 The number of

friends

degree of a relationship graph nodes O(1)

Table B.13: Temporal Features.

Fn Description Comments References

F22 Message times-

tamp

The day of a message O(1)

F23 Message times-

tamp

The hour of a message O(1)

F24 Message times-

tamp

The minute of the message O(1)

F25 Message times-

tamp

The second of the message O(1)

F26 The number of

messages by a

user during the

period T

The number of messages sent the last

day

O(1)

F27 The number of

messages by a

user during the

period T

The number of messages received the

last day

O(1)

F28 The number of

messages by a

user during the

period T

The number of messages received the

last month

O(1)

175

Table B.14: Structural Features.

Fn Description Comments References

F29 Inbetweeness

centrality

Inbetweeness centrality for the relation-

ship network

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

F30 Pagerank Pagerank for the relationship network Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

F31 Inbetweeness

centrality

Inbetweeness centrality for the interac-

tion network

Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

F32 Pagerank Pagerank for the interaction network Θ(V 2) for a graph

represented as a

dense adjacency

matrix or Θ(E)

in a sparse matrix

representation.

176

Bibliography

Aamodt, A. and Plaza, E. (1994). Case-based reasoning; foundational issues,

methodological variations, and system approaches. AI COMMUNICATIONS,

7(1):39–59.

Adedoyin-Olowe, M., Gaber, M. M., and Stahl, F. T. (2013). A survey of data mining

techniques for social media analysis. Computing Research Repository (CoRR),

abs/1312.4617:1–25.

Ahn, J.-W., Plaisant, C., and Shneiderman, B. (2014). A task taxonomy for network

evolution analysis. IEEE Transactions on Visualization and Computer Graphics,

20(3):365–376.

Anderson, A., Huttenlocher, D., Kleinberg, J., and Leskovec, J. (2012). Discover-

ing value from community activity on focused question answering sites: A case

study of Stack Overflow. In Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 850–858,

New York, NY, USA. ACM.

Aneetha, A. S., Indhu, T. S., and Bose, S. (2012). Hybrid network intrusion de-

tection system using expert rule based approach. In Proceedings of the Second

International Conference on Computational Science, Engineering and Informa-

tion Technology, CCSEIT ’12, pages 47–51, New York, NY, USA. ACM.

Angus, D., Watson, B., Smith, A., Gallois, C., and Wiles, J. (2012). Visualising

conversation structure across time: Insights into effective doctor-patient consul-

tations. PLoS ONE, 7(6):1–13.

Artzi, Y., Pantel, P., and Gamon, M. (2012). Predicting responses to microblog

posts. In Proceedings of the 2012 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

NAACL HLT ’12, pages 602–606, Stroudsburg, PA, USA. Association for Com-

putational Linguistics.

177

Asaduzzaman, M., Mashiyat, A. S., Roy, C. K., and Schneider, K. A. (2013). An-

swering questions about unanswered questions of Stack Overflow. In Proceedings

of the 10th Working Conference on Mining Software Repositories, MSR ’13, pages

97–100, Piscataway, NJ, USA. IEEE Press.

Badea, L. M. (2014). Predicting consumer behavior with artificial neural networks.

Procedia Economics and Finance, 15:238 – 246. Emerging Markets Queries in

Finance and Business (EMQ 2013).

Bhat, V., Gokhale, A., Jadhav, R., Pudipeddi, J., and Akoglu, L. (2014). Min(e)d

your tags: Analysis of question response time in Stack Overflow. In Advances

in Social Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM Interna-

tional Conference on, pages 328–335, Beijing, China.

Bianchini, M. and Scarselli, F. (2014). On the complexity of neural network clas-

sifiers: A comparison between shallow and deep architectures. Neural Networks

and Learning Systems, IEEE Transactions on, 25(8):1553–1565.

Bifet, A., de Francisci Morales, G., Read, J., Holmes, G., and Pfahringer, B. (2015).

Efficient online evaluation of big data stream classifiers. In Proceedings of the

21th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD’15, pages 59–68, New York, NY, USA. ACM.

Bolón-Canedo, V., Sánchez-Maroño, N., and Alonso-Betanzos, A. (2012). A re-

view of feature selection methods on synthetic data. Knowledge and Information

Systems, 34(3):483–519.

Bottou, L. (2010). Proceedings of 19th International Conference on Computa-

tional Statistics (COMPSTAT’2010), Paris France, August 22-27, 2010 Keynote,

Invited and Contributed Papers, chapter Large-Scale Machine Learning with

Stochastic Gradient Descent, pages 177–186. Physica-Verlag HD, Heidelberg.

Brandes, U. (2001). A faster algorithm for betweenness centrality. The Journal of

Mathematical Sociology, 25(2):163–177.

Bronson, N., Amsden, Z., Cabrera, G., Chakka, P., Dimov, P., Ding, H., Ferris,

J., Giardullo, A., Kulkarni, S., Li, H., Marchukov, M., Petrov, D., Puzar, L.,

Song, Y. J., and Venkataramani, V. (2013). Tao: Facebook’s distributed data

store for the social graph. In Proceedings of the 2013 USENIX Conference on

Annual Technical Conference, USENIX ATC’13, pages 49–60, Berkeley, CA, USA.

USENIX Association.

178

Burlutskiy, N., Petridis, M., Fish, A., and Ali, N. (2014a). Enabling the visual-

ization for reasoning about temporal data. In 2014 IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC), pages 179–180, Australia,

Melbourne. IEEE.

Burlutskiy, N., Petridis, M., Fish, A., and Ali, N. (2014b). How to visualise a

conversation: case-based reasoning approach. 19th UK Workshop on Case-Based

Reasoning (UKCBR 2014), pages 1–12.

Burlutskiy, N., Petridis, M., Fish, A., and Ali, N. (2015). Prediction of users’

response time in q&a communities. In ICMLA’15, International Conference on

Machine Learning and Applications, pages 618–623, Miami, FL, USA.

Burlutskiy, N., Petridis, M., Fish, A., Ali, N., and Chernov, A. (2016). An investiga-

tion on online versus batch learning in predicting user behaviour. In Thirty-sixth

SGAI International Conference on Artificial Intelligence (AI-2016), pages 10–25,

England, Cambridge. Springer.

Cai, Y. and Chakravarthy, S. (2013). Answer quality prediction in Q&A social net-

works by leveraging temporal features. International Journal of Next-Generation

Computing (IJNGC), 4(1):1–27.

Campbell, W. M., Dagli, C. K., and Weinstein, C. J. (2013). Social Network Analysis

with Content and Graphs. LINCOLN LABORATORY JOURNAL, 20(1):1–20.

Casteigts, A., Flocchini, P., Quattrociocchi, W., and Santoro, N. (2010). Time-

varying graphs and dynamic networks. Computing Research Repository (CoRR),

abs/1012.0009:1–20.

Cattuto, C., Quaggiotto, M., Panisson, A., and Averbuch, A. (2013). Time-varying

social networks in a graph database: A neo4j use case. In First International

Workshop on Graph Data Management Experiences and Systems, GRADES ’13,

pages 1–6, New York, NY, USA. ACM.

Chapelle, O. (2007). Training a support vector machine in the primal. Neural

Computation, 19(5):1155–1178.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system.

Computing Research Repository (CoRR), abs/1603.02754:1–13.

Cheng, J., Romero, D. M., Meeder, B., and Kleinberg, J. M. (2011). Predicting

reciprocity in social networks. In IEEE Third International Conference on Social

Computing (SocialCom), pages 49–56, Boston, MA, USA.

179

Choi, S., Kim, E., and Oh, S. (2013). Human behavior prediction for smart homes

using deep learning. In 2013 IEEE International Symposium on Robot and Human

Interactive Communication (RO-MAN), pages 173–179, Gyeongju, South Korea.

Ciresan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural

networks for image classification. In Proceedings of the 2012 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), CVPR ’12, pages 3642–3649,

Washington, DC, USA. IEEE Computer Society.

Comarela, G., Crovella, M., Almeida, V., and Benevenuto, F. (2012). Understanding

factors that affect response rates in Twitter. In Proceedings of the 23rd ACM

Conference on Hypertext and Social Media, HT ’12, pages 123–132, New York,

NY, USA. ACM.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006).

Online passive-aggressive algorithms. Journal of Machine Learning Research

(JMLR), 7:551–585.

De Domenico, M., Lima, A., Mougel, P., and Musolesi, M. (2013). The anatomy of

a scientific rumor. Scientific Reports, 3(02980):1–11.

De la Rosa, J. L., Mollet, R., Montaner, M., Ruiz, D., and Muñoz, V. (2007).

Kalman filters to generate customer behavior alarms. In Artificial Intelligence

Research and Development, Proceedings of the 10th International Conference of

the ACIA, CCIA 2007, October 25-26, 2007, Sant Julià de Lòria, Andorra, pages

416–425.

Dekel, O. (2009). From online to batch learning with cutoff-averaging. In Koller,

D., Schuurmans, D., Bengio, Y., and Bottou, L., editors, Advances in Neural

Information Processing Systems 21, pages 377–384. Curran Associates, Inc.

Ding, Y., Yan, S., Zhang, Y., Dai, W., and Dong, L. (2016). Predicting the attributes

of social network users using a graph-based machine learning method. Computer

Communications, 73, Part A:3 – 11.

Domingos, P. (2012). A few useful things to know about machine learning. Com-

munications of the ACM, 55(10):78–87.

Donath, J., Dragulescu, A., Zinman, A., Viégas, F., and Xiong, R. (2010). Data

portraits. In ACM Special Interest Group on Computer GRAPHics and Interactive

Techniques 2010 Art Gallery, SIGGRAPH ’10, pages 375–383, New York, NY,

USA. ACM.

180

Dror, G., Maarek, Y., and Szpektor, I. (2013). Will my question be answered?

predicting “question answerability” in community question-answering sites. In

Blockeel, H., Kersting, K., Nijssen, S., and Zelezny, F., editors, Machine Learning

and Knowledge Discovery in Databases, volume 8190 of Lecture Notes in Com-

puter Science, pages 499–514. Springer Berlin Heidelberg.

Facebook (2016). Facebook data model. Retrieved on 2016-05-18 from

https://www.facebook.com/help/405183566203254.

Farrugia, M., Hurley, N., and Quigley, A. (2011). Exploring temporal ego net-

works using small multiples and tree-ring layouts. In 4th International Conference

on Advances in Human Computer Interfaces (ACHI), pages 79–88, Guadeloupe,

France.

Frau, S., Roberts, J. C., and Boukhelifa, N. (2005). Dynamic coordinated email

visualization. In Skala, V., editor, WSCG05 - 13th International Conference

on Computer Graphics, Visualization and Computer Vision’2005, pages 182–196,

Plzen, Czech Republic. (Jan 31 - Feb 4).

Freyne, J. and Smyth, B. (2010). Creating visualizations: A case-based reasoning

perspective. In Coyle, L. and Freyne, J., editors, Artificial Intelligence and Cog-

nitive Science, volume 6206 of Lecture Notes in Computer Science, pages 82–91.

Springer Berlin Heidelberg.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting ma-

chine. Annals of Statistics, 29:1189–1232.

Garriss, S., Kaminsky, M., Freedman, M. J., Karp, B., Mazières, D., and Yu, H.

(2006). Re: Reliable email. In Proceedings of the 3rd Conference on Networked

Systems Design & Implementation - Volume 3, NSDI’06, pages 22–22, Berkeley,

CA, USA. USENIX Association.

Gilchrist, W. (1984). Statistical Modelling. John Wiley and Sons, Chichester, UK.

pages 34–36.

Glady, N., Baesens, B., and Croux, C. (2009). Modeling churn using customer

lifetime value. European Journal of Operational Research, 197(1):402–411.

Goel, D. and Batra, D. (2009). Predicting user preference for movies using netflix

database. Department of Electrical and Computer Engineering, Carniege Mellon

University, pages 1–7.

181

Google (2014). Fusion tables. Retrieved on 2014-03-25 from

http://tables.googlelabs.com/.

Gorodetsky, V., Samoylov, V., Liu, H., Motoda, H., Setiono, R., and Zhao, Z.

(2010). Feature Extraction for Machine Learning: Logic Probabilistic Approach.

In Proceedings of the 4th Workshop on Feature Selection in Data Mining, pages

55–65.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., and

Wang, G. (2015). Recent advances in convolutional neural networks. Computing

Research Repository (CoRR), abs/1512.07108:1–37.

Guille, A. and Hacid, H. (2012). A predictive model for the temporal dynamics

of information diffusion in online social networks. In Proceedings of the 21st In-

ternational Conference Companion on World Wide Web, WWW ’12 Companion,

pages 1145–1152, New York, NY, USA. ACM.

Gummadi, K. P., Mislove, A., and Druschel, P. (2006). Exploiting social networks for

internet search. In Proceedings of the 5th Workshop on Hot Topics in Networks,

pages 79–84, Irvine, CA.

Guyon, I. and Elisseeff, A. (2006). Feature Extraction: Foundations and Applica-

tions, chapter An Introduction to Feature Extraction, pages 1–25. Springer Berlin

Heidelberg, Berlin, Heidelberg.

Hadlak, S., Schumann, H., Cap, C. H., and Wollenberg, T. (2013). Supporting the

visual analysis of dynamic networks by clustering associated temporal attributes.

IEEE Transactions on Visualization and Computer Graphics, 19(12):2267–2276.

Hassanat, A. B., Abbadi, M. A., Altarawneh, G. A., and Alhasanat, A. A. (2014).

Solving the problem of the K parameter in the KNN classifier using an ensemble

learning approach. CoRR, abs/1409.0919.

He, X., Pan, J., Jin, O., Xu, T., Liu, B., Xu, T., Shi, Y., Atallah, A., Herbrich,

R., Bowers, S., and Candela, J. Q. n. (2014). Practical lessons from predicting

clicks on ads at facebook. In Proceedings of the Eighth International Workshop

on Data Mining for Online Advertising, ADKDD’14, pages 1–9, New York, NY,

USA. ACM.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm for

deep belief nets. Neural Computation, 18(7):1527–1554.

182

Hira, Z. M. and Gillies, D. F. (2015). A review of feature selection and feature

extraction methods applied on microarray data. Advances in Bioinformatics,

2015:1–13.

Hoi, S. C., Wang, J., and Zhao, P. (2014). Libol: A library for online learning

algorithms. Journal of Machine Learning Research, 15:495–499.

Horowitz, D. and Kamvar, S. D. (2010). The anatomy of a large-scale social search

engine. In Proceedings of the 19th International Conference on World Wide Web,

WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010, pages 431–440.

Hu, H., Liu, B., Wang, B., Liu, M., and Wang, X. (2013). Exploring social features

for answer quality prediction in CQA portals. In Machine Learning and Cyber-

netics (ICMLC), 2013 International Conference on, volume 04, pages 1904–1909,

Tianjin, China.

IBM (2014). Many eyes. Retrieved on 2014-03-25 from http://www.manyeyes.com.

Jernite, Y., Halpern, Y., Horng, S., and Sontag, D. (2013). Predicting chief com-

plaints at triage time in the emergency department. NIPS Workshop on Machine

Learning for Clinical Data Analysis and Healthcare, pages 1–5.

John, G. H., Kohavi, R., and Pfleger, K. (1994). Irrelevant features and the subset

selection problem. In Machine Learning: Proceedings of the 11th International

Conference, pages 121–129. Morgan Kaufmann.

Jovicic, S. (2000). Role of memory in email management. In CHI ’00 Extended

Abstracts on Human Factors in Computing Systems, CHI EA ’00, pages 151–152,

New York, NY, USA. ACM.

Karnstedt, M., Hennessy, T., Chan, J., and Hayes, C. (2010). Churn in social

networks: A discussion boards case study. In Social Computing (SocialCom),

2010 IEEE Second International Conference on, pages 233–240.

Kaur, P., Owonibi, M., and Knig-Ries, B. (2015). Towards visualization recommen-

dation - a semi- automated domain-specific learning approach. In Proceedings of

the 27th GI-Workshop Grundlagen von Datenbanken, pages 30–35.

Keim, D. A. (2002). Information visualization and visual data mining. IEEE Trans-

actions on Visualization and Computer Graphics, 8(1):1–8.

183

Kim, M. and Leskovec, J. (2011). Modeling social networks with node attributes

using the multiplicative attribute graph model. Computing Research Repository

(CoRR), abs/1106.5053:1–15.

Knuth, D. E. (1976). Big omicron and big omega and big theta. Special Interest

Group on Algorithms and Computation Theory (SIGACT) News, 8(2):18–24.

Kojadinovic, I. and Wottka, T. (2000). Comparison between a filter and a wrapper

approach to variable subset selection in regression problems. In Proceedings of the

European Symposium on Intelligent Techniques, pages 311–321.

Kotsiantis, S. B. (2007). Supervised machine learning: A review of classification

techniques. In Proceedings of the 2007 Conference on Emerging Artificial In-

telligence Applications in Computer Engineering: Real Word AI Systems with

Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies,

pages 3–24, Amsterdam, The Netherlands. IOS Press.

Larivière, B. and Van den Poel, D. (2005). Predicting customer retention and

profitability by using random forests and regression forests techniques. Expert

System Applications, 29(2):472–484.

Lattanzi, S. (2010). Algorithms and models for social networks. PhD thesis, Uni-

versita di Roma.

Le, Q. V. and Mikolov, T. (2014). Distributed representations of sentences and

documents. Computing Research Repository (CoRR), abs/1405.4053:1–9.

Lee, J., Lin, S., and Karahalios, K. (2013). Visualizing patterns of social and com-

municative behavior in children using plexlines. In Visual Analytics in Healthcare

(VAHC) 2013, pages 1–10, Washington, DC, USA.

Lee, K., Mahmud, J., Chen, J., Zhou, M. X., and Nichols, J. (2014). Who will

retweet this? automatically identifying and engaging strangers on Twitter to

spread information. Computing Research Repository (CoRR), abs/1405.3750:1–

10.

Lezina, C. G. E. and Kuznetsov, A. M. (2012). Predict closed questions on Stack

Overflow. Report on Kaggle Competition, pages 1-5.

Li, B., Lyu, M., and King, I. (2012). Communities of Yahoo! Answers and Baidu

Zhidao: Complementing or competing? In The 2012 International Joint Confer-

ence on Neural Networks (IJCNN), pages 1–8, Brisbane, Australia.

184

Liang, N.-Y., Huang, G.-B., Saratchandran, P., and Sundararajan, N. (2006). A

fast and accurate online sequential learning algorithm for feedforward networks.

Neural Networks, IEEE Transactions on, 17(6):1411–1423.

Lim, T.-S., Loh, W.-Y., and Shih, Y.-S. (2000). A comparison of prediction accuracy,

complexity, and training time of thirty-three old and new classification algorithms.

Machine Learning, 40(3):203–228.

Lipton, Z. C. (2015). A critical review of recurrent neural networks for sequence

learning. Computing Research Repository (CoRR), abs/1506.00019:1–38.

Loumiotis, I., Adamopoulou, E., Demestichas, K., and Theologou, M. (2014). On

trade-off between computational efficiency and prediction accuracy in bandwidth

traffic estimation. Electronics Letters, 50(10):754–756.

Ma, H., Zhou, T. C., Lyu, M. R., and King, I. (2011). Improving recommender

systems by incorporating social contextual information. ACM Transactions on

Information Systems, 29(2):1–23.

Mahmud, J., Chen, J., and Nichols, J. (2013). When will you answer this? estimat-

ing response time in Twitter. In International AAAI Conference on Weblogs and

Social Media, pages 697–700.

Markov, A., Last, M., and Kandel, A. (2008). The hybrid representation model

for web document classification. International Journal on Intelligent Systems,

23:654–679.

McDuff, D., Kaliouby, R. E., Cohn, J. F., and Picard, R. W. (2015). Predicting ad

liking and purchase intent: Large-scale analysis of facial responses to ads. IEEE

Transactions on Affective Computing, 6(3):223–235.

Minka, T. P. (2003). A comparison of numerical optimizers for logistic regression.

Technical report. pages 1–18.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine

Learning. The MIT Press.

Moody, D. L. (2009). The physics of notations: Toward a scientific basis for con-

structing visual notations in software engineering. IEEE Transactions on Software

Engineering, 35(6):756–779.

Morris, M. R., Teevan, J., and Panovich, K. (2010). What do people ask their

social networks, and why? A survey study of status message Q&A behavior. In

185

Proceedings of Conference on Human Factors in Computer Systems (CHI) 2010,

pages 1–10. ACM.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. Cambridge,

MA.

Nazerfard, E. and Cook, D. (2013). Using bayesian networks for daily activity

prediction. In AAAI Plan, Activity, and Intent Recognition Workshop, pages

32–38, Washington, DC, USA.

Nohuddin, P. N. E., Coenen, F., Christley, R., and Sunayama, W. (2015). Visu-

alisation of trend pattern migrations in social networks. In Advances in Visual

Informatics - 4th International Visual Informatics Conference, IVIC 2015, Bangi,

Malaysia, November 17-19, 2015, Proceedings, pages 77–88.

Oza, N. C. and Russell, S. (2001). Experimental comparisons of online and batch

versions of bagging and boosting. In Proceedings of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’01,

pages 359–364, New York, NY, USA. ACM.

Page, A., Turner, J., Mohsenin, T., and Oates, T. (2014). Comparing raw data and

feature extraction for seizure detection with deep learning methods. In Florida Ar-

tificial Intelligence Research Society Conference (FLAIRS), pages 284–287, Pen-

sacola Beach, FL, USA.

Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The pagerank citation

ranking: Bringing order to the web. Technical report. Stanford InfoLab, pages

1-17.

Park, C. and Seo, J. (2013). Consideration of purchase dependence in inventory

management. Computers & Industrial Engineering, 66(2):274 – 285.

Pentland, A. and Liu, A. (1999). Modeling and prediction of human behavior.

Neural Computation, 11(1):229–242.

Pentreath, N. (2015). Machine Learning with Spark. Packt Publishing Ltd, UK,

London.

Petridis, M., Kapetanakis, S., Ma, J., and Burlutskiy, N. (2014). Temporal knowl-

edge representation for case-based reasoning based on a formal theory of time.

In Workshop on Reasoning about Time in CBR, RATIC 2014, pages 1–10, Cork,

Ireland.

186

Pfaltz, J. L. (2013). A mathematical model of dynamic social networks. Social

Network Analysis and Mining, 3(4):863–872.

Pfeiffer, III, J. J., Moreno, S., La Fond, T., Neville, J., and Gallagher, B. (2014).

Attributed graph models: Modeling network structure with correlated attributes.

In Proceedings of the 23rd International Conference on World Wide Web, WWW

’14, pages 831–842, New York, NY, USA. ACM.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1):81–106.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Radinsky, K., Svore, K., Dumais, S., Teevan, J., Bocharov, A., and Horvitz, E.

(2012). Modeling and predicting behavioral dynamics on the web. In Proceedings

of the 21st International Conference on World Wide Web, WWW ’12, pages 599–

608, New York, NY, USA. ACM.

Raikwal, J. S., Singhai, R., and Saxena, K. (2013). Article: Integrating markov

model with knn classification for web page prediction. International Journal of

Computer Applications, 61(22):11–15.

Read, J., Bifet, A., Pfahringer, B., and Holmes, G. (2012). Advances in Intelligent

Data Analysis XI: 11th International Symposium, IDA 2012, Helsinki, Finland,

October 25-27, 2012. Proceedings, chapter Batch-Incremental versus Instance-

Incremental Learning in Dynamic and Evolving Data, pages 313–323. Springer

Berlin Heidelberg, Berlin, Heidelberg.

Ruangkanokmas, P., Achalakul, T., and Akkarajitsakul, K. (2016). Deep belief net-

works with feature selection for sentiment classification. In 7th International Con-

ference on Intelligent Systems, Modelling and Simulation, pages 9–14, Bangkok,

Thailand.

Sadilek, A. and Krumm, J. (2012). Far out: Predicting long-term human mobility.

In 2012 AAAI Conference on Artificial Intelligence, pages 1–7, Toronto, Ontario,

Canada.

Samiei, M., Dill, J., and Kirkpatrick, A. (2004). EzMail: using information visual-

ization techniques to help manage email. In Information Visualisation, 2004. IV

2004. Proceedings. Eighth International Conference on, pages 477–482, London,

England.

187

Santoro, N., Quattrociocchi, W., Flocchini, P., Casteigts, A., and Amblard, F.

(2011). Time-varying graphs and social network analysis: Temporal indicators

and metrics. Computing Research Repository (CoRR), abs/1102.0629:1–6.

Sathiyanarayanan, M. and Burlutskiy, N. (2015a). Design and evaluation of euler

diagram and treemap for social network visualisation. In 2015 7th International

Conference on Communication Systems and Networks (COMSNETS), pages 1–6,

Bangalore, India. IEEE.

Sathiyanarayanan, M. and Burlutskiy, N. (2015b). Visualizing social networks using

a treemap overlaid with a graph. Procedia Computer Science, 58:113–120.

Scellato, S., Noulas, A., and Mascolo, C. (2011). Exploiting place features in link

prediction on location-based social networks. In Proceedings of the 17th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

KDD ’11, pages 1046–1054, New York, NY, USA. ACM.

Schenker, A., Bunke, H., Last, M., and Kandel, A. (2005). Graph-Theoretic Tech-

niques for Web Content Mining. World Scientific.

Schramm, W. and Roberts, D. F. (1971). The Process and effects of mass communi-

cation / edited by Wilbur Schramm and Donald F. Roberts. University of Illinois

Press Urbana, rev. ed. edition.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary,

V., Young, M., Crespo, J.-F., and Dennison, D. (2015). Hidden technical debt in

machine learning systems. In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama,

M., and Garnett, R., editors, Advances in Neural Information Processing Systems

28, pages 2503–2511. Curran Associates, Inc.

Semertzidis, K. and Pitoura, E. (2016). Time traveling in graphs using a graph

database. In Proceedings of the Workshops of the EDBT/ICDT 2016 Joint Con-

ference, pages 1–6, Bordeaux, France.

Shannon, C. E. (1948). A mathematical theory of communication. 27(4):623–656.

Sharma, A. and Panigrahi, P. K. (2013). A neural network based approach for pre-

dicting customer churn in cellular network services. Computing Research Reposi-

tory (CoRR), abs/1309.3945:26–31.

SkyTree (2014). Managing online fraud with skytree advanced an-

alytics. Retrieved on 2015-01-12 from http://skytree.net/wp-

content/uploads/2014/10/SkytreeFinSvcSolnPaper.pdf.

188

Smith, M. A. and Fiore, A. T. (2001). Visualization components for persistent

conversations. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, CHI ’01, pages 136–143, New York, NY, USA. ACM.

Sontag, E. D. (1998). Mathematical Control Theory: Deterministic Finite Dimen-

sional Systems (2Nd Ed.). Springer-Verlag New York, Inc., New York, NY, USA.

Spiro, E., Irvine, C., DuBois, C., and Butts, C. (2012). Waiting for a retweet:

modeling waiting times in information propagation. In 2012 Neural Information

Processing Systems (NIPS) workshop of social networks and social media confer-

ence, volume 12, pages 1–8, Montreal, Canada.

StackExchange (2014). Stack Exchange dump data, September 2014. Accessed on

2015-03-16 from https://archive.org/details/stackexchange.

Stahl, F. and Bramer, M. (2013). Scaling up classification rule induction through

parallel processing. The Knowledge Engineering Review, 28:451–478.

Steurer, M. and Trattner, C. (2013). Predicting interactions in online social net-

works: An experiment in Second Life. In Proceedings of the 4th International

Workshop on Modeling Social Media, MSM ’13, pages 1–8, New York, NY, USA.

ACM.

Strrle, H. and Fish, A. (2013). Towards an operationalization of the physics of nota-

tions for the analysis of visual languages. In Model-Driven Engineering Languages

and Systems, volume 8107 of Lecture Notes in Computer Science, pages 104–120.

Springer.

Su, J. and Zhang, H. (2006). A fast decision tree learning algorithm. In Proceedings

of the 21st National Conference on Artificial Intelligence - Volume 1, AAAI’06,

pages 500–505, Boston, Massachusetts. AAAI Press.

Tang, J., Musolesi, M., Mascolo, C., and Latora, V. (2009). Temporal distance

metrics for social network analysis. In Proceedings of the 2Nd ACM Workshop on

Online Social Networks, WOSN ’09, pages 31–36, New York, NY, USA. ACM.

Teevan, J., Morris, M. R., and Panovich, K. (2011). Factors affecting response

quantity, quality, and speed for questions asked via social network status messages.

In Adamic, L. A., Baeza-Yates, R. A., and Counts, S., editors, ICWSM. The AAAI

Press.

189

Teinemaa, I., Leontjeva, A., Dumas, M., and Kikas, R. (2015). Community-based

prediction of activity change in skype. In 2015 IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM), pages

73–80, Beijing, China.

TIBCO (2014). Spotfire. Retrieved on 2014-03-25 from http://spotfire.tibco.com.

Toivonen, R. (2009). Social networks: modeling structure and dynamics. Technical

report.

Vartak, M., Huang, S., Siddiqui, T., Madden, S., and Parameswaran, A. (2015).

Towards visualization recommendation systems. In Workshop on Data Systems

for Interactive Analytics (DSIA), pages 1–6, Chicago, USA.

Venolia, G. D. and Neustaedter, C. (2003). Understanding sequence and reply

relationships within email conversations: A mixed-model visualization. Technical

Report MSR-TR-2002-102, Microsoft Research.

Viégas, F. B. and Smith, M. (2004). Newsgroup crowds and authorlines: Visual-

izing the activity of individuals in conversational cyberspaces. In Proceedings of

the Proceedings of the 37th Annual Hawaii International Conference on System

Sciences (HICSS’04) - Track 4 - Volume 4, HICSS ’04, pages 1–10, Washington,

DC, USA. IEEE Computer Society.

Wang, G., Gill, K., Mohanlal, M., Zheng, H., and Zhao, B. Y. (2013). Wisdom

in the social crowd: An analysis of Quora. In Proceedings of the 22Nd Interna-

tional Conference on World Wide Web, WWW ’13, pages 1341–1352, Republic

and Canton of Geneva, Switzerland. International World Wide Web Conferences

Steering Committee.

Weerkamp, W. and De Rijke, M. (2012). Activity Prediction: A Twitter-based

Exploration. In 2012 Proceedings of SIGIR Workshop on Time-aware Information

Access, pages 1–5, Portland, USA.

Wei, W., Li, J., Cao, L., Ou, Y., and Chen, J. (2012). Effective detection of sophis-

ticated online banking fraud on extremely imbalanced data. World Wide Web,

16(4):449–475.

Wilson, D. R. and Martinez, T. R. (2003). The general inefficiency of batch training

for gradient descent learning. Neural Networks, 16(10):1429–1451.

190

Xiong, R. and Donath, J. (1999). PeopleGarden: Creating data portraits for users.

In Proceedings of the 12th Annual ACM Symposium on User Interface Software

and Technology, UIST ’99, pages 37–44, New York, NY, USA. ACM.

Yang, L., Bao, S., Lin, Q., Wu, X., Han, D., Su, Z., and Yu, Y. (2011). Analyzing

and predicting not-answered questions in community-based question answering

services. In 25th AAAI Conference on Artificial Intelligence, pages 1273–1278,

Austin, Texas, USA.

Yu, H., Kaminsky, M., Gibbons, P. B., and Flaxman, A. (2006). Sybilguard: De-

fending against sybil attacks via social networks. In Proceedings of the 2006 Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM ’06, pages 267–278, New York, NY, USA. ACM.

Yu, S. and Kak, S. (2012). A survey of prediction using social media. Computing

Research Repository (CoRR), abs/1203.1647:1–20.

Zhang, C. and Zhang, X. (2013). Uncertain attribute graph model of web social

network and its application. In Computer Science Education (ICCSE), 2013 8th

International Conference on, pages 111–116, Colombo, Sri Lanka.

Zhang, P., Wang, X., and Li, B. (2014). Online Social Media Analysis and Visual-

ization, chapter Evaluating Important Factors and Effective Models for Twitter

Trend Prediction, pages 81–98. Springer International Publishing, Cham.

Zheng, B., Thompson, K., Lam, S. S., Yoon, S. W., and Gnanasambandam, N.

(2013). Customers behavior prediction using artificial neural network. In Indus-

trial and Systems Engineering Research Conference (ISERC), pages 700–709, San

Juan, Puerto Rico. Institute of Industrial Engineerings.

Zhu, Y., Zhong, E., Pan, S. J., Wang, X., Zhou, M., and Yang, Q. (2013). Pre-

dicting user activity level in social networks. In Proceedings of the 22nd ACM

International Conference on Information & Knowledge Management, CIKM ’13,

pages 159–168, New York, NY, USA. ACM.

191

