2,698 research outputs found

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    Scan matching by cross-correlation and differential evolution

    Get PDF
    Scan matching is an important task, solved in the context of many high-level problems including pose estimation, indoor localization, simultaneous localization and mapping and others. Methods that are accurate and adaptive and at the same time computationally efficient are required to enable location-based services in autonomous mobile devices. Such devices usually have a wide range of high-resolution sensors but only a limited processing power and constrained energy supply. This work introduces a novel high-level scan matching strategy that uses a combination of two advanced algorithms recently used in this field: cross-correlation and differential evolution. The cross-correlation between two laser range scans is used as an efficient measure of scan alignment and the differential evolution algorithm is used to search for the parameters of a transformation that aligns the scans. The proposed method was experimentally validated and showed good ability to match laser range scans taken shortly after each other and an excellent ability to match laser range scans taken with longer time intervals between them.Web of Science88art. no. 85

    Scalable Estimation of Precision Maps in a MapReduce Framework

    Full text link
    This paper presents a large-scale strip adjustment method for LiDAR mobile mapping data, yielding highly precise maps. It uses several concepts to achieve scalability. First, an efficient graph-based pre-segmentation is used, which directly operates on LiDAR scan strip data, rather than on point clouds. Second, observation equations are obtained from a dense matching, which is formulated in terms of an estimation of a latent map. As a result of this formulation, the number of observation equations is not quadratic, but rather linear in the number of scan strips. Third, the dynamic Bayes network, which results from all observation and condition equations, is partitioned into two sub-networks. Consequently, the estimation matrices for all position and orientation corrections are linear instead of quadratic in the number of unknowns and can be solved very efficiently using an alternating least squares approach. It is shown how this approach can be mapped to a standard key/value MapReduce implementation, where each of the processing nodes operates independently on small chunks of data, leading to essentially linear scalability. Results are demonstrated for a dataset of one billion measured LiDAR points and 278,000 unknowns, leading to maps with a precision of a few millimeters.Comment: ACM SIGSPATIAL'16, October 31-November 03, 2016, Burlingame, CA, US

    Dynamical Analysis of Nearby ClustErs. Automated astrometry from the ground: precision proper motions over wide field

    Full text link
    The kinematic properties of the different classes of objects in a given association hold important clues about its member's history, and offer a unique opportunity to test the predictions of the various models of stellar formation and evolution. DANCe (standing for Dynamical Analysis of Nearby ClustErs) is a survey program aimed at deriving a comprehensive and homogeneous census of the stellar and substellar content of a number of nearby (<1kpc) young (<500Myr) associations. Whenever possible, members will be identified based on their kinematics properties, ensuring little contamination from background and foreground sources. Otherwise, the dynamics of previously confirmed members will be studied using the proper motion measurements. We present here the method used to derive precise proper motion measurements, using the Pleiades cluster as a test bench. Combining deep wide field multi-epoch panchromatic images obtained at various obervatories over up to 14 years, we derive accurate proper motions for the sources present in the field of the survey. The datasets cover ~80 square degrees, centered around the Seven Sisters. Using new tools, we have computed a catalog of 6116907 unique sources, including proper motion measurements for 3577478 of them. The catalogue covers the magnitude range between i=12~24mag, achieving a proper motion accuracy <1mas/yr for sources as faint as i=22.5mag. We estimate that our final accuracy reaches 0.3mas/yr in the best cases, depending on magnitude, observing history, and the presence of reference extragalactic sources for the anchoring onto the ICRS.Comment: Accepted for publication in A&
    corecore