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Abstract

Combining multiple observation views has proven ben-

eficial for pedestrian tracking. In this paper, we present

a methodology for tracking pedestrians in an uncalibrated

multi-view camera network. Using a set of color and in-

frared cameras, we can accurately tracking pedestrians for

a general scene configuration. We design an algorithmic

framework that can be generalized to an arbitrary number

of cameras. A novel pedestrian detection algorithm based

on Center-symmetric Local Binary Patterns is integrated

into the proposed system. In our experiments the common

field of view of two neighboring cameras was about 30%.

The system improves upon existing systems in the follow-

ing ways: (1) The system registers partially overlapping

camera-views automatically and does not require any man-

ual input. (2) The system reaches the state-of-the-art per-

formance when the common field of view of any two cam-

eras is low and successfully integrates optical and infrared

cameras. Our experiments also demonstrate that the pro-

posed architecture is able to provide robust, real-time input

to a video surveillance system. Our system was tested in

a multi-view, outdoor environment with uncalibrated cam-

eras.

1. Introduction

Multi-view pedestrian tracking for video surveillance re-

ceived a lot of attention in recent years, which is moti-

vated by security applications and the development of in-

telligent robots. Compared to single view, multiple views

and different modalities of the same scene can be used to

recover information that might be missing in a particular

view or modality. Multiple target tracking usually contains

two main steps: the first step is the detection of objects of

interest and the second is their temporal linkage from frame

to frame.

1.1. Related work

There is extensive literature on multi-camera detection

and tracking algorithms. An extensive review on tracking

and multi-view tracking is beyond the scope of this paper.

We refer readers to comprehensive surveys [36], [20] for

more details about existing trackers. In this section, we re-

view only the works related to our method.

There are a few single camera tracking algorithms that

take scene priors into account to improve the tracking ac-

curacy, however, these methods are not straightforward to

extend to multi-camera distributed tracking scenarios [30],

[31]. Cai and Aggarwal [2] extended a single-camera track-

ing system. They switched another camera when the system

predicts that the current camera will no longer have a satis-

factory view of the subject.

Recently, tracking by detection algorithms have been

gaining popularity. Existing multiple camera tracking al-

gorithms do not discriminatively model the multi-view ap-

pearance in an online manner. Detection based tracking

algorithms obtain object hypotheses by applying an object

detector to images. The detector is learned off-line from la-

beled training data. Given detection responses generated by

the detector, the tracking algorithm needs to retrieve the real

objects among those responses and set ID for each of them

in every frame.

Orwell et al. [27] presented a tracking algorithm to

track multiple objects in multiple views using color track-

ing. They modeled the connected blobs obtained from back-

ground subtraction using color histogram techniques and

use them to match and track objects. Khan et al. [17]

presented a novel planar homography constraint to robustly

determine locations on the ground plane corresponding to

the feet of the pedestrian. To find tracks they obtained feet

regions over a window of frames and stack them creating
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a space time volume. Fernández-Caballero et al. [9] pre-

sented a thermal-infrared pedestrian detection system un-

der different outdoor environmental conditions. It was in-

troduced an algorithm for pedestrian ROI extraction in in-

frared video based on both thermal and motion information.

Chrysostomou et al. [3] proposed a multi-view optimisation

process to get the best geometric condition for surveillance.

[12] is based on the detected pedestrian to build a grouping

model for crowd analysis.

Utasi et al. [34] developed a probabilistic approach on

multiple calibrated camera views. The presence of people

in the scene are approximated by a population of cylinder

objects in the 3D world coordinate system, which is a real-

ization of a Marked Point Process. The observation model

is obtained from the projection of the pixels of the motion

masks in the different camera frames to the ground plane

and to other parallel planes with different height. Kiss et al.

[18] developed a real-time pedestrian tracking based on leg

detection for cases of different ground-plane height. First,

the foreground mask is filtered in order to find pixels rele-

vant to detecting position of people. Then spatially coher-

ent pixels are collected to form one primitive from them.

The authors filtered pixels possibly corresponding to feet,

which are called candidate pixels. These pixels are covered

with ellipses, these can be back-projected to cones in scene

space.

1.2. Contributions

The major contributions of this paper are listed as fol-

lows:

1. The paper presents a new methodology for tracking

pedestrians in a multi-camera network. In this net-

work, the Fields of View (FOV) of two arbitrary cam-

eras is not greater than 30 %.

2. The present work do not consider any predefined geo-

metrical constraints nor object or scale pre-definitions

for calculating inter-camera transformation. The

method is based on co-motion statistical analysis [33]

for different modalities (infra and other cameras) what

looks like an efficient solution for views having no any

identical image-features.

3. We present our novel pedestrian detector based on

Multi-scale Center-symmetric Local Binary Pattern. A

new feature extraction pipeline is introduced which

mainly captures contour information.

4. Based on registering the results of different pedes-

trian detectors, we present a new multi-view tracking

algorithm using König’s theorem and the Hungarian

method.

2. The overview of our system

The overview of our system is presented in Figure 1.

The Video/camera module obtaines the frames of the cam-

eras, corrects the distortions, and provides the synchro-

nized frames for the whole system. Using these frames,

the Pedestrian detection module provides the coordinates of

the pedestrians bounding box in each frame. The Trajec-

tory module consists of two parts. The first part requires

the synchronized camera frames for the image registration.

The second part supplies the trajectories of the pedestrians.

In the rest of this chapter we describe the algorithms which

work in the individual modules.

Figure 1. The overview of the proposed system.

2.1. Registration

The camera distortions is an important error source in

such systems where we want to correspond accurately the

images of many cameras. In our case it is essential to solve

this problem in the registration, in the detection and in the

tracking too. Lens distortion is a complex field, and a lot

of approaches have been developed to address this problem

[13], [35], [1].

After correcting the lens distortion the matching is

achieved by calculation of co-motion statistics. The robust

algorithm we describe in this subsection finds point corre-

spondences in two images without searching for any struc-

tures and without the need for tracking continuous motion.

In our experiments the common field of view of two neigh-

boring cameras was about 30%. The detailed description of

the algorithm can be found in the work of Szlávik, Havasi,
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and Szirányi [33]. Here we outline only the main steps of

the algorithm:

1. Detecting motion: record the point coordinates where

motion is detected. The motion blobs are extracted

by using running-average background subtraction with

large β, deleting the irrelevant parts by using the pre-

vious image Ik−1 as a reference:

Ik(x, y) = βIk(x, y)− (1−β)Ik−1(x, y), 0 < β < 1.
(1)

2. Updating local and remote statistical maps. In order to

find correspondences between two images, we analyze

the dynamics of the scene by co-motion (concurrent

motion) statistics. For each pixel of the two images,

a local statistical map and a remote statistical map are

generated.

3. Extracting candidate point-pairs from the statistical

maps. Then it can be considered as a transition matrix

of an ergodic regular Markov chain with states [33].

According to the Frobenius-Perron theorem [32], such

a Markov chain has a unique stationary distribution.

4. Rejecting points that are not relevant because they

lie outside the common field-of-view. Point-pairs, in

which both of points are from the overlapping views

are assumed to be the inliers while any other point-

pairs are the outliers. To perform it, Bayes-decision

algorithm was implemented.

5. Fine-tuning point correspondences by minimizing the

reprojection error between the candidate point-pairs.

An iterative technique is used to refine the point place-

ments based on Levenberg-Marquardt iteration.

6. Aligning the images from the separate cameras.

Using the cited [32], [33] algorithms we are able to de-

termine if two cameras have common area of interest. With

the help of co-motion statistics we can determine the plane

of the ground. In the calculation we assume that the ground

is approximately flat. Under these conditions and knowing

the location of the ground, ground-homography can be cal-

culated between any two cameras that have a flat common

area of interest on the ground.

If we imagine the camera network as a graph, a vertex

represents a camera, and there is a link between two ver-

tices, if ground-homography exists between the two cam-

eras represented by the vertices. We select a camera or ver-

tex randomly - called reference camera or reference vertex.

We determine the spanning tree of the graph. With the help

of the spanning tree we can calculate the pathes to the ref-

erence vertex from all the other vertices. A path gives us

the product of the ground-homographies that is necessary

to obtain the view in the reference camera.

2.2. Pedestrian detection

Our pedestrian detection system scan the video frames

all relevant positions and scales to detect a pedestrian. A

feature component encodes the visual appearance of the

pedestrian, while the classifier component determines for

each sliding window independently whether it contains a

pedestrian or not (Figure 2).

Figure 2. Architecture of the pedestrian detection module.

To train our system, we gathered a set of 13,500 grey-

scale sample images of pedestrians as positive training ex-

amples, together with their left-right reflections. The pos-

itive examples have been aligned and scaled to the di-

mensions 128 × 64. The images of the pedestrians were

taken from public pedestrian datasets [16], [6] and from our

surveillance and traffic videos. We made a database of neg-

ative samples too, which consists of 16,000 non-pedestrian

images. In order to improve the performance we put 7,000

vertical structures like poles, trees or street signs to the neg-

ative samples. The vertical structures are common false

positive detections in pedestrian detection.

Feature is the key in pedestrian detection and other pat-

tern recognition problems. A good feature is able to ob-

tain discriminative information between the pedestrian class

and others, and it is stable with respect to intra-class vari-

ances. Our goal was to develop a feature that is discrim-

inative enough both for RGB images and thermal images

because our test environment integrates optical and infrared

cameras. We describe the feature extraction method in the

followings.

2.2.1 Multi-scale Center-symmetric Local Binary Pat-

tern Operator

Local Binary Pattern (LBP) is a simple, but very efficient

texture operator which labels the pixels of an image by

thresholding the neighborhood of each pixel and considers

the result as a binary number [29]. The original LBP opera-

tor labels the pixels of an image by thresholding the 3-by-3

neighborhood of each pixel with central pixel value and the

result is taken as a binary number. A histogram of the la-
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beled image fl(x, y) can be calculated:

Hi =
∑

x,y

I{fl(x, y) = i}, i = 0, ..., n− 1, (2)

where n is the number of different labels and

I{A} =

{

1 if A is true

0 if A is false.
(3)

The LBP operator was later extended to many other vari-

ations. In this paper we are interested in the so-called

Center-symmetric Local Binary Pattern (CS-LBP) [14]. In

CS-LBP, pixel values are not compared to the center pixel

but to the opposing pixel symmetrically with respect to the

center pixel. We can see that for 8 neighbors, LBP produces

28 different binary patterns, whereas for CS-LBP this num-

ber is only 24.

The idea of Multi-scale Center-symmetric Local Binary

Pattern is based on the simple principle of varying the ra-

dius R of the CS-LBP label and combining the resulting his-

tograms. Developing the idea of [14], the neighborhood is

described with two parameters P,R = {R1, R2, ..., RnR
},

where nR is the number of radii utilized in the process of

calculation. Each pixel in Multi-scale CS-LBP image is de-

scribed with nR values. The multi-scale CS-LBP histogram

for different values of R = {R1, R2, ..., RnR
} can be deter-

mined by summing H(1), H(2), ..., H(nR) vectors:

H =

nR
∑

i=1

H(i). (4)

2.2.2 Feature extraction

In this paragraph, we introduce the implementation details

of the feature extraction. We believe that contour is the

most useful information for pedestrian detection, and our

feature extraction method mainly captures the contour. The

key steps of feature extraction are as follows. All the listed

steps resulted in significant improvement in the classifica-

tion performance.

1. We normalize the gray-level of the input image to re-

duce the illumination variance in different images. Af-

ter the gray-level normalization, all input images have

gray-level ranging from 0 to 1.

2. We obtain 4 layers of the input image in the follow-

ing way: first, we compute the gradient magnitude

of each pixel of the input gray-scale image (detection

window), then we repeat this calculation three times on

the previous derivative image. Considering the speed

of the calculation, we compute an approximation of the

gradients using Sobel operator.

3. The detection window and each of the four layers of

the detection window are split into equally sized over-

lapping blocks. The rate of overlapping is 50 %. In our

case, the size of the detection window is 64×128 and

the size of the blocks is 16×16.

4. We take the detection window and the multi-scale CS-

LBP histograms (P = 8, R1 = 1, R2 = 2, R3 = 3,

nR = 3) are extracted from each block independently.

Let vi be the unnormalized descriptor of the ith block,

f be the descriptor of the detection window. We obtain

f in the following way:

• f = [v1, v2, ..., vN ];

• l1-norm, f ← f/
√

(|| f ||1 +ǫ);

5. We take each layers one after the other and the multi-

scale CS-LBP histograms are extracted from each

block independently. Let vi,j be the unnormalized de-

scriptor of the ith block in the jth layer, gj be the de-

scriptor of the jth layer. We obtain gj in the following

way:

• gj = [v1,j , v2,j , ..., vN,j ];

• l1-norm, gj ← gj/
√

(|| gj ||1 +ǫ);

6. We obtain the feature vector of the detection window

in the following way:

F = f +

4
∑

j=1

1

j + 1
gj (5)

We can see that the feature vector of the original image (f
in Eq. 5) mainly captures the contours, the feature vector

of the 4th layer (g4 in Eq. 5) mainly captures the detailed

textures or cluttered background, the rests capture special

edges or textures. That is why the weights of the layers

in Eq. 5 have descending coefficients. There are various

parameter configurations that can be chosen in order to op-

timize the performance of the above described feature based

detection approach. We chose the parameters of the feature

extraction with respect to our experimental results.

The overall length of the feature vector for a 128×64 de-

tection window is 7×15×16 = 1680 because each window

is represented by 7× 15 blocks. Experiments on the INRIA

pedestrian dataset show that the proposed multi-scale CS-

LBP feature with support vector machine with radial basis

function performs well.

2.2.3 Feature representation

In many applications such as video surveillance, detection

speed is as important as accuracy. A standard pipeline for
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performing multi-scale detection is to create a densely sam-

pled image pyramid then the detection system scans all im-

ages of the pyramid to detect a pedestrian. In order to ac-

celerate the scanning process, we define a feature pyramid

using a standard image pyramid.

We obtain the four layers of an image of the standard

pyramid as described in the previous subsection. The Multi-

scale CS-LBP operator (P = 8, R1 = 1, R2 = 2, R3 = 3,

nR = 3) is applied to the image and its four layers. In this

way we correspond five values to each pixel of the image.

An image of the standard pyramid can be substituted by an

(W − 2 · R3) × (H − 2 · R3) × 5 array where W stands

for the width of the image and H is the height of the image.

Using the feature pyramid derived from a standard image

pyramid, the time of the feature extraction and thereby the

scanning process can be reduced.

2.3. Tracking

The next phase of our method is to register the results of

the different pedestrian detectors on each cameras. Because

of the overlapping of the different image planes a single

object can be detected on multiple cameras. Hence if we

project all the detected objects from all the cameras onto

the top-view image there might be multiple points belong-

ing to the same object if it is detected on multiple image

planes (this time we use the foot nodes of the objects). The

distance of the corresponding point pairs on the top-view

image is a function of the accuracy of the detecors in use.

The more accurate the output of the detectors the smaller

the distance between the corresponding point pairs. We set

an order between the points of the top-view image by topo-

logically sweeping an arrangement. Sweeping a vertex set

in the Euclidean plane with a straight line is a well-known

algorithmic paradigm in computational geometry. Edels-

brunner and Guidas showed [7] that if we use a topological

line that is not necessarily straight we can get other advan-

tages. They showed that an arrangement of n lines can be

swept over O
(

n2
)

time and O (n) space by such a line. Fur-

thermore during this process each element (i.e. vertex, edge

or region) is visited once in a consistent ordering. We use

this ordering in our method as well. Hence we can register

the corresponding points from different views by using this

ordering and a radius set by the user. This radius defines a

region around each node in the top-view image. This region

is the only area where we search for corresponding points

from different views. After this step we have exactly one

top-view image point belonging to a single object. We can

increase the efficiency of the algorithm if we choose a dou-

ble sweep in two different (possibly orthogonal) directions

in two dimensions.

The next step is to assign these registered top-view ob-

jects with the previously stored and later updated objects in

the system and refresh our knowledge. Because of the con-

tinuous processing the amount of the objects stored in the

system is not equal with the amount of the top-view objects

of the following state. For example an object might leave or

enter the scene in the next state. Hence the position of the

objects might change because they are allowed to move. So

if the user set the radius correctly our algorithm will effi-

ciently handle this case. Then let us given a matrix A where

the indices of the columns of the matrix are assigned to the

objects stored in the system and the indices of the rows of

the matrix are assigned to the objects currently present on

the scene. The values in aij are distances between the (pos-

sibly) new object i and the stored object j. If there is a

threshold on the value of aij , it can’t be larger than the ra-

dius. Hence if it is too large then we set the value of aij
to the value of the radius. We try to find exactly one cell

from each row and column of the matrix such as the sum of

the values of these cells is minimal. To find a solution like

this we applied the famous Hungarian method of Harold W.

Kuhn [19].

If there are more stored objects in the system than the

number of incoming objects then our matrix has more

columns than rows. In this case we have to insert extra rows

into the matrix because we need a square matrix. We have

to insert extra columns into our matrix if there are more in-

coming objects than stored ones of course. The value of the

cells of these extra rows or columns is the fixed radius.

It is not trivial how to choose a minimal number of rows

and columns in a matrix to cover all the zero values in the

matrix. But in a graph theoretical point of view this problem

can be well approximated. We define a bipartite graph G =
(C,R;E) on the matrix. The vertices of the set C belong

to the columns of the matrix and and the set R is for the

rows of the matrix. Connect the vertices ci ∈ C and rj ∈ R
with an edge if aij = 0 in the matrix A. In this bipartite

graph we determine a maximum matching. By a theorem of

Dénes König [23] the size of this matching is equal to the

minimal number of cover nodes in this graph:

Theorem 1 (König). [23] Let A be an m × n 0–1 matrix.

Then the term rank of A equals the minimum number of

lines required to cover all zeroes in A.

In this maximum matching each edge belongs to exactly

one row and one column. We have to decide if we need the

column or the row in our covering of the zero elements. Our

method search for the minimal number of rows and columns

to cover all the zero elements in the matrix.

If we apply the algortihmic proof of the König theorem

to find a maximum matching in this graph we can find min-

imum covering vertex set as well. The proof of this state-

ment can be found in the monograph of András Frank [11]

with the proof of König’s theorem as well.

We store the history of different image points for the reg-

istered objects. Hence the positions can be set more accu-
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rate for example by the Kalman filter. If the object is behind

an obstacle and we do not have enough information about

its position then we can approximate it.

3. Experimental results: detection and track-

ing

In the experimental section we evaluated two main parts

of the proposed system that have comparable numerical re-

sults:

1. the efficiency and speed of the pedestrian detection,

2. the tracking accuracy by calculating the precision and

recall values.

Using test sequences, we analyzed our system. The test

sequences include various people moving through the scene

with other moving objects including. Pedestrian detection

was determined to be a success if the appropriately sized

bounding box encapsulated the pedestrian in the scene. All

experiments were performed online.

Pedestrian detection: Figure 3 shows the detection rate

versus false positive per-image (FPPI) for the proposed

pedestrian detector and seven other detectors. The nine sys-

tems we compare include Dalal and Trigg’s HOG+SVM

system [4], Lie et al. HOG+Adaboost system [22], Papa-

georgiou et al. Haar+SVM system [28], Monteiro et al.

Haar+AdaBoost system [26], a HOG+IKSVM system [24],

a PHOG+HIKSVM system [24], LatSvm detector [8], Chn-

Ftrs [5] and our proposed system (Multi-scale CS-LBP +

SVM). From the results we can see that our method has a

powerful and discriminative feature that is superior to oth-

ers. It could reduce the false detections significantly.
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Figure 3. Detection rate versus false positive per-image (FPPI)

curves for pedestrian detectors. 4 × 4 is the step size and 1.09

is the scale factor of the sliding-window detection.

The speed comparison of the seven systems is presented

in Table 1. We measured the speed at 640× 480 resolution

and the accuracy at 1 FPPI (false positive per image).

Table 1. Speed comparison of several pedestrian detection sys-

tems. The resolution is 640× 480.

Method Speed

Haar+SVM [28] 56.7 fps

Haar+AdaBoost [26] 70.1 fps

PHOG+HIKSVM [24] 2.1 fps

HOG+IKSVM [24] 2.55 fps

HOG+Adaboost [22] 22.3 fps

HOG+SVM [4] 2.45 fps

LatSvm [8] 0.78 fps

ChnFtrs [5] (no infra) 88.7 fps

ours (optical or infra) 38.1 fps

As we mentioned, the test environment contains optical

and infrared cameras too. That is why the pedestrian de-

tection system have to work well on thermal images. Our

presented feature extraction method captures mainly gradi-

ent and edge information, some texture and scale informa-

tion. This properties enable to the whole system the suffi-

cient performance both on RGB and thermal images. Some

of the other state-of-the-art methods listed in Table 1 were

not able to give appropriate performance on thermal images

[e.g. Dollar], while they slightly outperforms our method in

accuracy for visible color channels.

Tracking: We could not find similar cases in the lit-

erature with wide-baseline infra/optical multiview uncali-

brated arrangement. However, to evaluate our method’s ef-

ficiency we compared it to mostly state-of-the-art tracking

methods in calibrated multiview cameras. We compared

our system to six other methods referred to as POM [10],

3DMPP [34], M2 tracker [25], Tensor Voting tracker [15],

Relaxation tracker [21] and ParFit [18]. Table 2 shows the

results of the other algorithms and the results of our system

in the last row. As it can be found in Table 2, our system’s

efficiency is not far from that of the best calibrated systems.

We evaluated our system in an outdoor, real environment

(see Figure 5) while the other systems were tested in in-

door environment. The top-view image of our measurement

arrangement can be seen in Figure 5. The error of center

location of target is calculated for every frame as

ec = ||Kt −Kgroundtrue||, (6)

where Kt is the target location at the tth frame, and

Kgroundtrue stands for the groundtrue location. If the tar-

get’s center location error is greater than 0.25 m in a frame,

we say that the tracker fails [18], [34]. Using the temporal

sequence of center location error, we are able to determine

the ROC curve of the system. The ROC curve of the pro-

posed system can be seen in Figure 4.

Figure 6 and Figure 7 show some tracking results. In

Figure 6 four consecutive frames of three different cam-

eras (two RGB and one thermal) can be seen. These three

cameras form in this case an uncalibrated camera network.
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Table 2. Precision/recall values for tracking comparing our uncal-

ibrated method to the state-of-the-art well-calibrated and uncali-

brated methods.
Precision Recall

POM (calibrated) [10] 87.2 % 95.56 %

3DMPP (calibrated) [34] 97.5 % 95.5 %

ParFit (calibrated) [18] 90.66 % 95.61%

M2 tracker (calibrated) [25] 83.9 % 90.4 %

Tensor Voting (uncalibrated) [15] 77.6 % 80.2 %

Relaxation (calibrated) [21] 70.1 % 72.3 %

ours (uncalibrated) 84.3 % 95.13 %

Figure 4. ROC curve of tracking measured in function of detection

threshold.

Figure 5. The test environment of our measurement.

Figure 7 shows the determined tracjectory of the walking

pedestrians and the projected views.

Figure 6. Frames of three different cameras and the detection re-

sults (the third camera was an infra one).

4. Conclusion and Outlook

In this paper we presented a novel algorithmic frame-

work for real-time detecting and tracking pedestrians in a

Figure 7. Some tracking results in a test sequence.

multi-camera network. This framework is able to regis-

ter the images of different cameras using co-motion statis-

tics. The framework was also used to train pedestrian de-

tector for real scenes. Using the results of the registration

and the pedestrian detector, we design a real-time track-

ing method based on König’s theorem and the Hungarian

method that performs well in multi-view, outdoor environ-

ment with uncalibrated cameras. The evaluation demon-

strates we achieve high accuracy if the common field of

view of two neighboring cameras is about 30%. Our ex-

periments also demonstrate that the pedestrian detector can

provide robust input for a tracking framework and it is able

to work on different modalities.
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