562 research outputs found

    Cell Cycle Control in Eukaryotes: a BioSpi model

    Get PDF
    This paper presents a stochastic model of the cell cycle control in eukaryotes. The framework used is based on stochastic process algebras for mobile systems. The automatic tool used in the simulation is the BioSpi. We compare our approach with classical ODE specications

    Structural Operational Semantics for Stochastic Process Calculi

    No full text
    A syntactic framework called SGSOS, for defining well-behaved Markovian stochastic transition systems, is introduced by analogy to the GSOS congruence format for nondeterministic processes. Stochastic bisimilarity is guaranteed a congruence for systems defined by SGSOS rules. Associativity of parallel composition in stochastic process algebras is also studied within the SGSOS framework

    Stochastic Process Algebras and their Markovian Semantics

    Get PDF

    Embedding real-time in stochastic process algebras

    Get PDF
    We present a stochastic process algebra including immediate actions, deadlock and termination, and explicit stochastic delays, in the setting of weak choice between immediate actions and passage of time. The operational semantics is a spent time semantics, avoiding explicit clocks. We discuss the embedding of weak-choice real-time process theories and analyze the behavior of parallel composition in the weak choice framework

    A uniform definition of stochastic process calculi

    Get PDF
    We introduce a unifying framework to provide the semantics of process algebras, including their quantitative variants useful for modeling quantitative aspects of behaviors. The unifying framework is then used to describe some of the most representative stochastic process algebras. This provides a general and clear support for an understanding of their similarities and differences. The framework is based on State to Function Labeled Transition Systems, FuTSs for short, that are state-transition structures where each transition is a triple of the form (s; α;P). The first andthe second components are the source state, s, and the label, α, of the transition, while the third component is the continuation function, P, associating a value of a suitable type to each state s0. For example, in the case of stochastic process algebras the value of the continuation function on s0 represents the rate of the negative exponential distribution characterizing the duration/delay of the action performed to reach state s0 from s. We first provide the semantics of a simple formalism used to describe Continuous-Time Markov Chains, then we model a number of process algebras that permit parallel composition of models according to the two main interaction paradigms (multiparty and one-to-one synchronization). Finally, we deal with formalisms where actions and rates are kept separate and address the issues related to the coexistence of stochastic, probabilistic, and non-deterministic behaviors. For each formalism, we establish the formal correspondence between the FuTSs semantics and its original semantics

    Compositional Performance Modelling with the TIPPtool

    Get PDF
    Stochastic process algebras have been proposed as compositional specification formalisms for performance models. In this paper, we describe a tool which aims at realising all beneficial aspects of compositional performance modelling, the TIPPtool. It incorporates methods for compositional specification as well as solution, based on state-of-the-art techniques, and wrapped in a user-friendly graphical front end. Apart from highlighting the general benefits of the tool, we also discuss some lessons learned during development and application of the TIPPtool. A non-trivial model of a real life communication system serves as a case study to illustrate benefits and limitations

    Process algebra for performance evaluation

    Get PDF
    This paper surveys the theoretical developments in the field of stochastic process algebras, process algebras where action occurrences may be subject to a delay that is determined by a random variable. A huge class of resource-sharing systems – like large-scale computers, client–server architectures, networks – can accurately be described using such stochastic specification formalisms. The main emphasis of this paper is the treatment of operational semantics, notions of equivalence, and (sound and complete) axiomatisations of these equivalences for different types of Markovian process algebras, where delays are governed by exponential distributions. Starting from a simple actionless algebra for describing time-homogeneous continuous-time Markov chains, we consider the integration of actions and random delays both as a single entity (like in known Markovian process algebras like TIPP, PEPA and EMPA) and as separate entities (like in the timed process algebras timed CSP and TCCS). In total we consider four related calculi and investigate their relationship to existing Markovian process algebras. We also briefly indicate how one can profit from the separation of time and actions when incorporating more general, non-Markovian distributions

    Cell Cycle Control in Eukaryotes: A BioSpi model

    Get PDF
    AbstractThis paper presents a stochastic model of the cell cycle control in eukaryotes. The framework used is based on stochastic process algebras for mobile systems. The automatic tool used in the simulation is the BioSpi. We compare our approach with classical ODE specifications

    Stochastic simulation of event structures

    Get PDF
    Currently the semantics of stochastic process algebras are defined using (an extension) of labelled transition systems. This usually results in a semantics based on the interleaving of causally independent actions. The advantage is that the structure of transition systems closely resembles that of Markov chains, enabling the use of standard solution techniques for analytical and numerical performance assessment of formal specifications. The main drawback is that distributions are restricted to be exponential. In [2] we proposed to use a partial-order semantics for stochastic process algebras. This allows the support of non-exponential distributions in the process algebra in a perspicuous way, but the direct resemblance with Markov chains is lost. This paper proposes to exploit discrete-event simulation techniques for analyzing our partial-order model, called stochastic event structures. The key idea is to obtain from event structures so-called (time-homogeneous) generalized semiMarkov ..
    corecore