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Abstract

This paper presents a stochastic model of the cell cycle control in eukaryotes. The framework used is based
on stochastic process algebras for mobile systems. The automatic tool used in the simulation is the BioSpi.
We compare our approach with classical ODE specifications.
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1 Introduction

In recent years, a major challenge for theoretical molecular biology is to explain the

physiology of cell proliferation in a variety of unicellular and multicellular organisms

in terms of their underlying molecular control systems. Molecular biologists have

uncovered a lot of information about the proteins controlling the cell growth and

division in eukaryotes. This wealth of data reflects the complexity of cell cycle

regulatory system and consequently the importance of understanding and describing

it with a model that suitably simulates the cell cycle behavior.

The most common approach to model the physiology of the cell cycle is to use

ordinary differential equations (ODE) that fit the temporal variations of the con-

centrations of involved proteins. The molecular controls of promotion/inhibition of

these proteins has a non-linear oscillatory behavior that requires numerical algo-

rithms for solving the corresponding equations. Simulation tools like BioUML [1],

E-CELL [3], Gepasi [4] support modeling of cellular systems, numerical execution

and analysis of the ODE based models.
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However, modeling with differential equations assumes that systems evolve de-

terministically in a continuous state space on a continuous time scale: it is not

always true in biology. The behaviour of a biological system is driven by a com-

plex network of chemical reactions among different molecular species. Although the

great usefulness of the differential rate-equations description of chemical kinetics,

this approach does not have a robust physical basis. Namely, the time evolution of

a molecular system is governed by the laws of quantum mechanics, that establish

the only possibility of discrete integer changes in the molecular population levels.

Even neglecting quantum considerations and treating the molecular interaction with

classical mechanics, it is impossible to make exact predictions about the molecular

population levels at a some time without taking into account the precise positions

and velocities of all the molecules of the system. In this sense, we can assert that in

the N-dimensional sub-space of the species population numbers, a chemical reacting

system of classical molecules is not deterministic and its description by means of

ODE approach is not suitable.

The probabilistic nature of a biological system at the molecular scale requires

new languages able to describe and predict the fluctuations in the population levels.

We rely on a stochastic extension [13,14] of the π-calculus [10], a calculus of mobile

processes based on the notion of naming. The basic idea of this biochemical stochas-

tic π-calculus is to model a system as a set of concurrent processes selected according

to a suitable probability distribution in order to quantitatively accommodate the

rates and the times at which the reactions occur.

We use here this framework to model and simulate the cell cycle control in

eukaryotes.

Our development can also be interpreted as a comparison between the most

common modeling method with ODE and π-calculus representation, in order to

point out the ability of this new tool to perform a stochastic simulation of chemical

interactions. We also present data obtained from BioSpi [2] simulations.

The paper is organized as follows. In the next section we report a very brief sur-

vey of the physiology of the cell cycle. Section 3 describes the molecular interactions

that drive the cell cycle and also reports a classical ODE description taken from

the literature with its quantitative parameters. Section 4 briefly recalls the basics

of the biochemical stochastic π-calculus. Then it shows our specification of the cell

cycle control, and finally, it discusses the results of the stochastic simulation. In the

last section we show some conclusions.

2 Cell cycle physiology

The cell cycle is the process by which a growing cell replicates all its components

and divides into two daughter cells. In eukaryotes the cell cycle is composed by

four phases (G1, S, G2 and M), but it is convenient to think of it as the alternation

of two states (G1 and S-G2-M) separated by two transition Start and Finish (two

state Nasmyth model [11], see Fig. 1). In G1 the chromosome are not yet repli-

cated and the cell replication-division process is uncommitted. The Start transition
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occurs when the internal and external condition are favorable for a new round of

chromosome replication and segregation. At this point, the cell irreversibly com-

mits itself to the replication cycle, progressing through the all four stages G1, S,

G2 and M, that drive the alternation of synthesis (S) and mitosis (M). In the S

phase each DNA molecule is accurately replicated, and the cell increases its mass

by duplicating its “hardware” components (proteins, RNA, phospholipid bilayers,

carbohydrates, etc.).

The mitotic process is quite complex, occurring in four different sub-processes:

prophase, metaphase, anaphase and telophase. In prophase each chromosome con-

sists of two sister chromatids (two identical DNA molecules), tethered together by

specific proteins, called cohesins. In early prophase, thin fibers, called microtubules

are assembling a bipolar spindle. When aligned, one chromatid of each chromosome

is attached by microtubules to one pole of the spindle (metaphase). Triggered by

a specific signal, the Finish transition initiates by destroying cohesins and allowing

sister chromatids to be pulled to opposite pole of the spindle (anaphase). There-

after, daughter nuclei form around the segregated chromatids (telophase) and the

daughter cell separates. The two new cells are now back in G1 state and the cycle

repeats (Fig. 1).

There are also three checkpoints in G1, G2 and M phases to avoid failures. The

cell must be large enough and have undamaged DNA to enter S phase. If these two

conditions are not satisfied, the cell stops at the G1 checkpoint. Before entering

mitosis, at the G2 checkpoint, the cell verifies that DNA synthesis is complete,

DNA is undamaged and the size is adequate. Finally, at the M checkpoint, the

proper alignments of the chromosomes and the completeness of DNA replication

are verified. When these conditions are satisfied, the metaphase checkpoint is lifted

and the cell can divide.

G1

S M

G2

START

replication
DNA

metaphase

anaphase

cell division

growth

Fig. 1. The phases of the cell cycle

3 Molecular machinery of the cell cycle

The principal components of the complex network of molecular signals regulating

the cell cycle are the cyclin-dependent protein kinases (CDKs). The role of these

kinases is to phosphorilate certain proteins using ATP as the phosphate donor.
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CDK requires a cyclin partner in order to be active and to recognize the proper

targets. The CDK targets are proteins involved in DNA replication, chromosomes

condensation, spindle formation and other crucial events of the cell cycle. For ex-

ample, by phosphorilating specific nucleotide sequences, where DNA replication can

start, the CDKs trigger the DNA synthesis, or by phosphorilating histones (protein

involved in DNA packaging), the CDKs initiate the chromosome condensation at

G2-M transition.

CDKs activity can be regulated in three ways: by availability of cyclin sub-units,

by stoichiometric binding to a cyclin-dependent kinases inhibitor (CKI) and by

phosphorilation of CDK sub-units. Most CDKs are present in constant abundance

throughout the cell cycle, while the cyclin abundance depends on the rate of cyclin

synthesis and degradation, both of which are regulated during the cell cycle as

we will see later. The stoichiometric inhibitor CKI of cyclin/CDK dimers also is

synthesized and degraded at rates that are regulated during the cell cycle. Finally,

CDKs activity can be inhibited by phosphorilation of a specific tyrosine residue.

During the cycle the phosphorilation state of CDK varies as the fluctuation of the

activity of the tyrosine kinase Wee1 and tyrosine phosphatase Cdc25.

In the Nasmyth model the G1 state is correlated with a low activity of CDKs,

while the S-G2-M state is correlated with a high activity of CDKs. At Start, the

cyclin synthesis is induced, causing a rise of CDKs activity that continues in the

subsequent S-G2-M phases. The initial rise in CDK activity commits the DNA

replication, then a further increase is necessary to drive the cell into M phase.

The Finish transition is characterized by the activation of anaphase promoting

complex (APC). The APC labels some specific target proteins, which are subse-

quently destroyed by the cell’s proteolytic machinery. The APC is composed by a

complex of about a dozen of polypeptides and two auxiliary proteins Cdc20 and

Cdh1. The Cdc20 is active at Finish and is involved in the degradation of cohesins

at anaphase and in the activation of Cdh1. The combined activity of Cdc20 and

Cdh1 is responsible of the cyclin degradation at telophase, allowing the cycle to

return to G1 state. The activity of Cdc20 and Cdh1 is controlled by cyclin/CDK

dimers, that activate Cdc20 and inhibits Cdh1.

3.1 A simple model of Start and Finish

The control mechanism of the cell cycle modeled by Novak et al. [12] postulates

the antagonistic interaction between CDK and APC: the APC extinguishes CDK

activity by destroying its cyclin partners, whereas cyclin/CDK dimers inhibit APC

activity by phosphorilating Cdh1 (Fig. 3). The interaction is also mediated by a

cyclin-dependent kinase inhibitor (CKI).

The biochemical reactions describing the interaction between cyclin/CDK dimers,

APC and CKI are below (parameters values are listed in Tab. 1, where the k’s are

the rate constants and the J ’s are the Michaelis constants), assuming that the APC

cores are in excess and that the total amount of Cdh1 is 1 [12].
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Fig. 2. Cyclin sub-units are synthesized on ribosomes in the cytoplasm and bind rapidly and irreversibly
to CDK kinases to form active dimers cyclin/CDK. The cyclin sub-units are degraded periodically by the
APC, releasing inactive CDK monomers. The APC is inactivated by cyclin/CDK and re-activated by an
“activator”. The k’s are the chemical reaction rates, that for the most part are functions of the dynamics
variables. For example, k2 = k′

2
[inactiveAPC] + k′′

2
[activeAPC], where k′

2
and k′′

2
are the enzymatic

turnover numbers characterizing the less- and more-active forms of APC, respectively.

dX

dt
= k1 − (k′

2 + k′′
2Y )X + (k′

7 + k′′
7X)T − L1XZ + L2T (1)

dY

dt
=

(k′
3 + k′′

3A)(1 − Y )

J3 + 1 − Y
−

k4mXY

J4 + Y
(2)

dZ

dt
= k8 + [ν ′

2(1 − Y ) + ν ′′
2 Y ]T − (k′

7 + k′′
7X)Z − L1XY + L2T (3)

dT

dt
= −[ν ′

2(1 − Y ) + ν ′′
2Y ]T − (k′

7 + k′′
7X)T + L1XZ − L2T (4)

dA

dt
= k′

5 + k′′
5

(mX)n

J ′′
5 + (mX)n

− k6A (5)

dm

dt
= μm

(
1 −

m

mc

)
(6)

where X, Y, Z and T are the concentrations of cyclin/CDK dimers, active Cdh1/APC

complex, CKI monomers and cyclin/CDK/CKI trimers; A is the concentration of
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Table 1
Parameters values. See [12,6].

Parameters Values Parameters Values

k1 0.050 min−1 k8 0.150 min−1

k′
2 0.050 min−1 L1 200.000 min−1

k′′
2 1.000 min−1 L2 1.000 min−1

k′
3 0.100 min−1 ν ′

2 0.050 min−1

k′′
3 3.000 min−1 ν ′′

2 0.150 min−1

k4 35.000 min−1 J3 0.040

k′
5 0.005 min−1 J4 0.040

k′′
5 0.200 min−1 mc 10.000

k6 0.100 min−1 n 4.000

k′
7 0.150 min−1 μ 0.010

k′′
7 9.000 min−1

the Cdc14 phosphatase, that activates Cdh1 at Finish, removing from it the in-

hibitory phosphate group placed there by cyclin/CDK (Fig. 3). m is the cell “mass”

(or size) defined as m = Vcyt/Vnuc, where Vcyt and Vnuc are the volume of the cy-

toplasm and the volume of nucleus, respectively. The mass is also time dependent

and its evolution is described by eq. (6), where mc is the maximum size to which a

cell may grow if it does not divide and μ is the specific growth rate when m � mc.

It is also m → m/2 whenever the cell divides.

CDK

cyclin

Cdh1 Cdh1

CDK+

degraded cyclin

P

Cdc20

+ +

Fig. 3. The sequence of events in the cell cycle can be represented as a negative feedback loop: the
cyclin/CDK dimers (X) turn on the activator (Cdc20), which indirectly activates Cdh1, which destroys
cyclin sub-units.

At the metaphase-anaphase transition, Cdc14 is activated by Cdc20, which de-

stroys an inhibitor of Cdc14, and it is assumed A ∝ [Cdc14] ∝ [Cdc20], where the

symbol [ -] denotes the concentration.
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Notice finally that the irreversible transitions Start and Finish are abrupt jumps

driven by the rhythmic activation/inhibition of CDK by Cdh1. In equation (2),

Y = [Cdh1] represents the active form of Cdh1 protein. When phosphorilated, it

becomes inactive. The activity of Cdh1 is constructed as an ultra-sensitive switch

between its two forms [8]. At the beginning of the cycle, Cdh1 is active, i. e. Y ≈ 1.

When the X is high enough to compete with [Cdc20], the system changes quickly

to Y ≈ 0.

Fig. 4. Simulation of cyclin/CDK concentration variation in time from equations (1) - (6) with the param-
eters given in Tab. 1. (See [6,12])

Fig. 5. Simulation of CDH1 and CDC14 concentrations variations in time from equations (1) - (6) with the
parameters given in Tab. 1.(See [6,12])

4 Implementation and results

We first recall the syntax and the intuitive semantics of the π-calculus. We then

describe our specification of the cell cycle control, and eventually we discuss the

simulation results.
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4.1 The biochemical stochastic π-calculus

We recall here a simplified version of the calculus in [14] because we need no ho-

modimerization reaction in our specification. Biomolecular processes are carried

out by networks of interacting protein molecules, each composed of several distinct

independent structural parts, called domains. Pair-wise interaction between do-

mains depends on structural and chemical complementarity of particular portions,

called motifs. Interaction between proteins causes biochemical modification of mo-

tifs (e.g. covalent changes). These modifications affect the potential of the modified

protein to interact with other proteins. Since protein interactions directly affect

cell function, these modifications are the main mechanism underlying many cellular

functions, making the stochastic π-calculus particularly suited for their modeling as

mobile communicating systems.

Processes model molecules and domains. Global channel names and co-names

represent complementary motifs and newly declared private channels define com-

plexes and cellular compartments. Communication and channel transmission model

chemical interaction and subsequent modifications. The actual rate of a reaction

between two proteins is determined according to a basal rate 3 and the concentra-

tions or quantities of the reactants. Two different reactant molecules, P and Q,

are involved, and the reaction rate is given by Brate × |P | × |Q|, where Brate is

the reaction’s basal rate, and |P | and |Q| are the concentrations of P and Q in the

chemical solution.

The prefix π.P of the π-calculus is replaced in the stochastic variant by (π, r).P

where r is the single parameter of an exponential distribution that characterizes

the stochastic behaviour of the activity corresponding to the prefix π. Thus, r

corresponds to the basal rate of a biochemical reaction. 4 Otherwise, the original

π-calculus syntax remains intact. The structural congruence ≡ is extended with

A(ỹ) ≡ P{ỹ/x̃} (if A(x̃) ::= P is the unique defining equation of constant A).

Similarly to [14] we assume all processes in head normal form. In particular, a

process P is in head normal form if either it is the null process or P ≡
∑

i(πi, ri).Pi

and ∀i �= j . sbj(πi) �= sbj(πj).
5 Note, that this condition is justified since we

assume at most one occurrence of a given motif in a domain.

The operational semantics of the calculus thereby defines the dynamic behaviour

of the modeled system driven by a race condition, yielding a probabilistic model

of computation. All the activities that are enabled in a state compete and the

fastest one succeeds. The continuity of exponential distributions ensures that the

probability that two activities end simultaneously is zero.

Since reaction rates depend on the number of interacting processes, the two

auxiliary functions, In,Out : 2P ×N → N inductively count the number of receive

3 The basal rate of a reaction is an empirically-determined constant, which depends on the specific reaction,
the temperature, etc.
4 In the original stochastic π-calculus [13] the rate is associated with the prefix. However, in a chemical
reaction both reactants share a single basal rate. This is resolved by associating the basal rate with the
channel name. For clarity purposes, we continue to specify the rate r in the prefixes throughout the paper,
implicitly assuming that two prefixes have the same rate when using the same channel name.
5 sbj(π) denotes the subject of π, i.e. its output or input link.
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and send operations on a channel x enabled in a process:

Inx(0) = 0

Inx(
∑
i∈I

(πi, ri).Pi) = |{(πi, ri)|i ∈ I ∧ sbj(πi) = x}|

Inx(P1|P2) = Inx(P1) + Inx(P2)

Inx((ν z)P ) =

⎧⎨
⎩

Inx(P ) if z �= x

0 otherwise

Outx is similarly defined, by replacing any occurrence of In with Out and the

condition sbj(πi) = x with sbj(πi) = x.

The reduction semantics of the biochemical stochastic π-calculus follows.

(. . . + (x〈z〉, r).Q)|((x(y), r).P + . . .)
x,rb·1·1−−−−→ Q|P{z/y}

P
x,rb·r0·r1

−−−−−−→ P ′

P |Q
x,rb·r

′

0
·r′

1−−−−−−→ P ′|Q
,

⎧⎨
⎩

r′0 = r0 + Inx(Q)

r′1 = r1 + Outx(Q)

P
x,rb·r0·r1

−−−−−−→ P ′

(ν x)P
x,rb·r0·r1

−−−−−−→ (ν x)P ′

Q ≡ P,P
x,rb·r0·r1

−−−−−−→ P ′, P ′ ≡ Q′

Q
x,rb·r0·r1

−−−−−−→ Q′

A reaction is implemented by the three parameters rb, r0 and r1, where rb rep-

resents the basal rate, and r0 and r1 denote the quantities of interacting molecules,

and are computed compositionally via Inx and Outx while deducing transitions.

4.2 Specification

The system of interacting proteins that regulate the cell cycle illustrated in Fig. 2

has been implemented in the biochemical stochastic π-calculus as follows.

SY STEM ::= CY CLIN |CDK|CDH1|CDC14|CKI|CLOCK

CY CLIN ::= (ν bb)BINDING SITE

BINDING SITE ::= (lb〈bb〉, R4).CY CLIN BOUND

CY CLIN BOUND ::= DEGCY C + DEGCKI + CY C CDK CKI

DEGCY C ::= (degp,R1).degc.0

DEGCKI ::= (degd,R3).CY CLIN BOUND

CY C CDK CKI ::= (bind〈bb〉, R11).bb.TRIM

TRIM ::= DIM + NOTHING

DIM ::= (removecki,R9).(CDK|CY CLIN BOUND)

NOTHING ::= (donothing,R10).TRIM

CDK ::= (lb(cbb), R4).CDK CATALY TIC
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CDK CATALY TIC ::= INACTCDH1 + NEWCDK + INACTCAT

INACTCDH1 ::= (cdh1r,R6).CDK CATALY TIC

NEWCDK ::= (degc,R2).CDK

INACTCAT ::= (cbb,R5).0

CDH1 ::= DEGRCY C + INACT + ACTCDC14

DEGRCY C ::= (degp,R1).CDH1

INACT ::= (cdh1r,R 6).(pcdh1r,R7).CDH1

ACTCDC14 ::= (removep,R8).CDH1

CDC14 ::= (pcdh1r,R7).CDC14P

CDC14P ::= (removep,R8).CDC14

CKI ::= DEGRCKI + BINDCY C

DEGRCKI ::= (degd,R3).0

BINDCY C ::= (bind(x), R11).0

CLOCK ::= CLOCK1 + CLOCK2

CLOCK1 ::= (removecki,R9).CLOCK

CLOCK2 ::= (donothing,R10).CLOCK

R1 = 0.005 R2 = 0.001 R3 = 0.003 R4 = 0.500 R5 = 0.300 R6 = 0.005

R7 = 0.009 R8 = 0.009 R9 = 0.010 R10 = 0.017 R11 = 0.020

The system is composed by six concurrent processes, corresponding to the main

five species of proteins, which regulate the cell cycle: CYCLIN, CDK, CDH1, CKI,

CDC14 plus the auxiliary process CLOCK whose meaning is explained below. First

cyclin sub-units bind to CDK monomers (CYCLIN process) and make them active;

then the dimers cyclin/CDK, the activator CDC14 and the CDH1 are involved in

a negative feedback loop: cyclin/CDK turns on CDC14, which activates CDH1,

which inhibits the cyclin/CDK activity, destroying the cyclin sub-units. The model

includes also another possibility of inhibition of cyclin/CDK: the stoichiometric

binding with CKI. Instead, we have neglected the inhibition of cyclin/CDK by

phosphorilation of CDK sub-units (to keep the model as simple as possible). The

events that our code simulates are the dimers cyclin/CDK formation, phosphori-

lation (de-phosphorilation) of CDH1 by CDC14 and the protein degradation. The

binding of cyclin with CDK occurs through the binding site offered by cyclin on

the private backbone channel bb. All other events occur on global channels each

at different suitable rates, following a similar approach to [7]. Phosphorilation (de-

phosphorilation) of CDH1 by the catalytic unit of CDK (CDK CATALYTIC) is

mediated by pchd1r and removep global channels. The stoichiometric binding of

cyclin/CDK with CKI is implemented as a local sub-process of CYCLIN process

occurring on the channel bind.

The different reactions in which the components of the system are involved

are implemented as a multiple non-deterministic choice, that is then turned into

a probabilistic one by the BioSpi tool (See next section). For instance, the bound
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state of CYCLIN process (CYCLIN BOUND), that identifies the cyclin/CDK dimer

can undergo three reactions: cyclin sub-unit degradation (DEGCYC), binding with

a CKI (CYC CDK CKI), to form the trimer cyclin/CDK/CKI (TRIM), or the

degradation of CKI sub-unit (DEGCKI). The active form of Cdh1 protein (CDH1)

can degradate the cyclin (DEGRCYC), can be inactivated (INACT) by the join

with a phosphate group or can be activated by CDC14 (ACTCDC14) that removes

from it the phosphor. The trimer CYC CDK CKI can be resolved in the dimer

cyclin/CDK (DIM) or it can remain itself (NOTHING).

Finally, note that we introduce in the specification the process CLOCK for

technical reasons. It drives the mechanism of sending - receiving on the channels

removecki and donothing in the decomposition of the trimer cyclin/CDK/CDK.

4.3 Simulation

The run of the program produces a trace of the simulated system, that can be

subsequently processed to obtain a quantitative time-evolution for each kind of

process. The stochastic engine on which BioSpi system is based is the Gillespie

algorithm [7] that implements discrete non-deterministic simulations of chemical

reactions.

The simulation outputs shown in Fig. 6 are in agreement both with published

simulations and data analysis [6,17,16,5,15,9] for the Nasmyth two states model.

Our code reproduces the oscillations of the number of processes with the same peri-

ods of the differential equation solutions (∼ 70 min). This demonstrates that both

the ODE model and the π-calculus model are able to simulate the same rhythmic

behavior of the cell repeated replication. However the π-calculus model repro-

duces also the statistical fluctuations of the number of molecules characteristic of a

stochastic system at microscopic scale. These fluctuations ripple the shape of the

peaks, that instead is sharp in the ODE deterministic model.

Moreover, in our simulation we have used fictious values for the initial number of

processes (N0(CY CLIN) = 20, N0(CDK) = 10, N0(CDH1) = 10, N0(CDC14) =

30, N0(CKI) = 10) because of the lack of experimental measurements. They do

not correspond to actual quantities of the related proteins in the cell at the starting

of replication. This fact mainly reflects on the height and on the resolution of

the peaks in the graphs making more difficult an immediate comparison with the

solutions of differential equations. In ODE model the abundance of involved proteins

is quantified by its concentration, that is defined as
Nproteins

Vnuc
, while in BioSpi model

we consider purely the number of proteins Nproteins. Therefore various scale factor,

like the volume of the nucleus, re-scale in different way the width of the oscillations

in the output of the two models.

5 Conclusions

The continuous deterministic abstraction is an inefficient tool for the description of

biological system, because of the inability of the reaction rate equation to describe

the fluctuations in the molecular population levels, that could play an important
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CYCLIN_BOUND

CDH1

CDC14

Fig. 6. BioSpi simulation output for the two state Nasmyth model of cell cycle control. TIme evolution of
absolute number of proteins involved in the process: Cdh1, Cdc14 and cyclin/CDK.

role in the microscopic mechanism governing the macroscopic behavior of the sys-

tem. Moreover, it is not even guaranteed that the reaction-rate equations provide a

sufficiently accurate account of the average molecular population level [7], especially

in presence of a complex, non-linear, dynamical system of interactions like the cell

cycle machinery. In this context, where the attention of biologists is increasingly

being drawn to the microscopic molecular systems, the stochastic π-calculus is a

powerful tool for their representation.
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